JP2011148104A - Method for joining substrate having fine structure, and method for manufacturing micro fluid device using the method for joining - Google Patents

Method for joining substrate having fine structure, and method for manufacturing micro fluid device using the method for joining Download PDF

Info

Publication number
JP2011148104A
JP2011148104A JP2010008956A JP2010008956A JP2011148104A JP 2011148104 A JP2011148104 A JP 2011148104A JP 2010008956 A JP2010008956 A JP 2010008956A JP 2010008956 A JP2010008956 A JP 2010008956A JP 2011148104 A JP2011148104 A JP 2011148104A
Authority
JP
Japan
Prior art keywords
silicone rubber
substrate
rubber layer
main substrate
bonding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010008956A
Other languages
Japanese (ja)
Other versions
JP5516954B2 (en
Inventor
Takatoki Yamamoto
貴富喜 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Institute of Technology NUC
Original Assignee
Tokyo Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Institute of Technology NUC filed Critical Tokyo Institute of Technology NUC
Priority to JP2010008956A priority Critical patent/JP5516954B2/en
Priority to US13/522,507 priority patent/US8956494B2/en
Priority to KR1020127018890A priority patent/KR20120120241A/en
Priority to PCT/JP2011/000245 priority patent/WO2011089892A1/en
Publication of JP2011148104A publication Critical patent/JP2011148104A/en
Application granted granted Critical
Publication of JP5516954B2 publication Critical patent/JP5516954B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for joining a main substrate with a nano-size structure having recesses and projections formed and a lid substrate together without damaging the structure having the recesses and projections, and to provide a method for manufacturing a micro fluid device having a nano flow channel using the joining method. <P>SOLUTION: After a silicone rubber layer 18 is formed by coating a joining surface of the lid substrate 16 with a silicone rubber composition 17 and curing the composition 17, the surface of the main substrate 10 having the formed recessed and projected formations 12, 14 and the silicone rubber layer 18 of the lid substrate 16 are brought into close contact to each other. While the projected formation 14 of the main substrate is covered with the silicone rubber layer 18, the projected formation 12 is not filled up with the silicone rubber layer 18. While the close contact condition is maintained, ultraviolet irradiation is carried out from the main substrate 10 side, thereby a silicon oxide film is formed on the joining interface to firmly fix both substrates. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、基板の接合方法に関し、より詳細には、微細構造を有する主基板と蓋基板との接合方法に関する。   The present invention relates to a method for bonding substrates, and more particularly, to a method for bonding a main substrate having a fine structure and a lid substrate.

近年、薬物スクリーニングやDNA診断などにおいて、貴重な試薬・生体サンプルの節約や化学反応・分析の高効率化のために、微細流路を備えるマイクロ流体デバイスが多く用いられている。マイクロ流体デバイスにおいては、一般に、表面に微細な凹構造(流路溝)が形成された主基板の上に蓋基板を接合して封止することによって、チップ内部に微細流路が形成される。従来、この2つの基板は、熱融着や接着剤によって接合されていたが、基板の熱変形によって微細な流路が潰れてしまったり、接着剤が流路に流れ込んでこれを塞いでしまったりするといった問題があった。   In recent years, in fluid screening, DNA diagnosis, and the like, a microfluidic device having a fine channel is often used in order to save valuable reagents and biological samples and to improve the efficiency of chemical reaction and analysis. In a microfluidic device, a micro flow path is generally formed inside a chip by bonding and sealing a lid substrate on a main substrate having a fine concave structure (flow channel groove) formed on the surface. . Conventionally, these two substrates have been bonded by thermal fusion or adhesive, but the fine flow path is crushed by the thermal deformation of the substrate, or the adhesive flows into the flow path and blocks it. There was a problem such as.

この点につき、特開2007−130836号公報(特許文献1)は、ポリジメチルシロキサン(PDMS)よりなる基板とガラスまたはシリコンよりなる基板とを紫外線を用いて接合する方法を開示する。特許文献1においては、PDMS基板に真空紫外光を照射して表面を酸化した後、当該PDMS基板とガラス基板等を重ね合わせることよって、両基板を確実に接合する方法を開示する。しかしながら、特許文献1の接合方法においては、真空紫外光照射後のPDMS基板の表面は高い接着性を発現しているため、基板同士が接触した瞬間に接着してしまい、基板の微妙な位置合わせが難しいという問題があった。   In this regard, Japanese Patent Application Laid-Open No. 2007-13036 (Patent Document 1) discloses a method of bonding a substrate made of polydimethylsiloxane (PDMS) and a substrate made of glass or silicon using ultraviolet rays. Patent Document 1 discloses a method of securely bonding both substrates by superimposing the PDMS substrate and a glass substrate after the surface is oxidized by irradiating the PDMS substrate with vacuum ultraviolet light. However, in the bonding method of Patent Document 1, since the surfaces of the PDMS substrates after irradiation with vacuum ultraviolet light exhibit high adhesiveness, they adhere to each other at the moment when the substrates come into contact with each other, and the substrates are delicately aligned. There was a problem that was difficult.

