JP2011149622A - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP2011149622A
JP2011149622A JP2010011419A JP2010011419A JP2011149622A JP 2011149622 A JP2011149622 A JP 2011149622A JP 2010011419 A JP2010011419 A JP 2010011419A JP 2010011419 A JP2010011419 A JP 2010011419A JP 2011149622 A JP2011149622 A JP 2011149622A
Authority
JP
Japan
Prior art keywords
temperature
unit
gas pipe
liquid pipe
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010011419A
Other languages
Japanese (ja)
Inventor
Kenichi Takano
賢一 高野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu General Ltd
Original Assignee
Fujitsu General Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu General Ltd filed Critical Fujitsu General Ltd
Priority to JP2010011419A priority Critical patent/JP2011149622A/en
Publication of JP2011149622A publication Critical patent/JP2011149622A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To securely determine the opening/closing state of operation valves during installation work regardless of the state of a heat exchange temperature sensor on the indoor unit side and the communication state between an outdoor unit and indoor units. <P>SOLUTION: In this multi-type air conditioner, the outdoor unit X and the indoor units A-C are interconnected via connection pipes 380-430. The outdoor unit X includes: liquid pipe temperature sensors St5, St7, St9 detecting temperatures of branch liquid pipes 200-220; gas pipe temperature sensors St6, St8, St10 detecting temperatures of branch gas pipes 290-310; and an operation valve opening/closing state determinator 440 calculating each of detected temperature differences between the temperatures of the branch liquid pipes 200-220 and the temperatures of the branch gas pipes 290-310 based on each detected temperature by the liquid pipe temperature sensors St5, St7, St9 and the gas pipe temperature sensors St6, St8, St10 during operation, and determining that the operation valves 260-280, 320-340 are closed when the respective detected temperature differences are a reference value or lower. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、空気調和機に関し、操作弁の開閉状態を判定するものに関する。   The present invention relates to an air conditioner, and relates to an apparatus for determining an open / close state of an operation valve.

従来から、空気調和機の据付作業が完了した後、その空気調和機を試運転して操作弁の開閉状態を判定し、工事ミスがないか否かを据付作業者に知らせる機能を備えた空気調和機が知られている。この機能を備えた空気調和機には、例えば、図4に示すように、圧縮機1、四方弁2、室外熱交換器14、操作弁3、操作弁11を備えた室外ユニットOと、室内熱交換器6を備えた室内ユニットIとを接続配管4、10を介して接続する空気調和機がある。   Conventionally, after the installation work of the air conditioner has been completed, the air conditioner has a function to test the air conditioner to determine the open / close state of the operation valve and to inform the installation operator whether there is any construction error. The machine is known. For example, as shown in FIG. 4, the air conditioner having this function includes an outdoor unit O including a compressor 1, a four-way valve 2, an outdoor heat exchanger 14, an operation valve 3, and an operation valve 11, There is an air conditioner that connects an indoor unit I including a heat exchanger 6 via connection pipes 4 and 10.

ところで、室外ユニットOは、冷媒回路内に冷媒を封入して操作弁3、操作弁11を閉じた状態で、室内ユニットIは、接続配管4、10が接続された状態でそれぞれ工場から出荷される。このような工場から出荷された状態の室外ユニットO及び室内ユニットIを所定の場所に据付けた後、接続配管4、10をフレアナットを介して操作弁3、操作弁11に接続し、次いで、操作弁3、操作弁11を開くことで据付作業が完了する。   By the way, the outdoor unit O is shipped from the factory with the refrigerant enclosed in the refrigerant circuit and the operation valve 3 and the operation valve 11 closed, and the indoor unit I with the connection pipes 4 and 10 connected thereto. The After installing the outdoor unit O and the indoor unit I in a state shipped from the factory in a predetermined place, the connection pipes 4 and 10 are connected to the operation valve 3 and the operation valve 11 through the flare nut, Installation operation is completed by opening the operation valve 3 and the operation valve 11.

この据付作業が完了した空気調和機は、正常運転では、圧縮機1の運転周波数は次第に上昇し、室内熱交換器6の温度は暖房運転時に次第に上昇した後、若干下降して一定になり、冷房運転時に次第に下降した後、一定になるように変化する。ところが、工事ミスにより操作弁3および、または操作弁11を閉じたままで空気調和機を運転すると、室内熱交換器6に冷媒が循環しないので、室内熱交換器6の温度はほとんど変化せず、かつ、圧縮機1の温度が異常に上昇し圧縮機1の損傷につながるおそれがある。   The air conditioner for which this installation work has been completed, in normal operation, the operating frequency of the compressor 1 gradually rises, and the temperature of the indoor heat exchanger 6 gradually rises during heating operation, and then drops and becomes constant, After gradually descending during cooling operation, it changes so as to be constant. However, when the air conditioner is operated with the operation valve 3 and / or the operation valve 11 closed due to a construction error, the refrigerant does not circulate in the indoor heat exchanger 6, so the temperature of the indoor heat exchanger 6 hardly changes. In addition, the temperature of the compressor 1 may rise abnormally and lead to damage to the compressor 1.

そこで、この空気調和機には、図4に示すように、試運転によって操作弁3および、または操作弁11の開閉状態を判定し、工事ミスがないか否かを据付作業者に知らせるため、室内熱交換器6の温度を検出する熱交温度センサ19が備えられるとともに、圧縮機1の運転周波数が基準値以上か否かを判断する周波数判断手段21と、運転開始時、圧縮機1の運転周波数が基準値以上で熱交温度センサ19の検出温度が冷房運転時所定値以下、暖房運転時所定値以上にならないとき、操作弁3、操作弁11が閉じていると判定する判定手段22と、操作弁3、操作弁11が閉じていると判定されたとき、これを表示する異常表示手段24とからなる保護装置20を備えている(例えば、特許文献1参照)。   Therefore, in this air conditioner, as shown in FIG. 4, the open / close state of the operation valve 3 and / or the operation valve 11 is determined by trial operation, and the installation operator is informed whether there is any construction error. A heat exchanger temperature sensor 19 for detecting the temperature of the heat exchanger 6 is provided, frequency determining means 21 for determining whether or not the operating frequency of the compressor 1 is equal to or higher than a reference value, and operation of the compressor 1 at the start of operation. A determination means 22 for determining that the operation valve 3 and the operation valve 11 are closed when the frequency is equal to or higher than a reference value and the detected temperature of the heat exchanger temperature sensor 19 is not more than a predetermined value during cooling operation and not more than a predetermined value during heating operation; When it is determined that the operation valve 3 and the operation valve 11 are closed, a protection device 20 including an abnormality display means 24 for displaying the operation valve 3 is provided (see, for example, Patent Document 1).

しかしながら、特許文献1の技術では、室内ユニットI側に、操作弁3、操作弁11の開閉状態を判定するための熱交温度センサ19を設けているので、この熱交温度センサ19の状態が故障などの不具合により正常に温度を検出しない場合、操作弁3、操作弁11の開閉状態の判定を確実に行なうことができないという問題点があった。また、室外ユニットOと熱交温度センサ19とを接続する通信線が断線していたり、接続されていない場合、操作弁3、操作弁11の開閉状態の判定を確実に行なうことができないという問題点があった。   However, in the technique of Patent Document 1, the heat exchange temperature sensor 19 for determining the open / close state of the operation valve 3 and the operation valve 11 is provided on the indoor unit I side. When the temperature is not normally detected due to a malfunction such as a failure, there is a problem that the open / close state of the operation valve 3 and the operation valve 11 cannot be reliably determined. In addition, when the communication line connecting the outdoor unit O and the heat exchanger temperature sensor 19 is disconnected or not connected, the open / close state of the operation valve 3 and the operation valve 11 cannot be reliably determined. There was a point.

特開平7−174386号公報(第2頁−第3頁、第1図)Japanese Patent Laid-Open No. 7-174386 (2nd page to 3rd page, FIG. 1)

本発明は上記問題点に鑑み、室内ユニット側の熱交温度センサの状態や室外ユニットと室内ユニットとの間の通信状態に係わらず、据付作業時の操作弁の開閉状態の判定を確実に行なうことができる空気調和機を提供することを目的とする。   In view of the above problems, the present invention reliably determines the open / closed state of the operation valve during installation work regardless of the state of the heat exchange temperature sensor on the indoor unit side or the communication state between the outdoor unit and the indoor unit. An object of the present invention is to provide an air conditioner that can be used.

