JP2011144427A - Cold rolled steel sheet excellent in formability and shape-fixability after aging, and producing method therefor - Google Patents

Cold rolled steel sheet excellent in formability and shape-fixability after aging, and producing method therefor Download PDF

Info

Publication number
JP2011144427A
JP2011144427A JP2010006553A JP2010006553A JP2011144427A JP 2011144427 A JP2011144427 A JP 2011144427A JP 2010006553 A JP2010006553 A JP 2010006553A JP 2010006553 A JP2010006553 A JP 2010006553A JP 2011144427 A JP2011144427 A JP 2011144427A
Authority
JP
Japan
Prior art keywords
temperature
steel sheet
aging
less
cold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010006553A
Other languages
Japanese (ja)
Other versions
JP5018900B2 (en
Inventor
Taro Kizu
太郎 木津
Hideko Yasuhara
英子 安原
Kazuhiro Hanazawa
和浩 花澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2010006553A priority Critical patent/JP5018900B2/en
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to KR1020127018165A priority patent/KR20120094125A/en
Priority to MYPI2012002746A priority patent/MY161948A/en
Priority to PCT/JP2011/050588 priority patent/WO2011087109A1/en
Priority to CN201180006115.6A priority patent/CN102712974B/en
Priority to MX2012007914A priority patent/MX353920B/en
Priority to TW100101211A priority patent/TWI429758B/en
Publication of JP2011144427A publication Critical patent/JP2011144427A/en
Application granted granted Critical
Publication of JP5018900B2 publication Critical patent/JP5018900B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0436Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • C21D8/0473Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/34Pretreatment of metallic surfaces to be electroplated
    • C25D5/36Pretreatment of metallic surfaces to be electroplated of iron or steel
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • C21D9/48Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals deep-drawing sheets

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Coating With Molten Metal (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cold-rolled steel sheet excellent in a formability and a shape-fixability after aging, and a producing method therefor. <P>SOLUTION: The cold-rolled steel sheet has a composition containing 0.01-0.05% C, &le;0.05% Si, 0.1-0.5% Mn, &le;0.05% P, &le;0.02% S, 0.02-0.10% Al, &le;0.005% N and the balance Fe with inevitable impurities, and has a structure consisting mainly of a ferrite-phase, wherein the average grain diameter of the ferrite-phase is 10-20 &mu;m and the standard deviation &sigma;<SB>A</SB>of natural logarithm to the value of the individual ferrite grain diameter divided with average value is &ge;0.30. In order to obtain the steel sheet, when an annealing is applied after cold-rolling, the steel sheet is heated with 1-30&deg;C/s the average heating speed in the temperature range from 600&deg;C to the soaking temperature, and is subjected to soaking treatment at the soaking temperature of 800-900&deg;C, and for the soaking time of 30-200s, and is cooled at the average cooling speed of 3-30&deg;C/s in the temperature region from the soaking temperature to 550&deg;C, and held at 500-300&deg;C for &ge;30s, and the strain of elongation of 0.5-2.0% is applied at the room temperature. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、大型液晶テレビのバックライトシャーシなど、大型の平板形状をした部品の部材として最適な、時効後の成形性及び形状凍結性に優れた冷延鋼板とその製造方法に関する。   The present invention relates to a cold-rolled steel sheet excellent in formability and shape freezing property after aging, which is optimal as a member of a large flat plate-like component such as a backlight chassis of a large-sized liquid crystal television, and a manufacturing method thereof.

薄型液晶TVやOA機器などには、曲げ・張出し成形を主体とする加工により成形された平板状の部品が数多く使われている。そして、これらの部品に用いる部材(薄鋼板)を製造するにあたっては、板の形状を矯正したり降伏点伸びを消したりするために、調質圧延において伸び率数%程度の軽圧下がおこなわれる。しかし、調質圧延後に時間が経過すると、降伏点伸びの復活や延性低下など、いわゆる歪み時効と呼ばれる特性の劣化がおこってしまう。特に、近年では、コスト低減のため、コイルを輸出して海外でプレス加工をおこなうケースが非常に多くなってきており、コイル製造からプレス加工まで時間がかかるため、ひずみ時効は避けられなくなってきている。また、国内であっても、コイルの流通過程で時間がかかったり、あるいは、コイルを在庫として抱えたりした場合などには、鋼板は歪み時効がおきてしまう。このように、歪み時効がおこって鋼板の特性が劣化した場合には、プレス条件や金型などの再調整をおこなう必要があり、コスト増の要因の1つとなっている。   Thin flat panel TVs and office automation equipment use a large number of flat-plate parts formed by processing mainly bending and stretching. And in manufacturing the member (thin steel plate) used for these parts, in order to correct the shape of the plate or to eliminate the yield point elongation, a light reduction of about several percent elongation is performed in the temper rolling. . However, when time elapses after temper rolling, a characteristic called so-called strain aging is deteriorated, such as recovery of yield point elongation and reduction of ductility. In particular, in recent years, in order to reduce costs, the number of cases in which coils are exported and pressed overseas has become extremely large, and since it takes time from coil manufacturing to pressing, strain aging has become unavoidable. Yes. Further, even in Japan, steel sheets are strain-aged when it takes time in the coil distribution process or when the coils are stocked. Thus, when strain aging occurs and the characteristics of the steel sheet deteriorate, it is necessary to readjust the pressing conditions and the mold, which is one of the causes of cost increase.

さらに、最近では、コスト削減のため、部材の板厚を薄くして鋼板の使用量を削減したいという要望が大きい。板厚を薄くすると、加工時の形状凍結性が劣化したり、加工時に割れが発生したりするなどの問題が生じ易くなる。さらに、薄肉化にともなう部品剛性の低下を補完するため、ビードを追加したり、曲げ加工などにより閉断面構造に近づけたりなど、部品形状が変更される場合もあり、益々加工条件が厳しくなり、その結果、プレス時の割れや形状不良が助長されてしまう。特に、曲げ加工の場合には、稜線反りと呼ばれる形状不良が発生し、部品が反るなどの問題が生じる。また、張出し加工の場合には、張出し高さが大きい場合に割れが生じたり、しわ抑えが弱い場合にしわが生じたりするなどの問題が生じる。   Furthermore, recently, there is a great demand for reducing the amount of steel sheets used by reducing the thickness of the members in order to reduce costs. When the plate thickness is reduced, problems such as deterioration of shape freezing property during processing and occurrence of cracks during processing are likely to occur. Furthermore, in order to compensate for the decrease in part rigidity due to thinning, the shape of the part may be changed, such as adding a bead or being close to the closed cross-sectional structure by bending, etc., and the processing conditions become increasingly severe. As a result, cracking and shape defects during pressing are promoted. In particular, in the case of bending, a shape defect called a ridge line warp occurs, causing problems such as part warping. Further, in the case of overhang processing, problems such as cracks occur when the overhang height is large, and wrinkles occur when wrinkle suppression is weak.

このような稜線反りに対してはr値を低くすることが有利である。しかし、r値を低くすることは伸びの低下を招くことから、張出し加工に対しては不利に働く。さらに、歪み時効により降伏点伸びの復活や延性低下が起こると、プレス条件の変更等では割れやしわなどに対する対応ができなくなってしまう。   It is advantageous to lower the r value for such ridge warpage. However, lowering the r value causes a decrease in elongation, which is disadvantageous for overhanging. Furthermore, when the yield point elongation is revived or the ductility is lowered due to strain aging, it becomes impossible to cope with cracks, wrinkles, etc. by changing the press conditions.

歪み時効は、鋼板中に固溶するCやNによって引き起こされることが知られており、このC、NをTi、Nbなどの炭窒化物生成元素を添加して析出物として固定したIF鋼は、歪み時効の起こりにくい鋼板として知られる。しかし、従来からあるIF鋼は、製造コストが高い上に、r値が高く、曲げ成形を含む場合には不利である。
以上から、時効後も低r値で降伏点伸びが小さくかつ伸びの高い廉価な部材(薄鋼板)に対する要望は非常に大きい。
Strain aging is known to be caused by C and N dissolved in the steel sheet, and IF steel with C and N added as a precipitate by adding carbonitride-generating elements such as Ti and Nb Known as a steel plate that is less susceptible to strain aging. However, the conventional IF steel has a high manufacturing cost and a high r value, which is disadvantageous when it includes bending.
From the above, there is a great demand for an inexpensive member (thin steel plate) having a low r value, low yield point elongation and high elongation even after aging.

r値が低く形状凍結性に優れた鋼板として、例えば、特許文献1には、熱間圧延における仕上圧延において、Ar3〜(Ar3+100)の圧下率を25%以上、圧延時の摩擦係数が0.2以下としてAr3以上で仕上圧延を終了するか、Ar3以下の圧下率を25%以上、圧延時の摩擦係数を0.2以下として仕上圧延をおこなうことで、集合組織を制御するとともに、圧延方向か圧延直角方向のr値のうち、少なくとも1つを0.7以下とする鋼板が開示されている。
特許文献2には、板面に平行な{100}面と{111}面の比が1.0以上である形状凍結性に優れた自動車用フェライト系薄鋼板が開示されている。
特許文献3には、形状凍結性に優れたフェライト系薄鋼板を得るために、{100}<011>〜{223}<110>方位群の強度と{112}<110>、{554}<225>、{111}<112>、{111}<110>の各方位の強度を制御すること、圧延方向のr値および圧延方向と直角方向のr値のうち、少なくとも一つを0.7以下にすることが開示されている。
As a steel sheet having a low r value and excellent shape freezing property, for example, Patent Document 1 discloses that in finish rolling in hot rolling, the reduction ratio of Ar3 to (Ar3 + 100) is 25% or more and the friction coefficient during rolling is as follows. Finish rolling with Ar3 or less at 0.2 or less, or finish rolling with a rolling reduction of Ar3 or less at 25% or more and a friction coefficient during rolling of 0.2 or less, thereby controlling the texture and rolling in the rolling direction. A steel sheet is disclosed in which at least one of r values in the perpendicular direction is 0.7 or less.
Patent Document 2 discloses a ferritic steel sheet for automobiles excellent in shape freezing property, in which the ratio of {100} plane and {111} plane parallel to the plate surface is 1.0 or more.
In Patent Document 3, the strength of {100} <011> to {223} <110> orientation group and {112} <110>, {554} <225>, {111} <112>, {111} <110>, controlling the strength of each direction, at least one of the r value in the rolling direction and the r value in the direction perpendicular to the rolling direction is 0.7 or less Is disclosed.