一方、近年、分子プロセシング技術について種々検討がなされており、本発明者による非特許文献1は、生体分子を1分子単位で分画するための1分子ソータを開示する。非特許文献1が開示する1分子ソータの主基板には、ナノサイズの流路溝が形成されるとともに、当該流路溝に沿って、分子の電気インピーダンス測定やスイッチング操作用の微小電極が形成される。したがって、当該デバイスの製造においては、流路溝(凹構造)と電極(凸構造)が共存する主基板に対して、流路溝を塞がず、且つ、電極をしっかりと覆い込むようにして、蓋基板が接合される必要がある。この点につき、先述した特許文献1の接合方法は、主基板の表面に凸構造がないことを前提としているため、上述した1分子ソータのようなデバイスの製造に適用することができない。   On the other hand, in recent years, various studies have been made on molecular processing techniques, and Non-Patent Document 1 by the present inventor discloses a single molecule sorter for fractionating biomolecules in units of one molecule. The main substrate of the single molecule sorter disclosed in Non-Patent Document 1 is formed with nano-sized channel grooves, and microelectrodes for measuring molecular electrical impedance and switching operations are formed along the channel grooves. Is done. Therefore, in the manufacture of the device, the main substrate on which the channel groove (concave structure) and the electrode (convex structure) coexist does not block the channel groove and covers the electrode firmly, The substrate needs to be bonded. In this regard, since the bonding method of Patent Document 1 described above is based on the premise that there is no convex structure on the surface of the main substrate, it cannot be applied to the manufacture of a device such as the single molecule sorter described above.

特開2007−130836号公報JP 2007-130836 A

“Electrical Single-Molecule Detection in Nanochannel for Single-Molecular Sorter”, IEEE NANO 2009, pp. 1098 - 1101 (2009)“Electrical Single-Molecule Detection in Nanochannel for Single-Molecular Sorter”, IEEE NANO 2009, pp. 1098-1101 (2009)

本発明は、上記従来技術における課題に鑑みてなされたものであり、本発明は、ナノサイズの凹凸構造が形成された主基板と蓋基板とを、当該凹凸構造を損なうことなく接合する方法、ならびに、当該接合方法を利用したナノ流路を備えるマイクロ流体デバイスの製造方法を提供することを目的とする。   The present invention has been made in view of the above problems in the prior art, and the present invention is a method of joining a main substrate and a lid substrate on which a nano-sized uneven structure is formed without damaging the uneven structure, Another object of the present invention is to provide a method for manufacturing a microfluidic device including a nanochannel using the bonding method.

本発明者は、ナノサイズの凹凸構造が形成された主基板と蓋基板とを、当該凹凸構造を損なうことなく接合する方法につき鋭意検討した結果、蓋基板の接合面にシリコーンゴム層を形成した上で、主基板の凹凸構造が形成された表面と蓋基板のシリコーンゴム層とを密着させた状態で主基板側から紫外線を照射することによって、凹凸構造が損なわれることなく、両基板が接合界面に形成されたシリコン酸化膜を介して強固に固着する現象を見出し、本発明に至ったのである。   As a result of earnestly examining the method of joining the main substrate on which the nano-sized uneven structure is formed and the lid substrate without impairing the uneven structure, the inventor formed a silicone rubber layer on the joint surface of the lid substrate. By irradiating ultraviolet rays from the main substrate side with the surface of the main substrate having the concavo-convex structure formed thereon and the silicone rubber layer of the lid substrate in close contact with each other, the two substrates are joined without damaging the concavo-convex structure. The present inventors have found a phenomenon of being firmly fixed through a silicon oxide film formed at the interface and have reached the present invention.

