JP5549232B2 - Cold rolled steel sheet and method for producing the same - Google Patents

Cold rolled steel sheet and method for producing the same Download PDF

Info

Publication number
JP5549232B2
JP5549232B2 JP2010006552A JP2010006552A JP5549232B2 JP 5549232 B2 JP5549232 B2 JP 5549232B2 JP 2010006552 A JP2010006552 A JP 2010006552A JP 2010006552 A JP2010006552 A JP 2010006552A JP 5549232 B2 JP5549232 B2 JP 5549232B2
Authority
JP
Japan
Prior art keywords
rolling
less
amount
steel sheet
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010006552A
Other languages
Japanese (ja)
Other versions
JP2011144426A (en
Inventor
重宏 ▲高▼城
耕一郎 藤田
太郎 木津
英子 安原
和浩 花澤
正敏 熊谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2010006552A priority Critical patent/JP5549232B2/en
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to KR1020127018164A priority patent/KR101528014B1/en
Priority to PCT/JP2011/050594 priority patent/WO2011087112A1/en
Priority to MYPI2012002745A priority patent/MY161580A/en
Priority to MX2012007913A priority patent/MX339156B/en
Priority to CN201180006114.1A priority patent/CN102712981B/en
Priority to TW100101214A priority patent/TWI427161B/en
Publication of JP2011144426A publication Critical patent/JP2011144426A/en
Application granted granted Critical
Publication of JP5549232B2 publication Critical patent/JP5549232B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

本発明は、大型液晶テレビのバックライトシャーシなど、大型の平板形状をした部品の部材として最適な、成形性と形状凍結性に優れた冷延鋼板とその製造方法に関する。   The present invention relates to a cold-rolled steel sheet excellent in formability and shape freezing property, which is optimal as a member of a large flat plate-like component such as a backlight chassis of a large-sized liquid crystal television, and a method for manufacturing the same.

薄型液晶TVやOA機器などには、曲げ・張出し成形を主体とする加工により成形された平板状の部品が数多く使われている。これらの部品に用いる部材(材料)には、製品の意匠性や薄型化などの観点から、部品形状への加工度に加え、平坦度が要求されることが多い。しかしながら、部材(材料)の平板面に曲げ・張出し成形を行うと平坦度が劣化する傾向にある。このような平坦度の劣化は、部材(材料)をプレス成型する時の部材(材料)の形状凍結性が悪いために生じる現象であるため、部材(材料)としての鋼板には、加工性とともに形状凍結性が要求される。
また、平坦度を悪化させる要因として、曲げ加工時に生じる稜線反りが良く知られている。その中の一つである曲げ端部に発生する反りは、材料のr値を低くすることによって低減されるといわれており、従来から、材料に低r値、低降伏強度を付与する技術が確立されている。
例えば、特許文献1には、降伏強度150MPa、圧延方向のr値0.67(圧延直角方向1.45)をもつ冷延鋼板を開発する技術が確立されている。
また、特許文献2には、巻き取り温度を調整することにより形状凍結性に優れた鋼板を開発する技術が開示されている。
特許文献3には、板面に平行な{100}面と{111}面の比が1.0以上である形状凍結性に優れた自動車用フェライト系薄鋼板が開示されている。
特許文献4には、形状凍結性に優れたフェライト系薄鋼板を得るために、{100}<011>〜{223}<110>方位群の強度と{112}<110>、{554}<225>、{111}<112>、{111}<110>の各方位の強度を制御すること、圧延方向のr値および圧延方向と直角方向のr値のうち、少なくとも一つを0.7以下にすることが開示されている。
Thin flat panel TVs and office automation equipment use a large number of flat-plate parts formed by processing mainly bending and stretching. The members (materials) used for these parts often require flatness in addition to the degree of processing into the part shape from the viewpoints of product design and thickness reduction. However, flatness tends to deteriorate when bending / extrusion molding is performed on a flat plate surface of a member (material). Such deterioration of flatness is a phenomenon that occurs due to poor shape freezing property of the member (material) when the member (material) is press-molded. Shape freezing property is required.
Further, as a factor that deteriorates the flatness, ridge warpage that occurs during bending is well known. It is said that the warp that occurs at the bending end, which is one of them, is reduced by lowering the r value of the material. Conventionally, there is a technique for imparting a low r value and low yield strength to the material. Has been established.
For example, Patent Literature 1 establishes a technique for developing a cold-rolled steel sheet having a yield strength of 150 MPa and an r value of 0.67 in the rolling direction (a direction perpendicular to the rolling direction of 1.45).
Patent Document 2 discloses a technique for developing a steel sheet having excellent shape freezing property by adjusting a winding temperature.
Patent Document 3 discloses a ferritic steel sheet for automobiles excellent in shape freezing property, in which the ratio of {100} plane and {111} plane parallel to the plate surface is 1.0 or more.
In Patent Document 4, in order to obtain a ferritic steel sheet having excellent shape freezing property, the strength of {100} <011> to {223} <110> orientation group and {112} <110>, {554} <225>, {111} <112>, {111} <110>, controlling the strength of each direction, at least one of the r value in the rolling direction and the r value in the direction perpendicular to the rolling direction is 0.7 or less Is disclosed.