特許第3532138号公報Japanese Patent No. 3532138 特開2008−255491号公報JP 2008-255491 A 特開2003−55739号公報JP 2003-55739 A

しかしながら、特許文献1〜3に記載の鋼板は、時効後に加工性が低下し、プレス割れなどの問題が発生してしまう。   However, the steel sheets described in Patent Documents 1 to 3 have poor workability after aging, and problems such as press cracking occur.

本発明は、かかる事情に鑑み、時効後の成形性及び形状凍結性に優れた冷延鋼板およびその製造方法を提供することを目的とする。   In view of such circumstances, an object of the present invention is to provide a cold-rolled steel sheet excellent in formability and shape freezing property after aging, and a method for producing the same.

発明者らは、上記課題を解決するため、鋭意研究調査を重ねた。
その結果、圧延方向、圧延45°方向、圧延直角方向の平均のr値を1.2以下、時効後の伸びを40%以上、時効後の降伏点伸びを1.0%以下とすることで、時効後も成形性と形状凍結性に優れる冷延鋼板が得られることを見いだした。なお、ここで、平均のr値(r)とは、圧延方向、圧延45°方向、圧延直角方向のr値をそれぞれ、rL、rD、rCとしたとき、r=(rL+2rD+rC)/4である。
また、本発明により時効後の成形性及び形状凍結性が確保できるメカニズムは以下のように考えられる。一般的に、降伏点伸びを消すために、室温で歪を加え可動転位を導入する方法がとられる。しかし、歪量が小さい場合、時効により可動転位がC、Nで固着されてしまい、降伏点伸びが復活してしまう。一方、室温での歪量を大きくすると、降伏点が大きくなるとともに伸びが低下することから成形性が低下してしまう。そこで、本発明では、フェライト粒径の分布に着目した。フェライト粒径の分布を大きくすることで、少ない歪量でも、歪の導入位置を不均一にして歪を集中させることができる。その結果、時効後も降伏点伸びの発生を抑制できる。また、歪導入の少ない粒は、時効による硬化も少ないことから、伸びの低下も抑制できる。そして、このような、歪の不均一な導入は、フェライト粒径分布の標準偏差を大きくすることで達成できる。
また、上記のようなr値が1.2以下、時効後の伸びが40%以上、時効後の降伏点伸びが1.0%以下である冷延鋼板は、熱間圧延においてフェライト域で仕上圧延を終了し低温で巻き取ることで熱延段階では未再結晶とし、焼鈍において熱履歴を制御することでフェライト粒径と粒径分布を制御するとともに冷却後の歪量を制御することで得られる。
本発明は、以上の知見に基づいてなされたものであり、その要旨は以下のとおりである。
[1]質量%で、C: 0.01〜0.05%、Si:0.05%以下、Mn: 0.1〜0.5%、P:0.05%以下、S:0.02%以下、Al:0.02〜0.10%、N:0.005%以下で、残部が鉄および不可避不純物である組成とフェライト相主体の組織を有し、かつ、該フェライト相の平均粒径が10〜20μmで、個々のフェライト粒径を平均値で割った値の自然対数の標準偏差をσAとしたとき、σA≧0.30であることを特徴とする時効後の成形性及び形状凍結性に優れた冷延鋼板。
[2]前記[1]において、さらに、質量%で、Ti:0.005〜0.02%、B:0.0003〜0.0030%のいずれか1種以上を含有することを特徴とする時効後の成形性及び形状凍結性に優れた冷延鋼板。
[3]前記[1]または[2]において、鋼板表面に亜鉛系めっき層を有することを特徴とする時効後の成形性及び形状凍結性に優れた冷延鋼板。
[4]前記[1]または前記[2]に記載の組成からなる鋼スラブを、仕上圧延の最終出側温度を(Ar3-100℃)〜Ar3℃、巻取り温度を550℃未満で熱間圧延し、次いで、酸洗し、40〜80%の圧下率で冷間圧延を行った後、焼鈍を行うに際し、600℃から均熱温度までの温度域を1〜30℃/sの平均加熱速度で加熱し、前記均熱温度を800〜900℃、均熱時間を30〜200sとして均熱処理し、前記均熱温度から550℃までの温度域を3〜30℃/sの平均冷却速度で冷却し、500〜300℃で30s以上保持し、室温で伸び率:0.5〜2.0%の歪みを加えることを特徴とする時効後の成形性及び形状凍結性に優れた冷延鋼板の製造方法。
[5]前記[4]において、前記均熱処理後、前記均熱温度から550℃までの温度域を3〜30℃/sの平均冷却速度で冷却し、引き続き500℃以下の温度域に冷却し、次いで500〜550℃の温度域に再加熱し、その後500〜300℃で30s以上保持し、室温で伸び率:0.5〜2.0%の歪みを加えることを特徴とする時効後の成形性及び形状凍結性に優れた冷延鋼板の製造方法。
なお、本明細書において、鋼の成分を示す%は、すべて質量%である。また、本発明が対象とする冷延鋼板には、冷延鋼板に亜鉛系めっき処理(例えば、電気亜鉛系めっき処理、溶融亜鉛系めっき処理、合金化溶融亜鉛めっき処理)を施す鋼板も含むものである。さらに、その上に化成処理などにより皮膜をつけた鋼板をも含むものである。
Inventors repeated earnest research investigation in order to solve the said subject.
As a result, the average r value in the rolling direction, the 45 ° direction of rolling, and the direction perpendicular to the rolling direction is 1.2 or less, the elongation after aging is 40% or more, and the yield point elongation after aging is 1.0% or less. It has been found that a cold-rolled steel sheet having excellent formability and shape freezing property can be obtained. Here, the average r value (r m) is the rolling direction, the rolling direction of 45 °, respectively r values in the rolling direction perpendicular when the r L, r D, r C , r m = (r L + 2r D + r C ) / 4.
Moreover, the mechanism which can ensure the moldability and shape freezing property after aging by this invention is considered as follows. In general, in order to eliminate the yield point elongation, a method of introducing strain at a room temperature and applying strain is employed. However, when the amount of strain is small, the movable dislocation is fixed by C and N due to aging, and the yield point elongation is restored. On the other hand, when the amount of strain at room temperature is increased, the yield point is increased and the elongation is reduced, so that the formability is lowered. Therefore, in the present invention, attention is paid to the distribution of the ferrite particle diameter. By increasing the distribution of the ferrite grain size, even with a small amount of strain, the strain can be concentrated by making the strain introduction position non-uniform. As a result, yield point elongation can be suppressed even after aging. In addition, since the grains with little strain introduction have little hardening due to aging, a decrease in elongation can be suppressed. Such non-uniform introduction of strain can be achieved by increasing the standard deviation of the ferrite grain size distribution.
In addition, the cold rolled steel sheet having an r value of 1.2 or less, an elongation after aging of 40% or more, and a yield point elongation after aging of 1.0% or less has finished finish rolling in the ferrite region in hot rolling. It is obtained by unwinding at a low temperature so that it is not recrystallized in the hot rolling stage, and controlling the thermal history during annealing to control the ferrite grain size and grain size distribution and the strain after cooling.
This invention is made | formed based on the above knowledge, The summary is as follows.
[1] By mass%, C: 0.01 to 0.05%, Si: 0.05% or less, Mn: 0.1 to 0.5%, P: 0.05% or less, S: 0.02% or less, Al: 0.02 to 0.10%, N: 0.005% In the following, the balance is iron and inevitable impurities and a structure mainly composed of ferrite phase, and the average particle diameter of the ferrite phase is 10 to 20 μm, and the individual ferrite particle diameters are divided by the average value. A cold-rolled steel sheet having excellent formability and shape freezing property after aging, wherein σ A ≧ 0.30, where σ A is the standard deviation of natural logarithm.
[2] Formability and shape freezing after aging characterized in that, in [1], further containing at least one of Ti: 0.005 to 0.02% and B: 0.0003 to 0.0030% by mass% Cold-rolled steel sheet with excellent properties.
[3] A cold-rolled steel sheet excellent in formability and shape freezing property after aging, characterized in that in [1] or [2] above, a zinc-based plating layer is provided on the steel sheet surface.
[4] A steel slab having the composition described in [1] or [2] above is hot when the final delivery temperature of finish rolling is (Ar3-100 ° C) to Ar3 ° C, and the coiling temperature is less than 550 ° C. After rolling, pickling, cold rolling at a rolling reduction of 40-80%, and annealing, the temperature range from 600 ° C to the soaking temperature is 1-30 ° C / s average heating Heating at a rate, soaking temperature is 800-900 ° C, soaking time is 30-200s, temperature range from the soaking temperature to 550 ° C at an average cooling rate of 3-30 ° C / s A method for producing a cold-rolled steel sheet having excellent formability and shape freezing property after aging, characterized by cooling, holding at 500 to 300 ° C. for 30 seconds or more, and applying a strain of 0.5 to 2.0% elongation at room temperature.
[5] In the above [4], after the soaking, the temperature range from the soaking temperature to 550 ° C. is cooled at an average cooling rate of 3 to 30 ° C./s, and subsequently cooled to a temperature range of 500 ° C. or less. Then, it is reheated to a temperature range of 500 to 550 ° C., then held at 500 to 300 ° C. for 30 s or more, and an elongation rate of 0.5 to 2.0% is applied at room temperature. A method for producing a cold-rolled steel sheet having excellent freezing properties.
In addition, in this specification,% which shows the component of steel is mass% altogether. Further, the cold-rolled steel sheet targeted by the present invention includes a steel sheet for subjecting the cold-rolled steel sheet to a zinc-based plating treatment (for example, electrogalvanizing treatment, hot-dip galvanizing treatment, alloying hot-dip galvanizing treatment). . Further, it includes a steel plate having a film formed thereon by chemical conversion treatment or the like.