すなわち、本発明によれば、凸構造と凹構造が共存する表面を有する紫外線透過性の主基板と、蓋基板を接合する方法であって、前記蓋基板の接合面にシリコーンゴム組成物を塗布する工程と、前記シリコーンゴム組成物を硬化させ、前記蓋基板の接合面にシリコーンゴム層を形成する工程と、前記主基板の前記表面と前記蓋基板の前記シリコーンゴム層とを密着させる工程と、前記主基板側から紫外線を照射して、前記シリコーンゴム層と前記主基板の接合界面にシリコン酸化膜を形成する工程とを含む基板の接合方法が提供される。本発明においては、前記紫外線を真空紫外光とすることができ、前記真空紫外光の波長を172nmとすることができる。また、本発明においては、前記凸構造および前記凹構造をナノサイズとすることができ、また、前記シリコーンゴム組成物を熱硬化性とした場合には、前記シリコーンゴム組成物を60〜150℃で加熱して前記シリコーンゴム層を形成することができる。また、本発明においては、前記主基板を石英によって形成することが好ましい。さらに、本発明によれば、ナノサイズの流路を備えるマイクロ流体デバイスの製造方法であって、電極と流路溝が共存する表面を有する石英基板と該石英基板を封止するための蓋基板を用意する工程と、前記蓋基板の接合面にシリコーンゴム組成物を塗布する工程と、前記シリコーンゴム組成物を硬化させ、前記蓋基板の接合面にシリコーンゴム層を形成する工程と、前記石英基板の前記表面と前記蓋基板の前記シリコーンゴム層とを密着させる工程と、前記石英基板側から真空紫外光を照射して、前記シリコーンゴム層と前記石英基板の接合界面にシリコン酸化膜を形成する工程とを含む製造方法が提供される。   That is, according to the present invention, an ultraviolet transmissive main substrate having a surface on which a convex structure and a concave structure coexist is bonded to a lid substrate, and a silicone rubber composition is applied to the bonding surface of the lid substrate. A step of curing the silicone rubber composition to form a silicone rubber layer on the bonding surface of the lid substrate, and a step of closely contacting the surface of the main substrate and the silicone rubber layer of the lid substrate. There is provided a substrate bonding method including a step of irradiating ultraviolet rays from the main substrate side to form a silicon oxide film at a bonding interface between the silicone rubber layer and the main substrate. In the present invention, the ultraviolet light can be vacuum ultraviolet light, and the wavelength of the vacuum ultraviolet light can be 172 nm. In the present invention, the convex structure and the concave structure can be made nano-sized, and when the silicone rubber composition is thermosetting, the silicone rubber composition is 60 to 150 ° C. To form the silicone rubber layer. In the present invention, the main substrate is preferably made of quartz. Furthermore, according to the present invention, there is provided a method for manufacturing a microfluidic device having a nano-sized flow path, wherein a quartz substrate having a surface on which an electrode and a flow path groove coexist, and a lid substrate for sealing the quartz substrate Preparing a silicone rubber composition on the bonding surface of the lid substrate, curing the silicone rubber composition to form a silicone rubber layer on the bonding surface of the lid substrate, and the quartz A step of bringing the surface of the substrate and the silicone rubber layer of the lid substrate into close contact with each other and irradiating vacuum ultraviolet light from the quartz substrate side to form a silicon oxide film at the bonding interface between the silicone rubber layer and the quartz substrate The manufacturing method including the process to perform is provided.

上述したように、本発明によれば、ナノサイズの凹凸構造が形成された主基板と蓋基板とを、当該凹凸構造を損なうことなく接合する方法が提供される。本発明によれば、表面に凹凸構造を有する主基板に対して、凸構造を覆いつつ、凹構造を埋めない態様で蓋基板を接合することができ、その接合の際の位置あわせを容易に行なうことができる。さらに、本発明の方法によれば、接着剤を用いないためデバイスに溶剤によるダメージが残らず、また、基板が熱変形することもないため主基板と蓋基板の接合後もナノサイズの凹凸構造が損なわれない。   As described above, according to the present invention, there is provided a method for joining a main substrate on which a nano-sized uneven structure is formed and a lid substrate without damaging the uneven structure. According to the present invention, a lid substrate can be bonded to a main substrate having a concavo-convex structure on the surface in a manner that covers the convex structure and does not fill the concave structure. Can be done. Further, according to the method of the present invention, since no adhesive is used, the device is not damaged by a solvent, and the substrate is not thermally deformed. Is not impaired.

本発明のナノ流路を備えるマイクロ流体デバイスの製造工程を示す概念図。The conceptual diagram which shows the manufacturing process of a microfluidic device provided with the nanochannel of this invention. 蓋基板と主基板を密着させる工程を示す概念図。The conceptual diagram which shows the process of closely_contact | adhering a lid | cover board | substrate and a main board | substrate. 真空紫外光を照射する工程を示す概念図。The conceptual diagram which shows the process of irradiating a vacuum ultraviolet light.

以下、本発明を図面に示した実施の形態をもって説明するが、本発明は、図面に示した実施の形態に限定されるものではない。なお、以下に参照する各図においては、共通する要素について同じ符号を用い、適宜、その説明を省略するものとする。   Hereinafter, the present invention will be described with reference to embodiments shown in the drawings, but the present invention is not limited to the embodiments shown in the drawings. In the drawings referred to below, the same reference numerals are used for common elements, and the description thereof is omitted as appropriate.

以下、本発明の基板の接合方法を、ナノ流路を備えるマイクロ流体デバイスの製造方法に基づいて説明する。図1は、本発明のナノ流路を備えるマイクロ流体デバイスの製造工程を示す概念図である。   Hereinafter, a method for bonding substrates according to the present invention will be described based on a method for manufacturing a microfluidic device including a nanochannel. FIG. 1 is a conceptual diagram illustrating a manufacturing process of a microfluidic device including a nanochannel according to the present invention.