本発明は上記課題を解決するため、請求項1記載の発明は、圧縮機、室外熱交換器および操作弁を備える室外ユニットと、室内熱交換器を備える室内ユニットとを接続配管を介して接続してなる空気調和機において、前記室外ユニットは、前記室内熱交換器と接続される液管の温度を検出する液管温度センサと、前記室内熱交換器と接続されるガス管の温度を検出するガス管温度センサと、前記圧縮機の運転周波数が基準値以上に達したか否かを判断する周波数判断部と、前記液管温度センサと前記ガス管温度センサの検出温度差を算出する温度差算出部と、前記周波数判断部の判断結果と、前記温度差算出部が算出した検出温度差に基づいて、前記操作弁の開閉状態を判定する判定部とを備え、前記判定部は、前記運転周波数が基準値以上に達し、前記検出温度差が基準値以下であるとき、前記操作弁が閉じた状態と判定することを特徴とする構成となっている。   In order to solve the above-mentioned problems, the invention according to claim 1 connects an outdoor unit including a compressor, an outdoor heat exchanger and an operation valve, and an indoor unit including an indoor heat exchanger via a connection pipe. In the air conditioner, the outdoor unit detects a temperature of a liquid pipe connected to the indoor heat exchanger and a temperature of a gas pipe connected to the indoor heat exchanger. A gas pipe temperature sensor, a frequency judgment unit for judging whether or not an operating frequency of the compressor has reached a reference value or more, and a temperature for calculating a detected temperature difference between the liquid pipe temperature sensor and the gas pipe temperature sensor A determination unit for determining an open / closed state of the operation valve based on a difference calculation unit, a determination result of the frequency determination unit, and a detected temperature difference calculated by the temperature difference calculation unit; Operating frequency is above the reference value Reached, when the detected temperature difference is equal to or less than the reference value, it has a configuration and judging a state of the operating valve is closed.

請求項2記載の発明は、圧縮機および室外熱交換器を備える室外ユニットと、冷媒分配器および複数の操作弁を備える分岐ユニットと、室内熱交換器を備える複数の室内ユニットとを接続配管を介して接続してなる空気調和機において、前記分岐ユニットは、前記複数の室内熱交換器と前記操作弁を介して接続されるそれぞれの液管の温度を検出する液管温度センサと、前記複数の室内熱交換器と前記操作弁を介して接続されるそれぞれのガス管の温度を検出するガス管温度センサと、前記圧縮機の運転周波数が基準値以上に達したか否かを判断する周波数判断部と、前記液管温度センサおよび前記ガス管温度センサにより、それぞれの前記室内熱交換器に接続された液管とガス管の検出温度差を算出する温度差算出部と、前記周波数判断部の判断結果と、前記温度差算出部が算出したそれぞれの検出温度差に基づいて、前記複数の操作弁の開閉状態を判定する判定部とを備え、前記判定部は、前記運転周波数が基準値以上に達し、前記検出温度差が基準値以下である液管とガス管に接続された前記操作弁が閉じた状態と判定することを特徴とする構成となっている。   According to a second aspect of the present invention, an outdoor unit including a compressor and an outdoor heat exchanger, a branch unit including a refrigerant distributor and a plurality of operation valves, and a plurality of indoor units including an indoor heat exchanger are connected to a piping. In the air conditioner connected through the plurality of indoor units, the branch unit includes a liquid tube temperature sensor that detects a temperature of each liquid tube connected to the plurality of indoor heat exchangers via the operation valve, and the plurality of the plurality of indoor heat exchangers. A gas pipe temperature sensor for detecting the temperature of each gas pipe connected to the indoor heat exchanger of the engine via the operation valve, and a frequency for judging whether the operating frequency of the compressor has reached a reference value or more A temperature difference calculating unit for calculating a detected temperature difference between the liquid pipe and the gas pipe connected to each of the indoor heat exchangers by the liquid pipe temperature sensor and the gas pipe temperature sensor; and the frequency determining part. A determination unit that determines the open / closed state of the plurality of operation valves based on the determination result and each detected temperature difference calculated by the temperature difference calculation unit, wherein the determination unit has the operation frequency equal to or higher than a reference value And the operation valve connected to the liquid pipe and the gas pipe whose detected temperature difference is equal to or less than a reference value is determined to be in a closed state.

本発明によれば、空気調和機の室内ユニット側の熱交温度センサの状態が故障などの不具合により正常に温度を検出しないときでも、据付作業時に、操作弁の開閉状態の判定を確実に行い、操作弁を閉じたまま運転したときの圧縮機の損傷を防止することができる。また、空気調和機の室外ユニットと室内ユニットとの間の通信線、または、分岐ユニットと室内ユニットとの間の通信線が断線していたり、接続されていなかったとしても、据付作業時に、操作弁の開閉状態の判定を確実に行い、操作弁を閉じたまま運転したときの圧縮機の損傷を防止することができる。   According to the present invention, even when the state of the heat exchange temperature sensor on the indoor unit side of the air conditioner does not detect the temperature normally due to a malfunction such as a failure, the open / close state of the operation valve is reliably determined during installation work. The compressor can be prevented from being damaged when operated with the operation valve closed. Even if the communication line between the outdoor unit and the indoor unit of the air conditioner or the communication line between the branch unit and the indoor unit is disconnected or not connected, it can be operated during installation work. It is possible to reliably determine the open / closed state of the valve, and to prevent damage to the compressor when operating with the operation valve closed.

本発明による空気調和機を示す冷媒回路図である。It is a refrigerant circuit diagram which shows the air conditioner by this invention. 本発明による空気調和機の試運転時の制御の一例を示すフローチャートである。It is a flowchart which shows an example of the control at the time of the test run of the air conditioner by this invention. 室外ユニットと室内ユニットとの間の工事ミスを示す模式図で、操作弁の開け忘れの一例を示す図である。It is a schematic diagram which shows the construction mistake between an outdoor unit and an indoor unit, and is a figure which shows an example of forgetting to open an operation valve. 従来の空気調和機を示す冷媒回路図である。It is a refrigerant circuit diagram which shows the conventional air conditioner.

以下、本発明の実施形態を添付図面に基づき詳細に説明する。本発明による空気調和機の実施例として、図1に示すように、1台の室外ユニットXに3台の室内ユニットA〜Cが接続されたマルチ型空気調和機を例に説明する。なお、本実施形態では3台の室内ユニットが接続されたマルチ型空気調和機としたが、1台の室内ユニットが接続された分離型空気調和機でもよい。   Embodiments of the present invention will be described below in detail with reference to the accompanying drawings. As an embodiment of an air conditioner according to the present invention, a multi-type air conditioner in which three indoor units A to C are connected to one outdoor unit X as shown in FIG. 1 will be described as an example. In the present embodiment, the multi-type air conditioner is connected to three indoor units, but may be a separated air conditioner to which one indoor unit is connected.

室外ユニットXは、圧縮機100が内装されており、この圧縮機100の吐出配管110と吸込配管120とは四方弁130に接続され、吸込配管120の途中にはアキュムレータ190が配設されている。この四方弁130にはさらに、第1ガス管140と第2ガス管150とが接続されている。第1ガス管140には室外熱交換器160が接続されており、この室外熱交換器160に液管170と冷媒分配器180とが順次接続されている。この冷媒分配器180にはさらに、3本の分岐液管200〜220が接続され、各分岐液管200〜220にはそれぞれ膨張弁230〜250と液管側操作弁260〜280とが順次配設されている。また、第2ガス管150は3本の分岐ガス管290〜310に分岐され、各分岐ガス管290〜310にはそれぞれガス管側操作弁320〜340が配設されている。なお、液管側操作弁260〜280として2方弁を用い、ガス管側操作弁320〜340として真空ポンプ付3方弁を用いている。   The outdoor unit X includes a compressor 100, and a discharge pipe 110 and a suction pipe 120 of the compressor 100 are connected to a four-way valve 130, and an accumulator 190 is disposed in the middle of the suction pipe 120. . A first gas pipe 140 and a second gas pipe 150 are further connected to the four-way valve 130. An outdoor heat exchanger 160 is connected to the first gas pipe 140, and a liquid pipe 170 and a refrigerant distributor 180 are sequentially connected to the outdoor heat exchanger 160. Further, three branch liquid pipes 200 to 220 are connected to the refrigerant distributor 180, and expansion valves 230 to 250 and liquid pipe side operation valves 260 to 280 are sequentially arranged in the branch liquid pipes 200 to 220, respectively. It is installed. The second gas pipe 150 is branched into three branch gas pipes 290 to 310, and gas pipe side operation valves 320 to 340 are disposed in the branch gas pipes 290 to 310, respectively. A two-way valve is used as the liquid pipe side operation valves 260 to 280, and a three-way valve with a vacuum pump is used as the gas pipe side operation valves 320 to 340.

室内ユニットA〜Cには、それぞれ室内熱交換器350〜370が内装されており、室外ユニットXの液管側操作弁260〜280とガス管側操作弁320〜340との間には、それぞれ液管側接続配管380〜400およびガス管側接続配管410〜430によって、室内熱交換器350〜370が互いに並列に接続されている。   The indoor units A to C are respectively equipped with indoor heat exchangers 350 to 370, and between the liquid pipe side operation valves 260 to 280 and the gas pipe side operation valves 320 to 340 of the outdoor unit X, respectively. The indoor heat exchangers 350 to 370 are connected in parallel to each other by the liquid pipe side connection pipes 380 to 400 and the gas pipe side connection pipes 410 to 430.