また、本発明の鋼板は、大型TVのバックライトシャーシ、冷蔵庫のパネルや、エアコン室外機など、平面部と曲げ、張り出し、軽度な絞り加工等を施す家電用途一般の部材として広く用いることができる。さらに、本発明を用いれば、例えば、板厚0.8mmの鋼板で、650×500mm程度(32V型)以上のバックライトシャーシを製造可能である。   Further, the steel sheet of the present invention can be widely used as a general member for home appliances that bends, projects, and slightly draws flat surfaces such as a large-screen TV backlight chassis, refrigerator panel, and air conditioner outdoor unit. . Furthermore, if this invention is used, the backlight chassis about 650x500mm (32V type) or more can be manufactured, for example with the steel plate of plate thickness 0.8mm.

本発明によれば、時効後の成形性及び形状凍結性に優れた冷延鋼板が得られる。これにより大型の部品に要求される平板形状を確保可能であり、大型液晶テレビのバックライトシャーシなどの部材が製造できる。   According to the present invention, a cold-rolled steel sheet excellent in formability after aging and shape freezing property can be obtained. Thereby, a flat plate shape required for a large component can be secured, and a member such as a backlight chassis of a large liquid crystal television can be manufactured.

時効後の降伏伸び(YP−El)と伸び(El)におよぼすσの影響を示す図である。It is a figure which shows the influence of (sigma) A on the yield elongation (YP-El) and elongation (El) after aging. σAにおよぼす(仕上圧延の最終出側温度(FT)-Ar3)の影響を示す図である。It shows the effect of σ on A (the finish rolling final delivery temperature (FT) -Ar3). σAにおよぼす巻取り温度(CT)の影響を示す図である。It is a figure which shows the influence of coiling temperature (CT) which has on (sigma) A.

本発明の鋼板の化学成分について説明する。なお、以下の説明において、成分元素の含有量%は全て質量%を意味するものである。   The chemical components of the steel sheet of the present invention will be described. In the following description, the content% of component elements means mass%.

C:0.01〜0.05%
Cはセメンタイトを形成し、固溶Cを低減し、降伏強度をさげることができる。Cが少ないとセメンタイトの生成が抑制され、固溶Cが増加することで、時効硬化しやすくなるとともに、熱間圧延において、仕上げスタンド内でオーステナイトからフェライトに変態する場合、2相域が小さいために変形抵抗が急激に低下し、圧延が不安定となってしまう。したがって、Cは0.01%以上とする必要がある。一方、Cが多くなると、粒成長が抑制されることで細粒化するため、鋼板が硬質化して伸びが低下する。したがって、Cは0.05%以下とする必要がある。
C: 0.01-0.05%
C forms cementite, can reduce solute C, and can reduce yield strength. When there is little C, the formation of cementite is suppressed, and solid solution C increases, making it easier to age harden, and in hot rolling, when transforming from austenite to ferrite in the finishing stand, the two-phase region is small In addition, the deformation resistance rapidly decreases, and the rolling becomes unstable. Therefore, C needs to be 0.01% or more. On the other hand, when C is increased, the grain growth is suppressed and the grain size is reduced, so that the steel sheet is hardened and the elongation is lowered. Therefore, C needs to be 0.05% or less.

Si:0.05%以下
Siは、多量に添加すると、硬質化により成形性が劣化したり、焼鈍時のSi酸化物の生成によりメッキ性が阻害されたりしてしまう。したがって、Siは0.05%以下とする必要がある。
Si: 0.05% or less
When Si is added in a large amount, the formability deteriorates due to hardening, and the plating property is hindered due to the formation of Si oxide during annealing. Therefore, Si needs to be 0.05% or less.

Mn:0.1〜0.5%
Mnは有害な鋼中SをMnSとして無害化するため、0.1%以上とする必要がある。一方、多量のMnは、固溶強化や低温変態相の生成による硬質化により成形性を劣化させる。また、Mnは変態点を低下させ、熱延におけるフェライト域での圧延を困難する。さらに、焼鈍時、フェライトの再結晶を抑制することで組織が細粒化してしまう。したがって、Mnは0.5%以下とする必要があり、好ましくは0.3%以下である。
Mn: 0.1-0.5%
Mn needs to be 0.1% or more in order to detoxify harmful steel S as MnS. On the other hand, a large amount of Mn deteriorates formability due to hardening by solid solution strengthening or generation of a low temperature transformation phase. In addition, Mn lowers the transformation point and makes rolling in the ferrite region in hot rolling difficult. In addition, the structure becomes finer by suppressing the recrystallization of ferrite during annealing. Therefore, Mn needs to be 0.5% or less, preferably 0.3% or less.

P:0.05%以下
Pは粒界に偏析して、延性や靭性を劣化させることから、0.05%以下とする必要がある。好ましくは0.03%以下である。
P: 0.05% or less
P segregates at the grain boundary and deteriorates ductility and toughness, so it is necessary to make it 0.05% or less. Preferably it is 0.03% or less.

S:0.02%以下
Sは、熱間での延性を著しく低下させることで、熱間割れを誘発し、表面性状を著しく劣化させる。さらに、Sは、強度にほとんど寄与しないばかりか、不純物元素として粗大なMnSを形成することにより、延性を低下させる。これらの問題はS量が0.02%を超えると顕著となり、極力低減することが望ましい。したがって、S量は0.02%以下とする必要がある。
S: 0.02% or less
S significantly decreases the hot ductility, thereby inducing hot cracking and remarkably deteriorating the surface properties. Further, S hardly contributes to the strength, but also reduces the ductility by forming coarse MnS as an impurity element. These problems become significant when the S content exceeds 0.02%, and it is desirable to reduce them as much as possible. Therefore, the amount of S needs to be 0.02% or less.

Al:0.02〜0.10%
Alは、Nを窒化物として固定することで、固溶Nによる時効硬化を抑制することができる。このような効果を得るためにはAlは0.02%以上とする必要がある。一方、多量のAl添加は、強度を上昇させ成形性を低下させるだけでなくコストの上昇を伴う。したがって、Alは0.10%以下とする必要がある。
Al: 0.02-0.10%
Al can suppress age hardening due to solute N by fixing N as a nitride. In order to obtain such an effect, Al needs to be 0.02% or more. On the other hand, the addition of a large amount of Al not only increases strength and decreases formability, but also increases costs. Therefore, Al needs to be 0.10% or less.

N:0.005%以下
Nは多量に含有すると、熱間圧延中にスラブ割れを伴い、表面疵が発生する恐れがある。また、冷延、焼鈍後に固溶Nとして存在する場合には、時効硬化を引き起こしてしまう。したがって、Nは0.005%以下とする必要がある。
N: 0.005% or less
When N is contained in a large amount, there is a risk that surface flaws occur due to slab cracking during hot rolling. Moreover, when it exists as solid solution N after cold rolling and annealing, age hardening will be caused. Therefore, N must be 0.005% or less.

上記の元素に加えて、本発明では、時効性と形状凍結性を改善することを目的としてTi、Bのうちの1種以上をTi:0.005〜0.02%、B:0.0003〜0.0030%の範囲内で含有することができる。   In addition to the above elements, in the present invention, for the purpose of improving aging and shape freezing property, at least one of Ti and B is within the range of Ti: 0.005 to 0.02% and B: 0.0003 to 0.0030%. Can be contained.

Ti:0.005〜0.02%
Tiは高温でNと結合して窒化物を形成し、固溶Nを減らすことで時効性を改善することができる。このような効果を得るためには、Tiは0.005%以上とする必要がある。一方、Tiの含有量が多いと、さらにCと結合して炭化物や炭窒化物を生成することから、強度が上昇し、成形性が低下してしまう。したがって、Tiを含有する場合は0.005%以上0.02%以下とする。
Ti: 0.005-0.02%
Ti combines with N at high temperatures to form nitrides, and aging can be improved by reducing the solid solution N. In order to obtain such an effect, Ti needs to be 0.005% or more. On the other hand, if the content of Ti is large, it further combines with C to produce carbides and carbonitrides, so the strength increases and the formability decreases. Therefore, when it contains Ti, it is 0.005% or more and 0.02% or less.

