JP2011144916A - Wave gear device having three-dimensionally contacting positive shifted tooth profile - Google Patents

Wave gear device having three-dimensionally contacting positive shifted tooth profile Download PDF

Info

Publication number
JP2011144916A
JP2011144916A JP2010008492A JP2010008492A JP2011144916A JP 2011144916 A JP2011144916 A JP 2011144916A JP 2010008492 A JP2010008492 A JP 2010008492A JP 2010008492 A JP2010008492 A JP 2010008492A JP 2011144916 A JP2011144916 A JP 2011144916A
Authority
JP
Japan
Prior art keywords
tooth
tooth profile
section
curve
external
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010008492A
Other languages
Japanese (ja)
Other versions
JP5275265B2 (en
Inventor
Shoichi Ishikawa
昌一 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harmonic Drive Systems Inc
Original Assignee
Harmonic Drive Systems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harmonic Drive Systems Inc filed Critical Harmonic Drive Systems Inc
Priority to JP2010008492A priority Critical patent/JP5275265B2/en
Publication of JP2011144916A publication Critical patent/JP2011144916A/en
Application granted granted Critical
Publication of JP5275265B2 publication Critical patent/JP5275265B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Retarders (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a wave gear device having a three-dimensionally contacting positive shifted tooth profile continuously meshing in the tooth trace direction and having an increased tooth depth. <P>SOLUTION: The deflection coefficients κ of an opening end 34a of an external tooth 34 of a flexible external gear 3, a central principal section 30, and an inner end 34b in the harmonic drive gear device 1 are set at 1+2a, 1+a, and 1 respectively. An addendum tooth profile portion fs1 of the external tooth is obtained using a second similar curve AC obtained by similarly transforming part of a moving locus M0 obtained by a rack approximation of an inner end 34b of the external tooth 34 to define a straight line tooth profile portion fs2 connected thereto and a tooth profile FS1 having a tooth depth of 2mn(1+a) in the principal section 30 of tooth trace center of the external tooth by the addendum tooth profile portion fs3 connected thereto. As tooth profiles for the portion from the principal section 30 to the opening end 34a, and the portion from the principal section 30 to an inner end 34b, shifted tooth profiles FS2, FS3 which are obtained by shifting the tooth profile FS1 in the negative direction of the tooth depth are employed respectively. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、波動歯車装置における剛性内歯車および可撓性外歯車の歯形の改良に関する。さらに詳しくは、両歯車が歯筋方向の各軸直角断面において噛み合い状態を維持する3次元接触状態が形成され、高負荷トルク時の両歯車のラチェティング防止に有利な大きな歯たけを備えた3次元接触の正偏位歯形を有する波動歯車装置に関する。   The present invention relates to an improvement in the tooth profile of a rigid internal gear and a flexible external gear in a wave gear device. More specifically, a three-dimensional contact state is formed in which both gears maintain a meshed state in the cross-section perpendicular to each axis in the tooth trace direction, and a large toothbrush that is advantageous for preventing ratcheting of both gears at high load torque is provided. The present invention relates to a wave gear device having a dimensional contact positive deviation tooth profile.

波動歯車装置は、創始者C.W.Musser氏の発明(特許文献1)以来、今日まで同氏を始め、本発明者を含め多くの研究者によって本装置の各種の発明考案がなされている。その歯形に関する発明に限っても、各種のものがある。例えば、本発明者は、特許文献2において基本歯形をインボリュート歯形とすることを提案し、特許文献3、4において、剛性内歯車と可撓性外歯車の歯の噛み合いをラックで近似する手法を用いて広域接触を行う両歯車の歯末歯形を導く歯形設計法を提案している。さらに、本発明者は、特許文献5において、波動歯車装置における連続噛み合い可能な高ラチェティングトルクの歯形を提案している。   The wave gear device is based on the founder C.I. W. Since the invention of Musser (Patent Document 1), various inventions of this apparatus have been made by many researchers including the present inventor to this day. There are various types of inventions related to the tooth profile. For example, the inventor proposed in Patent Document 2 that the basic tooth profile is an involute tooth profile, and in Patent Documents 3 and 4, a method of approximating the meshing of the teeth of the rigid internal gear and the flexible external gear with a rack. We have proposed a tooth profile design method that derives the tooth addendum of both gears that use wide area contact. Furthermore, the present inventor has proposed a tooth shape of high ratcheting torque capable of continuous meshing in a wave gear device in Patent Document 5.

一般に、波動歯車装置は、円環状の剛性内歯車と、この内側に同軸状に配置された可撓性外歯車と、この内側に嵌めた波動発生器とを有している。可撓性外歯車は、可撓性の円筒状胴部と、この円筒状胴部の後端から半径方向に延びているダイヤフラムと、円筒状胴部の前端開口側の外周面部分に形成した外歯とを備えている。可撓性外歯車は波動発生器によって楕円状に撓められ、楕円の長軸方向の両端部において剛性内歯車に噛み合っている。   In general, a wave gear device includes an annular rigid internal gear, a flexible external gear disposed coaxially inside the ring-shaped rigid internal gear, and a wave generator fitted inside the gear. The flexible external gear is formed on a flexible cylindrical body, a diaphragm extending in the radial direction from the rear end of the cylindrical body, and an outer peripheral surface portion on the front end opening side of the cylindrical body. With external teeth. The flexible external gear is bent in an elliptical shape by a wave generator, and meshes with the rigid internal gear at both ends of the major axis of the ellipse.

楕円状に撓められた可撓性外歯車の外歯は、その歯筋方向に沿って、ダイヤフラムの側から前端開口に向けて、ダイヤフラムからの距離にほぼ比例して撓み量が増加している。また、波動発生器の回転に伴って、可撓性外歯車の歯部の各部分は半径方向への撓みを繰り返す。   The external teeth of the flexible external gear flexed in an elliptical shape increase in the amount of deflection substantially in proportion to the distance from the diaphragm from the diaphragm side toward the front end opening along the tooth trace direction. Yes. Further, as the wave generator rotates, each portion of the tooth portion of the flexible external gear repeatedly bends in the radial direction.

このような波動発生器による可撓性外歯車の撓み動作(コーニング)を考慮した合理的な歯形の設定法については、これまで十分には考慮されてこなかった。現在、波動歯車装置の負荷トルク性能の向上を望む市場の強い要求がある。これを達成するには、歯筋全体にわたって、歯のコーニングを考慮した連続的な噛み合いを可能とする合理的な歯形が必要である。   A rational tooth profile setting method that takes into account the bending operation (corning) of the flexible external gear by the wave generator has not been sufficiently considered. Currently, there is a strong market demand to improve the load torque performance of wave gear devices. Achieving this requires a rational tooth profile that allows continuous meshing throughout the tooth trace, taking into account the tooth coning.

また、波動歯車装置に対する要望の一つに、高減速比のラチェティング対策がある。両歯車の歯数が200を超える高減速比の場合、高負荷トルク時のラチェティングを防止するためには、歯たけを大きくする必要がある。   In addition, one of the demands for the wave gear device is a countermeasure for ratcheting with a high reduction ratio. When the number of teeth of both gears exceeds 200, it is necessary to increase the tooth depth in order to prevent ratcheting at high load torque.

米国特許第2906143号公報U.S. Pat. No. 2,906,143 特公昭45−41171号公報Japanese Examined Patent Publication No. 45-41171 特開昭63−115943号公報Japanese Unexamined Patent Publication No. 63-115943 特開昭64−79448号公報JP-A 64-79448 特開2007−211907号公報JP 2007-211197 A

本発明の課題は、両歯車が、歯筋方向における所定の位置に設定した主断面(軸直角断面)においては広範囲の噛み合いを維持し、歯筋方向の他の軸直角断面においても部分的な噛み合いを保持し、かつ、高減速比であっても高負荷トルク時の両歯車のラチェティングを防止可能な大きな歯たけを備えている3次元接触の正偏位歯形を有する波動歯車装置を提案することにある。   The object of the present invention is to maintain a wide range of meshing in the main cross section (axial cross section) set at a predetermined position in the tooth trace direction, and partially in other axial perpendicular sections in the tooth trace direction. Proposal of a wave gear device having a positive displacement tooth profile with a three-dimensional contact, which has a large tooth retention capable of maintaining meshing and preventing ratcheting of both gears at high load torque even at a high reduction ratio There is to do.

本発明の波動歯車装置(1)は、
円環状の剛性内歯車(2)と、この内側に同軸状に配置された可撓性外歯車(3)と、この内側に嵌めた波動発生器(4)とを有し、
前記可撓性外歯車(3)は、可撓性の円筒状胴部(31)と、この円筒状胴部の後端から半径方向に延びているダイヤフラム(32)と、前記円筒状胴部の前端開口の側の外周面部分に形成した外歯(34)とを備え、
前記可撓性外歯車(3)は前記波動発生器(4)によって楕円状に撓められ、楕円の長軸方向の両端部において前記剛性内歯車(2)の内歯(24)に噛み合っており、
前記剛性内歯車(2)および前記可撓性外歯車(3)は共にモジュールmの平歯車であり、
前記可撓性外歯車(3)の歯数は前記剛性内歯車(2)の歯数より2n枚(nは正の整数)少なく、
前記外歯(34)の歯筋方向の任意の位置の軸直角断面における前記可撓性外歯車(3)の楕円状リム中立線における長軸位置(L1)において、その撓み前のリム中立円に対する撓み量は偏位係数κを用いて2κmnであり、
当該撓み量は、前記外歯(34)の歯筋方向に沿って、前記ダイヤフラム(32)の側の内端部(34b)から前記前端開口の側の開口端部(34a)に向けて、前記ダイヤフラム(32)からの距離に比例して増加しており、
前記外歯(34)と前記内歯(24)の噛み合いをラック噛み合いで近似した場合に、前記外歯(34)の各軸直角断面において、前記波動発生器(4)の回転に伴う前記外歯(34)の前記内歯(24)に対する移動軌跡(M)は、x軸をラックの併進方向、y軸をそれに直角な方向とし、y軸の原点を移動軌跡(M)の振幅の平均位置に設定した場合に、式1により規定される。
x=0.5mn(θ−κsinθ) (式1)
y=κmncosθ
The wave gear device (1) of the present invention comprises:
An annular rigid internal gear (2), a flexible external gear (3) disposed coaxially on the inside thereof, and a wave generator (4) fitted on the inside;
The flexible external gear (3) includes a flexible cylindrical body (31), a diaphragm (32) extending in a radial direction from a rear end of the cylindrical body, and the cylindrical body. External teeth (34) formed on the outer peripheral surface portion on the front end opening side of
The flexible external gear (3) is bent into an ellipse by the wave generator (4) and meshes with the internal teeth (24) of the rigid internal gear (2) at both ends of the long axis of the ellipse. And
The rigid internal gear (2) and the flexible external gear (3) are both spur gears of the module m,
The number of teeth of the flexible external gear (3) is 2n less (n is a positive integer) than the number of teeth of the rigid internal gear (2),
A rim neutral circle before bending at the long axis position (L1) of the elliptical rim neutral line of the flexible external gear (3) in an axial perpendicular section at an arbitrary position in the direction of the tooth trace of the external tooth (34). The amount of deflection with respect to is 2κmn using the deviation coefficient κ,
The amount of bending is along the direction of the tooth trace of the outer teeth (34) from the inner end (34b) on the diaphragm (32) side toward the opening end (34a) on the front end opening side. Increasing in proportion to the distance from the diaphragm (32),
When the meshing of the outer teeth (34) and the inner teeth (24) is approximated by rack meshing, the outer teeth (4) are rotated with the rotation of the wave generator (4) in the cross-section perpendicular to each axis. The movement trajectory (M) of the tooth (34) with respect to the internal tooth (24) is such that the x-axis is the translation direction of the rack, the y-axis is the direction perpendicular thereto, and the origin of the y-axis is the average of the amplitude of the movement trajectory (M). When set to the position, it is defined by Equation 1.
x = 0.5 mn (θ−κsin θ) (Formula 1)
y = κmncos θ