本発明の空気調和機はこれらの構成によって室外ユニットXと各室内ユニットA〜Cの間にそれぞれ冷媒回路が形成されている。室外ユニットX内の冷媒回路には、圧縮機100の温度を検出する圧縮機温度センサSt1が圧縮機100に近接して配置され、圧縮機100の吐出温度を検出する吐出温度センサSt2と、圧縮機100の吐出圧力を検出する吐出圧力センサSpとが吐出配管110に配置されている。また、室外温度を検出する室外温度センサSt3が室外熱交換器160の付近に配置され、室外熱交換器160の冷房運転時における出口温度を検出する室外熱交換器温度センサSt4が室外熱交換器160の出口付近の液管170に配置されている。更に、各分岐液管200〜220の温度を検出する液管温度センサSt5、St7、St9が各分岐液管200〜220に配置され、各分岐ガス管290〜310の温度を検出するガス管温度センサSt6、St8、St10が各分岐ガス管290〜310に配置されている。   In the air conditioner of the present invention, a refrigerant circuit is formed between the outdoor unit X and each of the indoor units A to C by these configurations. In the refrigerant circuit in the outdoor unit X, a compressor temperature sensor St1 for detecting the temperature of the compressor 100 is disposed in the vicinity of the compressor 100, and a discharge temperature sensor St2 for detecting the discharge temperature of the compressor 100, and a compression A discharge pressure sensor Sp that detects the discharge pressure of the machine 100 is disposed in the discharge pipe 110. An outdoor temperature sensor St3 for detecting the outdoor temperature is disposed in the vicinity of the outdoor heat exchanger 160, and an outdoor heat exchanger temperature sensor St4 for detecting an outlet temperature during the cooling operation of the outdoor heat exchanger 160 is an outdoor heat exchanger. It is arranged in the liquid pipe 170 near the outlet of 160. Further, liquid pipe temperature sensors St5, St7, St9 for detecting the temperature of each branch liquid pipe 200-220 are arranged in each branch liquid pipe 200-220, and the gas pipe temperature for detecting the temperature of each branch gas pipe 290-310. Sensors St6, St8, and St10 are arranged in each branch gas pipe 290-310.

各室内ユニットA〜C内の冷媒回路には、各室内熱交換器350〜370の冷房運転時における入口温度を検出する室内熱交換器温度センサSt11、St13、St15が各室内熱交換器350〜370の入口付近の液管側接続配管380〜400に配置され、各室内温度を検出する室内温度センサSt12、St14、St16が各室内熱交換器350〜370の付近に配置されている。   In the refrigerant circuits in the indoor units A to C, indoor heat exchanger temperature sensors St11, St13, and St15 that detect the inlet temperature during the cooling operation of the indoor heat exchangers 350 to 370 are included in the indoor heat exchangers 350 to 350, respectively. Indoor temperature sensors St12, St14, and St16 are arranged in the vicinity of the indoor heat exchangers 350 to 370, which are arranged in the liquid pipe side connection pipes 380 to 400 in the vicinity of the inlet 370 and detect the indoor temperatures.

更に、室外ユニットXは、空気調和機の試運転時、操作弁の開閉状態を判定する操作弁開閉状態判定手段440を有しており、圧縮機100の運転周波数の信号を入力し、運転開始から所定時間経過後、圧縮機100の運転周波数が基準値以上に達したか否かを判断し、この判断結果を制御部500に出力する周波数判断部450と、液管温度センサSt5、St7、St9、ガス管温度センサSt6、St8、St10による検出信号を入力し、それぞれの室内熱交換器350〜370に接続された分岐液管200〜220の温度と分岐ガス管290〜310の温度の検出温度差を算出し、これらの検出温度差を制御部500に出力する温度差算出部460と、制御部500に入力した圧縮機100の運転周波数の判断結果と、それぞれの液管温度とガス管温度の検出温度差とに基づいて、液管側操作弁260〜280やガス管側操作弁320〜340の開閉状態を判定する判定部470と、判定部470による判定結果を表示する判定結果表示部480と、判定部470の判定条件となる運転周波数の基準値と検出温度差の基準値を設定し、制御部500に出力する基準値設定部490と、周波数判断部450、温度差算出部460、判定部470および基準値設定部490をそれぞれ制御する制御部500とを備えている。   Further, the outdoor unit X has an operation valve open / close state determination means 440 for determining the open / close state of the operation valve during the trial operation of the air conditioner, and inputs an operation frequency signal of the compressor 100 from the start of operation. After a predetermined time elapses, it is determined whether or not the operating frequency of the compressor 100 has reached a reference value or more, and a frequency determination unit 450 that outputs the determination result to the control unit 500, and liquid tube temperature sensors St5, St7, St9. The detection signals of the gas pipe temperature sensors St6, St8, St10 are input, and the temperature of the branch liquid pipes 200 to 220 and the temperature of the branch gas pipes 290 to 310 connected to the indoor heat exchangers 350 to 370 are detected. The temperature difference calculation unit 460 that calculates the difference and outputs the detected temperature difference to the control unit 500, the determination result of the operating frequency of the compressor 100 that is input to the control unit 500, Based on the detection temperature difference between the pipe temperature and the gas pipe temperature, the determination unit 470 that determines the open / closed state of the liquid pipe side operation valves 260 to 280 and the gas pipe side operation valves 320 to 340, and the determination result by the determination unit 470 The determination result display unit 480 to be displayed, the reference value of the operating frequency that is the determination condition of the determination unit 470 and the reference value of the detected temperature difference are set and output to the control unit 500, and the frequency determination unit 450 , A temperature difference calculation unit 460, a determination unit 470, and a control unit 500 for controlling the reference value setting unit 490, respectively.

次に、以上説明してきた空気調和機の動作を説明する。まず、図1を用いて冷房運転と暖房運転の基本動作を説明する。冷房運転時には、図示を省略したコントローラから四方弁130に制御信号を出力し、四方弁130を冷媒の流れ方向が実線矢印の方向になるように切換えて、室外熱交換器160を凝縮器、室内熱交換器350〜370を蒸発器として機能させる。冷房運転では、圧縮機100から吐出された高温・高圧のガス冷媒は、実線矢印で示すように、四方弁130を経て室外熱交換器160に供給され、室外熱交換器160で外気に放熱することにより凝縮して高圧液冷媒となる。この高圧液冷媒はその後、冷媒分配器180を経て膨張弁230〜250に供給され、膨張弁230〜250で減圧されることにより低圧の液ガス二相冷媒となる。そして、この液ガス二相冷媒は液管側操作弁260〜280、液管側接続配管380〜400を経て室内熱交換器350〜370に供給され、室内熱交換器350〜370で室内空気から吸熱することにより蒸発して低圧ガス冷媒となる。この低圧ガス冷媒はガス管側接続配管410〜430、ガス管側操作弁320〜340、四方弁130、アキュムレータ190を経て圧縮機100に吸入される。   Next, the operation of the air conditioner described above will be described. First, basic operations of the cooling operation and the heating operation will be described with reference to FIG. During the cooling operation, a control signal is output from the controller (not shown) to the four-way valve 130, the four-way valve 130 is switched so that the flow direction of the refrigerant is in the direction of the solid arrow, and the outdoor heat exchanger 160 is The heat exchangers 350 to 370 function as an evaporator. In the cooling operation, the high-temperature and high-pressure gas refrigerant discharged from the compressor 100 is supplied to the outdoor heat exchanger 160 through the four-way valve 130 and is radiated to the outside air by the outdoor heat exchanger 160 as indicated by solid arrows. This condenses into a high-pressure liquid refrigerant. Thereafter, the high-pressure liquid refrigerant is supplied to the expansion valves 230 to 250 through the refrigerant distributor 180 and is decompressed by the expansion valves 230 to 250 to become a low-pressure liquid-gas two-phase refrigerant. Then, this liquid gas two-phase refrigerant is supplied to the indoor heat exchangers 350 to 370 through the liquid pipe side operation valves 260 to 280 and the liquid pipe side connection pipes 380 to 400, and from the indoor air in the indoor heat exchangers 350 to 370. By absorbing heat, it evaporates and becomes a low-pressure gas refrigerant. The low-pressure gas refrigerant is sucked into the compressor 100 through the gas pipe side connection pipes 410 to 430, the gas pipe side operation valves 320 to 340, the four-way valve 130, and the accumulator 190.