B:0.0003〜0.0030%
Bは高温でNと結合して窒化物を形成し、固溶Nを減らすことで時効性を改善することができる。さらにBは、冷延後の焼鈍過程でフェライトの粒成長を抑制して、r値を制御することで形状凍結性を改善することができる。このような効果を得るには、Bを0.0003%以上とする必要がある。一方、Bが多量に存在する場合には、焼鈍時のフェライトの再結晶を抑制することから、組織が細粒化してしまう。したがって、Bを含有する場合は0.0003%以上0.0030%以下とする。
B: 0.0003 to 0.0030%
B combines with N at a high temperature to form a nitride, and the aging can be improved by reducing the solid solution N. Further, B can improve the shape freezing property by suppressing the grain growth of ferrite in the annealing process after cold rolling and controlling the r value. In order to obtain such an effect, B needs to be 0.0003% or more. On the other hand, when B is present in a large amount, the recrystallization of ferrite during annealing is suppressed, and the structure becomes finer. Therefore, when it contains B, it is 0.0003% or more and 0.0030% or less.

上記以外の成分は、鉄および不可避不純物からなる。不可避不純物としては、例えばスクラップから混入しやすい0.05%以下のCu、Crや、その他0.01%以下のSn、Mo、W、V、Nb、Ni等が挙げられる。   Components other than the above consist of iron and inevitable impurities. Inevitable impurities include, for example, 0.05% or less of Cu and Cr, which are easily mixed from scrap, and 0.01% or less of Sn, Mo, W, V, Nb, Ni and the like.

本発明の鋼板の組織は、フェライト相主体とする。また、フェライト相の平均粒径は10〜20μmである。さらに、個々のフェライト粒径を平均値で割った値の自然対数の標準偏差をσAとしたとき、σA≧0.30である。
成形性を確保するため、軟質なフェライト相を主体とする。ここでいう「フェライト相を主体とする」とは、組織全体に対するフェライト相の割合が面積率で95%以上である場合を言う。フェライト組織を主体とすることで、時効後の伸び40%以上を達成できる。フェライト組織が100%であると伸びが向上するため好ましい。主相以外の第二相としてはセメンタイト相やパーライト相などであり、面積率で5%以下の範囲で含有することができる。5%を超えて多くなると、延性の低下が著しくなる。なお、フェライト相の面積率は、組織観察によりフェライト相とそれ以外の相を識別し、画像処理により求めることができる。
平均粒径は、成形性を確保するため、10μm以上とする。一方、粒径が大きくなると、成形時にオレンジピールなどの外観不良が発生するほか、粒径分布が小さくなることから、平均粒径の上限は20μmとする。なお、平均粒径は切断法により測定し、圧延方向と板厚方向の平均切片長さLl、Lcより、2/[(1/Ll)+(1/Lc)]により算出する。
本発明は、フェライト粒径の分布を大きくすることで、少ない歪量でも、歪の導入位置を不均一にして歪を集中させ、時効後も降伏点伸びの発生を抑制するものである。また、歪導入の少ない粒は、時効による硬化も少ないことから、伸びの低下も抑制するものである。そのためには、個々のフェライト粒径を平均値で割った値の自然対数の標準偏差をσAとしたとき、σA≧0.30とする必要がある。以下、これについて説明する。
実際の鋼板使用を考慮すれば、室温(20℃)での時効期間として6ヶ月を考えれば十分である。図1は、20℃で6ヶ月時効したときの降伏伸び(YP−El)と伸び(El)におよぼすσの影響を示した図である。また、図1は、C: 0.01〜0.05%、Si:0.05%以下、Mn: 0.1〜0.5%、P:0.05%以下、S:0.02%以下、Al:0.02〜0.10%、N:0.005%以下で、残部が鉄および不可避不純物である組成を有し、フェライト相の割合が面積率で95%以上で、かつ、フェライト相の平均粒径が10〜20μmである種々の鋼板を用い、これら鋼板をJIS5号引張試験片に加工して測定したものである。ここで、時効後の降伏伸びを1.0%以下とすることで、成型後のしわを無くすかあるいは目視でほとんど判別できないレベルまで抑えることができる。また、時効後の伸びを40%以上とすることで張り出し成型時の壁角が45°程度まで割れなく成型することができ、ほとんどのプレス成型に対応することができる。図1に示したように、σを0.30以上とすることで、降伏伸びを1.0%以下と小さくするとともに、伸びを40%以上と大きくすることができる。したがって、σは0.30以上とする。
The structure of the steel sheet of the present invention is mainly composed of a ferrite phase. The average particle size of the ferrite phase is 10 to 20 μm. Furthermore, σ A ≧ 0.30, where σ A is the standard deviation of the natural logarithm of the value obtained by dividing the individual ferrite grain size by the average value.
In order to ensure moldability, a soft ferrite phase is mainly used. Here, “mainly composed of a ferrite phase” refers to a case where the ratio of the ferrite phase to the entire structure is 95% or more in terms of area ratio. By mainly using a ferrite structure, it is possible to achieve an elongation after aging of 40% or more. It is preferable that the ferrite structure is 100% because elongation is improved. The second phase other than the main phase is a cementite phase or a pearlite phase, and can be contained in an area ratio of 5% or less. When the content exceeds 5%, the ductility is significantly reduced. The area ratio of the ferrite phase can be obtained by image processing after identifying the ferrite phase and the other phases by structure observation.
The average particle diameter is 10 μm or more in order to ensure moldability. On the other hand, when the particle size is increased, appearance defects such as orange peel are generated during molding and the particle size distribution is reduced, so the upper limit of the average particle size is 20 μm. The average particle diameter is measured by a cutting method, and is calculated by 2 / [(1 / Ll) + (1 / Lc)] from the average section lengths Ll and Lc in the rolling direction and the plate thickness direction.
In the present invention, by increasing the distribution of the ferrite grain size, even with a small amount of strain, the strain introduction position is made non-uniform so that the strain is concentrated, and the occurrence of yield point elongation is suppressed even after aging. In addition, since the grains with less strain introduction are less hardened by aging, they suppress the decrease in elongation. For that purpose, when the standard deviation of the natural logarithm of the value obtained by dividing the individual ferrite grain size by the average value is σ A , it is necessary to satisfy σ A ≧ 0.30. This will be described below.
Considering the actual use of steel sheets, it is sufficient to consider 6 months as the aging period at room temperature (20 ° C). FIG. 1 shows the effect of σ A on yield elongation (YP-El) and elongation (El) when aged at 20 ° C. for 6 months. FIG. 1 shows C: 0.01 to 0.05%, Si: 0.05% or less, Mn: 0.1 to 0.5%, P: 0.05% or less, S: 0.02% or less, Al: 0.02 to 0.10%, N: 0.005% or less. And the balance is iron and inevitable impurities, the ratio of the ferrite phase is 95% or more in area ratio, and the average diameter of the ferrite phase is 10 to 20 μm. JIS No. 5 tensile test piece was measured. Here, by setting the yield elongation after aging to 1.0% or less, wrinkles after molding can be eliminated or suppressed to a level that is hardly discernable visually. Further, by setting the elongation after aging to 40% or more, the wall angle at the time of overhanging molding can be molded without cracking to about 45 °, and it can cope with most press molding. As shown in FIG. 1, by setting σ A to 0.30 or more, the yield elongation can be reduced to 1.0% or less and the elongation can be increased to 40% or more. Therefore, σ A is set to 0.30 or more.

次に本発明の鋼板の製造条件について説明する。本発明においては、上記の組成を有する鋼スラブを、仕上圧延の最終出側温度を(Ar3-100℃)〜Ar3℃、巻取り温度を550℃未満で熱間圧延し、次いで、酸洗し、40〜80%の圧下率で冷間圧延を行った後、焼鈍を行うに際し、600℃から均熱温度までの温度域を1〜30℃/sの平均加熱速度で加熱し、均熱温度を800〜900℃、均熱時間を30〜200sとして均熱処理し、前記均熱温度から550℃までの温度域を3〜30℃/sの平均冷却速度で冷却し、500〜300℃で30s以上保持し、室温で0.5〜2.0%の歪みを加えることにより、フェライト粒径の分布を大きくし、時効後の低い降伏点強度と低いr値と優れた伸びを得ることができる。   Next, manufacturing conditions for the steel sheet of the present invention will be described. In the present invention, the steel slab having the above composition is hot-rolled at a final delivery temperature of finish rolling (Ar3-100 ° C) to Ar3 ° C, a winding temperature of less than 550 ° C, and then pickled. After performing cold rolling at a rolling reduction of 40 to 80%, and annealing, the temperature range from 600 ° C to the soaking temperature is heated at an average heating rate of 1 to 30 ° C / s, and the soaking temperature. Is soaked at 800-900 ° C, soaking time is 30-200s, and the temperature range from the soaking temperature to 550 ° C is cooled at an average cooling rate of 3-30 ° C / s, and at 500-300 ° C for 30s. By maintaining the above and applying a strain of 0.5 to 2.0% at room temperature, the ferrite particle size distribution can be increased, and a low yield point strength after aging, a low r value and excellent elongation can be obtained.