本発明では、上記構成の波動歯車装置(1)において、
前記外歯(34)の前記内端部(34b)の撓み量は偏位係数κ=1の無偏位状態の撓み量であり、前記主断面(30)の撓み量は偏位係数κ=1+a(0<a<0.5)の正偏位状態の撓み量であり、前記開口端部(34a)の撓み量は偏位置係数κ=1+2aの正偏位状態の撓み量であり、
前記外歯(34)の前記内端部(34b)において得られる前記移動軌跡(M0)における頂点(A)から次の底点(B)に至る第1曲線部分(AB)を、前記底点(B)を相似の中心としてλ倍(0.5<λ<1)に縮小して、式2で規定される第1相似曲線(BC)を求め、
Ca=0.5mn{(1−λ)π+λ(θ−sinθ)}
Ca=mn{λ(1+cosθ)−1} (0≦θ≦π) (式2)
前記第1相似曲線(BC)における前記底点(B)とは反対側の端点(C)を中心として当該第1相似曲線(BC)を180度回転することにより得られた第2曲線を、当該端点(C)を相似の中心として(1−λ)/λ倍して、式3で規定される第2相似曲線(AC)を求め、
Fa=0.5mn(1−λ)(π−θ+sinθ)
Fa=mn{λ(1+cosθ)−cosθ} (0≦θ≦π) (式3)
前記第1相似曲線(BC)をy軸の負方向にaだけ移動することにより式2aで規定される第3曲線(B1C1)を求め、
Ca1=0.5mn{(1−λ)π+λ(θ−sinθ)} (式2a)
Ca1=mn{λ(1+cosθ)−1−a}
(0≦θ≦π)
前記第2相似曲線(AC)をy軸の正方向にaだけ移動することにより式3aで規定される第4曲線(A1C2)を求め、
Fa1=0.5mn(1−λ)(π−sinθ) (式3a)
Fa1=mn{λ(1+cosθ)−cosθ+a}
(0≦θ≦π)
前記第4曲線(A1C2)上において、当該曲線に引いた接線のy軸に対する傾斜角度が90度の端点(A1)からα度(0<α<10)の接点(C3)までの曲線部分よって規定される歯末歯形部分(fs1)と、前記接点(C3)に引いた傾斜角度がα度の前記接線によって規定される直線歯形部分(fs2)と、当該直線歯形部分(fs2)の他端に接続した前記内歯(24)に干渉することのないように設定した両歯のかみ合いに参加しない曲線からなる歯元歯形部分(fs3)とによって、2(1+a)mnの歯たけを備えた基本外歯歯形(FS1)を形成し、
前記第3曲線(B1C1)上において、当該曲線に引いた接線のy軸に対する傾斜角度が90度の端点(B1)から、前記外歯(34)の歯筋方向の中央に設定した主断面(30)において前記基本外歯歯形(FS1)が描く前記移動軌跡(M1)に干渉しない端点(C4)までの曲線部分を第5曲線(B1C4)として切り出し、
当該第5曲線(B1C4)によって規定される歯末歯形部分(cs1)と、当該歯末歯形部分(cs1)の端点(C2)に接続したy軸に対して前記角度αだけ傾斜した直線によって規定される直線歯形部分(cs2)と、当該直線歯形部分(cs2)の他端に接続した前記外歯(34)に干渉することのないように設定した両歯のかみ合いに参加しない曲線からなる歯元歯形部分(cs3)とによって、2(1+a)mnの歯たけを備えた歯形曲線を形成し、当該歯形曲線を前記内歯(24)の歯形(CS)として採用し、
前記外歯(34)における前記主断面(30)の歯形として、前記基本外歯歯形(FS1)を採用し、
前記外歯(34)の前記主断面(30)から前記開口端部(34a)に至る各軸直角断面上の歯形として、各軸直角断面上における前記基本外歯歯形(FS1)が描く前記移動軌跡における前記直線歯形部分(fs2)が、前記主断面(30)における前記基本外歯歯形(F1)が描く前記移動軌跡における前記直線歯形部分(fs2)に一致するまで、各軸直角断面上における前記基本外歯歯形(FS1)に対して歯たけの負方向に転位を施すことによる得られた転位歯形(FS2)を採用し、
前記外歯の前記主断面(30)から前記内端部(34b)に至る各軸直角断面上の歯形として、各軸直角断面上の前記基本外歯歯形(FS1)が描く前記移動軌跡が、前記主断面(30)における前記基本外歯歯形(FS1)が描く前記移動軌跡の底部に接するように、各軸直角断面上における前記基本外歯歯形(FS1)に対して歯たけの負方向に転位を施すことによる得られた転位歯形(FS3)を採用することを特徴としている。
In the present invention, in the wave gear device (1) configured as described above,
The amount of deflection of the inner end (34b) of the external tooth (34) is the amount of deflection in an unshifted state with a displacement coefficient κ = 1, and the amount of deflection of the main cross section (30) is the displacement coefficient κ =. 1 + a (0 <a <0.5) is the deflection amount in the positive deflection state, and the deflection amount of the opening end portion (34a) is the deflection amount in the positive deflection state with the deflection position coefficient κ = 1 + 2a,
The first curve portion (AB) from the vertex (A) to the next bottom point (B) in the movement locus (M0) obtained at the inner end portion (34b) of the outer tooth (34) is the bottom point. (B) is reduced to λ times (0.5 <λ <1) with the center of similarity as the center of similarity, and a first similarity curve (BC) defined by Equation 2 is obtained,
x Ca = 0.5 mn {(1-λ) π + λ (θ−sin θ)}
y Ca = mn {λ (1 + cos θ) −1} (0 ≦ θ ≦ π) (Formula 2)
A second curve obtained by rotating the first similarity curve (BC) by 180 degrees around the end point (C) opposite to the bottom point (B) in the first similarity curve (BC), The end point (C) is multiplied by (1-λ) / λ with the center of similarity as the center of similarity to obtain a second similarity curve (AC) defined by Equation 3;
x Fa = 0.5 mn (1-λ) (π−θ + sin θ)
y Fa = mn {λ (1 + cos θ) −cos θ} (0 ≦ θ ≦ π) (Formula 3)
By moving the first similarity curve (BC) by a in the negative direction of the y-axis, a third curve (B1C1) defined by Equation 2a is obtained,
x Ca1 = 0.5mn {(1- λ) π + λ (θ-sinθ)} ( Equation 2a)
yCa1 = mn {λ (1 + cos θ) -1-a}
(0 ≦ θ ≦ π)
A fourth curve (A1C2) defined by Equation 3a is obtained by moving the second similarity curve (AC) by a in the positive direction of the y-axis,
x Fa1 = 0.5 mn (1-λ) (π-sin θ) (Formula 3a)
y Fa1 = mn {λ (1 + cos θ) −cos θ + a}
(0 ≦ θ ≦ π)
On the fourth curve (A1C2), the slope of the tangent line drawn on the curve with respect to the y-axis is from the end point (A1) at 90 degrees to the contact point (C3) at α degrees (0 <α <10). The defined tooth addendum portion (fs1), the straight tooth profile portion (fs2) defined by the tangent with an inclination angle of α degrees drawn to the contact (C3), and the other end of the straight tooth profile portion (fs2) The tooth has a tooth root of 2 (1 + a) mn with a tooth root portion (fs3) made of a curve that does not participate in the meshing of both teeth set so as not to interfere with the internal tooth (24) connected to the tooth. Forming a basic external tooth profile (FS1),
On the third curve (B1C1), the main cross section set at the center in the tooth trace direction of the external teeth (34) from the end point (B1) where the inclination angle of the tangent drawn on the curve with respect to the y-axis is 90 degrees ( 30) cutting out the curved portion to the end point (C4) that does not interfere with the movement locus (M1) drawn by the basic external tooth profile (FS1) as a fifth curve (B1C4),
Specified by an end tooth portion (cs1) defined by the fifth curve (B1C4) and a straight line inclined by the angle α with respect to the y axis connected to the end point (C2) of the end tooth portion (cs1). A tooth having a straight tooth profile portion (cs2) and a curve that does not participate in the meshing of both teeth set so as not to interfere with the external tooth (34) connected to the other end of the straight tooth profile portion (cs2). A tooth profile curve having a tooth depth of 2 (1 + a) mn is formed by the original tooth profile portion (cs3), and the tooth profile curve is adopted as a tooth profile (CS) of the internal tooth (24),
As the tooth profile of the main cross section (30) in the external tooth (34), the basic external tooth profile (FS1) is adopted,
The movement drawn by the basic external tooth profile (FS1) on the cross-section perpendicular to each axis as the tooth profile on the cross-section perpendicular to each axis from the main cross section (30) to the open end (34a) of the external teeth (34). Until the linear tooth profile portion (fs2) in the locus coincides with the linear tooth profile portion (fs2) in the movement locus drawn by the basic external tooth profile (F1) in the main cross section (30), on each axis perpendicular cross section. Adopting the dislocation tooth profile (FS2) obtained by performing dislocation in the negative direction of tooth depth with respect to the basic external tooth profile (FS1),
As the tooth profile on each cross section perpendicular to the axis from the main cross section (30) to the inner end (34b) of the external tooth, the movement locus drawn by the basic external tooth profile (FS1) on each cross section perpendicular to the axis is: Displacement in the negative direction of the tooth gap with respect to the basic external tooth profile (FS1) on the cross section perpendicular to each axis so as to contact the bottom of the movement locus drawn by the basic external tooth profile (FS1) in the main cross section (30) The dislocation tooth profile (FS3) obtained by applying is used.