一方、暖房運転時には、図示を省略したコントローラから四方弁130に制御信号を出力し、四方弁130を冷媒の流れ方向が破線矢印の方向になるように切換えて、室内熱交換器350〜370を凝縮器、室外熱交換器160を蒸発器として機能させる。暖房運転では、圧縮機100から吐出された高温・高圧のガス冷媒は、破線矢印で示すように、四方弁130、ガス管側操作弁320〜340、ガス管側接続配管410〜430を経て室内熱交換器350〜370に供給され、室内熱交換器350〜370で室内空気に放熱することにより凝縮して高圧液冷媒となる。この高圧液冷媒はその後、液管側接続配管380〜400、液管側操作弁260〜280を経て膨張弁230〜250に供給され、膨張弁230〜250で減圧されることにより低圧の液ガス二相冷媒となる。そして、この液ガス二相冷媒は、冷媒分配器180、液管170を経て室外熱交換器160に供給され、室外熱交換器160で外気から吸熱することにより蒸発して低圧ガス冷媒となる。この低圧ガス冷媒は四方弁130、アキュムレータ190を経て圧縮機100に吸入される。   On the other hand, during the heating operation, a control signal is output from the controller (not shown) to the four-way valve 130, the four-way valve 130 is switched so that the flow direction of the refrigerant is in the direction of the broken line arrow, and the indoor heat exchangers 350 to 370 are switched. The condenser and the outdoor heat exchanger 160 function as an evaporator. In the heating operation, the high-temperature and high-pressure gas refrigerant discharged from the compressor 100 passes through the four-way valve 130, the gas pipe side operation valves 320 to 340, and the gas pipe side connection pipes 410 to 430 as indicated by broken arrows. It is supplied to the heat exchangers 350 to 370 and is condensed by radiating heat to the indoor air in the indoor heat exchangers 350 to 370 to become a high-pressure liquid refrigerant. The high-pressure liquid refrigerant is then supplied to the expansion valves 230 to 250 through the liquid pipe side connection pipes 380 to 400 and the liquid pipe side operation valves 260 to 280, and is decompressed by the expansion valves 230 to 250, whereby the low pressure liquid gas is supplied. It becomes a two-phase refrigerant. The liquid gas two-phase refrigerant is supplied to the outdoor heat exchanger 160 through the refrigerant distributor 180 and the liquid pipe 170, and is evaporated by absorbing heat from the outside air in the outdoor heat exchanger 160 to become a low-pressure gas refrigerant. This low-pressure gas refrigerant is sucked into the compressor 100 through the four-way valve 130 and the accumulator 190.

ところで、以上説明してきた空気調和機は、工場出荷時には、室外ユニットXと室内ユニットA〜Cとは分離されており、室外ユニットXは、冷媒回路内に冷媒を封入して液管側操作弁260〜280とガス管側操作弁320〜340とを閉じた状態に、室内ユニットA〜Cは、液管側接続配管380〜400とガス管側接続配管410〜430とが接続された状態になっている。   By the way, in the air conditioner described above, the outdoor unit X and the indoor units A to C are separated from each other at the time of shipment from the factory. The outdoor unit X encloses a refrigerant in a refrigerant circuit and operates the liquid pipe side operation valve. The indoor units A to C are in a state where the liquid pipe side connection pipes 380 to 400 and the gas pipe side connection pipes 410 to 430 are connected in a state where the 260 to 280 and the gas pipe side operation valves 320 to 340 are closed. It has become.

このような工場出荷状態の空気調和機の据付作業は、室外ユニットXと室内ユニットA〜Cとを所定の場所に据付けた後、室内ユニットAに接続された液管側接続配管380とガス管側接続配管410とをフレアナットを介してそれぞれ液管側操作弁260とガス管側操作弁320に接続し、次いで、ガス管側操作弁320に接続した真空ポンプを作動させた後、液管側操作弁260を全開にする。すると、室外ユニットXの冷媒回路内に封入されていた冷媒は、液管側操作弁260から液管側接続配管380を通って室内ユニットAの冷媒回路内に流入し、これに伴って、液管側接続配管380と室内ユニットAの冷媒回路内の空気が、ガス管側接続配管410を通ってガス管側操作弁320に接続されている真空ポンプに吸入される。次いで、真空ポンプによって冷媒回路内の空気が取り除かれた時点でガス管側操作弁320を全開にすることで室内ユニットAについての作業が完了する。このように、室内ユニットBと室内ユニットCについても同様に作業することで空気調和機の据付作業が完了する。   The factory-installed air conditioner is installed by installing the outdoor unit X and the indoor units A to C at a predetermined location, and then connecting the liquid pipe side connection pipe 380 and the gas pipe connected to the indoor unit A. The side connection pipe 410 is connected to the liquid pipe side operation valve 260 and the gas pipe side operation valve 320 through a flare nut, respectively, and then the vacuum pump connected to the gas pipe side operation valve 320 is operated, and then the liquid pipe The side operation valve 260 is fully opened. Then, the refrigerant sealed in the refrigerant circuit of the outdoor unit X flows into the refrigerant circuit of the indoor unit A from the liquid pipe side operation valve 260 through the liquid pipe side connection pipe 380, and accordingly, the liquid Air in the refrigerant circuit of the pipe side connection pipe 380 and the indoor unit A is sucked into the vacuum pump connected to the gas pipe side operation valve 320 through the gas pipe side connection pipe 410. Next, when the air in the refrigerant circuit is removed by the vacuum pump, the operation for the indoor unit A is completed by fully opening the gas pipe side operation valve 320. In this way, the indoor unit B and the indoor unit C are similarly operated to complete the installation work of the air conditioner.

この据付作業が完了した空気調和機は、正常運転では、冷房運転時に室外熱交換器温度が液管温度よりも高く、液管温度がガス管温度よりも高くなるように変化し、暖房運転時にガス管温度が液管温度よりも高く、液管温度が室外熱交換器温度よりも高くなるように変化する。ところが、据付工事ミスにより液管側操作弁260〜280、ガス管側操作弁320〜340のいずれかの操作弁を閉じたままで空気調和機を運転すると、閉じた操作弁に対応する室内熱交換器に冷媒が循環しないので、上述の正常運転のような室外熱交換器温度、液管温度、ガス管温度の大小関係にならず、圧縮機100が過負荷となって、その温度が異常に上昇し、圧縮機100の損傷につながるおそれがある。そこで、空気調和機の試運転時、操作弁開閉状態判定手段440により、液管側操作弁260〜280やガス管側操作弁320〜340の開閉状態を判定して、据付作業者に判定結果を知らせるようにしている。   When the air conditioner has been installed, the outdoor heat exchanger temperature changes during normal operation so that the outdoor heat exchanger temperature is higher than the liquid pipe temperature and the liquid pipe temperature is higher than the gas pipe temperature. The gas pipe temperature changes so as to be higher than the liquid pipe temperature, and the liquid pipe temperature becomes higher than the outdoor heat exchanger temperature. However, if the air conditioner is operated while any one of the liquid pipe side operation valves 260 to 280 and the gas pipe side operation valves 320 to 340 is closed due to an installation work error, indoor heat exchange corresponding to the closed operation valve is performed. Since the refrigerant does not circulate in the compressor, the magnitude of the outdoor heat exchanger temperature, liquid pipe temperature, and gas pipe temperature as in the normal operation described above does not occur, and the compressor 100 is overloaded and the temperature becomes abnormal. There is a risk that the compressor 100 may rise and lead to damage to the compressor 100. Therefore, during the trial operation of the air conditioner, the open / close state of the liquid pipe side operation valves 260 to 280 and the gas pipe side operation valves 320 to 340 is determined by the operation valve open / close state determination means 440 and the determination result is sent to the installation operator. I will let you know.

次に、図2を用いて本発明の特徴となる空気調和機の試運転の動作を説明する。図2において、Sはステップを、数字はステップ番号をそれぞれ表す。なお、本発明の実施例として、冷房運転によって室内ユニットA〜Cを1台ずつ試運転する例について説明する。図2に示すように、冷房運転の開始信号を受けた図示を省略したコントローラは、冷媒の方向が図1に示す実線矢印の方向になるように四方弁130を切換える(S1)。次いで、コントローラは、初めにカウンタ値nを1に設定し(S2)、カウンタ値nが3を超えたか否かを判断する(S3)。カウンタ値nが3以下であれば(S3−YES)、S4のステップに移行し、カウンタ値nが3を超えていれば(S3−NO)、空気調和機の試運転を終了する。コントローラは、S2のステップにより、カウンタ値nは1になっているため、カウンタ値nが3以下であると判断し(S3−YES)、カウンタ値1に対応する室内ユニットAに関係する膨張弁230を所定の開度となるように開き(S4)、圧縮機100の運転を開始する(S5)。   Next, the operation of the trial operation of the air conditioner, which is a feature of the present invention, will be described with reference to FIG. In FIG. 2, S represents a step, and a number represents a step number. As an embodiment of the present invention, an example in which the indoor units A to C are tested one by one by cooling operation will be described. As shown in FIG. 2, the controller (not shown) that receives the cooling operation start signal switches the four-way valve 130 so that the direction of the refrigerant is the direction of the solid line arrow shown in FIG. 1 (S1). Next, the controller first sets the counter value n to 1 (S2), and determines whether or not the counter value n exceeds 3 (S3). If the counter value n is 3 or less (S3-YES), the process proceeds to step S4. If the counter value n exceeds 3 (S3-NO), the trial operation of the air conditioner is terminated. The controller determines that the counter value n is 3 or less because the counter value n is 1 in step S2 (S3-YES), and the expansion valve related to the indoor unit A corresponding to the counter value 1 is determined. 230 is opened to a predetermined opening degree (S4), and the operation of the compressor 100 is started (S5).