本発明においては、図1(a)に示されるように、まず、ナノサイズの凹構造12とナノサイズの凸構造14が共存する主基板10を用意する。凹構造12は、後に流路(液溜部を含む)となるチャンバ(空間)を画定する流路溝であり、その深さ・幅を、数nm〜数百nmとすることができる。一方、凸構造14は、測定・操作用の微小電極として参照することができ、その高さ・幅を同じく数nm〜数百nmとすることができる。本発明における主基板10の材料は、真空紫外光を透過することができるものを採用する。この理由については後述する。なお、主基板10の材料は、紫外線を透過することができるものであれば如何なる材料を採用してもよいが、内部に形成するナノサイズのチャンバが基板の歪みによって潰れないようにするためには、なるべく硬い材料を採用することが好ましい。また、本発明においては、流路がナノサイズであるため、従来のマイクロ流体デバイスの基板材料として多く用いられているPDMSよりも濡れやすい材料を用いることが好ましい。したがって、本発明においては、主基板10を、石英で形成することが好ましい。   In the present invention, as shown in FIG. 1A, first, a main substrate 10 in which a nano-sized concave structure 12 and a nano-sized convex structure 14 coexist is prepared. The concave structure 12 is a channel groove that defines a chamber (space) that later becomes a channel (including a liquid reservoir), and the depth and width thereof can be several nm to several hundred nm. On the other hand, the convex structure 14 can be referred to as a microelectrode for measurement / operation, and the height / width can be set to several nm to several hundred nm. As the material of the main substrate 10 in the present invention, a material capable of transmitting vacuum ultraviolet light is adopted. The reason for this will be described later. Any material can be adopted as the material of the main substrate 10 as long as it can transmit ultraviolet rays. However, in order to prevent the nano-sized chamber formed therein from being crushed by the distortion of the substrate. It is preferable to use a material that is as hard as possible. In the present invention, since the channel is nano-sized, it is preferable to use a material that is easier to wet than PDMS, which is often used as a substrate material for conventional microfluidic devices. Therefore, in the present invention, the main substrate 10 is preferably formed of quartz.

本発明においては、併せて、主基板10に形成された微細構造を封止するための蓋基板16を用意する。図1(a)に示されるように、蓋基板16に対して液状の未硬化状態のシリコーンゴム組成物17を滴下して、スピンコート法により、その表面にシリコーンゴム組成物17を均一に塗布する。本発明におけるシリコーンゴム組成物17は、常温で硬化するものであってもよく、熱硬化性のものであってもよい。また、シリコーンゴム組成物17の塗布層の厚さは、10μm以下にすることが好ましく、1μm以下にすることがより好ましい。なお、以下の説明においては、説明の便宜上、熱硬化性シリコーンゴム組成物を用いた場合を例にとって説明する。   In the present invention, a lid substrate 16 for sealing the fine structure formed on the main substrate 10 is also prepared. As shown in FIG. 1 (a), a liquid uncured silicone rubber composition 17 is dropped onto the lid substrate 16, and the silicone rubber composition 17 is uniformly applied to the surface by spin coating. To do. The silicone rubber composition 17 in the present invention may be cured at room temperature or may be thermosetting. Further, the thickness of the coating layer of the silicone rubber composition 17 is preferably 10 μm or less, and more preferably 1 μm or less. In the following description, for convenience of explanation, a case where a thermosetting silicone rubber composition is used will be described as an example.

次に、図1(b)に示されるように、シリコーンゴム組成物17を均一に塗布した蓋基板16をベークすることによって、シリコーンゴム組成物17を硬化させ、蓋基板16の表面上に非タック性のシリコーンゴム層18を形成する。本発明においては、後の接合時の密着性に鑑みて、ベーク時の加熱温度を60〜150℃とすることが好ましい。なお、凸構造14の高さが数nm(10nm以下)であるような場合には、200℃程度で加熱してもよい。   Next, as shown in FIG. 1 (b), the lid rubber 16 uniformly coated with the silicone rubber composition 17 is baked to cure the silicone rubber composition 17, so that the non-coated surface of the lid base 16 is non-coated. A tacky silicone rubber layer 18 is formed. In the present invention, it is preferable to set the heating temperature during baking to 60 to 150 ° C. in view of the adhesion at the time of subsequent bonding. In addition, when the height of the convex structure 14 is several nm (10 nm or less), you may heat at about 200 degreeC.

続いて、図1(c)に示されるように、蓋基板16のシリコーンゴム層18が形成された面と主基板10の凹凸構造が形成された面とを向かい合わせで当接した後、適切な位置を決めて両基板を固定・加圧して密着させる。この時、シリコーンゴム層18が非タック性となっているため、両基板が接触すると同時に接着するといったことがなく、その結果、容易に位置あわせを行なうことができる。なお、この際、接合面の滑りを良くするために、主基板10の表面に予めメタノール等を滴下しておくことが好ましい。   Subsequently, as shown in FIG. 1C, the surface of the lid substrate 16 on which the silicone rubber layer 18 is formed and the surface of the main substrate 10 on which the concavo-convex structure is formed are brought into contact with each other. Determine the correct position and fix and press the two substrates together. At this time, since the silicone rubber layer 18 is non-tacky, the two substrates are not in contact with each other and bonded at the same time. As a result, alignment can be easily performed. At this time, it is preferable to drop methanol or the like in advance on the surface of the main substrate 10 in order to improve the slip of the joint surface.