本発明においては、可撓性外歯車の内端部における剛性内歯車に対する無偏位の移動軌跡(M0)を利用して、両歯車の基本の歯末歯形を誘導するための第1、第2相似曲線を求めるようにしている。当該第1、第2相似曲線を用いて、可撓性外歯車の歯筋方向の中央に設定した主断面において、歯たけを標準の2mnより大きい2κmn=2(1+a)mnとした基本内歯歯形および基本外歯歯形を規定している。そして、内歯歯形をその歯筋方向の全体に亘って基本内歯歯形に設定している。これに対して、可撓性外歯車については、その主断面上の外歯歯形として基本外歯歯形を採用している。主断面から開口端部の側の外歯歯形、および、主断面から内端部の側の外歯歯形として、コーニングを考慮して、それぞれ別個に、基本外歯歯形に対して歯たけの負方向に転位を施して得られる転位歯形を採用している。   In the present invention, the first and the second for inducing the basic tooth addendum of both gears by using the movement path (M0) without displacement with respect to the rigid internal gear at the inner end of the flexible external gear. Two similar curves are obtained. Using the first and second similarity curves, in the main cross section set at the center in the direction of the tooth trace of the flexible external gear, the basic internal teeth with 2κmn = 2 (1 + a) mn which is larger than the standard 2 mn Tooth profile and basic external tooth profile are specified. And the internal tooth profile is set to the basic internal tooth profile over the entire tooth trace direction. On the other hand, about a flexible external gear, the basic external tooth form is employ | adopted as an external tooth form on the main cross section. Considering Corning as the external tooth profile on the open end side from the main cross-section and the external tooth profile on the inner end side from the main cross-section, respectively, the negative direction of the tooth relative to the basic external tooth profile The dislocation tooth profile obtained by dislocation is applied.

この結果、本発明によれば、両歯車における歯筋方向の主断面では、両歯車の歯末歯形同士のかみ合いと直線歯形部分同士の接触が行われる。主断面より開口端部にかけては直線歯形部分同士の接触が維持され、主断面より内端部にかけては歯末歯形に採用した相似曲線の性質から歯末歯形同士の連続的なかみ合いが近似的に維持される。   As a result, according to the present invention, in the main cross section in the tooth trace direction of both gears, the meshing of the tooth addendums of both gears and the contact of the linear tooth profile portions are performed. From the main cross section to the open end, the contact between the linear tooth profile parts is maintained, and from the main cross section to the inner end, the continuous engagement between the end tooth forms is approximately due to the nature of the similar curve adopted for the addendum tooth form. Maintained.

よって、本発明によれば、従来における単純なレリービングを施して両歯車の歯形干渉を回避する場合とは異なり、両歯車の歯筋の全範囲に亘って有効なかみ合い(3次元接触)を実現することができる。また、標準の歯たけよりも大きな歯たけの歯形(正偏位歯形)を用いているので、歯数が200を超える高減速比の場合においても、ラチェティングが発生せず、所望のトルク伝達を維持することができる。   Therefore, according to the present invention, effective meshing (three-dimensional contact) is realized over the entire range of tooth traces of both gears, unlike the conventional case where simple relieving is applied to avoid tooth profile interference of both gears. can do. In addition, since the tooth profile (positive deviation tooth profile) of the tooth larger than the standard tooth is used, even when the number of teeth exceeds 200, ratcheting does not occur and the desired torque transmission is achieved. Can be maintained.

本発明を適用した波動歯車装置の一例を示す概略正面図である。It is a schematic front view which shows an example of the wave gear apparatus to which this invention is applied. 可撓性外歯車の撓み状況を示す説明図であり、(a)は変形前の状態を示し、(b)は楕円形に変形した可撓性外歯車の長軸を含む断面の状態を示し、(c)は楕円形に変形した可撓性外歯車の短軸を含む断面の状態を示す。It is explanatory drawing which shows the bending condition of a flexible external gear, (a) shows the state before a deformation | transformation, (b) shows the state of the cross section containing the major axis of the flexible external gear deform | transformed into the ellipse. (C) shows the state of the cross section including the minor axis of the flexible external gear deformed into an elliptical shape. 外歯の歯筋方向の内端部(κ=1)、中央の主断面(κ=1+a)および開口端部(κ=1+2a)における両歯車の相対運動をラックで近似した場合に得られる外歯の移動軌跡を示す説明図である。External obtained by approximating the relative motion of both gears at the inner end (κ = 1), central main section (κ = 1 + a) and open end (κ = 1 + 2a) of the external teeth in the rack It is explanatory drawing which shows the movement locus | trajectory of a tooth | gear. 無偏位置の内端部の軸直角断面における外歯の移動軌跡より導いた両歯車のそれぞれの歯末の基本歯形を規定する相似曲線を示す説明図である。It is explanatory drawing which shows the similar curve which prescribes | regulates the basic tooth profile of each tooth end of both gears derived | led-out from the movement locus | trajectory of the external tooth in the axial orthogonal cross section of the inner end part of an unbiased position. 主断面における両歯車の歯形の一例を示す説明図である。It is explanatory drawing which shows an example of the tooth profile of both the gears in a main cross section. 主断面から開口端部にかけての軸直角断面における両歯形、および、これらのかみ合いの状態を示す説明図である。It is explanatory drawing which shows the both-tooth form in the axial cross section from a main cross section to an opening edge part, and the state of these meshing. 主断面から内端部にかけても軸直角断面における両歯形、および、これらのかみ合いの状態を示す説明図である。It is explanatory drawing which shows the both-tooth form in an axial orthogonal cross section from the main cross section to an inner end part, and the state of these meshing. 転位による可撓性外歯車の歯の歯筋方向の輪郭を示す説明図である。It is explanatory drawing which shows the outline of the tooth trace direction of the tooth | gear of the flexible external gear by dislocation.

(波動歯車装置の構成)
図1は本発明の対象である波動歯車装置の正面図である。図2(a)〜(c)はその可撓性外歯車の開口部を楕円状に撓ませた状況を含軸断面で示す断面図であり、図2(a)は変形前の状態、図2(b)は変形後における楕円形の長軸を含む断面、図2(c)は変形後における楕円の短軸を含む断面をそれぞれ示してある。なお、図2(a)〜(c)において実線はカップ状の可撓性外歯車を示し、破線はシルクハット状の可撓性外歯車を示す。
(Configuration of wave gear device)
FIG. 1 is a front view of a wave gear device that is an object of the present invention. 2 (a) to 2 (c) are cross-sectional views showing a state in which the opening of the flexible external gear is bent in an elliptical shape in a cross-section including a shaft, and FIG. 2 (a) is a state before deformation. 2 (b) shows a cross section including the major axis of the ellipse after deformation, and FIG. 2 (c) shows a cross section including the minor axis of the ellipse after deformation. 2A to 2C, a solid line indicates a cup-shaped flexible external gear, and a broken line indicates a top hat-shaped flexible external gear.

これらの図に示すように、波動歯車装置1は、円環状の剛性内歯車2と、その内側に配置された可撓性外歯車3と、この内側にはめ込まれた楕円形輪郭の波動発生器4とを有している。剛性内歯車2と可撓性外歯車3の歯数差は2n(nは正の整数)であり、波動歯車装置1の可撓性外歯車3は、楕円形輪郭の波動発生器4によって楕円形に撓められ、楕円形の長軸L1方向の両端部分の近傍において剛性内歯車2に噛み合っている。波動発生器4を回転すると、両歯車2、3の噛み合い位置が周方向に移動し、両歯車の歯数差に応じた相対回転が両歯車2、3の間に発生する。可撓性外歯車3は、可撓性の円筒状胴部31と、その後端31bに連続して半径方向に広がるダイヤフラム32と、ダイヤフラム32に連続しているボス33と、円筒状胴部31の開口端31aの側の外周面部分に形成した外歯34とを備えている。   As shown in these drawings, a wave gear device 1 includes an annular rigid internal gear 2, a flexible external gear 3 disposed on the inner side thereof, and a wave generator having an elliptical profile fitted on the inner side. 4. The difference in the number of teeth between the rigid internal gear 2 and the flexible external gear 3 is 2n (n is a positive integer), and the flexible external gear 3 of the wave gear device 1 is elliptical by a wave generator 4 having an elliptical profile. And is engaged with the rigid internal gear 2 in the vicinity of both ends of the elliptical long axis L1. When the wave generator 4 is rotated, the meshing position of the two gears 2 and 3 moves in the circumferential direction, and relative rotation according to the difference in the number of teeth of the two gears is generated between the two gears 2 and 3. The flexible external gear 3 includes a flexible cylindrical body 31, a diaphragm 32 that extends continuously in the radial direction from the rear end 31 b, a boss 33 that continues to the diaphragm 32, and the cylindrical body 31. External teeth 34 formed on the outer peripheral surface portion on the opening end 31a side.

円筒状胴部31の外歯形成部分の内周面部分にはめ込まれた楕円形輪郭の波動発生器4によって、円筒状胴部31は、そのダイヤフラム側の後端31bから開口端31aに向けて、半径方向の外側あるいは内側への撓み量が漸増している。図2(b)に示すように、楕円形の長軸L1を含む断面では外側への撓み量が後端31bから開口端31aへの距離に比例して漸増し、図2(c)に示すように、楕円形の短軸L2を含む断面では内側への撓み量が後端31bから開口端31aへの距離に比例して漸増している。したがって、開口端31a側の外周面部分に形成されている外歯34も、その歯筋方向の内端部34bから開口側の開口端部34aに向けて、後端31aからの距離に比例して撓み量が漸増している。   By the wave generator 4 having an elliptical contour fitted into the inner peripheral surface portion of the outer tooth forming portion of the cylindrical body 31, the cylindrical body 31 is directed from the diaphragm-side rear end 31b toward the opening end 31a. The amount of bending outward or inward in the radial direction is gradually increased. As shown in FIG. 2 (b), in the cross section including the elliptical long axis L1, the outward deflection amount gradually increases in proportion to the distance from the rear end 31b to the opening end 31a, and is shown in FIG. 2 (c). Thus, in the cross section including the elliptical short axis L2, the amount of inward bending gradually increases in proportion to the distance from the rear end 31b to the opening end 31a. Accordingly, the external teeth 34 formed on the outer peripheral surface portion on the opening end 31a side are also proportional to the distance from the rear end 31a from the inner end portion 34b in the tooth trace direction toward the opening end portion 34a on the opening side. As a result, the amount of deflection gradually increases.