周波数判断部450は、コントローラからの圧縮機100の運転開始信号を受信すると、圧縮機100を監視し、運転開始から所定時間経過後、圧縮機100の運転周波数が基準値以上に達したか否かを判断する(S6)。運転周波数が基準値以上に達していれば(S6−YES)、S7に移行し、基準値に満たなければ(S6−NO)、S6のステップを繰返し実行する。なお、基準値には、基準値設定部490で設定された運転周波数の基準値を、制御部500を介して周波数判断部450に入力する。また、周波数判断部450による圧縮機100の運転周波数が基準値以上に達したか否かの判断結果は、制御部500に出力される。   When the frequency determination unit 450 receives the operation start signal of the compressor 100 from the controller, the frequency determination unit 450 monitors the compressor 100, and whether or not the operation frequency of the compressor 100 has reached a reference value or more after a predetermined time has elapsed from the start of operation. (S6). If the operating frequency has reached or exceeded the reference value (S6-YES), the process proceeds to S7, and if it does not satisfy the reference value (S6-NO), step S6 is repeatedly executed. Note that the reference value of the operating frequency set by the reference value setting unit 490 is input to the frequency determination unit 450 via the control unit 500 as the reference value. Further, the determination result of whether or not the operating frequency of the compressor 100 by the frequency determination unit 450 has reached or exceeded the reference value is output to the control unit 500.

S7のステップでは、分岐液管200の温度が液管温度センサSt5により検出され、分岐ガス管290の温度がガス管温度センサSt6により検出される。運転周波数が基準値以上に達しているとの判断信号が制御部500に入力された場合、制御部500は、温度差算出部460に分岐液管200の温度と分岐ガス管290の温度のそれぞれの検出信号の入力を指令する。温度差算出部460は、入力された分岐液管200の温度と分岐ガス管290の温度のそれぞれの検出信号により、分岐液管200の温度と分岐ガス管290の温度の検出温度差を算出し、制御部500に出力する(S8)。検出温度差の算出信号が制御部500に入力された場合、制御部500は、判定部470に検出温度差の算出信号を出力するとともに、基準値設定部490で設定された検出温度差の基準値を、判定部470に入力する。   In step S7, the temperature of the branch liquid pipe 200 is detected by the liquid pipe temperature sensor St5, and the temperature of the branch gas pipe 290 is detected by the gas pipe temperature sensor St6. When a determination signal indicating that the operating frequency has reached or exceeded the reference value is input to the control unit 500, the control unit 500 sends the temperature difference calculation unit 460 to each of the temperature of the branch liquid pipe 200 and the temperature of the branch gas pipe 290. Command input of detection signal. The temperature difference calculation unit 460 calculates a detected temperature difference between the temperature of the branch liquid pipe 200 and the temperature of the branch gas pipe 290 based on the input detection signals of the temperature of the branch liquid pipe 200 and the temperature of the branch gas pipe 290. And output to the controller 500 (S8). When the detection temperature difference calculation signal is input to the control unit 500, the control unit 500 outputs the detection temperature difference calculation signal to the determination unit 470, and the reference of the detection temperature difference set by the reference value setting unit 490. The value is input to the determination unit 470.

判定部470は、制御部500からの検出温度差の算出信号と基準値とを比較し、検出温度差が基準値以下であるか否かを判定する(S9)。そして、判定部470は、分岐液管200の温度と分岐ガス管290の温度の検出温度差が基準値以下の場合(S9−YES)、液管側操作弁260やガス管側操作弁320が閉じた状態と判定し、その判定結果信号を制御部500に出力する。一方、判定部470は、分岐液管200の温度と分岐ガス管290の温度の検出温度差が基準値よりも大きい場合(S9−NO)、液管側操作弁260やガス管側操作弁320が開いた状態と判定し、その判定結果信号を制御部500に出力する。制御部500は、判定部470からの判定結果信号が入力された場合、判定結果信号に応じた表示データを作成し、この表示データを判定結果表示部480に表示させる。   The determination unit 470 compares the detected temperature difference calculation signal from the control unit 500 with a reference value, and determines whether or not the detected temperature difference is equal to or less than the reference value (S9). Then, when the detected temperature difference between the temperature of the branch liquid pipe 200 and the temperature of the branch gas pipe 290 is equal to or less than the reference value (S9-YES), the determination unit 470 determines whether the liquid pipe side operation valve 260 or the gas pipe side operation valve 320 is The closed state is determined, and the determination result signal is output to the control unit 500. On the other hand, when the detected temperature difference between the temperature of the branch liquid pipe 200 and the temperature of the branch gas pipe 290 is larger than the reference value (S9-NO), the determination unit 470 determines the liquid pipe side operation valve 260 and the gas pipe side operation valve 320. Is determined to be open, and a determination result signal is output to the control unit 500. When the determination result signal from the determination unit 470 is input, the control unit 500 creates display data corresponding to the determination result signal and causes the determination result display unit 480 to display the display data.

判定結果表示部480は、液管側操作弁260、ガス管側操作弁320の異常を知らせる表示データ、例えば、「液管側操作弁260、ガス管側操作弁320の一方または両方が閉じた状態です。液管側操作弁260とガス管側操作弁320を確認して下さい。」といった表示データを表示し(S10)、または、液管側操作弁260、ガス管側操作弁320の正常を知らせる表示データ、例えば、「液管側操作弁260とガス管側操作弁320が開いた状態です。液管側操作弁260とガス管側操作弁320の設置状態はOKです。」といった表示データを表示する(S11)。   The determination result display unit 480 displays display data for notifying the abnormality of the liquid pipe side operation valve 260 and the gas pipe side operation valve 320, for example, “one or both of the liquid pipe side operation valve 260 and the gas pipe side operation valve 320 are closed. "Check the liquid pipe side operation valve 260 and the gas pipe side operation valve 320" (S10), or the liquid pipe side operation valve 260 and the gas pipe side operation valve 320 are normal. For example, “The liquid pipe side operation valve 260 and the gas pipe side operation valve 320 are open. The installation state of the liquid pipe side operation valve 260 and the gas pipe side operation valve 320 is OK”. Data is displayed (S11).

S1〜S11のステップを実行することにより、室内ユニットAの試運転が完了するので、コントローラは、カウンタ値nに1を加算し(S12)、S3のステップに戻る。S3のステップでは、コントローラは、S12のステップにより、カウンタ値nは2になっているため、カウンタ値nが3以下であると判断し(S3−YES)、カウンタ値2に対応する室内ユニットBに関係する膨張弁240を所定の開度となるように開く(S4)。以降のS5〜S11のステップは室内ユニットAと同様に実行される。ただし、異なる部分は、室内ユニットBに対応する分岐液管210の温度が液管温度センサSt7により検出され、分岐ガス管300の温度がガス管温度センサSt8により検出され、それぞれの検出信号に基づいて、分岐液管210の温度と分岐ガス管300の温度の検出温度差を算出し、この検出温度差が基準値と比較され、液管側操作弁270、ガス管側操作弁330の異常または正常であると判定する。   Since the trial operation of the indoor unit A is completed by executing the steps S1 to S11, the controller adds 1 to the counter value n (S12), and returns to the step S3. In step S3, the controller determines that the counter value n is 3 or less because the counter value n is 2 in step S12 (S3-YES), and the indoor unit B corresponding to the counter value 2 is determined. The expansion valve 240 related to is opened to a predetermined opening degree (S4). The subsequent steps S5 to S11 are executed in the same manner as the indoor unit A. However, in the different parts, the temperature of the branch liquid pipe 210 corresponding to the indoor unit B is detected by the liquid pipe temperature sensor St7, the temperature of the branch gas pipe 300 is detected by the gas pipe temperature sensor St8, and based on the respective detection signals. Then, a detected temperature difference between the temperature of the branch liquid pipe 210 and the temperature of the branch gas pipe 300 is calculated, and this detected temperature difference is compared with a reference value, and the liquid pipe side operation valve 270 and the gas pipe side operation valve 330 are abnormal or Determined to be normal.