ここで、図1(c)に示した工程について、図2を参照してさらに詳細に説明する。本工程においては、蓋基板16のシリコーンゴム層18と主基板10の凹凸構造が形成された表面とが向かい合った形で両者を加圧して密着させる。このとき、蓋基板16のシリコーンゴム層18は、ある程度以上の硬度を持っているため、加圧によってシリコーンゴムが凹構造12の中に侵入してこれを埋め尽すといったことが起こらず、両基板の密着後も、図2(a)に示されるように、凹構造12によって画定されるチャンバ(空間)が維持される。一方で、図2(b)に示されるように、蓋基板16のシリコーンゴム層18は、石英等の硬い材料と異なり弾性を有しているため、凸構造14を好適に回り込んで覆い尽くすことができる。その結果、蓋基板16と主基板10は、凸構造14の存在にもかかわらず、シリコーンゴム層18を介して密着することができる。なお、本発明は、蓋基板16の材料について特に限定するものではなく、樹脂製のものであってもよく、主基板10と同様に硬い材料(石英、シリコン、ガラス、金属、セラミックス等)で形成してもよい。   Here, the process shown in FIG. 1C will be described in more detail with reference to FIG. In this step, the silicone rubber layer 18 of the lid substrate 16 and the surface of the main substrate 10 on which the concavo-convex structure is formed are pressed and brought into close contact with each other. At this time, since the silicone rubber layer 18 of the lid substrate 16 has a hardness of a certain level or more, the silicone rubber does not enter the concave structure 12 due to the pressurization and does not completely fill it. Even after the contact, the chamber (space) defined by the concave structure 12 is maintained as shown in FIG. On the other hand, as shown in FIG. 2B, since the silicone rubber layer 18 of the lid substrate 16 has elasticity unlike a hard material such as quartz, the convex structure 14 is suitably wrapped around and covered. be able to. As a result, the lid substrate 16 and the main substrate 10 can be in close contact via the silicone rubber layer 18 regardless of the presence of the convex structure 14. The present invention is not particularly limited as to the material of the lid substrate 16 and may be made of resin, and is a hard material (quartz, silicon, glass, metal, ceramics, etc.) as with the main substrate 10. It may be formed.

再び、図1に戻って説明を続ける。蓋基板16と主基板10とをシリコーンゴム層18を介して密着させた後、その密着状態を保持したまま、図1(d)に示されるように、主基板10側から紫外線、好ましくは真空紫外光(VUV)を照射する。主基板10は、先述したように、紫外線に対して透過性を有しているため、照射された紫外線は、主基板10を透過して内部のシリコーンゴム層18に到達する。その結果、主基板10とシリコーンゴム層18の接合面に形成される酸化膜を介して両基板が固着する。なお、本発明においては、照射する真空紫外光の波長を172nmにすることが好ましい。   Returning again to FIG. 1, the description will be continued. After the lid substrate 16 and the main substrate 10 are brought into close contact with each other through the silicone rubber layer 18, as shown in FIG. 1 (d), ultraviolet light, preferably vacuum is applied from the main substrate 10 side while maintaining the close contact state. Irradiate with ultraviolet light (VUV). As described above, since the main substrate 10 is permeable to ultraviolet rays, the irradiated ultraviolet rays pass through the main substrate 10 and reach the internal silicone rubber layer 18. As a result, both substrates are fixed through an oxide film formed on the bonding surface between the main substrate 10 and the silicone rubber layer 18. In the present invention, it is preferable that the wavelength of the vacuum ultraviolet light to be irradiated is 172 nm.

ここで、図1(d)に示した工程について、図3を参照してさらに詳細に説明する。主基板10の裏面10b(凹凸構造が形成された表面に対向する面)に向けて真空紫外光(VUV)を照射すると、照射された真空紫外光は、主基板10を透過して、主基板10とシリコーンゴム層18の界面18aに到達し、その近傍で吸収される。その結果、界面18a近傍で光酸化反応が起こり、界面18aの近傍部分のシリコーンゴムが二酸化シリコン(SiO)に転移して化学的に安定な構造となることで、主基板10と蓋基板16とが強固に固着する。ここで仮に、主基板10の材料が石英(SiO)であった場合、図3の右下に丸で囲んで示すように、凹構造12によって画定されたチャンバ(ナノ流路30)のすべての壁面が二酸化シリコン(SiO)になる。その結果、流路壁面にPDMSの成分が残らず、水に対する濡れ性が好適化される。 Here, the process shown in FIG. 1D will be described in more detail with reference to FIG. When the vacuum ultraviolet light (VUV) is irradiated toward the back surface 10b of the main substrate 10 (the surface facing the surface on which the concavo-convex structure is formed), the irradiated vacuum ultraviolet light is transmitted through the main substrate 10 and the main substrate 10 10 reaches the interface 18a between the silicone rubber layer 18 and is absorbed in the vicinity thereof. As a result, a photo-oxidation reaction occurs in the vicinity of the interface 18a, and the silicone rubber in the vicinity of the interface 18a is transferred to silicon dioxide (SiO 2 ) to form a chemically stable structure. And firmly adhere. Here, if the material of the main substrate 10 is quartz (SiO 2 ), all the chambers (nanochannels 30) defined by the concave structure 12 are shown as circled in the lower right of FIG. The wall surface becomes silicon dioxide (SiO 2 ). As a result, the PDMS component does not remain on the channel wall surface, and water wettability is optimized.