図3は波動歯車装置1の両歯車2、3の相対運動をラックで近似した場合に得られる、剛性内歯車2の内歯24に対する可撓性外歯車3の外歯34の移動軌跡を示す図である。図において、x軸はラックの併進方向、y軸はそれに直角な方向を示す。y軸の原点は移動軌跡の振幅の平均位置としてある。剛性内歯車2と可撓性外歯車3の歯数差は2n(nは正の整数)である。可撓性外歯車3の任意の軸直角断面における剛性内歯車2に対する移動軌跡の全振幅を2κmn(κは偏位係数であり、1を含む実数、mはモジュール)とすると、可撓性外歯車3の外歯34の移動軌跡は式1で与えられる。
x=0.5mn(θ−κsinθ) (式1)
y=κmncosθ
FIG. 3 shows the movement trajectory of the external teeth 34 of the flexible external gear 3 with respect to the internal teeth 24 of the rigid internal gear 2 obtained when the relative motion of both the gears 2 and 3 of the wave gear device 1 is approximated by a rack. FIG. In the figure, the x axis indicates the translation direction of the rack, and the y axis indicates a direction perpendicular thereto. The origin of the y axis is the average position of the amplitude of the movement trajectory. The difference in the number of teeth between the rigid internal gear 2 and the flexible external gear 3 is 2n (n is a positive integer). Assuming that the total amplitude of the movement trajectory of the flexible external gear 3 relative to the rigid internal gear 2 in an arbitrary axis-perpendicular section is 2κmn (κ is a deviation coefficient, a real number including 1 and m is a module), The movement locus of the external teeth 34 of the gear 3 is given by Equation 1.
x = 0.5 mn (θ−κsin θ) (Formula 1)
y = κmncos θ

説明を簡単にするために、m=1、n=1(歯数差が2)とすると、移動軌跡は式1Aのようになる。図3にはこの場合の移動軌跡を示してある。
x=0.5(θ−κsinθ) (式1A)
y=κcosθ
For the sake of simplicity, assuming that m = 1 and n = 1 (the number of teeth difference is 2), the movement trajectory is as shown in Equation 1A. FIG. 3 shows the movement locus in this case.
x = 0.5 (θ−κsinθ) (Formula 1A)
y = κcos θ

ここで、可撓性外歯車3の内端部34bの軸直角断面、その歯筋方向の中央の軸直角断面(図2において符号30で示す位置の軸直角断面)および開口端部34aの軸直角断面における偏位係数κは、それぞれ、1、1+a、1+2a(0<a<0.5)である。図3において、移動軌跡M0は、偏位係数κ=1である無偏位の標準の撓み状態の内端部34bにおいて得られるものである。移動軌跡M1は、撓み係数κ=1+aである正偏位の撓み状態の主断面30において得られるものであり、移動軌跡M2は、撓み係数κ=1+2aである正偏位の撓み状態の開口端部34aにおいて得られるものである。このように、歯筋方向の全体に亘って正偏位の撓み状態が得られるように撓み量が設定されている。   Here, a cross section perpendicular to the axis of the inner end 34b of the flexible external gear 3, a cross section perpendicular to the center in the direction of the tooth trace (a cross section perpendicular to the position indicated by reference numeral 30 in FIG. 2), and the axis of the open end 34a. The deviation coefficients κ in the cross section at right angles are 1, 1 + a, 1 + 2a (0 <a <0.5), respectively. In FIG. 3, the movement trajectory M0 is obtained at the inner end portion 34b in the standard deflection state without displacement with the displacement coefficient κ = 1. The movement locus M1 is obtained in the main section 30 in the positive deflection state where the deflection coefficient κ = 1 + a, and the movement locus M2 is the open end of the deflection state in the positive deflection state where the deflection coefficient κ = 1 + 2a. It is obtained in the part 34a. Thus, the amount of bending is set so that a positive deflection state is obtained over the entire tooth trace direction.

(主断面における歯形の形成方法)
図4は主断面30における外歯34、内歯24の歯形の設定方法を示す説明図である。本発明では、主断面30における歯末歯形に、可撓性外歯車3における無偏位(κ=1)の内端部34bの軸直角断面において得られる移動軌跡M0を利用している。
(Method of forming tooth profile in main section)
FIG. 4 is an explanatory diagram showing a method for setting the tooth profiles of the external teeth 34 and the internal teeth 24 in the main cross section 30. In the present invention, the movement locus M0 obtained in the cross section perpendicular to the axis of the inner end portion 34b of the non-deflection (κ = 1) in the flexible external gear 3 is used for the tooth addendum in the main section 30.

まず、移動軌跡M0において、パラメーターθがπ(B点:移動軌跡の底点)から0(A点:移動軌跡の頂点)までの範囲の第1曲線ABを取り、B点を相似の中心として、第1曲線ABをλ倍(0.5<λ<1)に相似変換して第1相似曲線BCを得る。第1相似曲線BCを利用して後述のように剛性内歯車の歯末歯形を規定する。   First, in the movement locus M0, the first curve AB in the range from the parameter θ of π (point B: the bottom point of the movement locus) to 0 (point A: the vertex of the movement locus) is taken, and the point B is the center of similarity. Then, the first curve AB is transformed to λ times (0.5 <λ <1) to obtain a first similarity curve BC. The end tooth form of the rigid internal gear is defined using the first similar curve BC as described later.

次に、第1相似曲線BCの端点Cを中心として、当該第1相似曲線BCを180度回転して、想像線で示す第2曲線B’Cを得る。この第2曲線を、端点Cを相似の中心として(1−λ)/λ倍に相似変換して第2相似曲線ACを得る。第2相似曲線ACを可撓性外歯車3の歯末歯形部分の基本歯形として採用する。   Next, the first similarity curve BC is rotated by 180 degrees around the end point C of the first similarity curve BC to obtain a second curve B′C indicated by an imaginary line. The second curve is transformed to (1-λ) / λ times with the end point C as the center of similarity to obtain a second similarity curve AC. The second similarity curve AC is adopted as the basic tooth profile of the end tooth shape portion of the flexible external gear 3.

図4においてはλ=0.6の場合を示している。本発明では、剛性内歯車2の歯末歯形部分を規定するための曲線として採用する第1相似曲線BCを得るための相似倍率λの値をλ>0.5としている。この理由は、後述のように、可撓性外歯車3の外歯34の歯形の一部を規定する直線歯形部分によって生ずる内歯24の歯形の歯末歯形部分の減少を軽減するためである。   FIG. 4 shows a case where λ = 0.6. In the present invention, the value of the similarity magnification λ for obtaining the first similarity curve BC adopted as a curve for defining the tooth addendum portion of the rigid internal gear 2 is λ> 0.5. The reason for this is to alleviate the reduction of the end tooth profile portion of the tooth profile of the internal tooth 24 caused by the linear tooth profile portion that defines a part of the tooth profile of the external tooth 34 of the flexible external gear 3 as will be described later. .

図4におけるxy座標面上において、第1相似曲線BCおよび第2相似曲線ACは式2および式3によって表される。
(第1相似曲線BC)
Ca=0.5{(1−λ)π+λ(θ−sinθ)}
Ca=λ(1+cosθ)−1 (式2)
(0≦θ≦π)
(第2相似曲線AC)
Fa=0.5(1−λ)(π−θ+sinθ)
Fa=λ(1+cosθ)−cosθ (式3)
(0≦θ≦π)
On the xy coordinate plane in FIG. 4, the first similarity curve BC and the second similarity curve AC are expressed by Expression 2 and Expression 3.
(First similarity curve BC)
x Ca = 0.5 {(1-λ) π + λ (θ−sin θ)}
y Ca = λ (1 + cos θ) −1 (Formula 2)
(0 ≦ θ ≦ π)
(Second similarity curve AC)
x Fa = 0.5 (1-λ) (π−θ + sin θ)
y Fa = λ (1 + cos θ) −cos θ (Formula 3)
(0 ≦ θ ≦ π)

次に、第1相似曲線BCおよび第2相似曲線ACを、偏位係数κ=κ=1+aである主断面30上において、歯たけが2κmnと標準よりも大きな内歯および外歯の歯末歯形として採用する。xy座標面上において、両歯車の歯末歯形のy座標を、剛性内歯車ではaだけ減らし、可撓性外歯車ではaだけ増加させる。したがって、主断面30における内歯24の歯形の歯末歯形部分は式2aにより表される第3曲線B1C1によって規定され、外歯34の歯形の歯末歯形部分は式3aにより表される第4曲線A1C2によって規定される(m=1、n=1の場合)。
(剛性内歯車の歯末歯形の基本式)
Ca1=0.5{(1−λ)π+λ(θ−sinθ)}
Ca1=λ(1+cosθ)−1−a (式2a)
(0≦θ≦π)
(可撓性外歯車の歯末歯形の基本式)
Fa1=0.5(1−λ)(π−sinθ)
Fa1=λ(1+cosθ)−cosθ+a (式3a)
(0≦θ≦π)
Next, the first similarity curve BC and the second similarity curve AC are calculated on the main cross section 30 where the displacement coefficient κ = κ o = 1 + a, and the tooth depth is 2κ o mn and the internal teeth and external teeth larger than the standard are obtained. Adopted as an addendum tooth profile. On the xy coordinate plane, the y coordinate of the tooth addendum of both gears is decreased by a for the rigid internal gear and increased by a for the flexible external gear. Therefore, the tooth addendum portion of the tooth profile of the inner tooth 24 in the main cross section 30 is defined by the third curve B1C1 represented by the equation 2a, and the tooth addendum portion of the tooth profile of the external tooth 34 is represented by the equation 3a It is defined by the curve A1C2 (when m = 1, n = 1).
(Basic formula of the tooth addendum of the rigid internal gear)
xCa1 = 0.5 {(1-λ) π + λ (θ−sin θ)}
y Ca1 = λ (1 + cos θ) -1-a (Formula 2a)
(0 ≦ θ ≦ π)
(Basic formula of tooth addendum of flexible external gear)
x Fa1 = 0.5 (1-λ) (π-sin θ)
y Fa1 = λ (1 + cos θ) −cos θ + a (Formula 3a)
(0 ≦ θ ≦ π)

この場合、両歯24、34の歯末歯形部分の端点(図4における端点C1、C2)の圧力角α(y軸に対する接線のなす角度)は0度となるが、これは歯車加工の観点から避けた方が望ましい。したがって、外歯34においては、端点C2の側の端部を圧力角αが例えば9度付近の接線によって規定される直線歯形部分で置き換え、第4曲線A1C2のうち、圧力角α=90の端点A1から圧力角αが9度付近の点C3までの曲線部分を用いて歯末歯形部分を規定する。外歯34の歯元歯形部分は内歯24との噛み合いには参加しないので、当該歯元歯形部分は相手の内歯24の歯末歯形部分と干渉しない任意の曲線によって規定できる。よって、所要の全歯たけ(=2κomn)を確保したうえで、外歯34の歯元歯形部分の形状を自由に設定できる。   In this case, the pressure angle α (angle formed by the tangent to the y-axis) of the end points (end points C1 and C2 in FIG. 4) of the tooth addendum portions of both teeth 24 and 34 is 0 degree. It is better to avoid from. Therefore, in the external tooth 34, the end on the side of the end point C2 is replaced with a linear tooth profile portion whose pressure angle α is defined by a tangent of, for example, about 9 degrees, and the end point of the fourth curve A1C2 at the pressure angle α = 90. The end tooth profile portion is defined using a curved portion from A1 to a point C3 where the pressure angle α is around 9 degrees. Since the root tooth profile part of the external tooth 34 does not participate in meshing with the internal tooth 24, the tooth base tooth part can be defined by an arbitrary curve that does not interfere with the tooth addendum part of the counterpart internal tooth 24. Therefore, the shape of the root tooth portion of the external tooth 34 can be freely set after ensuring the required total tooth depth (= 2κomn).