仕上圧延終了温度:(Ar3-100℃)〜Ar3
熱間圧延における仕上圧延をフェライト域で終了することで、フェライト組織に歪を蓄積するとともに、回復が結晶方位によって不均一に進む。その結果、歪の蓄積が不均一となり、焼鈍後のフェライト粒径分布を大きくすることができる。また、結晶方位による不均一が集合組織の発達をランダム化し、r値を低くし、形状凍結性を向上させることができる。したがって、仕上圧延の最終温度は、Ar3以下とする必要がある。より好ましくはAr3未満の温度である。Ar3以下での圧下量はとくに規定しないが好ましくは10%以上、より好ましくは20%以上である。一方、仕上圧延終了温度が低くなると、歪が導入された結晶の回復が進まず、歪の蓄積が不均一にならない。さらに、圧延荷重が大きくなることで、操業上の困難をともなう。したがって、仕上げ圧延終了温度は(Ar3−100℃)以上とする必要がある。
なお、Ar3は以下の式にて求めることができる。
Mn含有量<0.4%の場合:Ar3=880−1000×C含有量(%)
Mn含有量≧0.4%の場合:Ar3=870−1000×C含有量(%)
巻取り温度:550℃未満
仕上圧延後の巻取り温度が高いと、フェライトが再結晶してしまい、不均一な歪を導入することができなくなることから、巻き取り温度は550℃未満とする必要がある。巻取り温度の下限はとくに規定しないが、温度を低くしすぎると、コイルの巻き形状が悪くなるため、300℃以上が好ましい。仕上げ圧延終了から巻取りまでの冷却速度はとくに規定しないが、10℃/S以上が好ましく、より好ましくは30℃/s以上、さらに好ましくは100℃/s以上である。
Finishing finish temperature: (Ar3-100 ℃) ~ Ar3
By finishing the finish rolling in the hot rolling in the ferrite region, strain accumulates in the ferrite structure and the recovery proceeds non-uniformly depending on the crystal orientation. As a result, the accumulation of strain becomes non-uniform, and the ferrite grain size distribution after annealing can be increased. Further, nonuniformity due to crystal orientation can randomize the development of texture, lower the r value, and improve the shape freezing property. Therefore, the final temperature of finish rolling needs to be Ar3 or less. More preferably, the temperature is lower than Ar3. The amount of reduction at Ar 3 or lower is not particularly limited, but is preferably 10% or more, more preferably 20% or more. On the other hand, when the finish rolling finish temperature is lowered, the recovery of crystals introduced with strain does not progress and the accumulation of strain does not become uneven. Furthermore, the rolling load is increased, which causes operational difficulties. Therefore, the finish rolling finish temperature needs to be (Ar3-100 ° C.) or higher.
Ar3 can be obtained by the following equation.
When Mn content <0.4%: Ar3 = 880-1000 x C content (%)
When Mn content ≧ 0.4%: Ar3 = 870−1000 × C content (%)
Winding temperature: less than 550 ° C If the winding temperature after finish rolling is high, ferrite will recrystallize and it will not be possible to introduce non-uniform strain, so the winding temperature should be less than 550 ° C. There is. The lower limit of the coiling temperature is not particularly specified, but if the temperature is too low, the coil winding shape deteriorates, so 300 ° C. or higher is preferable. The cooling rate from the finish rolling to the winding is not particularly specified, but is preferably 10 ° C./S or more, more preferably 30 ° C./s or more, and further preferably 100 ° C./s or more.

冷間圧延時の圧下率:40〜80%
熱延板を酸洗した後の冷間圧延における圧下率が大きい場合、歪の導入が均一化されて、焼鈍後のフェライト粒径分布が小さくなるとともに、歪量増大による細粒化で高強度化し、成形性が低下してしまう。また、集合組織も発達することで、r値が高くなり形状凍結性が低下してしまう。以上より、圧下率は80%以下とする必要がある。一方、圧下率が小さい場合、導入される歪量が少ないことで、焼鈍時の再結晶が抑制され、回復組織となることで、成形性が低下する。よって、圧下率は40%以上とする必要がある。
Rolling ratio during cold rolling: 40-80%
When the rolling reduction in cold rolling after pickling hot-rolled sheet is large, the introduction of strain is made uniform, the ferrite grain size distribution after annealing is reduced, and the strength is increased by refinement by increasing the amount of strain. And formability is reduced. In addition, as the texture develops, the r value increases and the shape freezing property decreases. From the above, the rolling reduction needs to be 80% or less. On the other hand, when the rolling reduction is small, the amount of strain introduced is small, so that recrystallization at the time of annealing is suppressed and a recovery structure is formed, so that formability is lowered. Therefore, the rolling reduction needs to be 40% or more.

600℃から均熱温度までの温度域までの平均加熱速度:1〜30℃/s
冷間圧延を行った後、焼鈍を行う。本発明においては、焼鈍における熱履歴を制御することでフェライト粒径と粒径分布を制御するとともに冷却後の歪量を制御する。そのため焼鈍を行う際の製造条件は重要な要件である。
600℃から均熱温度までの平均加熱速度が小さいと、回復が進行することで、再結晶が抑制されてしまう。したがって、平均加熱速度は1℃/s以上とする必要がある。一方、平均加熱速度が大きいと、加熱途中での再結晶の核発生が抑制され、均熱時に一斉に核発生するため、粒が細粒化してしまう。したがって、平均加熱速度は30℃/s以下とする必要がある。
Average heating rate from 600 ° C to soaking temperature: 1-30 ° C / s
After cold rolling, annealing is performed. In the present invention, the ferrite grain size and grain size distribution are controlled by controlling the thermal history during annealing, and the strain after cooling is controlled. Therefore, the manufacturing conditions for annealing are an important requirement.
When the average heating rate from 600 ° C. to the soaking temperature is small, the recovery proceeds and recrystallization is suppressed. Therefore, the average heating rate needs to be 1 ° C./s or more. On the other hand, if the average heating rate is high, recrystallization nucleation during heating is suppressed, and nucleation occurs simultaneously during soaking, resulting in finer grains. Therefore, the average heating rate needs to be 30 ° C./s or less.

均熱温度:800〜900℃、均熱時間:30〜200s
加熱後の均熱処理では、再結晶を完了させるとともに、粒径を大きくして成形性を向上させる必要がある。そのため、均熱温度は800℃以上とする必要がある。一方、均熱温度が高すぎると、フェライトからオーステナイトへの変態が進むことで、冷却後の逆変態で粒径が小さくなってしまう。したがって、均熱温度は900℃以下とする必要がある。
また、均熱時間が短いと、再結晶が完了しないか、あるいは、完了しても粒成長する時間が短いために、細粒化し成形性が低下してしまう。したがって、加熱時の均熱時間は30s以上とする必要がある。一方、均熱時間が長くなると、大きい粒が小さい粒を侵食しながら成長し大きくなるため、フェライト粒径の分布が小さくなるとともに、粒径が大きくなることで、プレス成形時にオレンジピールなどの外観不良をもたらす。したがって、均熱時間は200s以下とする必要がある。
Soaking temperature: 800-900 ° C, Soaking time: 30-200s
In the soaking process after heating, it is necessary to complete recrystallization and increase the grain size to improve the formability. Therefore, the soaking temperature needs to be 800 ° C. or higher. On the other hand, if the soaking temperature is too high, the transformation from ferrite to austenite proceeds, and the particle size becomes small due to reverse transformation after cooling. Therefore, the soaking temperature needs to be 900 ° C. or less.
Further, if the soaking time is short, recrystallization will not be completed, or even if it is completed, the time for grain growth is short, so that the particles are finely granulated and the moldability is lowered. Therefore, the soaking time during heating needs to be 30 seconds or longer. On the other hand, when the soaking time is lengthened, large grains grow while eroding the small grains and become larger, so the ferrite grain size distribution becomes smaller and the grain size becomes larger, so that the appearance such as orange peel at the time of press molding Bring about defects. Therefore, the soaking time needs to be 200 s or less.

均熱温度から550℃までの温度域の平均冷却速度:3〜30℃/s
均熱処理後の冷却速度が小さいと、フェライト粒の成長が促進され、大きい粒が小さい粒を侵食しながら成長し大きくなるため、フェライト粒径の分布が小さくなるとともに、粒径が大きくなることで、プレス成形時、オレンジピールなどの外観不良をもたらす。したがって、均熱温度から550℃までの温度域の平均冷却速度は3℃/s以上とする必要がある。一方、冷却速度が大きすぎると、強度が高くなり成形性が低下することから、平均冷却速度は30℃/s以下とする必要がある。
なお、前記した均熱から550℃までの冷却の後、500〜300℃までの保持の間は、製造設備に合わせて適宜冷却すればよい。好ましくは、均熱温度から550℃までの冷却後引き続き同様の冷却速度範囲で冷却、すなわち3〜30℃/sで冷却する。
Average cooling rate in the temperature range from soaking temperature to 550 ° C: 3-30 ° C / s
When the cooling rate after soaking is small, the growth of ferrite grains is promoted, and large grains grow and grow while eroding the small grains, so the ferrite grain size distribution becomes smaller and the grain size becomes larger. In press molding, it causes poor appearance such as orange peel. Therefore, the average cooling rate in the temperature range from the soaking temperature to 550 ° C. needs to be 3 ° C./s or more. On the other hand, if the cooling rate is too large, the strength increases and the moldability decreases, so the average cooling rate needs to be 30 ° C./s or less.
In addition, what is necessary is just to cool suitably according to a manufacturing facility during the holding | maintenance to 500-300 degreeC after cooling from above-mentioned soaking to 550 degreeC. Preferably, after cooling from the soaking temperature to 550 ° C., cooling is continued in the same cooling rate range, that is, 3 to 30 ° C./s.