なお、紫外線の照射過程は、流路内部に残った有機物を分解消去する洗浄工程を同時に兼ねている。すなわち、マイクロ流路デバイスにPDMSを用いる場合、必ず未重合のモノマー成分が染み出したり、ガス化したりするなどして、流路内にPDMSのモノマー成分が残るが、これら残留PDMS成分は、上述した紫外線の照射によって、二酸化シリコン(SiO)化して壁面に一体化し流路内から除去される。 Note that the ultraviolet irradiation process also serves as a cleaning step for decomposing and erasing organic substances remaining in the flow path. That is, when PDMS is used in the microchannel device, the unpolymerized monomer component always oozes out or gasifies, and the PDMS monomer component remains in the channel. When irradiated with ultraviolet light, it is converted into silicon dioxide (SiO 2 ), integrated with the wall surface, and removed from the flow path.

以上、本発明について実施形態をもって説明してきたが、本発明は上述した実施形態に限定されるものではなく、当業者が推考しうるその他の実施態様の範囲内において、本発明の作用・効果を奏する限り、本発明の範囲に含まれるものである。   As described above, the present invention has been described with the embodiment. However, the present invention is not limited to the above-described embodiment, and the functions and effects of the present invention are within the scope of other embodiments that can be considered by those skilled in the art. As long as it plays, it is included in the scope of the present invention.

以下、本発明の基板の接合方法について、実施例を用いてより具体的に説明を行なうが、本発明は、後述する実施例に限定されるものではない。   Hereinafter, the method for bonding substrates according to the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the examples described later.

本発明の基板の接合方法を使用して、以下の手順で「1分子ソータ」を作製した。まず、石英基板(主基板)の表面に対して、ナノ流路溝(深さ:50〜100nm、幅:50〜500nm)と、当該ナノ流路溝のそれと同じ幅のギャップを有する電極片(厚さTi(1nm)/Au(100nm),幅100〜1000nm)を形成した。   Using the substrate bonding method of the present invention, a “single molecule sorter” was produced by the following procedure. First, with respect to the surface of the quartz substrate (main substrate), a nanochannel groove (depth: 50 to 100 nm, width: 50 to 500 nm) and an electrode piece having a gap with the same width as that of the nanochannel groove ( Thickness Ti (1 nm) / Au (100 nm), width 100 to 1000 nm) was formed.

一方、厚さ100μmの石英基板(蓋基板)の表面に対して、PDMS(SIM240,信越シリコーン)をスピンコート法により約1μmの厚みで成膜した後、約150℃でベークし硬化させてシリコーンゴム膜を形成した。   On the other hand, PDMS (SIM240, Shin-Etsu Silicone) is deposited on the surface of a quartz substrate (lid substrate) with a thickness of 100 μm to a thickness of about 1 μm by spin coating, and then baked and cured at about 150 ° C. to form silicone. A rubber film was formed.

上記蓋基板と上記主基板との間にメタノールを滴下した後、蓋基板のシリコーンゴム膜が形成された面と主基板の表面とを合わせた状態で、蓋基板に形成されたコンタクトホールと主基板の電極片との位置あわせを行ない、両基板を加圧して密着・固定した。   After methanol is dropped between the lid substrate and the main substrate, the contact hole and the main hole formed in the lid substrate are aligned with the surface of the lid substrate on which the silicone rubber film is formed and the surface of the main substrate. The substrate was aligned with the electrode pieces, and both the substrates were pressed and fixed tightly.

最後に、固定された両基板に対し、主基板側から波長172nmの真空紫外光(VUV)を照射した。下記表1は、VUVの照射後(1秒・10秒・120秒)のシリコーンゴム膜の組成比を示す。なお、組成比については、X線光電子分光によって求めた。   Finally, both the fixed substrates were irradiated with vacuum ultraviolet light (VUV) having a wavelength of 172 nm from the main substrate side. Table 1 below shows the composition ratio of the silicone rubber film after irradiation with VUV (1 second, 10 seconds, 120 seconds). The composition ratio was determined by X-ray photoelectron spectroscopy.

上記表1に示される組成比の変化から、VUVの照射時間に伴って、シリコーンゴム膜がシリコーンからSiOへと変化していることが確認された。その後、上記手順で作製した「1分子ソータ」が問題なく作動することを確認した。 From the change in the composition ratio shown in Table 1 above, it was confirmed that the silicone rubber film changed from silicone to SiO 2 with the irradiation time of VUV. Thereafter, it was confirmed that the “single molecule sorter” produced by the above procedure operated without any problem.