同様に、内歯24においては、端点C1の側の端部を圧力角αが例えば9度付近の接線によって規定される直線歯形部分で置き換え、第3曲線B1C1のうち、圧力角α=90の端点B1から圧力角αが9度付近の端点C3aまでの曲線部分B1C3aを用いて歯末歯形部分を規定する。内歯24の歯元歯形部分は外歯34との噛み合いには参加しないので、当該歯元歯形部分は相手の外歯34の歯末歯形部分と干渉しない任意の曲線によって規定できる。よって、所要の全歯たけ(=2κomn)を確保したうえで、内歯24の歯元歯形部分の形状を自由に設定できる。   Similarly, in the internal tooth 24, the end portion on the side of the end point C1 is replaced with a linear tooth profile portion whose pressure angle α is defined by, for example, a tangent of about 9 degrees, and the pressure angle α = 90 in the third curve B1C1. The tooth addendum portion is defined using the curved portion B1C3a from the end point B1 to the end point C3a having a pressure angle α in the vicinity of 9 degrees. Since the root tooth profile portion of the internal tooth 24 does not participate in meshing with the external tooth 34, the root tooth shape portion can be defined by an arbitrary curve that does not interfere with the tooth addendum portion of the counterpart external tooth 34. Therefore, it is possible to freely set the shape of the root tooth profile portion of the internal tooth 24 while ensuring the required total tooth depth (= 2κomn).

図5には、このようにして規定した歯たけが2κomn=2κo=2(1+a)の外歯34の歯形の一例を示してある。主断面30上における可撓性外歯車3の外歯34の歯形FS1は、曲線部分A1C3からなる歯末歯形部分fs1と、この歯末歯形部分fs1の端点C3に接続した圧力角αがほぼ9度の直線歯形部分fs2と、この直線歯形部分fs2の端点Eに接続した歯元歯形部分fs3とによって規定されている。   FIG. 5 shows an example of the tooth profile of the external tooth 34 with the toothpick thus defined 2κomn = 2κo = 2 (1 + a). The tooth profile FS1 of the external teeth 34 of the flexible external gear 3 on the main cross section 30 has an addendum tooth shape portion fs1 composed of a curved portion A1C3 and a pressure angle α connected to the end point C3 of the addendum tooth shape portion fs1 is approximately 9. Degree linear tooth profile portion fs2 and a tooth base tooth shape portion fs3 connected to the end point E of the linear tooth profile portion fs2.

次に、剛性内歯車2の内歯24の歯形を、外歯24の場合と同様にして、曲線部分B1C3a(図4参照)によって規定される歯末歯形部分と、この端点C3aに接続した圧力角αがほぼ9度の直線歯形部分と、この直線歯形部分に接続した任意形状の歯元歯形部分とによって、暫定的に規定することができる。   Next, the tooth profile of the internal tooth 24 of the rigid internal gear 2 is the same as that of the external tooth 24, and the end tooth profile portion defined by the curved portion B1C3a (see FIG. 4) and the pressure connected to this end point C3a. It can be provisionally defined by a linear tooth profile portion having an angle α of approximately 9 degrees and an arbitrarily shaped tooth root portion connected to the linear tooth profile portion.

ここで、主断面30上において、可撓性外歯車3の歯末歯形の点は、図3に示す移動軌跡M1に沿って移動する。移動軌跡M1の頂部のループの張り出し点(D点、圧力角α=0の点)において可撓性外歯車3の外歯34は、x軸方向で剛性内歯車2の外歯24に最も接近する。   Here, on the main cross section 30, the point of the tooth addendum of the flexible external gear 3 moves along the movement locus M1 shown in FIG. The external teeth 34 of the flexible external gear 3 are closest to the external teeth 24 of the rigid internal gear 2 in the x-axis direction at the projecting point (D point, pressure angle α = 0) of the top of the movement locus M1. To do.

このとき、外歯34の歯形として設定した歯形FS1の直線歯形部分fs2が内歯24の歯形として採用した暫定歯形の一部を犯すことになる。そこで、図4に示すように、曲線部分B1C3aのうち、外歯24の直線歯形部分fs2に干渉する端点C3aの側の部分を僅かに除去したのちの曲線部分B1C4を用いて、内歯24の歯形の歯末歯形部分を規定する。   At this time, the linear tooth profile portion fs2 of the tooth profile FS1 set as the tooth profile of the external tooth 34 violates a part of the provisional tooth profile adopted as the tooth profile of the internal tooth 24. Therefore, as shown in FIG. 4, by using the curved portion B1C4 after slightly removing the portion on the end point C3a side that interferes with the linear tooth shape portion fs2 of the external tooth 24 in the curved portion B1C3a, Defines the tooth addendum part of the tooth profile.

この結果、図5に示すように、剛性内歯車2の内歯24の歯形CSは、曲線部分B1C4からなる歯末歯形部分cs1と、この歯末歯形部分cs1の端点C4に接続した圧力角αがほぼ9度の直線歯形部分cs2と、この直線歯形部分cs2の端点Fに接続した歯元歯形部分cs3とによって規定されている。   As a result, as shown in FIG. 5, the tooth profile CS of the internal tooth 24 of the rigid internal gear 2 includes the end tooth portion cs1 formed of the curved portion B1C4 and the pressure angle α connected to the end point C4 of the end tooth portion cs1. Is defined by a linear tooth profile portion cs2 of approximately 9 degrees and a tooth root profile portion cs3 connected to the end point F of the linear tooth profile portion cs2.

以上のようにして規定される内歯24の歯形CSと外歯34の歯形FS1による、主断面30上の噛み合いは、両歯24、34の歯末歯形部分同士のかみ合いと、直線歯形部分同士のかみ合いとなる。移動軌跡M1に沿って可撓性外歯車3の外歯34が剛性内歯車2の内歯24に対して移動するとき、歯末歯形部分同士は共に移動軌跡M0から導かれる相似曲線によって規定されているので連続的な接触が保証される。   The meshing on the main cross section 30 by the tooth profile CS of the internal tooth 24 and the tooth profile FS1 of the external tooth 34 defined as described above is the meshing between the tooth addendum portions of both teeth 24 and 34 and the linear tooth profile portions. It becomes a meshing. When the external teeth 34 of the flexible external gear 3 move with respect to the internal teeth 24 of the rigid internal gear 2 along the movement locus M1, the tooth addendum portions are both defined by a similar curve derived from the movement locus M0. Continuous contact is guaranteed.

(主断面以外の位置における歯形の形成方法)
図6、図7を参照して、主断面30以外の軸直角断面の歯形の形成方法を説明する。まず、内歯24についてはその歯筋方向の全体に亘って上記のように主断面30において設定した歯形CSとする。外歯34については、上記のように主断面30において設定した外歯34の歯形FS1に対して、歯筋の位置に応じて以下のように歯たけの負方向に転位を施して得られる転位歯形を、主断面30以外の歯形として採用する。
(Method of forming tooth profile at a position other than the main cross section)
With reference to FIG. 6, FIG. 7, the formation method of the tooth profile of an axial cross section other than the main cross section 30 is demonstrated. First, the internal tooth 24 has the tooth profile CS set in the main cross section 30 as described above over the entire tooth trace direction. As for the external teeth 34, the dislocation tooth profile obtained by performing dislocation in the negative direction of the tooth as follows according to the position of the tooth trace with respect to the tooth profile FS1 of the external tooth 34 set in the main section 30 as described above. Is adopted as a tooth profile other than the main cross section 30.

外歯34における主断面30から開口端部34aにかけての部分においては、それらの各軸直角断面における歯形FS1の直線歯形部分が、主断面30における歯形FS1の直線歯形部分と一致するように、歯形FS1に対してy軸の負方向に転位を施す。得られた転位歯形FS2を主断面30から開口端部34aに掛けての各軸直角部分の歯形として採用する。   In the portion from the main cross section 30 to the open end 34a of the outer tooth 34, the tooth profile is such that the straight tooth profile portion of the tooth profile FS1 in the cross section perpendicular to each axis coincides with the straight tooth profile portion of the tooth profile FS1 in the main cross section 30. A dislocation is applied to FS1 in the negative y-axis direction. The obtained dislocation tooth profile FS2 is employed as a tooth profile at a portion perpendicular to each axis from the main cross section 30 to the opening end 34a.

図6には、主断面30から開口端部34aの間にとった一つの軸直角断面での内歯2の歯形CSおよび外歯3の転位歯形FS2の形状と、これらの噛み合い状態とを示してある。外歯34の歯形FS1に施す負方向の転位量をmnhとすると、m=1、n=1の場合の転位量はhになり、hの値は、主断面30における偏位係数κ(=1+a)を用いて式4で与えられる。 FIG. 6 shows the shape of the tooth profile CS of the internal tooth 2 and the dislocation tooth profile FS2 of the external tooth 3 and the meshing state thereof in one axial cross section taken between the main cross section 30 and the open end 34a. It is. If the amount of dislocation in the negative direction applied to the tooth profile FS1 of the external tooth 34 is mnh, the amount of dislocation when m = 1 and n = 1 is h, and the value of h is the displacement coefficient κ o ( = 1 + a) is given by Equation 4.

Figure 2011144916

(式4)
Figure 2011144916

(Formula 4)

次に、外歯34における主断面30から内端部34bにかけての各軸直角断面では、偏位係数κが1<κ<1+aであり、外歯34の歯形FS1上の点は、主断面30における移動軌跡M1のループに比べてx軸方向の張り出し量が少ないループの移動軌跡を描く。したがって、主断面30の開口端部34a側における外歯の歯形FS1のようなループによる干渉は生じない。   Next, in each axis perpendicular section from the main cross section 30 to the inner end 34b of the external tooth 34, the deviation coefficient κ is 1 <κ <1 + a, and the point on the tooth profile FS1 of the external tooth 34 is the main cross section 30. A movement trajectory of a loop with a small amount of protrusion in the x-axis direction is drawn as compared with the loop of the movement trajectory M1 in FIG. Therefore, the interference by the loop like the external tooth profile FS1 on the opening end 34a side of the main cross section 30 does not occur.

