JPH05209655A - Deflection engagement type gear device - Google Patents

Deflection engagement type gear device

Info

Publication number
JPH05209655A
JPH05209655A JP35113391A JP35113391A JPH05209655A JP H05209655 A JPH05209655 A JP H05209655A JP 35113391 A JP35113391 A JP 35113391A JP 35113391 A JP35113391 A JP 35113391A JP H05209655 A JPH05209655 A JP H05209655A
Authority
JP
Japan
Prior art keywords
gear
external gear
rigid internal
flexible external
internal gear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP35113391A
Other languages
Japanese (ja)
Other versions
JP3132777B2 (en
Inventor
Shoichi Ishikawa
昌一 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harmonic Drive Systems Inc
Original Assignee
Harmonic Drive Systems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harmonic Drive Systems Inc filed Critical Harmonic Drive Systems Inc
Priority to JP03351133A priority Critical patent/JP3132777B2/en
Publication of JPH05209655A publication Critical patent/JPH05209655A/en
Application granted granted Critical
Publication of JP3132777B2 publication Critical patent/JP3132777B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To provide a high load capability by forming the tooth forms of gears at a specific addendum modification coefficient in a gear device moving the engaging position of a rigid internal gear and a cup-shaped flexible external gear in the peripheral direction to generate relative rotation between both gears. CONSTITUTION:Harmonic reduction gears 1 called as a harmonic drive are constituted of a circular rigid internal gear 2 and a wave motion generator 4 fitted on its inside, a cup-shaped flexible external gear 3 having the number of teeth less than that of the rigid internal gear 2 by 2n is deflected into an elliptical shape by the wave motion generator 4, and the flexible external gear 3 is engaged with the rigid internal gear 2 at two positions on both ends of the long axis. The tooth shapes of the gears 2, 3 are made the involute tooth shape having the same reference pressure angle, and the tooth shape of the internal gear 2 is made the transitional tooth shape having the addendum modification coefficient xc. The tooth shape of the external gear 3 is made the transitional tooth shape continuously transited according to the addendum modification coefficient xf determined in response to the above addendum modification coefficient xc from the equation I along the axis.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はコップ状の可撓性外歯車
を備えた撓み噛み合い式歯車装置に関するものである。
更に詳しくは、本発明はかかる撓み噛み合い式歯車装置
において、コップ状の可撓性外歯車と剛性内歯車が装置
軸線方向のいずれの位置においても適正な噛み合い状態
を形成し得る歯形決定技術に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flexible mesh type gear device having a cup-shaped flexible external gear.
More specifically, the present invention relates to a tooth profile determining technique in which a cup-shaped flexible external gear and a rigid internal gear can form a proper meshing state at any position in the device axial direction in such a flex meshing type gear device. Is.

【0002】[0002]

【従来の技術】撓み噛み合い式歯車装置の代表的な例
は、ハーモニックドライブと呼ばれる調和減速機であ
る。この調和減速機としては、図1乃至図3に示すコッ
プ状調和減速機が知られている。これらの図に示すよう
に調和減速機1は、環状の剛性内歯車2と、この内側に
配置したコップ形の可撓性外歯車3と、さらにこの内側
に装着した波動発生器4を基本構成要素としている。波
動発生器は一般的に楕円形状をしており、この波動発生
器によって、コップ状の可撓性外歯車は楕円形状に撓ま
されて、その長軸両端の2か所で剛性内歯車に噛み合わ
されている。波動発生器がモータなどの高速回転出力源
によって高速回転すると、これらの噛み合い位置も周方
向に移動する。コップ状の可撓性外歯車は剛性内歯車よ
りも2n枚(nは正整数)だけ少ない歯数に設定されて
いるので、噛み合い位置の移動に伴って、外歯車と内歯
車の間には相対回転が発生する。通常は、剛性内歯車が
固定状態に設定されるので、コップ形可撓性外歯車から
減速回転出力が得られる。この形式の撓み噛み合い式歯
車装置における剛性内歯車およびコップ形可撓性外歯車
の歯形としてはインボリュート歯形が一般的に使用され
ている。
2. Description of the Related Art A typical example of a flexible mesh type gear device is a harmonic speed reducer called a harmonic drive. As this harmonic reducer, the cup-shaped harmonic reducer shown in FIGS. 1 to 3 is known. As shown in these figures, the harmonic speed reducer 1 has a basic structure including an annular rigid internal gear 2, a cup-shaped flexible external gear 3 arranged inside thereof, and a wave generator 4 mounted inside thereof. As an element. The wave generator is generally in the shape of an ellipse, and the wave generator bends the cup-shaped flexible external gear into an elliptical shape so that it becomes a rigid internal gear at two locations at both ends of its long axis. It is meshed. When the wave generator is rotated at a high speed by a high-speed rotation output source such as a motor, the meshing position of these is also moved in the circumferential direction. Since the cup-shaped flexible external gear is set to have 2n fewer teeth (n is a positive integer) than the rigid internal gear, there is a gap between the external gear and the internal gear as the meshing position moves. Relative rotation occurs. Normally, since the rigid internal gear is set in a fixed state, a decelerated rotation output can be obtained from the cup-shaped flexible external gear. An involute tooth profile is generally used as the tooth profile of the rigid internal gear and the cup-shaped flexible external gear in the flexural mesh type gear device of this type.