10…主基板、12…凹構造、14…凸構造、16…蓋基板、17…シリコーンゴム組成物、18…シリコーンゴム層、30…ナノ流路 DESCRIPTION OF SYMBOLS 10 ... Main substrate, 12 ... Concave structure, 14 ... Convex structure, 16 ... Cover substrate, 17 ... Silicone rubber composition, 18 ... Silicone rubber layer, 30 ... Nanochannel

Claims (7)

凸構造と凹構造が共存する表面を有する紫外線透過性の主基板と、蓋基板を接合する方法であって、
前記蓋基板の接合面にシリコーンゴム組成物を塗布する工程と、
前記シリコーンゴム組成物を硬化させ、前記蓋基板の接合面にシリコーンゴム層を形成する工程と、
前記主基板の前記表面と前記蓋基板の前記シリコーンゴム層とを密着させる工程と、
前記主基板側から紫外線を照射して、前記シリコーンゴム層と前記主基板の接合界面にシリコン酸化膜を形成する工程と、
を含む基板の接合方法。
A method of bonding an ultraviolet transmissive main substrate having a surface in which a convex structure and a concave structure coexist, and a lid substrate,
Applying a silicone rubber composition to the joint surface of the lid substrate;
Curing the silicone rubber composition and forming a silicone rubber layer on the bonding surface of the lid substrate;
Adhering the surface of the main substrate and the silicone rubber layer of the lid substrate;
Irradiating ultraviolet rays from the main substrate side to form a silicon oxide film at the bonding interface between the silicone rubber layer and the main substrate;
A method for bonding substrates including:
前記紫外線は、真空紫外光である、請求項1に記載の接合方法。   The bonding method according to claim 1, wherein the ultraviolet light is vacuum ultraviolet light. 前記真空紫外光の波長が172nmである、請求項1または2に記載の接合方法。   The bonding method according to claim 1 or 2, wherein a wavelength of the vacuum ultraviolet light is 172 nm. 前記凸構造および前記凹構造がナノサイズである、請求項1〜3のいずれか1項に記載の接合方法。   The joining method according to claim 1, wherein the convex structure and the concave structure are nano-sized. 前記シリコーンゴム組成物は熱硬化性であり、前記シリコーンゴム組成物を60〜150℃で加熱して前記シリコーンゴム層を形成する、請求項1〜4のいずれか1項に記載の接合方法。   The said silicone rubber composition is thermosetting, The joining method of any one of Claims 1-4 which heats the said silicone rubber composition at 60-150 degreeC, and forms the said silicone rubber layer. 前記主基板が、石英によって形成される、請求項1〜5のいずれか1項に記載の接合方法。   The bonding method according to claim 1, wherein the main substrate is made of quartz. ナノサイズの流路を備えるマイクロ流体デバイスの製造方法であって、
電極と流路溝が共存する表面を有する石英基板と該石英基板を封止するための蓋基板を用意する工程と、
前記蓋基板の接合面にシリコーンゴム組成物を塗布する工程と、
前記シリコーンゴム組成物を硬化させ、前記蓋基板の接合面にシリコーンゴム層を形成する工程と、
前記石英基板の前記表面と前記蓋基板の前記シリコーンゴム層とを密着させる工程と、
前記石英基板側から真空紫外光を照射して、前記シリコーンゴム層と前記石英基板の接合界面にシリコン酸化膜を形成する工程と、
を含む製造方法。
A method for producing a microfluidic device comprising a nano-sized channel,
A step of preparing a quartz substrate having a surface on which an electrode and a channel groove coexist, and a lid substrate for sealing the quartz substrate;
Applying a silicone rubber composition to the joint surface of the lid substrate;
Curing the silicone rubber composition and forming a silicone rubber layer on the bonding surface of the lid substrate;
Adhering the surface of the quartz substrate and the silicone rubber layer of the lid substrate;
Irradiating vacuum ultraviolet light from the quartz substrate side to form a silicon oxide film at the bonding interface between the silicone rubber layer and the quartz substrate;
Manufacturing method.
JP2010008956A 2010-01-19 2010-01-19 Method for bonding substrates having fine structure and method for manufacturing microfluidic device using the bonding method Active JP5516954B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2010008956A JP5516954B2 (en) 2010-01-19 2010-01-19 Method for bonding substrates having fine structure and method for manufacturing microfluidic device using the bonding method
US13/522,507 US8956494B2 (en) 2010-01-19 2011-01-19 Method of adhering hard silicone resin, method of adhering substrate having fine structure, and preparation method of micro fluidic device utilizing adhesion method
KR1020127018890A KR20120120241A (en) 2010-01-19 2011-01-19 Method for bonding hardened silicone resin, method for joining substrate having fine structure, and method for manufacturing micro fluid device using the method for joining
PCT/JP2011/000245 WO2011089892A1 (en) 2010-01-19 2011-01-19 Method for bonding hardened silicone resin, method for joining substrate having fine structure, and method for manufacturing micro fluid device using the method for joining.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010008956A JP5516954B2 (en) 2010-01-19 2010-01-19 Method for bonding substrates having fine structure and method for manufacturing microfluidic device using the bonding method

Publications (2)

Publication Number Publication Date
JP2011148104A true JP2011148104A (en) 2011-08-04
JP5516954B2 JP5516954B2 (en) 2014-06-11