これで、室内ユニットBの試運転が完了するので、コントローラは、カウンタ値nに1を加算し(S12)、S3のステップに戻る。S3のステップでは、コントローラは、S12のステップにより、カウンタ値nは3になっているため、カウンタ値nが3以下であると判断し(S3−YES)、カウンタ値3に対応する室内ユニットCに関係する膨張弁250を所定の開度となるように開く(S4)。以降のS5〜S11のステップは室内ユニットAと同様に実行される。ただし、異なる部分は、室内ユニットCに対応する分岐液管220の温度が液管温度センサSt9により検出され、分岐ガス管310の温度がガス管温度センサSt10により検出され、それぞれの検出信号に基づいて、分岐液管220の温度と分岐ガス管310の温度の検出温度差を算出し、この検出温度差が基準値と比較され、液管側操作弁280、ガス管側操作弁340の異常または正常であると判定する。これにより、室内ユニットCの試運転が完了するので、コントローラは、カウンタ値nに1を加算し(S12)、S3のステップに戻る。S3のステップでは、コントローラは、S12のステップにより、カウンタ値nは4になっているため、カウンタ値nが3を超えていると判断し(S3−NO)、本実施例の空気調和機の試運転の制御を終了する。   Thus, since the trial operation of the indoor unit B is completed, the controller adds 1 to the counter value n (S12), and returns to the step of S3. In step S3, the controller determines that the counter value n is 3 or less because the counter value n is 3 in step S12 (S3-YES), and the indoor unit C corresponding to the counter value 3 is determined. The expansion valve 250 related to is opened to a predetermined opening degree (S4). The subsequent steps S5 to S11 are executed in the same manner as the indoor unit A. However, in the different parts, the temperature of the branch liquid pipe 220 corresponding to the indoor unit C is detected by the liquid pipe temperature sensor St9, the temperature of the branch gas pipe 310 is detected by the gas pipe temperature sensor St10, and based on the respective detection signals. Thus, a detected temperature difference between the temperature of the branch liquid pipe 220 and the temperature of the branch gas pipe 310 is calculated, and this detected temperature difference is compared with a reference value, and the liquid pipe side operation valve 280 and the gas pipe side operation valve 340 are abnormal or Determined to be normal. Thereby, since the trial operation of the indoor unit C is completed, the controller adds 1 to the counter value n (S12), and returns to the step of S3. In step S3, since the counter value n is 4 in step S12, the controller determines that the counter value n exceeds 3 (S3-NO), and the controller of the air conditioner of the present embodiment. End trial run control.

次に、図2のフローチャートの試運転の制御を実行した結果、室外ユニットと室内ユニットの間に据付工事ミスがあった例について図3を用いて説明する。これは操作弁の開け忘れがあった例であり、室外ユニットXと室内ユニットAとを接続する図中網かけされた液管側操作弁260とガス管側操作弁320の両方に開け忘れがあったため、液管側接続配管380から室内熱交換器350を介してガス管側接続配管410に冷媒が流れない状態を示している。この場合、判定部470では、分岐液管200の温度(液管温度センサSt5の検出信号)と分岐ガス管290の温度(ガス管温度センサSt6の検出信号)の検出温度差が基準値以下となり、液管側操作弁260やガス管側操作弁320が閉じた状態と判定される。   Next, an example in which there is an installation error between the outdoor unit and the indoor unit as a result of executing the trial run control of the flowchart of FIG. 2 will be described with reference to FIG. This is an example of forgetting to open the operation valve. Forgetting to open both the liquid pipe side operation valve 260 and the gas pipe side operation valve 320 which are shaded in the drawing connecting the outdoor unit X and the indoor unit A. Therefore, the refrigerant does not flow from the liquid pipe side connection pipe 380 to the gas pipe side connection pipe 410 via the indoor heat exchanger 350. In this case, in the determination unit 470, the detected temperature difference between the temperature of the branch liquid pipe 200 (the detection signal of the liquid pipe temperature sensor St5) and the temperature of the branch gas pipe 290 (the detection signal of the gas pipe temperature sensor St6) is less than the reference value. Then, it is determined that the liquid pipe side operation valve 260 and the gas pipe side operation valve 320 are closed.

以上説明してきた本発明による空気調和機によれば、室外ユニットX内に配置された液管温度センサSt5、St7、St9、ガス管温度センサSt6、St8、St10によって、液管側操作弁260〜280やガス管側操作弁320〜340の開閉状態の判定に必要な温度を検出するようになっている。したがって、室内ユニットA〜Cの室内熱交換器温度センサSt11、St13、St15の状態が故障などの不具合により正常に温度を検出しないときでも、据付作業時に、液管側操作弁260〜280やガス管側操作弁320〜340の開閉状態の判定を確実に行うことができ、操作弁を閉じたまま運転したときの圧縮機100の損傷を防止することができる。また、室外ユニットXと室内ユニットA〜Cの室内熱交換器温度センサSt11、St13、St15とを接続する通信線が断線していたり、接続されていなかったとしても、据付作業時に、液管側操作弁260〜280やガス管側操作弁320〜340の開閉状態の判定を確実に行うことができ、操作弁を閉じたまま運転したときの圧縮機100の損傷を防止することができる。   According to the air conditioner according to the present invention described above, the liquid pipe side operation valves 260 to 160 are provided by the liquid pipe temperature sensors St5, St7, St9 and the gas pipe temperature sensors St6, St8, St10 arranged in the outdoor unit X. The temperature required to determine the open / closed state of the H.280 and gas pipe side operation valves 320 to 340 is detected. Therefore, even when the temperature of the indoor heat exchanger temperature sensors St11, St13, St15 of the indoor units A to C does not detect the temperature normally due to a malfunction such as a failure, the liquid pipe side operation valves 260 to 280 and the gas can be used during the installation work. The open / close state of the pipe side operation valves 320 to 340 can be reliably determined, and the compressor 100 can be prevented from being damaged when the operation is performed with the operation valves closed. Further, even if the communication line connecting the outdoor unit X and the indoor heat exchanger temperature sensors St11, St13, St15 of the indoor units A to C is disconnected or not connected, the liquid pipe side The open / close state of the operation valves 260 to 280 and the gas pipe side operation valves 320 to 340 can be reliably determined, and the compressor 100 can be prevented from being damaged when operated with the operation valves closed.

なお、以上説明してきた本実施形態に限定されず、図1に示す室外ユニットXの破線ブロックを分離した分岐ユニットYとして構成し、室外ユニットXと室内ユニットA〜Cとの間に分岐ユニットYを配置するようにしてもよい。この場合も、室内ユニットA〜Cの室内熱交換器温度センサSt11、St13、St15の状態が故障などの不具合により正常に温度を検出しないときでも、据付作業時に、液管側操作弁260〜280やガス管側操作弁320〜340の開閉状態の判定を確実に行うことができる。また、分岐ユニットYと室内ユニットA〜Cの室内熱交換器温度センサSt11、St13、St15とを接続する通信線が断線していたり、接続されていなかったとしても、据付作業時に、上述と同様に、操作弁の開閉状態の判定を確実に行うことができ、操作弁を閉じたまま運転したときの圧縮機100の損傷を防止することができる。   In addition, it is not limited to this embodiment demonstrated above, It comprises as the branch unit Y which isolate | separated the broken-line block of the outdoor unit X shown in FIG. 1, and branch unit Y is between the outdoor unit X and indoor unit AC. May be arranged. Also in this case, even when the temperature of the indoor heat exchanger temperature sensors St11, St13, St15 of the indoor units A to C does not detect the temperature normally due to a malfunction such as a failure, the liquid pipe side operation valves 260 to 280 are installed during the installation work. In addition, the open / close state of the gas pipe side operation valves 320 to 340 can be reliably determined. Further, even if the communication line connecting the branch unit Y and the indoor heat exchanger temperature sensors St11, St13, St15 of the indoor units A to C is disconnected or not connected, the same as described above during the installation work In addition, the open / closed state of the operation valve can be reliably determined, and the compressor 100 can be prevented from being damaged when the operation valve is operated with the operation valve closed.