【0003】撓み噛み合い式歯車装置はシー・ウォルト
ン・マッサー氏の発明(米国特許第2906143号)
に始まり、その後の改良、発展を見つつある。例えば、
本発明者は、特公昭45−41I71号公報において、
このような歯車装置のいわゆる偏位噛み合いの可能性と
転位インボリュート歯形の可能性を提案している。この
公報に開示の発明は、コップ状可撓性外歯車がいずれの
軸直角断面においても同一の撓み量を有することを前提
としている。すなわち、軸方向におけるコップ形可撓性
外歯車の撓み量の変化は考慮せずに、コップ形可撓性外
歯車の軸直角断面はいずれの位置においても同一の形状
を取ることを前提として、コップ形可撓性外歯車と剛性
内歯車とが適切な噛み合い状態となるような2次元噛み
合い歯形を提案している。
The flexible mesh type gear device is the invention of Mr. Sea Walton Masser (US Pat. No. 2,906,143).
Beginning with, we are looking at improvements and developments thereafter. For example,
The present inventor has disclosed in Japanese Patent Publication No. 45-41I71.
It proposes the possibility of so-called offset meshing and the possibility of dislocation involute tooth profile of such a gear device. The invention disclosed in this publication is premised on that the cup-shaped flexible external gear has the same amount of flexure in any cross section perpendicular to the axis. That is, without considering the change in the bending amount of the cup-shaped flexible external gear in the axial direction, assuming that the cross section perpendicular to the axis of the cup-shaped flexible external gear has the same shape at any position, A two-dimensional meshing tooth profile is proposed in which the cup-shaped flexible external gear and the rigid internal gear are brought into an appropriate meshing state.

【0004】ここで、図3には、楕円形状に撓まされた
コップ状可撓性外歯車における楕円形長軸4aを含む断
面を示してある。この図から分かるように、楕円形状に
撓まされたコップ状可撓性外歯車3は、その開口端32
の側において半径方向の外側への撓み量が最大であり、
コップ底面側を形成しているボス33の側に向けて装置
軸線1a方向に沿って除々に撓み量が減少している。し
たがって、剛性内歯車とコップ状可撓性外歯車との噛み
合いを、歯スジ方向のいずれの位置においても適正な状
態に設定するためには、このようなコップ状可撓性外歯
車の装置軸線1aの方向の撓み量の変化を考慮する必要
がある。
Here, FIG. 3 shows a cross section including an elliptical long axis 4a in a cup-shaped flexible external gear bent in an elliptical shape. As can be seen from this figure, the cup-shaped flexible external gear 3 bent in an elliptical shape has the open end 32 thereof.
The maximum amount of outward bending in the radial direction is
The amount of bending gradually decreases along the direction of the apparatus axis 1a toward the side of the boss 33 forming the cup bottom side. Therefore, in order to set the meshing between the rigid internal gear and the cup-shaped flexible external gear to a proper state at any position in the tooth streak direction, the device axis of such a cup-shaped flexible external gear is set. It is necessary to consider the change in the amount of bending in the direction 1a.

【0005】[0005]

【発明が解決しようとする課題】コップ状可撓性外歯車
の歯形決定に当たり、その軸線方向の各断面の撓み量が
連続的に変化することを考慮した撓み噛み合い式歯車装
置は、特開昭62−75153号公報に開示されてい
る。
In determining the tooth profile of a cup-shaped flexible external gear, a flexural mesh type gear device which takes into account the fact that the flexural amount of each cross section in the axial direction thereof continuously changes is disclosed in Japanese Patent Application Laid-Open No. Sho-AO. No. 62-75153.

【0006】この公報に開示されている内容は、この公
報の第4図から分かるように、コップ状可撓性外歯車の
歯を、楕円の長軸を含む含軸断面において剛性内歯車の
歯に平行に配置させるようにしたものである。このよう
に歯を形成すれば歯スジに沿って良い歯当たり状態が形
成されると記載されている。しかしながら、剛性内歯車
の歯溝に対する可撓性外歯車の歯の運動を解析すれば明
らかなように、撓み量の少ないコップ底面側の断面位置
においては、楕円の長軸位置から外れた箇所において歯
の干渉が生じてしまい、適正な噛み合い状態は形成され
ない。たとえ可撓性外歯車の歯切りを、同公報の第1
図、第2図に示すような工夫を凝らして行ったとして
も、有効な歯形が創成される保証はない。これに加え
て、歯形に関しては、それをどのように決定するのかに
ついての具体的な記載は開示されていない。
As can be seen from FIG. 4 of this publication, the content disclosed in this publication is such that the teeth of a cup-shaped flexible external gear are the teeth of a rigid internal gear in an axial section including the major axis of an ellipse. It is arranged to be parallel to. It is described that when the teeth are formed in this manner, a good tooth contact state is formed along the tooth streaks. However, as is clear from an analysis of the motion of the teeth of the flexible external gear with respect to the tooth groove of the rigid internal gear, at the cross-sectional position on the bottom side of the cup with a small amount of deflection, the position deviates from the long axis position of the ellipse. Interference between the teeth occurs, and a proper meshing state is not formed. Even if the gear cutting of the flexible external gear is as described in
Even if the device shown in FIG. 2 and FIG. 2 is devised, there is no guarantee that an effective tooth profile will be created. In addition to this, regarding the tooth profile, no specific description of how to determine it is disclosed.

【0007】次に、特開昭62−96148号公報に
は、可撓性外歯車の歯にクラウニングを施すことが開示
されている。また、特開平2−62461号公報には歯
スジの端部に生ずる歯の干渉を防止するために歯の端部
にエンドリリーフ加工を施すことが開示されている。こ
れらのいずれの公報においても、歯スジ方向の全ての断
面位置において適正な噛み合い状態を形成することはで
きない。
Next, Japanese Patent Laid-Open No. 62-96148 discloses that the teeth of the flexible external gear are crowned. Further, Japanese Patent Laid-Open No. 2-62461 discloses that end relief processing is applied to the end portions of the teeth in order to prevent the interference of the teeth occurring at the end portions of the tooth streaks. In any of these publications, it is not possible to form a proper meshing state at all cross-sectional positions in the tooth streak direction.

【0008】一方、特開昭63−115943号公報に
は、撓み噛み合い式歯車装置の剛性内歯車と可撓性外歯
車とを連続的に噛み合わせるようにした歯形が提案され
ている。しかし、この公報に開示の発明においても、歯
スジ方向の或る軸直角断面における歯の連続的な噛み合
いを考慮しているのみである。したがって、考察の対象
となっている特定の断面から歯スジ方向に離れた断面に
おいては適切な噛み合い状態が形成されることの保証は
ない。
On the other hand, Japanese Laid-Open Patent Publication No. 63-115943 proposes a tooth profile in which a rigid internal gear and a flexible external gear of a flexible mesh type gear device are continuously meshed with each other. However, also in the invention disclosed in this publication, only continuous meshing of teeth in a cross section perpendicular to a certain axis in the tooth streak direction is considered. Therefore, there is no guarantee that a proper meshing state will be formed in a cross section away from the specific cross section under consideration in the tooth streak direction.