500〜300℃での保持時間:30s以上
固溶Cは、セメンタイトとして析出されることで、時効性を向上させることができる。そのため、セメンタイトが析出しやすい300〜500℃の温度域で30s以上保持する必要がある。時間の上限はとくに規定しないが、長時間の保持は生産効率を低めるため、保持時間の上限は300s程度とすることが好ましい。
なお、保持の後は室温まで冷却するが、前記冷却条件は特に規定する必要はなく、製造設備に合わせて適宜行えばよい。
Holding time at 500 to 300 ° C .: 30 s or longer Solid solution C is precipitated as cementite, thereby improving aging properties. Therefore, it is necessary to hold for 30 seconds or more in a temperature range of 300 to 500 ° C. at which cementite is likely to precipitate. Although the upper limit of the time is not particularly defined, it is preferable that the upper limit of the holding time is about 300 s because holding for a long time decreases the production efficiency.
In addition, although it cools to room temperature after holding | maintenance, the said cooling conditions do not need to prescribe | regulate in particular and should just carry out suitably according to manufacturing equipment.

室温での歪付与、伸び率:0.5〜2.0%
焼鈍後は、室温で歪を加えることで、降伏点を消すことができる。そのため、室温で加える歪は伸び率で0.5%以上とする必要がある。一方、伸び率が大きくなると、降伏点が上昇し、成形性が低下するため、2.0%以下とする必要がある。好ましくは1.5%以下である。なお、室温での歪の付与はロールによる圧延でも引張りでも、あるいはロールと引張りの複合でも構わない。また、圧延においては、潤滑してもしなくてもよい。
Strain application at room temperature, elongation: 0.5-2.0%
After annealing, the yield point can be eliminated by applying strain at room temperature. Therefore, the strain applied at room temperature must be 0.5% or more in terms of elongation. On the other hand, when the elongation increases, the yield point rises and the formability decreases, so it is necessary to make it 2.0% or less. Preferably it is 1.5% or less. The application of strain at room temperature may be rolling with a roll or tension, or a combination of roll and tension. In rolling, it may or may not be lubricated.

本発明の実施に当たり、溶製方法は、通常の転炉法、電炉法等、適宜適用することができる。溶製された鋼は、スラブに鋳造後、そのまま、あるいは、冷却して加熱し、熱間圧延を施す。熱間圧延では前述の仕上条件で仕上げた後、前述の巻取り温度で巻取る。その後、通常の酸洗後に、前述の冷間圧延を施す。冷間圧延後の焼鈍処理については、前述の条件で加熱、保持、冷却をおこなう。必要に応じて、480℃近傍で溶融亜鉛によるめっきをおこなってもよい。まためっき後、500℃以上に再加熱してめっきを合金化してもよい。なお、再加熱を行うに際しては、フェライトが粒成長しないよう、550℃以下とする必要がある。また、前記した500〜300℃の保持に関しては、500℃以上への再加熱によりセメンタイトが溶解する可能性があるため、500℃以上550℃以下に再加熱する場合は、再加熱後の500〜300℃の保持時間を30s以上とすることが好ましい。なお、めっき浴温の下限としては、460℃程度である。すなわち、前記均熱処理後に溶融亜鉛めっきを行い、さらに合金化処理を行う場合、熱履歴としては、下記のようにすればよい。前記均熱処理後、前記均熱温度から550℃までの温度域を3〜30℃/sの平均冷却速度で冷却し、引き続き500℃以下の温度域に冷却して溶融亜鉛めっきを行い、次いで500〜550℃の温度域に再加熱して合金化処理を施し、その後500〜300℃で30s以上保持する。保持時間としては、上記と同様の理由で、300s程度とすることが好ましい。なお、保持後は室温まで適宜冷却すればよい。さらに、0.5〜2.0%程度の伸び率で調質圧延をおこなう。好ましくは0.5〜1.5%である。また、焼鈍途中でめっきを施さなかった場合には、耐腐食性を向上させるために電気亜鉛メッキなどをおこなってもよい。さらに、冷延鋼板やめっき鋼板の上に、化成処理などにより皮膜をつけてもよい。
以上より、時効後の成形性及び形状凍結性に優れた冷延鋼板が得られる。そして、以上により得られた冷延鋼板は、圧延方向、圧延45°方向、圧延直角方向の平均のr値が1.2以下、時効後の伸びが40%以上、時効後の降伏点伸びが1.0%以下である。なお、これらの特性は、20℃で6ヶ月の時効処理後の平均のr値、伸び、降伏点伸びである。
r値は、曲げ成形後に生じる反りと相関がある。曲げ成形では、曲げ方向のr値が高くなることで、曲げ線に沿って鞍型の反りが顕著に発生する。したがって、低r値化によって、プレス成形後の形状凍結性を向上させることを目的として、本発明では平均のr値を1.2以下とする。
伸びは成形性と良い相関があり、伸びが大きいほど、例えば、高くまで張出し成形することができる。したがって、必要とする伸びは大きいほど良く、時効後の伸びを40%以上とすることで、絞り加工や張り出し加工をおこなうことができ、部品に要求される形状を確保することができる。
In carrying out the present invention, a melting method can be appropriately applied, such as a normal converter method and an electric furnace method. The molten steel is cast into a slab and then heated as it is or after cooling and hot rolling. In hot rolling, after finishing under the above-mentioned finishing conditions, winding is performed at the above-described winding temperature. Then, after the usual pickling, the above-mentioned cold rolling is performed. About the annealing process after cold rolling, heating, holding | maintenance, and cooling are performed on the above-mentioned conditions. If necessary, plating with molten zinc may be performed at around 480 ° C. Further, after plating, the plating may be alloyed by reheating to 500 ° C. or higher. When reheating is performed, the temperature should be 550 ° C. or lower so that ferrite does not grow. In addition, regarding the above-described holding at 500 to 300 ° C., cementite may be dissolved by reheating to 500 ° C. or higher, so when reheating to 500 ° C. or higher and 550 ° C. or lower, The holding time at 300 ° C. is preferably 30 seconds or longer. The lower limit of the plating bath temperature is about 460 ° C. That is, when hot dip galvanization is performed after the soaking and further alloying is performed, the heat history may be as follows. After the soaking, the temperature range from the soaking temperature to 550 ° C. is cooled at an average cooling rate of 3 to 30 ° C./s, subsequently cooled to a temperature range of 500 ° C. or less, and hot dip galvanized, and then 500 It is reheated to a temperature range of ˜550 ° C. and subjected to alloying treatment, and then held at 500 to 300 ° C. for 30 s or more. The holding time is preferably about 300 s for the same reason as described above. In addition, what is necessary is just to cool suitably to room temperature after holding | maintenance. Furthermore, temper rolling is performed at an elongation of about 0.5 to 2.0%. Preferably it is 0.5 to 1.5%. In addition, when plating is not performed during annealing, electrogalvanization or the like may be performed in order to improve corrosion resistance. Further, a film may be formed on the cold-rolled steel plate or the plated steel plate by chemical conversion treatment or the like.
From the above, a cold-rolled steel sheet having excellent formability and shape freezing property after aging can be obtained. The cold-rolled steel sheet obtained as described above has an average r value of 1.2 or less in the rolling direction, the 45 ° direction of rolling, and the direction perpendicular to the rolling, an elongation after aging of 40% or more, and an elongation at yield point after aging of 1.0%. It is as follows. These characteristics are the average r-value, elongation, and yield point elongation after aging treatment at 20 ° C. for 6 months.
The r value correlates with the warp that occurs after bending. In bending, the r-value in the bending direction increases, so that saddle-shaped warpage occurs remarkably along the bending line. Therefore, for the purpose of improving the shape freezing property after press forming by lowering the r value, the average r value is set to 1.2 or less in the present invention.
Elongation has a good correlation with moldability, and the larger the elongation, for example, the higher the stretch molding. Therefore, the larger the required elongation, the better, and by setting the elongation after aging to 40% or more, drawing or overhanging can be performed, and the shape required for the part can be ensured.

上記に加えて本発明の鋼板は、時効後の降伏点伸びを1.0%以下とする。鋼板製造直後だけでなく、時効後の降伏点伸びを低減することで、成形後のストレッチャーストレインを抑制し、表面外観に優れた成形品が製造できる。   In addition to the above, the steel sheet of the present invention has a yield point elongation after aging of 1.0% or less. By reducing the yield point elongation after aging as well as immediately after the production of the steel sheet, it is possible to suppress the stretcher strain after molding and to produce a molded product having an excellent surface appearance.