特許第3532138号公報Japanese Patent No. 3532138 特許第4126007号公報Japanese Patent No. 4126007 特開2008−255491号公報JP 2008-255491 A 特開2003−55739号公報JP 2003-55739 A

しかしながら、近年では、薄型液晶TVやOA機器の大型化・高機能化にともない鋼板の加工が複雑化してきている。このような状況に対応するためには、部材(材料)の形状凍結性向上が必須であり、圧延方向(L方向)、圧延45°方向(D方向)、圧延直角方向(C方向)の全方向でr値を低減する必要がある。例えば、特許文献1および4において規定する{100}<011>〜{223}<110>方位を持つ結晶粒により、圧延方向および圧延直角方向のr値は低減するものの、圧延45°方向のr値を高くしてしまう場合には、圧延45°方向を長手とするような直線形張り出し成形後の形状凍結性を向上することができない。
特許文献2では、巻取り温度を下げることで鋼板のr値を低減させているが、巻き取り温度の過度な低減は全伸びを低下させるため、成形時の材料割れ・破断防止の観点から好ましくない。
特許文献3では、所定の熱間圧延温度域での圧下量、および摩擦係数を厳密に制御する必要があり、さらにMn、Si、P、Alなどの鋼中の成分組成で規定される巻取り温度に制御する必要があるため、安定して製造することが困難である。また、冷延鋼板に関しては、実質的に冷間圧延率を53%程度として製造した場合が開示されているが、このような低冷延率では形状凍結性を向上させるものの、1.0mm程度以下の薄鋼板の製造が困難となる。
However, in recent years, the processing of steel sheets has become more complicated with the increase in size and functionality of thin LCD TVs and office automation equipment. In order to cope with such a situation, it is essential to improve the shape freezing property of the member (material), and all of the rolling direction (L direction), the rolling 45 ° direction (D direction), and the direction perpendicular to the rolling direction (C direction). It is necessary to reduce the r value in the direction. For example, although the r value in the rolling direction and the direction perpendicular to the rolling direction is reduced by the crystal grains having the {100} <011> to {223} <110> orientations defined in Patent Documents 1 and 4, r in the rolling 45 ° direction is reduced. When the value is increased, it is not possible to improve the shape freezing property after linear overhang forming in which the rolling 45 ° direction is the longitudinal direction.
In Patent Document 2, the r value of the steel sheet is reduced by lowering the coiling temperature. However, excessive reduction of the coiling temperature reduces the total elongation, which is preferable from the viewpoint of preventing material cracking and fracture during molding. Absent.
In Patent Document 3, it is necessary to strictly control the amount of reduction and the friction coefficient in a predetermined hot rolling temperature range, and further, the coiling is defined by the composition of components in steel such as Mn, Si, P, and Al. Since it is necessary to control to temperature, it is difficult to manufacture stably. In addition, for cold-rolled steel sheet, a case where the cold rolling rate is substantially manufactured at about 53% is disclosed, but such a low cold rolling rate improves shape freezing property, but about 1.0 mm or less. It becomes difficult to manufacture the thin steel plate.