【0009】このように、コップ状可撓性外歯車を有す
る撓み噛み合い式歯車装置においては、今まで提案され
ている歯形のほとんどは,或る軸直角断面における噛み
合いのみを考慮したいわゆる2次元噛み合いに関するも
のである。また、歯スジ方向のコップ状可撓性外歯車の
撓み量の変化も考慮した、いわゆる3次元噛み合いを考
慮した歯形については上述のように提案されてはいる
が、これらは歯スジ方向における噛み合い状態について
の正確な解析に基づくものではなく、全ての断面位置に
おいて適正な噛み合い状態が形成されることを保証する
ものではない。したがって、いずれの歯形も良好な噛み
合いを形成できるとは言いがたく、この種の動力伝達装
置の負荷能力の一層の向上を計る上でなお改良の余地を
残している。
As described above, in the flexural meshing type gear device having the cup-shaped flexible external gear, most of the tooth profiles proposed so far are so-called two-dimensional meshing considering only meshing in a cross section perpendicular to a certain axis. It is about. Further, although the tooth profile in consideration of so-called three-dimensional meshing in consideration of the change in the bending amount of the cup-shaped flexible external gear in the tooth stripe direction has been proposed as described above, these are meshed in the tooth stripe direction. It is not based on an accurate analysis of the state, and does not guarantee that a proper meshing state is formed at all cross-section positions. Therefore, it cannot be said that any tooth profile can form a good mesh, and there is still room for improvement in further improving the load capacity of this type of power transmission device.

【0010】本発明の課題は、コップ状の撓み噛み合い
式歯車装置において、特殊な歯形に依らず普及度の高い
インボリュート歯形を使用し、良好な3次元噛み合いを
形成し、以て、より高い負荷能力を有する歯形を実現す
ることにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a cup-shaped flexible meshing type gear device with an involute tooth profile which is widely used regardless of a special tooth profile and forms a favorable three-dimensional meshing, thereby providing a higher load. It is to realize a tooth profile with the ability.

【0011】[0011]

【課題を解決するための手段】上記の課題を解決するた
めに、本発明においては、コップ状可撓性外歯車を備え
た撓み噛み合い式歯車装置において、剛性内歯車および
コップ状可撓性外歯車を、同一の基準圧力角を有するイ
ンボリュート歯形とし、また、剛性内歯車の歯形を転位
係数xの転位歯形とし、さらに、可撓性外歯歯車の歯
形を、その軸心に沿って次の3式によってxに応じて
定まる転位係数xに従って連続的に転位させた転位歯
形としている。
In order to solve the above-mentioned problems, in the present invention, in a flexible mesh type gear device having a cup-shaped flexible external gear, a rigid internal gear and a cup-shaped flexible external gear are provided. The gear has an involute tooth profile having the same reference pressure angle, the tooth profile of the rigid internal gear has a dislocation tooth profile with a dislocation coefficient x c , and the tooth profile of the flexible external gear has the following profile along its axis. It is a continuously transposed allowed dislocation tooth according addendum modification coefficient x f determined according to x c by three expressions.

【0012】 [0012]

【0013】 [0013]

【0014】 [0014]

【0015】ここで、上記の各式における符号の内容は
以下の通りである。 x:可撓性外歯車の転位係数 x:剛性内歯車の転位係数 z:剛性内歯車の歯数 k :可撓性外歯車の任意の軸直角断面の撓みを示す係
数 n :剛性内歯車と可撓性外歯車の歯数差の1/2 R :撓み噛み合い式歯車装置の減速比 α:基準圧力角 χ :無転位の時の歯の隙間を表す補助角 φ :歯形の接触点の位置に関する補助角 j :可撓性外歯車の歯底リム厚の1/2と歯元のたけ
の和
The contents of the symbols in the above equations are as follows. x f : Dislocation coefficient of flexible external gear x c : Dislocation coefficient of rigid internal gear z c : Number of teeth of rigid internal gear k: Coefficient indicating flexure of arbitrary cross section of flexible external gear at right angles to axis n: Stiffness 1/2 of the difference in the number of teeth between the internal gear and the flexible external gear R: Reduction ratio of the flexible mesh type gear device α o : Reference pressure angle χ: Auxiliary angle expressing the tooth gap when there is no dislocation φ: Tooth profile Auxiliary angle j with respect to the position of the contact point: 1/2 of the root rim thickness of the flexible external gear and the sum of the tooth roots

【0016】ここに、通常は、剛性内歯車を一定転位の
転位歯形(x=定数)として、上記の3式により可撓
性外歯車の転位係数xが設定される。
Here, usually, the rigid internal gear is set as a dislocation tooth profile of constant dislocation (x c = constant), and the dislocation coefficient x f of the flexible external gear is set by the above three equations.

【0017】[0017]

【実施例】以下に、図4乃至図6を参照して本発明の実
施例を説明する。本例は、図1に示すコップ状調和減速
機のコップ伏可撓性外歯車の歯形に対して本発明を適用
した例である。以下の説明においては、図1乃至図3に
おける各部分と同一の箇所には同一の符号を付し、それ
らの詳細な説明は省略する。
Embodiments of the present invention will be described below with reference to FIGS. This example is an example in which the present invention is applied to the tooth profile of the cup-shaped flexible external gear of the cup-shaped harmonic reducer shown in FIG. In the following description, the same parts as those in FIGS. 1 to 3 are designated by the same reference numerals, and detailed description thereof will be omitted.