表1に示す化学組成を有するスラブを溶製したのち、再加熱して表1に示す最終出側温度(FT)で熱間圧延をおこない、平均冷却速度:10℃/sで冷却したのち、表1に示す巻取り温度(CT)で巻取り処理をおこなった。次いで、酸洗し、表1に示す圧下率にて冷間圧延をおこない、表1に示す条件で焼鈍を行った。次いで、室温で表1に示す伸び率で圧下を行い供試材を製造した。
なお、表1において、600℃から均熱温度までの平均加熱速度はHR、均熱温度はAT、均熱時間はHt1、均熱温度から550℃までの平均冷却速度はCR、500℃から300℃の滞留時間はHt2とした。また、供試材No.4は、途中480℃で溶融亜鉛によるめっき処理をおこない、表面を溶融亜鉛めっき(GI)とした。供試材No.3は、途中480℃で溶融亜鉛によるめっきをおこなったのち、540℃に再加熱し、表面を合金化溶融亜鉛めっき(GA)とした。供試材No.2は電気めっき処理をおこない、表面を電気めっき(EG)とした。なお、供試材No4以外は550℃から500℃まで引き続き表1に示すCRと同様の冷却速度で冷却した。
以上により得られた供試材に対し、組織と機械特性を調査した。組織は、圧延方向の板厚断面を光学顕微鏡で観察し、切断法により組織の平均粒径と粒径分布を求めた。結果、本実施例では、すべての供試材の組織はフェライト相が99%以上であった。また、供試材より圧延方向を引張方向とするJIS5号引張試験片を切り出し、20℃で6ヶ月の時効処理をおこなったのち、引張速度10mm/分で引張試験をおこない、降伏点伸び(YP-El)と全伸び(El)を測定した。また、r値は、供試材の圧延方向、圧延45°方向、圧延直角方向の各方向からJIS5号引張試験片を切り出し、予歪み15%で測定し、圧延方向のr値(rL)、圧延45°方向のr値(rd)、圧延直角方向C方向のr値(rC)から、平均のr値(r)をr=(rL+2rD+rC)/4で求めた。
得られた結果を、成分組成および製造条件と併せて表1に示す。 また、図2に、供試材No.1〜8について、σAにおよぼす(FT-Ar3)の影響を、図3に、供試体No.1〜4、9について、σAにおよぼすCTの影響をそれぞれ示す。
After melting the slab having the chemical composition shown in Table 1, reheat and hot-roll at the final delivery temperature (FT) shown in Table 1, and after cooling at an average cooling rate of 10 ° C / s, The winding process was performed at the winding temperature (CT) shown in Table 1. Next, pickling was performed, and cold rolling was performed at the rolling reduction shown in Table 1, and annealing was performed under the conditions shown in Table 1. Next, reduction was performed at room temperature at the elongation shown in Table 1 to produce a test material.
In Table 1, the average heating rate from 600 ° C to the soaking temperature is HR, the soaking temperature is AT, the soaking time is Ht1, the average cooling rate from the soaking temperature to 550 ° C is CR, 500 ° C to 300 ° C. The residence time at ° C. was Ht2. Sample No. 4 was plated with hot galvanized at 480 ° C. midway, and the surface was hot dip galvanized (GI). Specimen No. 3 was plated with hot dip zinc at 480 ° C., then reheated to 540 ° C., and the surface was alloyed hot dip galvanized (GA). Sample No. 2 was electroplated and the surface was electroplated (EG). The samples other than sample No. 4 were continuously cooled from 550 ° C. to 500 ° C. at the same cooling rate as CR shown in Table 1.
The structure and mechanical properties of the specimens obtained as described above were investigated. The structure was obtained by observing the thickness cross section in the rolling direction with an optical microscope, and obtaining the average particle size and particle size distribution of the structure by a cutting method. As a result, in this example, the structure of all the test materials had a ferrite phase of 99% or more. In addition, a JIS No. 5 tensile test piece with the rolling direction as the tensile direction was cut out from the specimen, and after aging treatment at 20 ° C for 6 months, a tensile test was conducted at a tensile rate of 10 mm / min, yield point elongation (YP -El) and total elongation (El) were measured. Further, r value, the rolling direction of the test piece, the rolling direction of 45 °, cut a JIS5 No. tensile specimens from each direction perpendicular to the rolling direction, it was measured with prestrain 15%, the rolling direction of the r value (r L) , the rolling direction of 45 ° of the r value (r d), from the direction perpendicular to the rolling direction C in r value (r C), average of r values (r m) r m = ( r L + 2r D + r C) / Obtained in 4.
The obtained results are shown in Table 1 together with the component composition and production conditions. Further, in FIG. 2, the test pieces Nos. 1-8, on sigma A the effect of (FT-Ar3), in FIG. 3, the specimen Nanba1~4,9, of CT on sigma A Each impact is shown.

Figure 2011144427
Figure 2011144427

表1によれば、本発明の組成を有し、本発明の製造方法で製造した鋼板(発明鋼)は、フェライト平均粒径が10〜20μmの範囲内で、かつ、標準偏差(σA)が0.30以上である。その結果、圧延方向、圧延45°方向、圧延直角方向の平均のr値が1.2以下、時効後の降伏点伸びが1.0%以下、かつ時効後の伸び(Elm)が40%以上であり、時効後の成形性及び形状凍結性に優れる冷延鋼板が得られた。
これに対して製造方法が本発明の範囲外である鋼板(比較鋼)は、フェライト平均粒径もしくは標準偏差(σA)が範囲外となっており、平均のr値、時効後の降伏点伸びおよび時効後の伸び(El)のいずれかが劣っていた。
また、図2より、最終出側温度(FT)を(Ar3-100℃)〜Ar3とすることで、標準偏差(σA)を0.30以上とすることができることがわかる。
図3より、巻取り温度(CT)を550℃未満とすることで、標準偏差(σA)を0.30以上とすることができることがわかる。
According to Table 1, the steel sheet (invented steel) having the composition of the present invention and manufactured by the manufacturing method of the present invention has a ferrite average particle diameter in the range of 10 to 20 μm and a standard deviation (σ A ). Is 0.30 or more. As a result, the average r value in the rolling direction, the 45 ° direction, and the direction perpendicular to the rolling direction is 1.2 or less, the yield point elongation after aging is 1.0% or less, and the elongation (Elm) after aging is 40% or more. A cold-rolled steel sheet excellent in later formability and shape freezing property was obtained.
On the other hand, the steel sheet (comparative steel) whose manufacturing method is outside the scope of the present invention has an average ferrite value or standard deviation (σ A ) outside the range, and the average r value, yield point after aging. Either elongation or elongation after aging (El) was inferior.
Further, FIG. 2 shows that the standard deviation (σ A ) can be set to 0.30 or more by setting the final delivery temperature (FT) to (Ar3-100 ° C.) to Ar3.
FIG. 3 shows that the standard deviation (σ A ) can be set to 0.30 or more by setting the coiling temperature (CT) to less than 550 ° C.

Claims (5)

質量%で、C: 0.01〜0.05%、Si:0.05%以下、Mn: 0.1〜0.5%、P:0.05%以下、S:0.02%以下、Al:0.02〜0.10%、N:0.005%以下で、残部が鉄および不可避不純物である組成とフェライト相主体の組織を有し、かつ、該フェライト相の平均粒径が10〜20μmで、個々のフェライト粒径を平均値で割った値の自然対数の標準偏差をσAとしたとき、σA≧0.30であることを特徴とする時効後の成形性及び形状凍結性に優れた冷延鋼板。 In mass%, C: 0.01 to 0.05%, Si: 0.05% or less, Mn: 0.1 to 0.5%, P: 0.05% or less, S: 0.02% or less, Al: 0.02 to 0.10%, N: 0.005% or less, The balance is iron and inevitable impurities and a structure mainly composed of a ferrite phase, and the average particle diameter of the ferrite phase is 10 to 20 μm, and the natural logarithm of the value obtained by dividing the individual ferrite particle diameter by the average value. A cold-rolled steel sheet having excellent formability and shape freezing property after aging, wherein σ A ≧ 0.30 when the standard deviation is σ A. さらに、質量%で、Ti:0.005〜0.02%、B:0.0003〜0.0030%のいずれか1種以上を含有することを特徴とする請求項1に記載の時効後の成形性及び形状凍結性に優れた冷延鋼板。   Furthermore, it contains at least one of Ti: 0.005-0.02% and B: 0.0003-0.0030% by mass%, and is excellent in formability and shape freezing property after aging according to claim 1 Cold rolled steel sheet. 鋼板表面に亜鉛系めっき層を有することを特徴とする請求項1または2に記載の時効後の成形性及び形状凍結性に優れた冷延鋼板。   The cold-rolled steel sheet excellent in formability and shape freezing property after aging according to claim 1 or 2, wherein the steel sheet surface has a zinc-based plating layer. 請求項1または請求項2に記載の組成からなる鋼スラブを、仕上圧延の最終出側温度を(Ar3-100℃)〜Ar3℃、巻取り温度を550℃未満で熱間圧延し、次いで、酸洗し、40〜80%の圧下率で冷間圧延を行った後、焼鈍を行うに際し、600℃から均熱温度までの温度域を1〜30℃/sの平均加熱速度で加熱し、前記均熱温度を800〜900℃、均熱時間を30〜200sとして均熱処理し、前記均熱温度から550℃までの温度域を3〜30℃/sの平均冷却速度で冷却し、500〜300℃で30s以上保持し、室温で伸び率:0.5〜2.0%の歪みを加えることを特徴とする時効後の成形性及び形状凍結性に優れた冷延鋼板の製造方法。   A steel slab having the composition according to claim 1 or 2 is hot-rolled at a final delivery temperature of finish rolling of (Ar3-100 ° C) to Ar3 ° C and a winding temperature of less than 550 ° C, After pickling and cold rolling at a rolling reduction of 40 to 80%, when annealing, the temperature range from 600 ° C to the soaking temperature is heated at an average heating rate of 1 to 30 ° C / s, The soaking temperature is 800 to 900 ° C., the soaking time is 30 to 200 s, and the temperature range from the soaking temperature to 550 ° C. is cooled at an average cooling rate of 3 to 30 ° C./s. A method for producing a cold-rolled steel sheet having excellent formability and shape freezing property after aging, characterized by holding at 300 ° C. for 30 s or more and applying a strain of 0.5 to 2.0% elongation at room temperature. 前記均熱処理後、前記均熱温度から550℃までの温度域を3〜30℃/sの平均冷却速度で冷却し、引き続き500℃以下の温度域に冷却し、次いで500〜550℃の温度域に再加熱し、その後500〜300℃で30s以上保持し、室温で伸び率:0.5〜2.0%の歪みを加えることを特徴とする請求項4に記載の時効後の成形性及び形状凍結性に優れた冷延鋼板の製造方法。   After the soaking, the temperature range from the soaking temperature to 550 ° C. is cooled at an average cooling rate of 3 to 30 ° C./s, subsequently cooled to a temperature range of 500 ° C. or lower, and then the temperature range of 500 to 550 ° C. 5) After that, it is held at 500 to 300 ° C. for 30 seconds or more, and strain at 0.5% to 2.0% elongation is applied at room temperature. A method for producing an excellent cold-rolled steel sheet.
JP2010006553A 2010-01-15 2010-01-15 Cold-rolled steel sheet excellent in formability and shape freezing property after aging and method for producing the same Active JP5018900B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2010006553A JP5018900B2 (en) 2010-01-15 2010-01-15 Cold-rolled steel sheet excellent in formability and shape freezing property after aging and method for producing the same
MYPI2012002746A MY161948A (en) 2010-01-15 2011-01-07 Cold rolled steel sheet having excellent formability,shape fixability after aging,and method for manufacturing the same
PCT/JP2011/050588 WO2011087109A1 (en) 2010-01-15 2011-01-07 Cold-rolled steel plate having excellent post-aging moldability and shape retention
CN201180006115.6A CN102712974B (en) 2010-01-15 2011-01-07 Cold-rolled steel plate having excellent post-aging moldability and shape retention
KR1020127018165A KR20120094125A (en) 2010-01-15 2011-01-07 Cold-rolled steel plate having excellent post-aging moldability and shape retention
MX2012007914A MX353920B (en) 2010-01-15 2011-01-07 Cold-rolled steel plate having excellent post-aging moldability and shape retention.
TW100101211A TWI429758B (en) 2010-01-15 2011-01-13 Cold rolled steel sheet having excellent formability, shape fixability after aging and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010006553A JP5018900B2 (en) 2010-01-15 2010-01-15 Cold-rolled steel sheet excellent in formability and shape freezing property after aging and method for producing the same