しかし、撓み量が主断面30の2κomnよりも少ないので、移動軌跡の底部で外歯の歯形FS1が内歯24の歯形CSに干渉し、このままではかみ合いを維持できない。すなわち、主断面30から内端部34bに掛けての外歯24の各軸直角断面では、偏位係数κが主断面30におけるκoより小さいので、これらの軸直角断面上における外歯歯形の移動軌跡は主断面30における移動軌跡M1と干渉し、主断面30における場合のような噛み合いを維持することができない。   However, since the amount of deflection is less than 2κomn of the main cross section 30, the external tooth profile FS1 interferes with the tooth profile CS of the internal tooth 24 at the bottom of the movement locus, and the meshing cannot be maintained as it is. That is, in each axial perpendicular section of the external tooth 24 from the main cross section 30 to the inner end portion 34b, the displacement coefficient κ is smaller than κo in the main cross section 30, and therefore the movement of the external tooth profile on these axial orthogonal sections. The trajectory interferes with the movement trajectory M1 in the main cross section 30, and the meshing as in the main cross section 30 cannot be maintained.

そこで、主断面30から内端部34bにかけての外歯34の歯形では、各軸直角断面での偏位係数κに応じて、各軸直角断面での歯形FS1の移動軌跡が主断面30における移動軌跡M1の底部に接するように、当該歯形FS1に対して歯たけの負方向に転位を施す。得られた転位歯形FS3を主断面30から内端部34bに掛けての各軸直角部分の歯形として採用する。   Therefore, in the tooth profile of the external tooth 34 from the main cross section 30 to the inner end portion 34b, the movement locus of the tooth profile FS1 in the cross section perpendicular to each axis moves in the main cross section 30 according to the deviation coefficient κ in the cross section perpendicular to each axis. Dislocation is applied to the tooth profile FS1 in the negative direction of the tooth so as to contact the bottom of the locus M1. The obtained dislocation tooth profile FS3 is employed as a tooth profile at a portion perpendicular to each axis extending from the main cross section 30 to the inner end 34b.

図7には、主断面30から内端部34bの間にとった一つの軸直角断面での内歯2の歯形CSおよび外歯3の転位歯形FS3の形状と、これらの噛み合い状態とを示してある。外歯34の歯形FS3に施す負方向の転位量をmnhとすると、m=1、n=1の場合の転位量はhになり、hの値は、主断面30における偏位係数κ(=1+a)を用いて次式で与えられ、負の値を取る。
=κ−κ
FIG. 7 shows the shapes of the tooth profile CS of the internal tooth 2 and the dislocation tooth profile FS3 of the external tooth 3 and their meshing states in one axial cross section taken between the main cross section 30 and the inner end 34b. It is. When the amount of shift in the negative direction applied to the tooth profile FS3 of the external teeth 34 and mnh 1, dislocation amount in the case of m = 1, n = 1 becomes h 1, the value of h 1 is deviation coefficient in the main section 30 It is given by the following equation using κ o (= 1 + a) and takes a negative value.
h 1 = κ−κ o

このような転位を施した後の外歯34の歯形FS3上の点の移動軌跡は、主断面30の移動軌跡M1と底部(図3の点P)において接し、しかも、底部近傍の部分の軌跡が当該移動軌跡M1によく近似する。このことは本発明者によって見出されたことである。この知見に基づき、本発明では、主断面30から内端部34bに掛けて歯たけの負方向に転位を施すことにより、歯末歯形部分同士の連続的な接触を確保しているのである。   The movement trajectory of the point on the tooth profile FS3 of the external tooth 34 after such dislocation is in contact with the movement trajectory M1 of the main cross section 30 at the bottom (point P in FIG. 3), and the trajectory of the portion near the bottom. Well approximates the movement trajectory M1. This has been found by the present inventors. Based on this knowledge, the present invention secures continuous contact between the tooth addendum portions by shifting from the main section 30 to the inner end 34b in the negative direction of the toothpaste.

(歯筋方向の輪郭の修正)
図8は上記のように転位を施すことにより得られた外歯車3の外歯歯形の歯筋方向の輪郭を示す説明図である。この図に示すように、主断面30を境として開口端部34aの側および内端部34bの側に施した転位の差によって、外歯34の歯筋方向の輪郭は、主断面30の位置を頂点する折れ線状となっている。明確な頂点が現れる折れ線状の輪郭を回避するために、図において丸で囲まれている頂点部分を、小円弧34cによって置き換えて、当該円弧34cが主断面30の両側の輪郭線34d、34eに滑らかに連続する形状にすることが望ましい。
(Correction of tooth profile direction)
FIG. 8 is an explanatory view showing the contour of the external tooth profile of the external gear 3 obtained by applying the shift as described above in the tooth trace direction. As shown in this figure, the contour of the external teeth 34 in the tooth trace direction is the position of the main cross section 30 due to the difference in dislocation applied to the opening end 34a side and the inner end 34b side with the main cross section 30 as a boundary. It has a polygonal line shape that apex. In order to avoid a polygonal outline in which clear vertices appear, the vertices surrounded by circles in the figure are replaced by small arcs 34c, and the arcs 34c are changed to outlines 34d and 34e on both sides of the main cross section 30. It is desirable to have a smoothly continuous shape.

1 波動歯車装置
2 剛性内歯車
3 可撓性外歯車
4 波動発生器
24 内歯
30 主断面
34 外歯
34a 開口端部
34b 内端部
34c 円弧
34d、34e 歯筋輪郭
M0、M1、M2 移動軌跡
DESCRIPTION OF SYMBOLS 1 Wave gear apparatus 2 Rigid internal gear 3 Flexible external gear 4 Wave generator 24 Internal tooth 30 Main cross section 34 External tooth 34a Open end part 34b Inner end part 34c Arc 34d, 34e Tooth trace outline M0, M1, M2 Movement locus

Claims (4)