【0018】図4には本例のコップ状可撓性外歯車3の
含軸平面で切断した断面を示してある。この図に示す断
面は波動発生器によって楕円形状に撓められた状態にお
ける楕円の長軸を含む断面位置である。
FIG. 4 shows a cross section of the cup-shaped flexible external gear 3 of this example taken along the plane containing the axis. The cross section shown in this figure is the cross-sectional position including the major axis of the ellipse when it is bent into an elliptical shape by the wave generator.

【0019】本例のコップ状可撓性外歯車3の外歯31
の歯形は下記の3式に従って決定されたものであり、コ
ップ形可撓性外歯車3の開口端32の側から出力側であ
るボス33の側に向かって連続的に転位させることによ
って得られるものである。図5には、この歯形を拡大し
て示してある。
External teeth 31 of the cup-shaped flexible external gear 3 of this example
The tooth profile of is determined according to the following three formulas, and is obtained by continuously shifting from the open end 32 side of the cup-shaped flexible external gear 3 toward the output side boss 33 side. It is a thing. FIG. 5 shows this tooth profile in an enlarged manner.

【0020】外歯31の歯の転移係数xは次式によっ
て与えられる。
The tooth transfer coefficient x f of the external tooth 31 is given by the following equation.

【0021】 [0021]

【0022】 [0022]

【0023】 [0023]

【0024】ここで、上記の各式における符号の内容は
以下の通りである。 x:可撓性外歯車の転位係数 x:剛性内歯車の転位係数 z:剛性内歯車の歯数 k :可撓性外歯車の任意の軸直角断面の撓みを示す係
数 n :剛性内歯車と可撓性外歯車の歯数差の1/2 R :撓み噛み合い式歯車装置の減速比 α:基準圧力角 χ :無転位の時の歯の隙間を表す補助角 φ :歯形の接触点の位置に関する補助角 j :可撓性外歯車の歯底リム厚の1/2と歯元のたけ
の和
The contents of the symbols in the above equations are as follows. x f : Dislocation coefficient of flexible external gear x c : Dislocation coefficient of rigid internal gear z c : Number of teeth of rigid internal gear k: Coefficient indicating flexure of arbitrary cross section of flexible external gear at right angles to axis n: Stiffness 1/2 of the difference in the number of teeth between the internal gear and the flexible external gear R: Reduction ratio of the flexible mesh type gear device α o : Reference pressure angle χ: Auxiliary angle expressing the tooth gap when there is no dislocation φ: Tooth profile Auxiliary angle j with respect to the position of the contact point: 1/2 of the root rim thickness of the flexible external gear and the sum of the tooth roots

【0025】上記で定まる歯の形状を採用することによ
って、コップ状可撓性外歯車の歯が3次元の連続噛み合
いを実現できる理由を以下に示す。
The reason why the teeth of the cup-shaped flexible external gear can realize three-dimensional continuous meshing by adopting the tooth shape determined above is shown below.

【0026】まず、本発明者は、先に特公昭45−41
171号公報において、偏位した撓み噛み合い式歯車装
置の歯形にインボリュート曲線を使用し得ることを示し
ている。しかし、前述したように、この公報に記載の発
明においてはコップ状の可撓性外歯車の歯部の各断面が
全て同一の撓み量、即ち同一の偏位係数を有するものと
の前提に立っており、本願におけるようにコップ状可撓
性外歯車がその軸方向に撓み量が可変の状態にあること
の考察は全くなされていない。すなわち、波動発生器を
可撓性外歯車に挿入した場合に、波動発生器の筒面形状
にそのまま可撓性外歯車が倣うものとの前提に立脚して
いる。かかる前提は、可撓性外歯車がフラットな環形状
をしているフラット形あるいはパンケーキ形と呼ばれる
撓み噛み合い式歯車装置には当てはまるものである。し
かし、コップ形の可撓性外歯車はその軸線方向に3次元
の形状、いわゆるコーニングを呈している。本願では、
転位量を歯車の軸方向に可変とする連続転位の考えをこ
の3次元可撓性外歯車の歯形に適用して、歯スジの全体
に渡って良好な歯当たりを確保するようにしている。
First, the present inventor firstly found that Japanese Patent Publication No. 45-41.
In U.S. Pat. No. 171, it is shown that an involute curve can be used for the tooth profile of a deflected meshing gear device. However, as described above, in the invention described in this publication, it is premised that each cross section of the tooth portion of the cup-shaped flexible external gear has the same amount of deflection, that is, the same deviation coefficient. Therefore, no consideration has been given to the fact that the cup-shaped flexible external gear has a variable amount of bending in the axial direction as in the present application. That is, it is based on the premise that, when the wave generator is inserted into the flexible external gear, the flexible external gear follows the cylindrical surface shape of the wave generator as it is. Such a premise is applicable to a flex meshing type gear device called a flat type or a pancake type in which a flexible external gear has a flat annular shape. However, the cup-shaped flexible external gear has a three-dimensional shape in the axial direction, so-called Corning. In this application,
The idea of continuous dislocation in which the dislocation amount is variable in the axial direction of the gear is applied to the tooth profile of this three-dimensional flexible external gear to ensure good tooth contact over the entire tooth streak.

【0027】上記の特公昭45−41171号公報にも
開示されているように、基準圧力角の等しいインボリュ
ート歯形を採用した場合における剛性内歯車と可撓性外
歯車の双方の転位係数x、xの和は次式(4)によ
って与えられる。
As disclosed in Japanese Patent Publication No. 45-41171, the dislocation coefficient x c of both the rigid internal gear and the flexible external gear when the involute tooth profile having the same reference pressure angle is adopted, The sum of x f is given by the following equation (4).

【0028】 [0028]

【0029】ここに、z:可撓性外歯車の歯数 ε :(歯数比)−1(=z/z−1) αoc:剛性内歯車の基準圧力角(=可撓性外歯車の基
準圧力角) χ :無転位の時の歯の隙間を表す補助角
Where z f is the number of teeth of the flexible external gear ε is the (number of teeth ratio) −1 (= z c / z f −1) α oc is the reference pressure angle of the rigid internal gear (= flexible) Reference pressure angle of the external gear) χ: Auxiliary angle that represents the tooth gap when there is no dislocation

【0030】本発明は、上式(4)の関係を3次元噛み
合いに発展させたものである。
The present invention develops the relationship of the above expression (4) into three-dimensional meshing.