本発明は、かかる事情に鑑み、成形性と形状凍結性に優れた冷延鋼板およびその製造方法を提供することにある。   In view of such circumstances, it is an object of the present invention to provide a cold-rolled steel sheet excellent in formability and shape freezing property and a manufacturing method thereof.

発明者らは、上記課題を解決するため、鋭意研究調査を重ねた。
その結果、以下の点を見いだした。複雑な加工を行っても反りが発生しない加工性と、高形状凍結性を両立するためには、冷間圧延後の焼鈍板において、高延性を保ったまま、r値を下げることが重要である。すなわち、平均の伸びを大きくすることで、絞り加工や張り出し加工した時の加工性を確保した上で、部品に要求される形状を確保することができる。さらには、r値を低減することにより、加工後にスプリングバックや反りの発生を抑制し、形状凍結性を確保できる。
そして、上記高延性かつ低r値化は、熱間圧延するに際し、熱延板組織および熱延後の鋼中に含まれる固溶C量および固溶N量を適正化させる目的で巻取り温度を制御することにより、実現される。
本発明は、以上の知見に基づいてなされたものであり、その要旨は以下のとおりである。
[1]質量%で、C:0.010%以上0.030%未満、Si:0.05%以下、Mn:0.3%以下、P:0.05%以下、S:0.02%以下、Al:0.02%以上0.10%以下、N:0.005%以下で、残部が鉄および不可避不純物である組成を有し、平均のr値が1.2以下であり、かつ平均の全伸びが41%以上であることを特徴とする冷延鋼板。
[2]前記[1]において、さらに、質量%で、Ti、Bのうちの1種以上をTi:0.02%以下、B:0.005%以下の範囲内で含有することを特徴とする冷延鋼板。
[3]前記[1]または[2]に記載の鋼を用いて、熱間圧延を行い、次いで、平均冷却速度:20℃/s以下で冷却し、巻取り温度:0℃以上かつ[{8×(C量+N量×12/14)}−1850]℃〜[{ 0.5×(C量+N量×12/14)}+520](ただし、式中C量、N量は鋼中のC含有量(ppm)、N含有量(ppm))℃の範囲で巻取った後、圧下率:55%以上で冷間圧延を行い、次いで、焼鈍温度:650℃〜800℃で焼鈍することを特徴とする冷延鋼板の製造方法。
[4]前記[3]において、前記焼鈍後、引き続き300℃〜400℃の温度で、60s〜300sの過時効処理を行うことを特徴とする冷延鋼板の製造方法。
なお、本明細書において、鋼の成分を示す%、ppmは、すべて質量%、質量ppmである。また、本発明が対象とする冷延鋼板には、冷延鋼板に電気亜鉛めっきや溶融亜鉛めっきなどの表面処理を施した鋼板をも含むものである。さらに、その上に化成処理などにより皮膜をつけた鋼板をも含むものである。
Inventors repeated earnest research investigation in order to solve the said subject.
As a result, the following points were found. In order to achieve both workability that does not cause warpage even when complicated processing is performed and high shape freezeability, it is important to lower the r value while maintaining high ductility in the annealed sheet after cold rolling. is there. That is, by increasing the average elongation, it is possible to ensure the shape required for the part while ensuring the workability when drawing or overhanging. Furthermore, by reducing the r value, it is possible to suppress the occurrence of springback and warping after processing and to secure the shape freezing property.
The above high ductility and low r value is a coiling temperature for the purpose of optimizing the amount of solid solution C and the amount of solid solution N contained in the hot rolled sheet structure and the steel after hot rolling in hot rolling. This is realized by controlling
This invention is made | formed based on the above knowledge, The summary is as follows.
[1] By mass%, C: 0.010% or more and less than 0.030%, Si: 0.05% or less, Mn: 0.3% or less, P: 0.05% or less, S: 0.02% or less, Al: 0.02% or more, 0.10% or less, N A cold-rolled steel sheet having a composition of 0.005% or less, the balance being iron and inevitable impurities, an average r value of 1.2 or less, and an average total elongation of 41% or more.
[2] The cold-rolled steel sheet according to [1], further comprising, in mass%, at least one of Ti and B within a range of Ti: 0.02% or less and B: 0.005% or less. .
[3] Hot rolling is performed using the steel described in [1] or [2], then cooled at an average cooling rate of 20 ° C./s or less, a winding temperature of 0 ° C. or more and [{ 8 x (C amount + N amount x 12/14)}-1850] ° C to [{0.5 x (C amount + N amount x 12/14)} + 520] (where C amount and N amount are C in steel) After rolling in the range of content (ppm), N content (ppm) ° C, cold rolling at a reduction rate of 55% or more, then annealing at 650 ° C to 800 ° C A method for producing a cold-rolled steel sheet.
[4] The method for producing a cold-rolled steel sheet according to [3], wherein after the annealing, an overaging treatment is performed at a temperature of 300 ° C. to 400 ° C. for 60 s to 300 s.
In the present specification, “%” and “ppm” indicating the components of steel are mass% and mass ppm, respectively. Moreover, the cold-rolled steel sheet targeted by the present invention includes a steel sheet obtained by subjecting the cold-rolled steel sheet to surface treatment such as electrogalvanizing or hot dip galvanizing. Further, it includes a steel plate having a film formed thereon by chemical conversion treatment or the like.