円環状の剛性内歯車(2)と、この内側に同軸状に配置された可撓性外歯車(3)と、この内側に嵌めた波動発生器(4)とを有し、
前記可撓性外歯車(3)は、可撓性の円筒状胴部(31)と、この円筒状胴部の後端から半径方向に延びているダイヤフラム(32)と、前記円筒状胴部の前端開口の側の外周面部分に形成した外歯(34)とを備え、
前記可撓性外歯車(3)は前記波動発生器(4)によって楕円状に撓められ、楕円の長軸方向の両端部において前記剛性内歯車(2)の内歯(24)に噛み合っており、
前記剛性内歯車(2)および前記可撓性外歯車(3)は共にモジュールmの平歯車であり、
前記可撓性外歯車(3)の歯数は前記剛性内歯車(2)の歯数より2n枚(nは正の整数)少なく、
前記外歯(34)の歯筋方向の任意の位置の軸直角断面における前記可撓性外歯車(3)の楕円状リム中立線における長軸位置(L1)において、その撓み前のリム中立円に対する撓み量は偏位係数κを用いて2κmnであり、
当該撓み量は、前記外歯(34)の歯筋方向に沿って、前記ダイヤフラム(32)の側の内端部(34b)から前記前端開口の側の開口端部(34a)に向けて、前記ダイヤフラム(32)からの距離に比例して増加しており、
前記外歯(34)と前記内歯(24)の噛み合いをラック噛み合いで近似した場合に、前記外歯(34)の各軸直角断面において、前記波動発生器(4)の回転に伴う前記外歯(34)の前記内歯(24)に対する移動軌跡(M)は、x軸をラックの併進方向、y軸をそれに直角な方向とし、y軸の原点を移動軌跡(M)の振幅の平均位置に設定した場合に、式1により規定される波動歯車装置(1)において、
x=0.5mn(θ−κsinθ) (式1)
y=κmncosθ (-π≦θ≦π)
前記外歯(34)の前記内端部(34b)の撓み量は偏位係数κ=1の無偏位状態の撓み量であり、前記主断面(30)の撓み量は偏位係数κ=1+a(0<a<0.5)の正偏位状態の撓み量であり、前記開口端部(34a)の撓み量は偏位置係数κ=1+2aの正偏位状態の撓み量であり、
前記外歯(34)の前記内端部(34b)において得られる前記移動軌跡(M0)における頂点(A)から次の底点(B)に至る第1曲線部分(AB)を、前記底点(B)を相似の中心としてλ倍(0.5<λ<1)に縮小して、式2で規定される第1相似曲線(BC)を求め、
Ca=0.5mn{(1−λ)π+λ(θ−sinθ)}
Ca=mn{λ(1+cosθ)−1} (0≦θ≦π) (式2)
前記第1相似曲線(BC)における前記底点(B)とは反対側の端点(C)を中心として当該第1相似曲線(BC)を180度回転することにより得られた第2曲線を、当該端点(C)を相似の中心として(1−λ)/λ倍して、式3で規定される第2相似曲線(AC)を求め、
Fa=0.5mn(1−λ)(π−θ+sinθ)
Fa=mn{λ(1+cosθ)−cosθ} (0≦θ≦π) (式3)
前記第1相似曲線(BC)をy軸の負方向にaだけ移動することにより式2aで規定される第3曲線(B1C1)を求め、
Ca1=0.5mn{(1−λ)π+λ(θ−sinθ)} (式2a)
Ca1=mn{λ(1+cosθ)−1−a}
(0≦θ≦π)
前記第2相似曲線(AC)をy軸の正方向にaだけ移動することにより式3aで規定される第4曲線(A1C2)を求め、
Fa1=0.5mn(1−λ)(π−sinθ) (式3a)
Fa1=mn{λ(1+cosθ)−cosθ+κo}
(0≦θ≦π)
前記第4曲線(A1C2)上において、当該曲線に引いた接線のy軸に対する傾斜角度が90度の端点(A1)からα度(0<α<10)の接点(C3)までの曲線部分よって規定される歯末歯形部分(fs1)と、前記接点(C3)に引いた傾斜角度がα度の前記接線によって規定される直線歯形部分(fs2)と、当該直線歯形部分(fs2)の他端に接続した前記内歯(24)に干渉することのないように設定した両歯のかみ合いに参加しない曲線からなる歯元歯形部分(fs3)とによって、2(1+a)mnの歯たけを備えた基本外歯歯形(FS1)を形成し、
前記第3曲線(B1C1)上において、当該曲線に引いた接線のy軸に対する傾斜角度が90度の端点(B1)から、前記外歯(34)の歯筋方向の中央に設定した主断面(30)において前記基本外歯歯形(FS1)が描く前記移動軌跡(M1)に干渉しない端点(C4)までの曲線部分を第5曲線(B1C4)として切り出し、
当該第5曲線(B1C4)によって規定される歯末歯形部分(cs1)と、当該歯末歯形部分(cs1)の端点(C4)に接続したy軸に対して前記角度αだけ傾斜した直線によって規定される直線歯形部分(cs2)と、当該直線歯形部分(cs2)の他端に接続した前記外歯(34)に干渉することのないように設定した両歯のかみ合いに参加しない曲線からなる歯元歯形部分(cs3)とによって、2(1+a)mnの歯たけを備えた歯形曲線を形成し、当該歯形曲線を前記内歯(24)の歯形(CS)として採用し、
前記外歯(34)における前記主断面(30)の歯形として、前記基本外歯歯形(FS1)を採用し、
前記外歯(34)の前記主断面(30)から前記開口端部(34a)に至る各軸直角断面上の歯形として、各軸直角断面上における前記基本外歯歯形(FS1)が描く前記移動軌跡における前記直線歯形部分(fs2)が、前記主断面(30)における前記基本外歯歯形(FS1)が描く前記移動軌跡における前記直線歯形部分(fs2)に一致するまで、各軸直角断面上における前記基本外歯歯形(FS1)に対して歯たけの負方向に転位を施すことによる得られた転位歯形(FS2)を採用し、
前記外歯の前記主断面(30)から前記内端部(34b)に至る各軸直角断面上の歯形として、各軸直角断面上の前記基本外歯歯形(FS1)が描く前記移動軌跡が、前記主断面(30)における前記基本外歯歯形(FS1)が描く前記移動軌跡の底部に接するように、各軸直角断面上における前記基本外歯歯形(FS1)に対して歯たけの負方向に転位を施すことによる得られた転位歯形(FS3)を採用する、
ことを特徴とする3次元接触の正偏位歯形を有する波動歯車装置(1)。
An annular rigid internal gear (2), a flexible external gear (3) disposed coaxially on the inside thereof, and a wave generator (4) fitted on the inside;
The flexible external gear (3) includes a flexible cylindrical body (31), a diaphragm (32) extending in a radial direction from a rear end of the cylindrical body, and the cylindrical body. External teeth (34) formed on the outer peripheral surface portion on the front end opening side of
The flexible external gear (3) is bent into an ellipse by the wave generator (4) and meshes with the internal teeth (24) of the rigid internal gear (2) at both ends of the long axis of the ellipse. And
The rigid internal gear (2) and the flexible external gear (3) are both spur gears of the module m,
The number of teeth of the flexible external gear (3) is 2n less (n is a positive integer) than the number of teeth of the rigid internal gear (2),
A rim neutral circle before bending at the long axis position (L1) of the elliptical rim neutral line of the flexible external gear (3) in an axial perpendicular section at an arbitrary position in the direction of the tooth trace of the external tooth (34). The amount of deflection with respect to is 2κmn using the deviation coefficient κ,
The amount of bending is along the direction of the tooth trace of the outer teeth (34) from the inner end (34b) on the diaphragm (32) side toward the opening end (34a) on the front end opening side. Increasing in proportion to the distance from the diaphragm (32),
When the meshing of the outer teeth (34) and the inner teeth (24) is approximated by rack meshing, the outer teeth (4) are rotated with the rotation of the wave generator (4) in the cross-section perpendicular to each axis. The movement trajectory (M) of the tooth (34) with respect to the internal tooth (24) is such that the x-axis is the translation direction of the rack, the y-axis is the direction perpendicular thereto, and the origin of the y-axis is the average of the amplitude of the movement trajectory (M). In the wave gear device (1) defined by Equation 1 when set to the position,
x = 0.5 mn (θ−κsin θ) (Formula 1)
y = κmncos θ (−π ≦ θ ≦ π)
The amount of deflection of the inner end (34b) of the external tooth (34) is the amount of deflection in an unshifted state with a displacement coefficient κ = 1, and the amount of deflection of the main cross section (30) is the displacement coefficient κ =. 1 + a (0 <a <0.5) is the deflection amount in the positive deflection state, and the deflection amount of the opening end portion (34a) is the deflection amount in the positive deflection state with the deflection position coefficient κ = 1 + 2a,
The first curve portion (AB) from the vertex (A) to the next bottom point (B) in the movement locus (M0) obtained at the inner end portion (34b) of the outer tooth (34) is the bottom point. (B) is reduced to λ times (0.5 <λ <1) with the center of similarity as the center of similarity, and a first similarity curve (BC) defined by Equation 2 is obtained,
x Ca = 0.5 mn {(1-λ) π + λ (θ−sin θ)}
y Ca = mn {λ (1 + cos θ) −1} (0 ≦ θ ≦ π) (Formula 2)
A second curve obtained by rotating the first similarity curve (BC) by 180 degrees around the end point (C) opposite to the bottom point (B) in the first similarity curve (BC), The end point (C) is multiplied by (1-λ) / λ with the center of similarity as the center of similarity to obtain a second similarity curve (AC) defined by Equation 3;
x Fa = 0.5 mn (1-λ) (π−θ + sin θ)
y Fa = mn {λ (1 + cos θ) −cos θ} (0 ≦ θ ≦ π) (Formula 3)
By moving the first similarity curve (BC) by a in the negative direction of the y-axis, a third curve (B1C1) defined by Equation 2a is obtained,
x Ca1 = 0.5mn {(1- λ) π + λ (θ-sinθ)} ( Equation 2a)
yCa1 = mn {λ (1 + cos θ) -1-a}
(0 ≦ θ ≦ π)
A fourth curve (A1C2) defined by Equation 3a is obtained by moving the second similarity curve (AC) by a in the positive direction of the y-axis,
x Fa1 = 0.5 mn (1-λ) (π-sin θ) (Formula 3a)
y Fa1 = mn {λ (1 + cos θ) −cos θ + κo}
(0 ≦ θ ≦ π)
On the fourth curve (A1C2), the slope of the tangent line drawn on the curve with respect to the y-axis is from the end point (A1) at 90 degrees to the contact point (C3) at α degrees (0 <α <10). The defined tooth addendum portion (fs1), the straight tooth profile portion (fs2) defined by the tangent with an inclination angle of α degrees drawn to the contact (C3), and the other end of the straight tooth profile portion (fs2) The tooth has a tooth root of 2 (1 + a) mn with a tooth root portion (fs3) made of a curve that does not participate in the meshing of both teeth set so as not to interfere with the internal tooth (24) connected to the tooth. Forming a basic external tooth profile (FS1),
On the third curve (B1C1), the main cross section set at the center in the tooth trace direction of the external teeth (34) from the end point (B1) where the inclination angle of the tangent drawn on the curve with respect to the y-axis is 90 degrees ( 30) cutting out the curved portion to the end point (C4) that does not interfere with the movement locus (M1) drawn by the basic external tooth profile (FS1) as a fifth curve (B1C4),
Specified by an end tooth portion (cs1) defined by the fifth curve (B1C4) and a straight line inclined by the angle α with respect to the y axis connected to the end point (C4) of the end tooth portion (cs1). A tooth having a straight tooth profile portion (cs2) and a curve that does not participate in the meshing of both teeth set so as not to interfere with the external tooth (34) connected to the other end of the straight tooth profile portion (cs2). A tooth profile curve having a tooth depth of 2 (1 + a) mn is formed by the original tooth profile portion (cs3), and the tooth profile curve is adopted as a tooth profile (CS) of the internal tooth (24),
As the tooth profile of the main cross section (30) in the external tooth (34), the basic external tooth profile (FS1) is adopted,
The movement drawn by the basic external tooth profile (FS1) on the cross-section perpendicular to each axis as the tooth profile on the cross-section perpendicular to each axis from the main cross section (30) to the open end (34a) of the external teeth (34). Until the linear tooth profile portion (fs2) in the locus coincides with the linear tooth profile portion (fs2) in the moving locus drawn by the basic external tooth profile (FS1) in the main cross section (30), the cross section is perpendicular to each axis. Adopting the dislocation tooth profile (FS2) obtained by performing dislocation in the negative direction of tooth depth with respect to the basic external tooth profile (FS1),
As the tooth profile on each cross section perpendicular to the axis from the main cross section (30) to the inner end (34b) of the external tooth, the movement locus drawn by the basic external tooth profile (FS1) on each cross section perpendicular to the axis is: Displacement in the negative direction of the tooth gap with respect to the basic external tooth profile (FS1) on the cross section perpendicular to each axis so as to contact the bottom of the movement locus drawn by the basic external tooth profile (FS1) in the main cross section (30) Adopting the dislocation tooth profile (FS3) obtained by applying
A wave gear device (1) having a positive displacement tooth profile with a three-dimensional contact.
請求項1において、
前記外歯(34)における前記主断面(30)から前記開口端部(34a)に至る各部位に施す転移量をh×mnとし、値hを式4により規定することを特徴とする波動歯車装置(1)。
Figure 2011144916

(式4)
In claim 1,
A wave gear characterized in that the amount of transition applied to each portion of the external teeth (34) from the main cross section (30) to the opening end (34a) is h × mn, and the value h is defined by Equation 4. Device (1).
Figure 2011144916

(Formula 4)
請求項2において、
前記外歯(34)における前記主断面(30)から前記内端部(34b)に至る各部位に施す転位量をh×mnとし、
前記主断面(30)における前記偏位係数κ=κo(=1+a)とすると、
値hをκ−κoにすることを特徴とする波動歯車装置(1)。
In claim 2,
The amount of dislocation applied to each part from the main cross section (30) to the inner end (34b) in the outer teeth (34) is h 1 × mn,
When the displacement coefficient κ = κo (= 1 + a) in the main cross section (30),
Wave gear device characterized by a value h 1 to κ-κo (1).
請求項1ないし3のうちのいずれかの項において、
前記主断面(30)を境として前記開口端部(34a)の側および前記内端部(34b)の側に施す転位によって生ずる当該主断面(30)の位置を頂点とする折れ線状の歯筋輪郭(34d、34e)を、前記頂点を含む部分を円弧(34c)により滑らかに接続した輪郭にすることを特徴とする波動歯車装置(1)。
In any one of claims 1 to 3,
A polygonal tooth trace having a vertex at the position of the main cross section (30) generated by dislocation applied to the open end (34a) side and the inner end (34b) side with the main cross section (30) as a boundary A wave gear device (1) characterized in that the contours (34d, 34e) are contours in which portions including the apexes are smoothly connected by an arc (34c).
JP2010008492A 2010-01-18 2010-01-18 Wave gear device having positive deviation tooth profile with three-dimensional contact Active JP5275265B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010008492A JP5275265B2 (en) 2010-01-18 2010-01-18 Wave gear device having positive deviation tooth profile with three-dimensional contact

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010008492A JP5275265B2 (en) 2010-01-18 2010-01-18 Wave gear device having positive deviation tooth profile with three-dimensional contact

Publications (2)

Publication Number Publication Date
JP2011144916A true JP2011144916A (en) 2011-07-28
JP5275265B2 JP5275265B2 (en) 2013-08-28

Family

ID=44459944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010008492A Active JP5275265B2 (en) 2010-01-18 2010-01-18 Wave gear device having positive deviation tooth profile with three-dimensional contact

Country Status (1)