【0031】これに加えて、特公昭45−41171号
公報に開示の発明においては、可撓性外歯車のピッチ円
を変形の際の中立線であると近似的に見なしているが、
本発明では中立線を次のよう設定している。すなわち、
可撓性外歯車の歯底部(リム)の中央を通る面を中立面
とし、その面と可撓性外歯車の軸直角断面との交線を変
形の中立線であると設定することによって、転位係数の
より正確な設定を可能にしている。このため、前述の
(2)式に示した補助係数χは、特公昭45−4117
1号の発明とは異なる新たな提案である。また、(2)
式中のjがリム中央を中立線とすることを示す係数であ
る。この係数jはリム中立線とピッチ円との間隔を表し
ている。また、この(2)式中のφは可撓性外歯車の歯
の移動に対応する補助角であり、歯の移動軌跡上で歯が
互いに接触する位置を特定するパラメータの役目をする
ものである。このφの値は、前述した(3)式を解くこ
とによって求まる。
In addition to this, in the invention disclosed in Japanese Examined Patent Publication No. 45-41171, the pitch circle of the flexible external gear is approximately regarded as the neutral line during deformation.
In the present invention, the neutral line is set as follows. That is,
By setting the plane passing through the center of the bottom (rim) of the flexible external gear as the neutral plane, and setting the line of intersection between the plane and the cross section perpendicular to the axis of the flexible external gear as the neutral line of deformation. This enables more accurate setting of the dislocation coefficient. Therefore, the auxiliary coefficient χ shown in the above equation (2) can be calculated as follows.
This is a new proposal different from the first invention. Also, (2)
In the equation, j is a coefficient indicating that the center of the rim is the neutral line. This coefficient j represents the distance between the rim neutral line and the pitch circle. Further, φ in the equation (2) is an auxiliary angle corresponding to the movement of the teeth of the flexible external gear, and serves as a parameter for specifying the position where the teeth contact each other on the movement locus of the teeth. is there. The value of φ can be obtained by solving the above equation (3).

【0032】以下に、本発明によるコップ状可撓性外歯
車の転位係数を決定する基本式(1)、(2)および
(3)の根拠を説明する。
The basis of the basic equations (1), (2) and (3) for determining the dislocation coefficient of the cup-shaped flexible external gear according to the present invention will be described below.

【0033】まず、(1)式は、(4)式に3次元を考
慮した係数kを導入したものである。(4)式の誘導の
詳細については特公昭45−41171号公報に記載さ
れている。図6を参照して簡単に説明する。図6は偏位
した撓み噛み合い式歯車装置の歯形の噛み合いを解析す
るための詳細図である。この図は負偏位の場合のもので
ある。バックラッシュを零にするには、基準ピッチmπ
(m:モジュール)から両歯車の基準ピッチ円上の歯厚
の和を引いた値が近似的にdcoχ(=mzχ)であ
ればよいことを示している。転位歯車としてのコップ状
可撓性外歯車と剛性内歯車の基準ピッチ円上の歯厚は、
それぞれ
First, the equation (1) is obtained by introducing the coefficient k considering three dimensions into the equation (4). Details of the derivation of the equation (4) are described in JP-B-45-41171. A brief description will be given with reference to FIG. FIG. 6 is a detailed view for analyzing the meshing of the tooth profile of the deflected flexural mesh type gear device. This figure is for negative excursion. To reduce the backlash to zero, the reference pitch mπ
It indicates that the value obtained by subtracting the sum of the tooth thicknesses on the reference pitch circle of both gears from (m: module) may be approximately d co χ (= mz c χ). The tooth thickness on the reference pitch circle of the cup-shaped flexible external gear and the rigid internal gear as the dislocation gears is
Each

【0034】 であるから次式が成立する。[0034] Therefore, the following equation holds.

【0035】 [0035]

【0036】ここに、Here,

【0037】 [0037]

【0038】の関係を使えば、上式から(4)式が導か
れる。ここで、図6に示すコップ状可撓性外歯車の歯部
の任意の軸直角断面の撓み量dを、標準断面である無偏
位の断面(ここでは簡単のために開口端とする)の撓み
量dで割った値kを導入する。
Using the relationship of, the equation (4) is derived from the above equation. Here, the deflection amount d of an arbitrary cross section perpendicular to the axis of the tooth portion of the cup-shaped flexible external gear shown in FIG. 6 is a standard cross section which is a non-biased cross section (here, it is an open end for simplicity). Introducing a value k divided by the amount of deflection of d o .

【0039】k=d/d K = d / d o

【0040】この値kを撓み係数と呼ぶことにする。図
6を撓み係数kの断面と見なせば、
This value k will be called a deflection coefficient. Considering FIG. 6 as a cross section with a deflection coefficient k,

【0041】 [0041]

【0042】となり、これから(1)式が得られる。From this, equation (1) is obtained.

【0043】次に、(2)式は特公昭45−41171
号公報の(22)式に対応するものである。この(2
2)式の誘導は同公報に譲る。本発明の(2)式は上記
公報の(22)式に基づくものではあるが、次のように
して誘導される。同公報の(16)式である
Next, the formula (2) is expressed in Japanese Patent Publication No. 45-41171.
This corresponds to the equation (22) of the publication. This (2
Derivation of equation (2) is given in the publication. The expression (2) of the present invention is based on the expression (22) of the above publication, but is derived as follows. It is the formula (16) of the publication.