また、本発明の鋼板は、大型TVのバックライトシャーシ、冷蔵庫のパネルや、エアコン室外機など、平面部と曲げ、張り出し、軽度な絞り加工等を施す家電用途一般の部材に広く用いることができる。さらに、本発明を用いれば、例えば、板厚0.8mmの鋼板で、650×500mm程度(32V型)以上のバックライトシャーシを製造可能である。   Further, the steel sheet of the present invention can be widely used for general household appliances such as backlight chassis of large TVs, refrigerator panels, and air conditioner outdoor units, which are bent, extended, and slightly drawn, etc. . Furthermore, if this invention is used, the backlight chassis about 650x500mm (32V type) or more can be manufactured, for example with a steel plate with a plate thickness of 0.8 mm.

本発明によれば、高い伸び、低いr値を得ることができ、絞り加工、曲げ加工、張り出し加工を行うことができる成形性と形状凍結性に優れた冷延鋼板が得られる。これにより大型の部品に要求される平板形状を確保可能であり、例えば、大型液晶テレビのバックライトシャーシなどの部材が製造できる。   According to the present invention, it is possible to obtain a cold-rolled steel sheet that can obtain high elongation and low r value, and can be drawn, bent, and stretched, and has excellent formability and shape freezing property. Thereby, a flat plate shape required for a large component can be secured, and for example, a member such as a backlight chassis of a large liquid crystal television can be manufactured.

添加C、N量と適正巻取り温度(CT)と鋼板の平均全伸び(El)、平均r値との関係を示す図である。It is a figure which shows the relationship between addition C and N amount, appropriate coiling temperature (CT), the average total elongation (El), and average r value of a steel plate.

以下、本発明を詳細に説明する。まず、本発明の鋼板の化学成分について説明する。なお、以下の説明において、成分元素の含有量%は全て質量%を意味するものである。   Hereinafter, the present invention will be described in detail. First, the chemical components of the steel sheet of the present invention will be described. In the following description, the content% of component elements means mass%.

C:0.010%以上0.030%未満
Cが0.030%以上の場合、炭化物の析出量が多くなり延性が低下する。一方、0.010%未満の場合、製造コスト上昇を招く。よって、Cは0.010%以上0.030%未満とする。
C: 0.010% or more and less than 0.030%
When C is 0.030% or more, the amount of precipitated carbide increases and ductility decreases. On the other hand, if it is less than 0.010%, the production cost is increased. Therefore, C is set to 0.010% or more and less than 0.030%.

Si:0.05%以下
Siは固溶強化元素であり降伏強度を高め延性を劣化させる。そのため、0.05%以下とする。
Si: 0.05% or less
Si is a solid solution strengthening element that increases yield strength and degrades ductility. Therefore, it is 0.05% or less.