Country Link
JP (1) JP5275265B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013046274A1 (en) * 2011-09-29 2013-04-04 株式会社ハーモニック・ドライブ・システムズ Wave gear device having tapered flexible external gear
WO2013105127A1 (en) * 2012-01-10 2013-07-18 株式会社ハーモニック・ドライブ・システムズ Strain wave gearing with involute positive deflection tooth profile taking rim thickness into consideration
US20140047937A1 (en) * 2012-08-17 2014-02-20 Harmonic Drive Systems Inc. Wave gear device having three-dimensional-contact tooth profile
WO2015079576A1 (en) * 2013-11-29 2015-06-04 株式会社ハーモニック・ドライブ・システムズ Harmonic gear device having double-contact negative displacement tooth profile
CN104747683A (en) * 2015-03-13 2015-07-01 常州大学 Calculation method of minimum tooth number of flexible gear of harmonic gear mechanism
JP6104474B1 (en) * 2015-12-04 2017-03-29 株式会社ハーモニック・ドライブ・システムズ 2 stress separation wave gear device
KR20180017132A (en) 2015-07-07 2018-02-20 가부시키가이샤 하모닉 드라이브 시스템즈 Rotation transmission mechanism provided with strain-wave gearing
TWI632311B (en) * 2016-01-15 2018-08-11 和諧驅動系統股份有限公司 Two-stress full-separation strain wave gearing
CN108980299A (en) * 2017-06-05 2018-12-11 谐波传动系统有限公司 The pure isolated Wave gear device of 2 stress
WO2019106773A1 (en) 2017-11-29 2019-06-06 株式会社ハーモニック・ドライブ・システムズ Wave gear device
WO2019131196A1 (en) * 2017-12-27 2019-07-04 株式会社エンプラス Strain wave gearing
KR102146753B1 (en) * 2019-09-03 2020-08-21 숭실대학교산학협력단 Harmonic drive gear with improved contact ratio
EP3795858A4 (en) * 2018-05-14 2021-10-27 Harmonic Drive Systems Inc. Wave gear device
CN114689007A (en) * 2022-03-16 2022-07-01 神龙汽车有限公司 Quality detection and judgment method for inverted conical surface of gear combination tooth
EP4198349A4 (en) * 2020-10-16 2023-11-22 Midea Group Co., Ltd. Harmonic gear device and actuator

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103470694B (en) * 2013-09-06 2016-03-30 上海鑫君传动科技有限公司 A kind of harmonic wave speed reducing machine with high profile of tooth

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05209655A (en) * 1991-11-07 1993-08-20 Harmonic Drive Syst Ind Co Ltd Deflection engagement type gear device
JP2005036937A (en) * 2003-07-18 2005-02-10 Harmonic Drive Syst Ind Co Ltd Harmonic drive gearing
JP2007211907A (en) * 2006-02-09 2007-08-23 Harmonic Drive Syst Ind Co Ltd Wave motion gear device having continuously meshing high ratcheting torque tooth profile

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05209655A (en) * 1991-11-07 1993-08-20 Harmonic Drive Syst Ind Co Ltd Deflection engagement type gear device
JP2005036937A (en) * 2003-07-18 2005-02-10 Harmonic Drive Syst Ind Co Ltd Harmonic drive gearing
JP2007211907A (en) * 2006-02-09 2007-08-23 Harmonic Drive Syst Ind Co Ltd Wave motion gear device having continuously meshing high ratcheting torque tooth profile

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013046274A1 (en) * 2011-09-29 2015-03-26 株式会社ハーモニック・ドライブ・システムズ Wave gear device having taper type flexible external gear
WO2013046274A1 (en) * 2011-09-29 2013-04-04 株式会社ハーモニック・ドライブ・システムズ Wave gear device having tapered flexible external gear
US9534681B2 (en) 2011-09-29 2017-01-03 Harmonic Drive Systems Inc. Wave gear device having tapered flexible external gear
CN103827542A (en) * 2011-09-29 2014-05-28 谐波传动系统有限公司 Wave gear device having tapered flexible external gear
WO2013105127A1 (en) * 2012-01-10 2013-07-18 株式会社ハーモニック・ドライブ・システムズ Strain wave gearing with involute positive deflection tooth profile taking rim thickness into consideration
US9416861B2 (en) 2012-01-10 2016-08-16 Harmonic Drive Systems Inc. Strain wave gearing with involute positive deflection tooth profile taking rim thickness into consideration
JPWO2013105127A1 (en) * 2012-01-10 2015-05-11 株式会社ハーモニック・ドライブ・システムズ Wave gear device having involute positive deviation tooth profile considering rim thickness
CN104040217A (en) * 2012-01-10 2014-09-10 谐波传动系统有限公司 Strain wave gearing with involute positive deflection tooth profile taking rim thickness into consideration
KR101485863B1 (en) 2012-08-17 2015-01-26 가부시키가이샤 하모닉 드라이브 시스템즈 Wave gear device having three-dimensional-contact tooth profile
CN103748382A (en) * 2012-08-17 2014-04-23 谐波传动系统有限公司 Wave gear device having 3D contact tooth profile
US9052004B2 (en) 2012-08-17 2015-06-09 Harmonic Drive Systems Inc. Wave gear device having three-dimensional-contact tooth profile
JP5456941B1 (en) * 2012-08-17 2014-04-02 株式会社ハーモニック・ドライブ・システムズ Wave gear device having a three-dimensional contact tooth profile
WO2014027384A1 (en) * 2012-08-17 2014-02-20 株式会社ハーモニック・ドライブ・システムズ Wave gear device having 3d contact tooth profile
US20140047937A1 (en) * 2012-08-17 2014-02-20 Harmonic Drive Systems Inc. Wave gear device having three-dimensional-contact tooth profile
US9746065B2 (en) 2013-11-29 2017-08-29 Harmonic Drive System Inc. Strain wave gearing having double-contact negative deflection tooth profile
WO2015079576A1 (en) * 2013-11-29 2015-06-04 株式会社ハーモニック・ドライブ・システムズ Harmonic gear device having double-contact negative displacement tooth profile
JP6017063B2 (en) * 2013-11-29 2016-10-26 株式会社ハーモニック・ドライブ・システムズ Wave gear device having negative displacement tooth profile with two-contact
CN104747683A (en) * 2015-03-13 2015-07-01 常州大学 Calculation method of minimum tooth number of flexible gear of harmonic gear mechanism
KR20180017132A (en) 2015-07-07 2018-02-20 가부시키가이샤 하모닉 드라이브 시스템즈 Rotation transmission mechanism provided with strain-wave gearing
US11441650B2 (en) 2015-07-07 2022-09-13 Harmonic Drive Systems Inc. Rotation transmission mechanism provided with strain wave gearing
US11391351B2 (en) 2015-07-07 2022-07-19 Harmonic Drive Systems Inc. Rotation transmission mechanism provided with strain wave gearing
US11002349B2 (en) 2015-07-07 2021-05-11 Harmonic Drive Systems Inc. Rotation transmission mechanism provided with strain wave gearing
US10883589B2 (en) 2015-12-04 2021-01-05 Harmonic Drive Systems Inc. Two stress-separation strain wave gearing
JP6104474B1 (en) * 2015-12-04 2017-03-29 株式会社ハーモニック・ドライブ・システムズ 2 stress separation wave gear device
CN108291611A (en) * 2015-12-04 2018-07-17 谐波传动系统有限公司 The Wave gear device of 2 stress separation
WO2017094195A1 (en) * 2015-12-04 2017-06-08 株式会社ハーモニック・ドライブ・システムズ 2-stress separating strain wave gearing device
TWI632311B (en) * 2016-01-15 2018-08-11 和諧驅動系統股份有限公司 Two-stress full-separation strain wave gearing
CN108980299A (en) * 2017-06-05 2018-12-11 谐波传动系统有限公司 The pure isolated Wave gear device of 2 stress
CN108980299B (en) * 2017-06-05 2023-02-28 谐波传动系统有限公司 2-stress pure-separation wave gear device
WO2019106773A1 (en) 2017-11-29 2019-06-06 株式会社ハーモニック・ドライブ・システムズ Wave gear device
EP3719349A4 (en) * 2017-11-29 2021-04-14 Harmonic Drive Systems Inc. Wave gear device
US10816073B2 (en) 2017-11-29 2020-10-27 Harmonic Drive Systems Inc. Strain wave gearing
KR20190104566A (en) 2017-11-29 2019-09-10 가부시키가이샤 하모닉 드라이브 시스템즈 Wave gear device
WO2019131196A1 (en) * 2017-12-27 2019-07-04 株式会社エンプラス Strain wave gearing
EP3795858A4 (en) * 2018-05-14 2021-10-27 Harmonic Drive Systems Inc. Wave gear device
WO2021045419A1 (en) * 2019-09-03 2021-03-11 숭실대학교산학협력단 Harmonic drive gear with improved contact ratio
KR102146753B1 (en) * 2019-09-03 2020-08-21 숭실대학교산학협력단 Harmonic drive gear with improved contact ratio
US11835118B2 (en) 2019-09-03 2023-12-05 Foundation Of Soongsil University-Industry Cooperation Harmonic drive gear with improved contact ratio
EP4198349A4 (en) * 2020-10-16 2023-11-22 Midea Group Co., Ltd. Harmonic gear device and actuator
CN114689007A (en) * 2022-03-16 2022-07-01 神龙汽车有限公司 Quality detection and judgment method for inverted conical surface of gear combination tooth
CN114689007B (en) * 2022-03-16 2023-05-26 神龙汽车有限公司 Gear combination tooth back taper surface quality detection and judgment method

Also Published As

Publication number Publication date
JP5275265B2 (en) 2013-08-28

Similar Documents

Publication Publication Date Title
JP5275265B2 (en) Wave gear device having positive deviation tooth profile with three-dimensional contact
JP5138783B2 (en) Wave gear device having dislocation tooth profile capable of three-dimensional contact
JP4777792B2 (en) Wave gear device having continuous meshing high ratcheting torque tooth profile
JP6017066B2 (en) Wave gear device having continuous contact tooth profile formed using arc tooth profile
JP5165120B2 (en) Wave gear device having three-dimensional continuous contact tooth profile
JP5456941B1 (en) Wave gear device having a three-dimensional contact tooth profile
JP5390028B2 (en) Wave gear device having involute positive deviation tooth profile with three-dimensional contact
JP4597051B2 (en) Wave gear device having a wide meshing tooth profile
JP6017063B2 (en) Wave gear device having negative displacement tooth profile with two-contact
WO2016194239A1 (en) Strain wave gearing device with compound meshing that involves congruity of tooth surfaces
WO2017122362A1 (en) Strain wave gearing device with pure separation of two stresses
JP4392787B2 (en) Wave gear device having wide area three-dimensional meshing tooth profile
JP2018204694A (en) Wave gear device capable of complete separation of two types of stress
WO2016092636A1 (en) Pass-type meshing negative-deflection harmonic drive gearing
JP4650953B2 (en) Wave gear device with high ratcheting torque tooth profile
JP3132777B2 (en) Flexible mesh gear
JP6104474B1 (en) 2 stress separation wave gear device
JP7203275B2 (en) Strain wave gearing with three-dimensional tooth profile
WO2022091384A1 (en) Wave gear device provided with three-dimensional tooth profile

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130514

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130515

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5275265

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250