Family

ID=44535572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010008956A Active JP5516954B2 (en) 2010-01-19 2010-01-19 Method for bonding substrates having fine structure and method for manufacturing microfluidic device using the bonding method

Country Status (1)

Country Link
JP (1) JP5516954B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102856493A (en) * 2012-08-30 2013-01-02 中国科学院苏州纳米技术与纳米仿生研究所 Nano-fluidic diode and preparation method thereof
CN106799830A (en) * 2016-12-07 2017-06-06 上海交通大学 A kind of polymer surfaces micro-structural thermal marking method of plasmaassisted
CN112090709A (en) * 2020-08-25 2020-12-18 信利光电股份有限公司 Method and device for attaching touch screen to attaching piece

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004074339A (en) * 2002-08-15 2004-03-11 Fuji Electric Holdings Co Ltd Micro-channel chip
JP2004325158A (en) * 2003-04-23 2004-11-18 Ushio Inc Joining method
JP2004331731A (en) * 2003-05-01 2004-11-25 Univ Nagoya Photo-bonding method, and method for making microchip
JP2005199394A (en) * 2004-01-16 2005-07-28 Aida Eng Ltd Adhesion method of pdms substrate and the other synthetic resin substrate, and method for manufacturing microchip
JP2006234791A (en) * 2005-01-26 2006-09-07 Seiko Instruments Inc Reactor, microreactor chip, microreactor system and method for manufacturing the reactor
JP2009143992A (en) * 2007-12-11 2009-07-02 Seiko Epson Corp Joining method and joined body

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004074339A (en) * 2002-08-15 2004-03-11 Fuji Electric Holdings Co Ltd Micro-channel chip
JP2004325158A (en) * 2003-04-23 2004-11-18 Ushio Inc Joining method
JP2004331731A (en) * 2003-05-01 2004-11-25 Univ Nagoya Photo-bonding method, and method for making microchip
JP2005199394A (en) * 2004-01-16 2005-07-28 Aida Eng Ltd Adhesion method of pdms substrate and the other synthetic resin substrate, and method for manufacturing microchip
JP2006234791A (en) * 2005-01-26 2006-09-07 Seiko Instruments Inc Reactor, microreactor chip, microreactor system and method for manufacturing the reactor
JP2009143992A (en) * 2007-12-11 2009-07-02 Seiko Epson Corp Joining method and joined body

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102856493A (en) * 2012-08-30 2013-01-02 中国科学院苏州纳米技术与纳米仿生研究所 Nano-fluidic diode and preparation method thereof
CN106799830A (en) * 2016-12-07 2017-06-06 上海交通大学 A kind of polymer surfaces micro-structural thermal marking method of plasmaassisted
CN112090709A (en) * 2020-08-25 2020-12-18 信利光电股份有限公司 Method and device for attaching touch screen to attaching piece

Also Published As

Publication number Publication date
JP5516954B2 (en) 2014-06-11

Similar Documents

Publication Publication Date Title
WO2011089892A1 (en) Method for bonding hardened silicone resin, method for joining substrate having fine structure, and method for manufacturing micro fluid device using the method for joining.
US11280786B2 (en) Method for forming biochips and biochips with non-organic landings for improved thermal budget
JP6279654B2 (en) Polymer compound substrate having glass-like surface, and chip made of said polymer compound substrate
JP5229215B2 (en) Microchip manufacturing method
Tang et al. A facile route for irreversible bonding of plastic-PDMS hybrid microdevices at room temperature
US20040211511A1 (en) Joining method
JP6422197B2 (en) Method for manufacturing a microchemical chip
WO2008007787A1 (en) Method of bonding resins by light irradiation and process for producing resin article
JP2005257283A (en) Microchip
JPWO2015025424A1 (en) Micro chemical chip and reaction device
JP5516954B2 (en) Method for bonding substrates having fine structure and method for manufacturing microfluidic device using the bonding method
TWI764926B (en) Methods to produce an imprinted substrate surface and flow cells
WO2014010299A1 (en) Microchip and method for producing microchip
JP5570616B2 (en) Microchip manufacturing method
US11548194B2 (en) Method for manufacturing fluid device composite member
JP6699903B2 (en) Pattern forming method, semiconductor device and manufacturing method thereof
KR101588514B1 (en) Bonding plastic and method of manufacturing the same
JP5040388B2 (en) Microchip manufacturing method
Knapkiewicz et al. Anodic bonding of glass-to-glass through magnetron spattered nanometric silicon layer
JP5239870B2 (en) Microchip and manufacturing method of microchip
JP5545255B2 (en) Microchip and manufacturing method thereof
JP5239871B2 (en) Microchip and manufacturing method of microchip
JP2009220477A (en) Manufacturing method of microchip having non-adhesive part
KR20140143514A (en) Substrate surface treatment method for bonding substrates and method for bonding substrates
Ali et al. Leakage-Free Nucleic Acid Biochip Featuring Bioinert Photocurable Inhibitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140319

R150 Certificate of patent or registration of utility model

Ref document number: 5516954

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250