Mn:0.3%以下
Mnは硫化物を形成して熱間脆性を改善する元素であるが、固溶強化元素でもあり降伏強度を高め延性を劣化させる。よって、Mnは0.3%以下とする。
Mn: 0.3% or less
Mn is an element that forms sulfides and improves hot brittleness, but is also a solid solution strengthening element and increases yield strength and degrades ductility. Therefore, Mn is set to 0.3% or less.

P:0.05%以下
Pは固溶強化元素であり降伏強度を高め延性を劣化させる。そのため、0.05%以下とする。
P: 0.05% or less
P is a solid solution strengthening element that increases yield strength and degrades ductility. Therefore, it is 0.05% or less.

S:0.02%以下
Sは、熱延板の段階で硫化物を形成し、冷延焼鈍後の結晶組織の異方性が増す原因となる。そのため、0.02%以下とする。
S: 0.02% or less
S forms a sulfide at the stage of hot-rolled sheet, and causes an increase in the anisotropy of the crystal structure after cold rolling annealing. Therefore, 0.02% or less.

Al:0.02%以上0.10%以下
Alは、脱酸元素であり、0.02%以上の添加を必要とする。一方、過度に添加した場合には、焼鈍時に微細に析出して結晶組織の異方性が増す原因となるため、上限は0.10%とする。
Al: 0.02% to 0.10%
Al is a deoxidizing element and requires addition of 0.02% or more. On the other hand, if added excessively, it is finely precipitated during annealing and causes an increase in the anisotropy of the crystal structure, so the upper limit is made 0.10%.

N:0.005%以下
Nは鋼中に固溶した場合にはストレッチャーストレインの原因となる。また、微細に析出した場合には、結晶組織の異方性が増す原因となる。以上より、Nは少ないほど望ましく、0.005%以下とする。
N: 0.005% or less
N, when dissolved in steel, causes stretcher strain. Moreover, when it precipitates finely, it becomes a cause which the anisotropy of a crystal structure increases. From the above, N is preferably as small as possible, and is 0.005% or less.

上記の元素に加えて、本発明では、下記を目的としてTi、Bのうちの1種以上をTi:0.02%以下、B:0.005%以下の範囲内で含有することができる。   In addition to the above elements, the present invention can contain one or more of Ti and B within the ranges of Ti: 0.02% or less and B: 0.005% or less for the following purposes.

Ti:0.02%以下
Tiは、Nとの親和力が強く、高温で析出物を形成して上記Nの悪影響を緩和する効果を有する。このような効果を得る上では0.005%以上含有するのが好ましい。一方で、過度の添加は製造コスト上昇を招く。以上より、含有する場合は0.02%以下とする。
Ti: 0.02% or less
Ti has a strong affinity for N, and has the effect of reducing the adverse effects of N by forming precipitates at high temperatures. In order to obtain such an effect, the content is preferably 0.005% or more. On the other hand, excessive addition causes an increase in manufacturing cost. Based on the above, the content is 0.02% or less.

B:0.005%以下
Bは、侵入型固溶元素であり、鋼中に固溶した場合にr値を下げる働きをする。また、固溶Nを析出物として固定して、ストレッチャーストレインを抑制させる効果がある。このような効果を得るためには0.0002%以上含有するのが好ましい。一方で、過度の添加は、高降伏強度化と低延性化を招くため、含有する場合は、0.005%以下とする。
B: 0.005% or less
B is an interstitial solid solution element, and acts to lower the r value when dissolved in steel. Moreover, there exists an effect which fixes solid solution N as a precipitate and suppresses a stretcher strain. In order to acquire such an effect, it is preferable to contain 0.0002% or more. On the other hand, excessive addition leads to high yield strength and low ductility, so when it is contained, the content is made 0.005% or less.

上記以外の成分は、鉄および不可避不純物からなる。不可避不純物としては、例えばスクラップから混入しやすい0.05%以下のCu、Crや、その他0.01%以下のSn、Nb、Mo、W、V、Ni等が挙げられる。   Components other than the above consist of iron and inevitable impurities. Examples of the inevitable impurities include 0.05% or less of Cu and Cr that are easily mixed from scrap, and 0.01% or less of Sn, Nb, Mo, W, V, Ni, and the like.