【0044】 [0044]

【0045】に可撓性外歯車の歯(ここでは代表点とし
て歯形上のピッチ点をとる)のリム中立線からの距離j
の影響を取り入れ、
The distance j of the teeth of the flexible external gear (here, the representative points are the pitch points on the tooth profile) from the rim neutral line.
The influence of

【0046】 [0046]

【0047】とする。It is assumed that

【0048】上記公報におけるε、ε+μがそれぞれ、Ε and ε + μ in the above publication are respectively

【0049】ε=1/RΕ = 1 / R

【0050】ε+μ=(1+Rk)/R/(I+R)Ε + μ = (1 + Rk) / R / (I + R)

【0051】であり、αoc=αbc+βであり、βが
微小角であることを考慮すると、(invαoc−in
vαbc)は、
Considering that α oc = α bc + β, and β is a minute angle, (invα oc −in
bc ) is

【0052】2(1+kR)/R/(1+R)Sin
(2φ)tanαoc
2 (1 + kR) / R / (1 + R) Sin
(2φ) tan 2 α oc

【0053】と変形できる。この結果、(2)式が得ら
れる。なお、j/Rが小さい場合には(2)式で(j/
R)の項を省略することができる。
It can be modified as follows. As a result, the equation (2) is obtained. When j / R is small, (j / R
The term R) 2 can be omitted.

【0054】最後に(3)式は、撓み噛み合い式歯車装
置の減速比Rと基準圧力角αが与えられている場合
に、歯形の接触点の位置に関する補助角φを求める式で
ある。この式は上記公報の(15)式である
Finally, the expression (3) is an expression for obtaining the auxiliary angle φ concerning the position of the contact point of the tooth profile when the reduction gear ratio R and the reference pressure angle α o of the flexible mesh type gear device are given. This equation is the equation (15) in the above publication.

【0055】tanα={−ε+(ε+μ)cos
(2φ)}/{2(ε+μ)sin(2φ)}
Tan α c = {-ε + (ε + μ) cos
(2φ)} / {2 (ε + μ) sin (2φ)}

【0056】および、同公報の(18)式であるAnd the equation (18) in the same publication.

【0057】 α=α+εφ+1.5(ε+μ)sin(2φ)Α c = α f + εφ + 1.5 (ε + μ) sin (2φ)

【0058】から、(2)式の場合と同様にεとμをk
とRで置き換えて、αを消去することによっって導入
される。なお、α=αの関係も使っている。
From the above, ε and μ are set to k as in the case of the equation (2).
It is introduced by erasing α c by substituting with R and. Note that the relationship of α f = α o is also used.

【0059】以上が本発明の諸式の根拠である。これら
の式(1)、(2)、(3)に従って歯車の諸元を定め
て決定したコップ状可撓性外歯車の歯形は、剛性内歯車
の転位係数xが一定の場合には、図5に示す形状にな
る。この図に示すように歯スジ方向に出力側にかけて次
第に転位量が大きくなる多次凸曲線となっている。この
ようにして規定した連続転位歯形を採用することによ
り、歯スジ方向の全体において良好な噛み合い状態が形
成されることがコンピュータ・シミュレーションによっ
て確認された。なお、同図においては、比較のために、
破線によって前述した特開昭62−75153号公報に
よって規定される歯形を示してある。
The above is the basis of the formulas of the present invention. The tooth profile of the cup-shaped flexible external gear determined by determining the specifications of the gear according to these equations (1), (2), and (3) has a constant dislocation coefficient x c of the rigid internal gear, The shape is as shown in FIG. As shown in this figure, it is a multi-order convex curve in which the dislocation amount gradually increases toward the output side in the tooth streak direction. It was confirmed by computer simulation that by adopting the continuously dislocated tooth profile defined in this way, a good meshing state was formed in the entire tooth stripe direction. In the figure, for comparison,
The broken line shows the tooth profile defined by the above-mentioned JP-A-62-75153.

【0060】[0060]

【発明の効果】以上説明したように、本発明によれば、
剛性内歯車の転位係数を予め選定しておき、コップ状可
撓性外歯車の転位係数を撓み係数の関数として上記の
(1)、(2)および(3)式から求め、求めた転位係
数に従って、剛性内歯車を一定ないしは可変の転位の歯
車として加工し、コップ状可撓性外歯車を連続転位の歯
車として加工するようにしている。したがって、本発明
によれば、両歯車の歯スジ方向の全体に渡り、干渉など
の不具合が生じない良好な3次元噛み合いを実現するこ
とが初めて可能になる。
As described above, according to the present invention,
The dislocation coefficient of the rigid internal gear is selected in advance, and the dislocation coefficient of the cup-shaped flexible external gear is obtained from the above equations (1), (2), and (3) as a function of the deflection coefficient. Accordingly, the rigid internal gear is processed as a constant or variable dislocation gear, and the cup-shaped flexible external gear is processed as a continuous dislocation gear. Therefore, according to the present invention, it is possible for the first time to realize good three-dimensional meshing over the entire tooth streak direction of both gears without causing problems such as interference.

【図面の簡単な説明】[Brief description of drawings]

【図1】コップ形撓み噛み合い式歯車装置の一例を示す
斜視図である。
FIG. 1 is a perspective view showing an example of a cup-shaped flexible meshing gear device.

【図2】図1の装置の正面図である。2 is a front view of the device of FIG. 1. FIG.

【図3】図1の装置におけるコップ状可撓性外歯車の撓
み状態を示す縦断面図である。
FIG. 3 is a vertical cross-sectional view showing a flexed state of a cup-shaped flexible external gear in the apparatus of FIG.

【図4】本発明による連続転位歯形を有するコップ状可
撓性外歯車を示す縦断面図である。
FIG. 4 is a vertical cross-sectional view showing a cup-shaped flexible external gear having a continuous dislocation tooth profile according to the present invention.

【図5】図4のコップ状可撓性外歯車の歯形を拡大して
示す部分拡大断面図である。
5 is a partially enlarged sectional view showing a tooth profile of the cup-shaped flexible external gear of FIG. 4 in an enlarged manner.

【図6】本発明による歯形の詳細を解析するための説明
図である。
FIG. 6 is an explanatory diagram for analyzing details of a tooth profile according to the present invention.