また、以上説明してきた本実施形態では、冷房運転によって室内ユニットA〜Cを1台ずつ試運転するようにしたが、本発明はこれに限らず、冷房運転によって室内ユニットA〜Cを同時に試運転するようにしてもよく、冷房運転に替えて暖房運転によって室内ユニットA〜Cを試運転するようにしてもよい。暖房運転の場合、上述したように、ガス管温度が液管温度よりも高くなる大小関係があり、この大小関係を考慮して、基準値設定部490では、分岐ガス管の温度と分岐液管の温度の検出温度差の基準値を予め設定しておき、判定部470では、分岐ガス管の温度と分岐液管の温度との検出温度差が基準値以下の場合、液管側操作弁260〜280やガス管側操作弁320〜340が閉じた状態と判定することができる。   In the present embodiment described above, the indoor units A to C are tested one by one by the cooling operation. However, the present invention is not limited to this, and the indoor units A to C are simultaneously tested by the cooling operation. Alternatively, the indoor units A to C may be trial-run by heating operation instead of the cooling operation. In the case of heating operation, as described above, there is a magnitude relationship in which the gas pipe temperature becomes higher than the liquid pipe temperature. In consideration of this magnitude relation, the reference value setting unit 490 determines the temperature of the branch gas pipe and the branch liquid pipe. The reference value of the detected temperature difference between the two temperatures is set in advance. In the determination unit 470, when the detected temperature difference between the temperature of the branch gas pipe and the temperature of the branch liquid pipe is equal to or less than the reference value, the liquid pipe side operation valve 260 is set. ˜280 and the gas pipe side operation valves 320 to 340 can be determined to be closed.

また、以上説明してきた本実施形態では、周波数判断部450は、圧縮機100の運転開始から所定時間経過後、圧縮機100の運転周波数が基準値以上に達したと判断した場合、制御部500を介して判定部470に、この判断信号を出力し、判定部470は、判断信号の入力により判定動作を開始するようにしたが、本発明はこれに限らない。圧縮機100の運転開始から所定時間経過した場合、判定部470の判定動作を開始するようにしたり、圧縮機100の運転開始後、圧縮機100の運転周波数が基準値以上に達したと判断した場合、判定部470の判定動作を開始するようにしてもよい。   In the present embodiment described above, when the frequency determination unit 450 determines that the operation frequency of the compressor 100 has reached the reference value or more after a predetermined time has elapsed since the start of operation of the compressor 100, the control unit 500 The determination signal is output to the determination unit 470 via the control unit, and the determination unit 470 starts the determination operation by inputting the determination signal. However, the present invention is not limited to this. When a predetermined time has elapsed from the start of operation of the compressor 100, the determination unit 470 starts the determination operation, or after the operation of the compressor 100 is started, it is determined that the operation frequency of the compressor 100 has reached a reference value or more. In this case, the determination operation of the determination unit 470 may be started.

更に、以上説明してきた本実施形態では、判定部470では、分岐液管200〜220の温度(液管温度センサSt5、St7、St9の検出信号)と分岐ガス管290〜310の温度(ガス管温度センサSt6、St8、St10の検出信号)のそれぞれの検出温度差を基準値と比較することで、液管側操作弁260〜280やガス管側操作弁320〜340の開閉状態を判定するようにしたが、本発明はこれに限らない。例えば、冷房運転によって室内ユニットA〜Cを試運転することにより、室外熱交換器温度センサSt4を用いて、室外熱交換器160の出口温度を検出し、温度差算出部460が、室外熱交換器160の出口温度と分岐液管200〜220の温度のそれぞれの検出温度差、室外熱交換器160の出口温度と分岐ガス管290〜310の温度のそれぞれの検出温度差も算出する。   Further, in the present embodiment described above, the determination unit 470 determines the temperature of the branch liquid pipes 200 to 220 (detection signals of the liquid pipe temperature sensors St5, St7, St9) and the temperature of the branch gas pipes 290 to 310 (gas pipe). The detection temperature difference of each of the temperature sensors St6, St8, and St10) is compared with a reference value to determine the open / closed state of the liquid pipe side operation valves 260 to 280 and the gas pipe side operation valves 320 to 340. However, the present invention is not limited to this. For example, by performing a trial operation of the indoor units A to C by the cooling operation, the outlet temperature of the outdoor heat exchanger 160 is detected using the outdoor heat exchanger temperature sensor St4, and the temperature difference calculation unit 460 is used as the outdoor heat exchanger. A detected temperature difference between the outlet temperature of 160 and the temperatures of the branch liquid pipes 200 to 220 and a detected temperature difference between the outlet temperature of the outdoor heat exchanger 160 and the temperatures of the branch gas pipes 290 to 310 are also calculated.

そして、判定部470が、室外熱交換器160の出口温度と分岐液管200〜220の温度のそれぞれの検出温度差を、上述の大小関係を考慮して設定した別の基準値と比較するとともに、室外熱交換器160の出口温度と分岐ガス管290〜310の温度のそれぞれの検出温度差を、上述の大小関係を考慮して設定した別の基準値と比較し、液管側操作弁260〜280やガス管側操作弁320〜340の開閉状態を判定するようにしてもよい。このように、3つの検出温度差を用いて操作弁の開閉状態を判定するようにした場合、液管温度センサSt5、St7、St9、または、ガス管温度センサSt6、St8、St10の状態が故障などの不具合により正常に温度を検出しないときでも、他の検出温度差と基準値との比較結果により、液管側操作弁260〜280やガス管側操作弁320〜340の開閉状態の判定を確実に行うことができる。   The determination unit 470 compares the detected temperature difference between the outlet temperature of the outdoor heat exchanger 160 and the temperature of the branch liquid pipes 200 to 220 with another reference value set in consideration of the above-described magnitude relationship. The detected temperature difference between the outlet temperature of the outdoor heat exchanger 160 and the temperature of the branch gas pipes 290 to 310 is compared with another reference value set in consideration of the above-described magnitude relationship, and the liquid pipe side operation valve 260 is compared. ˜280 and the open / close state of the gas pipe side operation valves 320 to 340 may be determined. As described above, when the open / close state of the operation valve is determined using the three detected temperature differences, the liquid tube temperature sensors St5, St7, St9, or the gas tube temperature sensors St6, St8, St10 are in failure. Even when the temperature is not normally detected due to a malfunction such as the above, the open / close state of the liquid pipe side operation valves 260 to 280 and the gas pipe side operation valves 320 to 340 is determined based on the comparison result between the other detected temperature difference and the reference value. It can be done reliably.

100 圧縮機
110 吐出配管
120 吸込配管
130 四方弁
140 第1ガス管
150 第2ガス管
160 室外熱交換器
170 液管
180 冷媒分配器
190 アキュムレータ
200〜220 分岐液管
230〜250 膨張弁
260〜280 液管側操作弁
290〜310 分岐ガス管
320〜340 ガス管側操作弁
350〜370 室内熱交換器
380〜400 液管側接続配管
410〜430 ガス管側接続配管
440 操作弁開閉状態判定手段
450 周波数判断部
460 温度差算出部
470 判定部
480 判定結果表示部
490 基準値設定部
500 制御部
X 室外ユニット
Y 分岐ユニット
A〜C 室内ユニット
St1 圧縮機温度センサ
St2 吐出温度センサ
Sp 吐出圧力センサ
St3 室外温度センサ
St4 室外熱交換器温度センサ
St5、St7、St9 液管温度センサ
St6、St8、St10 ガス管温度センサ
St11、St13、St15 室内熱交換器温度センサ
St12、St14、St16 室内温度センサ
DESCRIPTION OF SYMBOLS 100 Compressor 110 Discharge piping 120 Suction piping 130 Four-way valve 140 1st gas pipe 150 2nd gas pipe 160 Outdoor heat exchanger 170 Liquid pipe 180 Refrigerant distributor 190 Accumulator 200-220 Branch liquid pipe 230-250 Expansion valve 260-280 Liquid pipe side operation valve 290 to 310 Branch gas pipe 320 to 340 Gas pipe side operation valve 350 to 370 Indoor heat exchanger 380 to 400 Liquid pipe side connection pipe 410 to 430 Gas pipe side connection pipe 440 Operation valve open / close state determination means 450 Frequency determination unit 460 Temperature difference calculation unit 470 Determination unit 480 Determination result display unit 490 Reference value setting unit 500 Control unit X Outdoor unit Y Branch unit A to C Indoor unit St1 Compressor temperature sensor St2 Discharge temperature sensor Sp Discharge pressure sensor St3 Outdoor Temperature sensor St4 outdoor heat exchanger Degree sensor St5, St 7, St9 liquid pipe temperature sensor St6, St8, St10 gas pipe temperature sensor St11, St13, St15 indoor heat exchanger temperature sensor St12, St14, St16 room temperature sensor

Claims (2)