本発明の冷延鋼板は、圧延方向、圧延45°方向および圧延直角方向の平均のr値を1.2以下とする。
曲げ成形材の曲げ部に発生する反りはr値が高いほど大きくなる。平均のr値を1.2以下とすることで、成形後の形状凍結性を充分に向上させることができる。
なお、平均のr値は以下の方法により測定し求めることができる。圧延方向、圧延45°方向および圧延直角方向からJIS5号引張試験片をそれぞれ切り出し、JIS Z 2254に準拠した塑性ひずみ比試験を予歪み15%にて行う。そして、下記(a)式により求める。
平均のr値 r=(rL+2rD+rC)/4 ・・・(a)
ここで、rL:圧延方向のr値、rD:圧延45°方向のr値、rC:圧延直角方向のr値
本発明の鋼板は、平均の全伸びを41%以上とする。
上記の特性に加えて、平均の全伸びを41%以上と大きくすることで、絞り加工や張り出し加工を行うことができ、部品に要求される形状を確保することができる。張出し成形において、過度に張出し高さが増すと材料の割れを招く。このような材料の割れを防止し、できるだけ張出しの成形高さを高くするには、材料の延性を高くするのが有効である。家電・建材用鋼板用途として平均の全伸びが41%以上であれば、加工を行った際に充分に部品に要求される形状を確保することができる。よって、本発明では、平均の伸びを41%以上とする。好ましくは44%以上である。
なお、平均の全伸びは以下の方法により測定し求めることができる。圧延方向、圧延45°方向および圧延直角方向からJIS5号引張試験片をそれぞれ切り出し、JIS Z 2241に準拠した引張試験を行う。そして、下記(b)式により求める。
平均の全伸び El=(ElL+2ElD+ElC)/4 ・・・(b)
ここで、ElL:圧延方向の伸び、ElD:圧延45°方向の伸び、ElC:圧延直角方向の伸び
次に本発明の鋼板の製造方法について説明する。本発明においては、上記の組成を有する鋼スラブを、熱間圧延し、次いで、平均冷却速度:20℃/s以下で冷却し、巻取り温度:0℃以上かつ[{8×(C量+N量×12/14)}−1850]℃〜[{ 0.5×(C量+N量×12/14)}+520](ただし、式中C量、N量は鋼中のC含有量(ppm)、N含有量(ppm))℃の範囲で巻取った後、圧下率:55%以上で冷間圧延を行い、次いで、焼鈍温度:650℃〜800℃で焼鈍を行うことにより、高い全伸び、低いr値を得ることができる。
The cold rolled steel sheet of the present invention has an average r value of 1.2 or less in the rolling direction, the 45 ° direction, and the direction perpendicular to the rolling direction.
The warp generated in the bent part of the bending material increases as the r value increases. By setting the average r value to 1.2 or less, the shape freezing property after molding can be sufficiently improved.
The average r value can be measured and determined by the following method. JIS No. 5 tensile specimens are cut out from the rolling direction, the 45 ° direction and the direction perpendicular to the rolling direction, respectively, and a plastic strain ratio test based on JIS Z 2254 is performed at a pre-strain of 15%. And it calculates | requires by the following (a) formula.
Average r value r m = (r L + 2r D + r C ) / 4 (a)
Here, r L : r value in rolling direction, r D : r value in rolling 45 ° direction, r C : r value in perpendicular direction of rolling The steel sheet of the present invention has an average total elongation of 41% or more.
In addition to the above characteristics, when the average total elongation is increased to 41% or more, drawing and overhanging can be performed, and the shape required for the part can be ensured. In the overhang forming, if the overhang height is excessively increased, the material is cracked. Increasing the ductility of the material is effective in preventing such cracking of the material and increasing the overhang forming height as much as possible. If the average total elongation is 41% or more as a steel sheet for home appliances and building materials, the shape required for the parts can be sufficiently ensured when processing is performed. Therefore, in the present invention, the average elongation is set to 41% or more. Preferably it is 44% or more.
The average total elongation can be measured and determined by the following method. A JIS No. 5 tensile test piece is cut out from the rolling direction, the 45 ° direction, and the direction perpendicular to the rolling direction, and a tensile test based on JIS Z 2241 is performed. And it calculates | requires by the following (b) formula.
Average total elongation El m = (El L + 2El D + El C ) / 4 (b)
Here, El L : Elongation in the rolling direction, El D : Elongation in the 45 ° direction of rolling, El C : Elongation in the direction perpendicular to the rolling Next, the method for producing the steel sheet of the present invention will be described. In the present invention, a steel slab having the above composition is hot-rolled and then cooled at an average cooling rate of 20 ° C./s or less, and a winding temperature of 0 ° C. or more and [{8 × (C amount + N Amount × 12/14)} − 1850] ° C. to [{0.5 × (C amount + N amount × 12/14)} + 520] (where C amount and N amount are the C content (ppm) in steel, After rolling in the range of N content (ppm) ° C., cold rolling at a reduction ratio of 55% or more, and then annealing at an annealing temperature of 650 ° C. to 800 ° C., high total elongation, A low r value can be obtained.