【符号の説明】[Explanation of symbols]

1・・・コップ形調和減速機 1a・・・装置軸線 2・・・剛性内歯車 3・・・コップ状可撓性外歯車 31・・・外歯 32・・・開口端 33・・・ボス 4・・・波動発生器 4a・・・楕円形の長軸 DESCRIPTION OF SYMBOLS 1 ... Cup type harmonic reducer 1a ... Device axis 2 ... Rigid internal gear 3 ... Cup-shaped flexible external gear 31 ... External teeth 32 ... Open end 33 ... Boss 4 ... Wave generator 4a ... Elliptical long axis

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 剛性内歯車と、その内側に配置されたコ
ップ状の可撓性外歯車と、この外歯車を半径方向に撓ま
せて前記剛性内歯車に対して部分的に噛み合わせ、この
噛み合わせ位置を周方向に移動させることにより、前記
剛性内歯車および可撓性外歯車の間に相対回転を生じさ
せる波動発生器とを有する撓み噛み合い式歯車装置にお
いて、 前記剛性内歯車および前記可撓性外歯車の歯形は、同一
の基準圧力角を有するインボリュート歯形であり、前記
剛性内歯車の歯形は転位係数xを有する転位歯形であ
り、前記可撓性外歯車の歯形は、その軸心に沿って次の
3式によって前記転位係数xに応じて定まる転位係数
に従って連続的に転位させた転位歯形であることを
特徴とする撓み噛み合い式歯車装置。 但し、x:可撓性外歯車の転位係数 x:剛性内歯車の転位係数 z:剛性内歯車の歯数 k :可撓性外歯車の任意の軸直角断面の撓みを示す係
数 n :剛性内歯車と可撓性外歯車の歯数差の1/2 R :撓み噛み合い式歯車装置の減速比 α:基準圧力角 χ :無転位の時の歯の隙間を表す補助角 φ :歯形の接触点の位置に関する補助角 j :可撓性外歯車の歯底リム厚の1/2と歯元のたけ
の和
1. A rigid internal gear, a cup-shaped flexible external gear arranged inside the rigid internal gear, and the external gear is bent in the radial direction to partially engage with the rigid internal gear. In a flexible meshing gear device having a wave generator that causes relative rotation between the rigid internal gear and the flexible external gear by moving the meshing position in the circumferential direction, the rigid internal gear and the flexible internal gear are provided. The tooth profile of the flexible external gear is an involute tooth profile having the same reference pressure angle, the tooth profile of the rigid internal gear is a transition tooth profile having a transition coefficient x c , and the tooth profile of the flexible external gear is its axis. flexible meshing type gear device, characterized in that along the heart is a dislocation tooth profile was continuously rearrangement according addendum modification coefficient x f determined according to the addendum modification coefficient x c by the following formula 3. However, x f: addendum modification coefficient x c of the flexible external gear: shift coefficient of the rigid internal gear z c: number of teeth k of the rigid internal gear: coefficient showing the deflection of any cross section perpendicular to the shaft of the flexible external gear n : 1/2 the number of teeth difference between the rigid internal gear and the flexible external gear R: Reduction ratio of the flexible meshing gear device α o : Reference pressure angle χ: Auxiliary angle φ representing the tooth gap when there is no dislocation Auxiliary angle regarding the position of the contact point of the tooth profile j: 1/2 of the root rim thickness of the flexible external gear and the sum of the tooth roots
【請求項2】 請求項1において、前記剛性内歯車の歯
形は、一定転位の転位歯形であることを特徴とする撓み
噛み合い式歯車装置。
2. The flexible mesh type gear device according to claim 1, wherein the tooth profile of the rigid internal gear is a dislocation tooth profile with a constant dislocation.
JP03351133A 1991-11-07 1991-11-07 Flexible mesh gear Expired - Lifetime JP3132777B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03351133A JP3132777B2 (en) 1991-11-07 1991-11-07 Flexible mesh gear

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03351133A JP3132777B2 (en) 1991-11-07 1991-11-07 Flexible mesh gear

Publications (2)

Publication Number Publication Date
JPH05209655A true JPH05209655A (en) 1993-08-20
JP3132777B2 JP3132777B2 (en) 2001-02-05

Family

ID=18415273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03351133A Expired - Lifetime JP3132777B2 (en) 1991-11-07 1991-11-07 Flexible mesh gear

Country Status (1)

Country Link
JP (1) JP3132777B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997022818A1 (en) 1995-12-15 1997-06-26 Harmonic Drive Systems Inc. Deflection mesh type gear having non-interference wide-range engaging tooth profile
WO1999028651A1 (en) 1997-11-28 1999-06-10 Harmonic Drive Systems Inc. Flexible meshing type gearing having three-dimensional, non-interactive wide-area intermeshing tooth profile
US6012347A (en) * 1996-11-05 2000-01-11 Toyota Jidosha Kabushiki Kaisha Power steering apparatus
WO2002079667A1 (en) * 2001-03-29 2002-10-10 Harmonic Drive Systems Inc. Wave gearing with three-dimensional deviatedly meshed tooth profile
WO2007115510A1 (en) * 2006-04-12 2007-10-18 Beijing Kemei Harmonic Drive And Precision Machinery Co. A harmonic drive device having three-dimensional modified involute tooth profile
JP2011144916A (en) * 2010-01-18 2011-07-28 Harmonic Drive Systems Inc Wave gear device having three-dimensionally contacting positive shifted tooth profile
WO2012104927A1 (en) * 2011-02-04 2012-08-09 株式会社ハーモニック・ドライブ・システムズ Wave gear device having three-dimensionally contacting involute positive shifted tooth profile
CN102678881A (en) * 2012-05-31 2012-09-19 哈尔滨工业大学 Rigid gear and flexible gear which are used for short-tube flexible-gear harmonic speed reducer and machining process thereof
JP2012251588A (en) * 2011-06-01 2012-12-20 Harmonic Drive Systems Inc Wave gear device provided with tapered flexible externally toothed gear
WO2019077719A1 (en) * 2017-10-19 2019-04-25 株式会社ハーモニック・ドライブ・システムズ Wave gear device having 3-dimensional meshing tooth profile
CN110185745A (en) * 2018-02-23 2019-08-30 住友重机械工业株式会社 The manufacturing method of gear device series and its construction method and geared system group
CN113586687A (en) * 2021-07-28 2021-11-02 珠海格力电器股份有限公司 Flexible gear and harmonic speed reducer suitable for high-speed working condition