圧縮機、室外熱交換器および操作弁を備える室外ユニットと、室内熱交換器を備える室内ユニットとを接続配管を介して接続してなる空気調和機において、前記室外ユニットは、前記室内熱交換器と接続される液管の温度を検出する液管温度センサと、前記室内熱交換器と接続されるガス管の温度を検出するガス管温度センサと、前記圧縮機の運転周波数が基準値以上に達したか否かを判断する周波数判断部と、前記液管温度センサと前記ガス管温度センサの検出温度差を算出する温度差算出部と、前記周波数判断部の判断結果と、前記温度差算出部が算出した検出温度差に基づいて、前記操作弁の開閉状態を判定する判定部とを備え、前記判定部は、前記運転周波数が基準値以上に達し、前記検出温度差が基準値以下であるとき、前記操作弁が閉じた状態と判定することを特徴とする空気調和機。   In an air conditioner formed by connecting an outdoor unit including a compressor, an outdoor heat exchanger and an operation valve, and an indoor unit including an indoor heat exchanger via a connection pipe, the outdoor unit includes the indoor heat exchanger. A liquid pipe temperature sensor for detecting a temperature of a liquid pipe connected to the gas pipe, a gas pipe temperature sensor for detecting a temperature of a gas pipe connected to the indoor heat exchanger, and an operating frequency of the compressor exceeding a reference value A frequency determination unit that determines whether or not the temperature has been reached, a temperature difference calculation unit that calculates a detected temperature difference between the liquid pipe temperature sensor and the gas pipe temperature sensor, a determination result of the frequency determination unit, and the temperature difference calculation A determination unit that determines an open / close state of the operation valve based on the detected temperature difference calculated by the unit, wherein the determination unit reaches the operating frequency equal to or higher than a reference value, and the detected temperature difference is equal to or lower than the reference value. When there is said operation Air conditioner and judging the state is closed. 圧縮機および室外熱交換器を備える室外ユニットと、冷媒分配器および複数の操作弁を備える分岐ユニットと、室内熱交換器を備える複数の室内ユニットとを接続配管を介して接続してなる空気調和機において、前記分岐ユニットは、前記複数の室内熱交換器と前記操作弁を介して接続されるそれぞれの液管の温度を検出する液管温度センサと、前記複数の室内熱交換器と前記操作弁を介して接続されるそれぞれのガス管の温度を検出するガス管温度センサと、前記圧縮機の運転周波数が基準値以上に達したか否かを判断する周波数判断部と、前記液管温度センサおよび前記ガス管温度センサにより、それぞれの前記室内熱交換器に接続された液管とガス管の検出温度差を算出する温度差算出部と、前記周波数判断部の判断結果と、前記温度差算出部が算出したそれぞれの検出温度差に基づいて、前記複数の操作弁の開閉状態を判定する判定部とを備え、前記判定部は、前記運転周波数が基準値以上に達し、前記検出温度差が基準値以下である液管とガス管に接続された前記操作弁が閉じた状態と判定することを特徴とする空気調和機。   An air conditioner in which an outdoor unit including a compressor and an outdoor heat exchanger, a branching unit including a refrigerant distributor and a plurality of operation valves, and a plurality of indoor units including an indoor heat exchanger are connected via a connection pipe. In the machine, the branch unit includes a liquid pipe temperature sensor that detects a temperature of each liquid pipe connected to the plurality of indoor heat exchangers via the operation valve, the plurality of indoor heat exchangers, and the operation. A gas pipe temperature sensor for detecting the temperature of each gas pipe connected via a valve, a frequency determining unit for judging whether or not the operating frequency of the compressor has reached a reference value or more, and the liquid pipe temperature A temperature difference calculating unit that calculates a detected temperature difference between the liquid pipe and the gas pipe connected to each indoor heat exchanger by the sensor and the gas pipe temperature sensor, a determination result of the frequency determining unit, and the temperature A determination unit that determines open / closed states of the plurality of operation valves based on the respective detected temperature differences calculated by the calculation unit, wherein the determination unit reaches the operating frequency equal to or higher than a reference value, and the detected temperature difference It is determined that the operation valve connected to the liquid pipe and the gas pipe having a value equal to or less than a reference value is closed.
JP2010011419A 2010-01-21 2010-01-21 Air conditioner Pending JP2011149622A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010011419A JP2011149622A (en) 2010-01-21 2010-01-21 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010011419A JP2011149622A (en) 2010-01-21 2010-01-21 Air conditioner

Publications (1)

Publication Number Publication Date
JP2011149622A true JP2011149622A (en) 2011-08-04

Family

ID=44536768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010011419A Pending JP2011149622A (en) 2010-01-21 2010-01-21 Air conditioner

Country Status (1)

Country Link
JP (1) JP2011149622A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103575514A (en) * 2012-07-26 2014-02-12 珠海格力电器股份有限公司 Air conditioner and detection method and device thereof
US20150211774A1 (en) * 2014-01-30 2015-07-30 Mitsubishi Electric Corporation Air-conditioning apparatus and air-conditioning system
CN105387559A (en) * 2015-10-28 2016-03-09 珠海格力电器股份有限公司 Air conditioner and valve state detection method and device thereof
WO2018198688A1 (en) * 2017-04-26 2018-11-01 パナソニックIpマネジメント株式会社 Air conditioner
CN111425986A (en) * 2020-04-07 2020-07-17 广东美的暖通设备有限公司 Indoor unit of air conditioner, control method, air conditioner and readable storage medium
CN115950043A (en) * 2022-09-01 2023-04-11 三菱重工海尔(青岛)空调机有限公司 Method for detecting fluorine leakage and closed valve operation of air conditioner

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07174386A (en) * 1993-12-17 1995-07-14 Mitsubishi Heavy Ind Ltd Separate type air-conditioning machine
JP2006177658A (en) * 2004-12-21 2006-07-06 Lg Electronics Inc Air conditioner
JP2009030954A (en) * 2007-06-29 2009-02-12 Daikin Ind Ltd Refrigeration system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07174386A (en) * 1993-12-17 1995-07-14 Mitsubishi Heavy Ind Ltd Separate type air-conditioning machine
JP2006177658A (en) * 2004-12-21 2006-07-06 Lg Electronics Inc Air conditioner
JP2009030954A (en) * 2007-06-29 2009-02-12 Daikin Ind Ltd Refrigeration system

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103575514A (en) * 2012-07-26 2014-02-12 珠海格力电器股份有限公司 Air conditioner and detection method and device thereof
US20150211774A1 (en) * 2014-01-30 2015-07-30 Mitsubishi Electric Corporation Air-conditioning apparatus and air-conditioning system
WO2015114704A1 (en) * 2014-01-30 2015-08-06 Mitsubishi Electric Corporation Air-conditioning apparatus and air-conditioning system
JP2017502250A (en) * 2014-01-30 2017-01-19 三菱電機株式会社 Air conditioning apparatus and air conditioning system
US9823003B2 (en) 2014-01-30 2017-11-21 Mitsubishi Electric Corporation Air-conditioning apparatus and air-conditioning system determining valve setting error
US10077930B2 (en) 2014-01-30 2018-09-18 Mitsubishi Electric Corporation Air-conditioning apparatus and air-conditioning system
CN105387559A (en) * 2015-10-28 2016-03-09 珠海格力电器股份有限公司 Air conditioner and valve state detection method and device thereof
CN105387559B (en) * 2015-10-28 2018-04-13 珠海格力电器股份有限公司 Air conditioner and valve state detection method and device thereof
WO2018198688A1 (en) * 2017-04-26 2018-11-01 パナソニックIpマネジメント株式会社 Air conditioner
CN111425986A (en) * 2020-04-07 2020-07-17 广东美的暖通设备有限公司 Indoor unit of air conditioner, control method, air conditioner and readable storage medium
CN111425986B (en) * 2020-04-07 2022-02-01 广东美的暖通设备有限公司 Indoor unit of air conditioner, control method, air conditioner and readable storage medium
CN115950043A (en) * 2022-09-01 2023-04-11 三菱重工海尔(青岛)空调机有限公司 Method for detecting fluorine leakage and closed valve operation of air conditioner

Similar Documents

Publication Publication Date Title
CN105008827B (en) Air-conditioning device
EP3279580B1 (en) Air-conditioning device
JP6582496B2 (en) Air conditioning indoor unit
US9068766B2 (en) Air-conditioning and hot water supply combination system
EP2204621B1 (en) Air conditioner and method for detecting malfunction thereof
CN106958958B (en) Air conditioning apparatus
JP5405161B2 (en) Air conditioner and energy equipment
JP5976333B2 (en) Air conditioner and four-way valve control method for air conditioner
JP3980601B2 (en) Multi air conditioner system and pipe connection inspection method for multi air conditioner system
JP2011149622A (en) Air conditioner
JP6785852B2 (en) Refrigeration cycle equipment
JP6444577B1 (en) Air conditioner
KR100528954B1 (en) Air Conditioner
JP2019184150A (en) Air conditioner
JP2018115805A (en) Air conditioner
JP2018159520A (en) Air conditioner
JP2011094915A (en) Air conditioner
JP2017142017A (en) Air conditioner
JP7447761B2 (en) air conditioner
JP2018162924A (en) Air conditioner
WO2021171448A1 (en) Refrigeration cycle device
KR100677282B1 (en) Out door unit control method and control apparatus for air conditioner
JP2018017479A (en) Air conditioner
JP2017142016A (en) Air conditioner
JP5199713B2 (en) Multi-type air conditioner, indoor unit indoor electronic expansion valve operation confirmation method, computer program, and fault diagnosis apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130319

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130709