加熱温度:1200℃以上(好適条件)
熱間圧延するに際し、加熱中にAlN等の析出物を一旦固溶させ、巻取り後に微細析出させる必要があることから、熱間圧延の加熱温度は1200℃以上とするのが好ましい。
Heating temperature: 1200 ° C or higher (preferred conditions)
In hot rolling, since it is necessary to once dissolve precipitates such as AlN during heating and finely precipitate after winding, the heating temperature for hot rolling is preferably 1200 ° C. or higher.

仕上圧延終了温度:880℃以上(好適条件)
仕上げ圧延中にフェライト域に相転位を起こすと、熱延板の組織が不均一になり、材質が不安定になる恐れがある。そのため、仕上げ圧延はオーステナイト単相で行うことが好ましく、仕上圧延終了温度は、好適には880℃以上である。
Finishing rolling finish temperature: 880 ° C or higher (preferred conditions)
If phase transition occurs in the ferrite region during finish rolling, the structure of the hot-rolled sheet becomes non-uniform and the material may become unstable. Therefore, the finish rolling is preferably performed in an austenite single phase, and the finish rolling finish temperature is preferably 880 ° C. or higher.

平均冷却速度:20℃/s以下
仕上げ圧延の後は平均冷却速度:20℃/s以下で冷却する。なお、空冷(放冷)とする場合、10℃/s程度以下の冷却速度となるため、平均冷却速度20℃/s以下を満足する。水冷却を行うこともできるが、過度の冷却は熱延板の結晶粒を微細化し、それに伴って、焼鈍後の結晶粒が微細化し材料強度が上昇し延性が劣化する。そのため、平均冷却速度は20℃/sec以下とする。
Average cooling rate: 20 ° C./s or less After finish rolling, cooling is performed at an average cooling rate: 20 ° C./s or less. In the case of air cooling (cooling), the cooling rate is about 10 ° C./s or less, so the average cooling rate is 20 ° C./s or less. Although water cooling can be performed, excessive cooling refines the crystal grains of the hot-rolled sheet, and accordingly, crystal grains after annealing become finer, the material strength increases, and ductility deteriorates. Therefore, an average cooling rate shall be 20 degrees C / sec or less.