Publications (2)

Publication Number Publication Date
JP2011144427A true JP2011144427A (en) 2011-07-28
JP5018900B2 JP5018900B2 (en) 2012-09-05

Family

ID=44304378

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010006553A Active JP5018900B2 (en) 2010-01-15 2010-01-15 Cold-rolled steel sheet excellent in formability and shape freezing property after aging and method for producing the same

Country Status (7)

Country Link
JP (1) JP5018900B2 (en)
KR (1) KR20120094125A (en)
CN (1) CN102712974B (en)
MX (1) MX353920B (en)
MY (1) MY161948A (en)
TW (1) TWI429758B (en)
WO (1) WO2011087109A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101461740B1 (en) * 2012-12-21 2014-11-14 주식회사 포스코 Hot rolled steel sheet having low deviation of mechanical property and thickness and excellent coating detachment resistance and method for manufacturing the same
WO2015002363A1 (en) 2013-07-03 2015-01-08 주식회사 포스코 Hot-rolled steel sheet having excellent machinability and anti-aging properties and manufacturing method therefor
CN112553537A (en) * 2019-09-25 2021-03-26 上海梅山钢铁股份有限公司 Cold-rolled hot-dip galvanized steel sheet with yield strength of 240MPa and manufacturing method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000045046A (en) * 1998-07-29 2000-02-15 Nisshin Steel Co Ltd Copper-plated steel sheet for single pipe excellent in grain coarsening resistance, copper infiltration resistance or the like, and its production
JP2003064446A (en) * 2001-08-21 2003-03-05 Kawasaki Steel Corp Cold rolled steel sheet and plated cold rolled steel sheet each having excellent strain age hardening characteristic and free from degradation due to room- temperature aging, and manufacturing method of them
WO2005028693A1 (en) * 2003-09-24 2005-03-31 Nippon Steel Corporation Hot rolled steel sheet for working
JP2010229486A (en) * 2009-03-27 2010-10-14 Jfe Steel Corp Steel sheet for cans which exhibits excellent surface properties after drawing and ironing, and process for production thereof
JP2010265545A (en) * 2009-04-13 2010-11-25 Jfe Steel Corp Cold-rolled steel sheet having excellent slow-aging property and high curability in baking, and method for producing the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2582894B2 (en) * 1989-04-04 1997-02-19 株式会社神戸製鋼所 Hot-rolled steel sheet for deep drawing and its manufacturing method
CN100473742C (en) * 2006-04-29 2009-04-01 宝山钢铁股份有限公司 Hot-rolled fine-grained steel for electrostatic enamel and manufacturing method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000045046A (en) * 1998-07-29 2000-02-15 Nisshin Steel Co Ltd Copper-plated steel sheet for single pipe excellent in grain coarsening resistance, copper infiltration resistance or the like, and its production
JP2003064446A (en) * 2001-08-21 2003-03-05 Kawasaki Steel Corp Cold rolled steel sheet and plated cold rolled steel sheet each having excellent strain age hardening characteristic and free from degradation due to room- temperature aging, and manufacturing method of them
WO2005028693A1 (en) * 2003-09-24 2005-03-31 Nippon Steel Corporation Hot rolled steel sheet for working
JP2010229486A (en) * 2009-03-27 2010-10-14 Jfe Steel Corp Steel sheet for cans which exhibits excellent surface properties after drawing and ironing, and process for production thereof
JP2010265545A (en) * 2009-04-13 2010-11-25 Jfe Steel Corp Cold-rolled steel sheet having excellent slow-aging property and high curability in baking, and method for producing the same

Also Published As

Publication number Publication date
MX353920B (en) 2018-02-06
JP5018900B2 (en) 2012-09-05
MX2012007914A (en) 2012-08-01
CN102712974B (en) 2014-06-25
WO2011087109A1 (en) 2011-07-21
TW201134954A (en) 2011-10-16
TWI429758B (en) 2014-03-11
CN102712974A (en) 2012-10-03
MY161948A (en) 2017-05-15
KR20120094125A (en) 2012-08-23

Similar Documents

Publication Publication Date Title
JP5967318B1 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
WO2010119971A1 (en) Cold-rolled steel sheet having excellent slow-aging property and high curability in baking, and method for producing same
JP5532088B2 (en) High-strength hot-dip galvanized steel sheet excellent in deep drawability and manufacturing method thereof
JP5712771B2 (en) Steel sheet with excellent Young&#39;s modulus in the direction perpendicular to rolling and method for producing the same
WO2017169561A1 (en) Thin steel plate, galvanized steel plate, hot rolled steel plate production method, cold rolled full hard steel plate production method, heat treated plate production method, thin steel plate production method, and galvanized steel plate production method
JP5407591B2 (en) Cold-rolled steel sheet, manufacturing method thereof, and backlight chassis
JP5018900B2 (en) Cold-rolled steel sheet excellent in formability and shape freezing property after aging and method for producing the same
JP2013076132A (en) High strength thin steel sheet having excellent bake hardenability and formability and method for manufacturing the same
JP5686028B2 (en) Alloyed hot-dip galvanized steel sheet and method for producing the same
JP6940691B2 (en) Steel sheet with excellent imageability after painting and its manufacturing method
JP5151390B2 (en) High-tensile cold-rolled steel sheet, high-tensile galvanized steel sheet, and methods for producing them
KR101463667B1 (en) Cold-rolled steel plate and method for producing same
JP2013227635A (en) High strength cold rolled steel sheet, high strength galvanized steel sheet, method for manufacturing high strength cold rolled steel sheet, and method for manufacturing high strength galvanized steel sheet
JP2013209727A (en) Cold rolled steel sheet excellent in workability and manufacturing method thereof
JP5434375B2 (en) High-strength hot-dip galvanized steel sheet excellent in workability and manufacturing method thereof
JP2010196096A (en) Cold rolled steel sheet having excellent balance in strength and ductility after press working and coating baking, and method for producing the same
WO2016194342A1 (en) High strength steel sheet and method for producing same
JP4962527B2 (en) Cold-rolled steel sheet excellent in formability, shape freezing property, surface appearance, and method for producing the same
JP5549232B2 (en) Cold rolled steel sheet and method for producing the same
JP5481920B2 (en) Cold-rolled steel sheet excellent in formability and shape freezing property, and manufacturing method thereof
JP2012172159A (en) High-strength cold-rolled steel sheet excellent in homogeneous deformability and local deformability

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111222

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20120127

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20120217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120228

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120515

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120528

R150 Certificate of patent or registration of utility model

Ref document number: 5018900

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150622

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250