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997022818A1 (en) 1995-12-15 1997-06-26 Harmonic Drive Systems Inc. Deflection mesh type gear having non-interference wide-range engaging tooth profile
US5918508A (en) * 1995-12-15 1999-07-06 Harmonic Drive Systems, Inc. Strain wave gearing having a non-interfering wide mesh range tooth profile
US6012347A (en) * 1996-11-05 2000-01-11 Toyota Jidosha Kabushiki Kaisha Power steering apparatus
WO1999028651A1 (en) 1997-11-28 1999-06-10 Harmonic Drive Systems Inc. Flexible meshing type gearing having three-dimensional, non-interactive wide-area intermeshing tooth profile
US6167783B1 (en) 1997-11-28 2001-01-02 Harmonic Drive Systems, Inc. Flexible meshing type gearing having three-dimensional, non-interactive wide-area intermeshing tooth profile
WO2002079667A1 (en) * 2001-03-29 2002-10-10 Harmonic Drive Systems Inc. Wave gearing with three-dimensional deviatedly meshed tooth profile
US6799489B2 (en) 2001-03-29 2004-10-05 Harmonic Drive Systems Inc. Wave gearing with three-dimensional deviatedly meshed tooth profile
WO2007115510A1 (en) * 2006-04-12 2007-10-18 Beijing Kemei Harmonic Drive And Precision Machinery Co. A harmonic drive device having three-dimensional modified involute tooth profile
CN100346091C (en) * 2006-04-12 2007-10-31 北京市克美谐波传动精密机械公司 Three-dimensional harmonic wave gear with involute tooth outline
JP2011144916A (en) * 2010-01-18 2011-07-28 Harmonic Drive Systems Inc Wave gear device having three-dimensionally contacting positive shifted tooth profile
WO2012104927A1 (en) * 2011-02-04 2012-08-09 株式会社ハーモニック・ドライブ・システムズ Wave gear device having three-dimensionally contacting involute positive shifted tooth profile
KR101411588B1 (en) * 2011-02-04 2014-06-25 가부시키가이샤 하모닉 드라이브 시스템즈 Wave gear device having three-dimensional contacting involute positive deflection tooth profile
US9057421B2 (en) 2011-02-04 2015-06-16 Harmonic Drive Systems Inc. Wave gear device having three-dimensional contacting involute positive deflection tooth profile
JP2012251588A (en) * 2011-06-01 2012-12-20 Harmonic Drive Systems Inc Wave gear device provided with tapered flexible externally toothed gear
DE102012209201B4 (en) 2011-06-01 2024-04-18 Harmonic Drive Systems Inc. Wave gear with a tapered, flexible, externally toothed gear
CN102678881A (en) * 2012-05-31 2012-09-19 哈尔滨工业大学 Rigid gear and flexible gear which are used for short-tube flexible-gear harmonic speed reducer and machining process thereof
CN102678881B (en) * 2012-05-31 2015-04-15 哈尔滨工业大学 Rigid gear and flexible gear which are used for short-tube flexible-gear harmonic speed reducer and machining process thereof
WO2019077719A1 (en) * 2017-10-19 2019-04-25 株式会社ハーモニック・ドライブ・システムズ Wave gear device having 3-dimensional meshing tooth profile
US10823259B2 (en) 2017-10-19 2020-11-03 Harmonic Drive Systems Inc. Strain wave gearing having 3-dimensional meshing tooth profile
CN110185745A (en) * 2018-02-23 2019-08-30 住友重机械工业株式会社 The manufacturing method of gear device series and its construction method and geared system group
CN113586687A (en) * 2021-07-28 2021-11-02 珠海格力电器股份有限公司 Flexible gear and harmonic speed reducer suitable for high-speed working condition

Also Published As

Publication number Publication date
JP3132777B2 (en) 2001-02-05

Similar Documents

Publication Publication Date Title
EP0309197B1 (en) Strain wave gearing
US4823638A (en) Tooth profile of spline of strain wave gearing
JP5275265B2 (en) Wave gear device having positive deviation tooth profile with three-dimensional contact
JP3739017B2 (en) Flexible meshing gear system with non-interfering wide meshing teeth
JPH05209655A (en) Deflection engagement type gear device
US9534681B2 (en) Wave gear device having tapered flexible external gear
EP0501522B1 (en) Wave gear drive
KR100340814B1 (en) Flexible meshing type gear having a negative deflection over-running tooth profile
EP3306132B1 (en) Strain wave gearing device with compound meshing that involves congruity of tooth surfaces
EP0622566A1 (en) Flexing contact type gears of non-profile-shifted two-circular-arc composite tooth profile
JPWO2017122362A1 (en) 2 stress pure separation wave gear device
JP2018204694A (en) Wave gear device capable of complete separation of two types of stress
US10174825B2 (en) Passing-type-meshing negative-deflection strain wave gearing
JPH05172195A (en) Forming method for three-dimensional non-shifting tooth profile of flexible meshing type gearing
JP6104474B1 (en) 2 stress separation wave gear device
EP0161072A1 (en) Mechanical reduction gear system
JP2612591B2 (en) Deflection gears
JP3323502B2 (en) Non-displacement two-arc composite tooth profile flexing gear system
KR100224512B1 (en) Wave gear drive
JP7203275B2 (en) Strain wave gearing with three-dimensional tooth profile
JP2771415B2 (en) Flexible mesh gear meshing structure
WO2022254586A1 (en) Tooth profile designing method for strain wave gear device
JP2612585B2 (en) Flexible mesh gear
JPS6213867A (en) Addendum wn gear through involute referential rack profile
KR100245287B1 (en) Tertiary negative-deflection flexing contact gears of non-profile-shifted tooth profile

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071124

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081124

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091124

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101124

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20111124

EXPY Cancellation because of completion of term