巻取り温度(以下、CTと称することもある):0℃以上かつ[{8×(C量+N量×12/14)}−1850]℃〜[{ 0.5×(C量+N量×12/14)}+520](ただし、式中C量、N量は鋼中のC含有量(ppm)、N含有量(ppm))℃
次いで、熱延板をコイル形状に巻取る。この時の巻取り温度は0℃以上かつ[{8×(C量+N量×12/14)}−1850]℃〜[{ 0.5×(C量+N量×12/14)}+520]℃とする。この巻取り温度範囲は、発明者が実験により得られた結果を基に平均のr値、平均の全伸びと、C及びN含有量、CTの関係について解析して得たものである。なお、平均のr値、平均の全伸びと、C及びN含有量、CTの関係について解析したのは、下記のように考えたからである。すなわち、巻取り温度が高すぎるとセメンタイトやAlNが粗大に析出し、焼鈍時にr値低減に不利な再結晶粒の成長が促進されてしまう。これに加え焼鈍時r値低減に有利な再結晶方位を生成する、熱延鋼板中の固溶Cや固溶N量が減少してしまう。一方で、巻取り温度が低すぎると固溶C、N量が過度に増えてしまうことによって、冷延時に多くの変形帯をつくり、焼鈍時そこから生成する再結晶粒が増えることによって焼鈍板の結晶粒径が微細化して延性が低下する。さらに熱延板の結晶粒径が小さくなることによって、焼鈍板の結晶粒径が微細化して延性が低下してしまう。さらに、冷却水が固化して熱延板表面を傷つけないためには、0℃以上とする。なお、平均のr値を1.2以下でかつ平均の全伸びを44%とするには、巻取り温度は500℃以上かつ[{8×(C量+N量×12/14)}−1850]℃〜[{ 0.5×(C量+N量×12/14)}+520]℃とするのが好ましい。
以上のように、巻取り温度は、コイル巻取り時に結晶粒径を粗大化させると同時に炭窒化物を凝集させ熱延板の固溶C、N量を適正化させるため、重要であり、成形性と形状凍結性に優れた冷延鋼板を得るために、巻取り温度を制御することは本発明において重要な要件である。
Winding temperature (hereinafter sometimes referred to as CT): 0 ° C. or higher and [{8 × (C amount + N amount × 12/14)} − 1850] ° C. to [{0.5 × (C amount + N amount × 12 / 14)} + 520] (where C content and N content are C content (ppm) and N content (ppm) in steel) ° C
Next, the hot rolled plate is wound into a coil shape. The winding temperature at this time is 0 ° C or higher and [{8 × (C amount + N amount × 12/14)}-1850] ° C to [{0.5 × (C amount + N amount × 12/14)} + 520] ° C. To do. This coiling temperature range was obtained by analyzing the relationship between the average r value, average total elongation, C and N content, and CT based on the results obtained by experiments by the inventors. The reason for analyzing the relationship between the average r value, the average total elongation, the C and N contents, and CT is because of the following consideration. That is, when the coiling temperature is too high, cementite and AlN are coarsely precipitated, and the growth of recrystallized grains, which is disadvantageous for reducing the r value, is promoted during annealing. In addition, the amount of solute C and solute N in the hot-rolled steel sheet, which generates a recrystallization orientation that is advantageous for reducing the r value during annealing, is reduced. On the other hand, if the coiling temperature is too low, the amount of dissolved C and N will increase excessively, creating many deformation bands during cold rolling, and increasing the number of recrystallized grains that are generated from annealing, thereby annealing annealing. The crystal grain size becomes finer and ductility decreases. Furthermore, when the crystal grain size of the hot-rolled sheet is reduced, the crystal grain size of the annealed sheet is refined and the ductility is lowered. Further, in order to prevent the cooling water from solidifying and damaging the surface of the hot rolled plate, the temperature is set to 0 ° C. or higher. In order to obtain an average r value of 1.2 or less and an average total elongation of 44%, the coiling temperature is 500 ° C. or higher and [{8 × (C amount + N amount × 12/14)} − 1850] ° C. It is preferable to set to [{0.5 × (C amount + N amount × 12/14)} + 520] ° C.
As described above, the coiling temperature is important for coarsening the crystal grain size during coil winding and at the same time agglomerating carbonitride and optimizing the amount of solute C and N in the hot rolled sheet. It is an important requirement in the present invention to control the coiling temperature in order to obtain a cold-rolled steel sheet having excellent properties and shape freezing properties.

冷間圧延時の圧下率(冷圧率):55%以上
巻取り後、通常の方法にて酸洗し、圧下率55%以上で冷間圧延を行い、所望の板厚に成形する。低r値化には圧下率は低いほど好ましいが、過度に低くした場合、再結晶するための十分な駆動力が得られず、焼鈍後もひずみが残存した組織となり高強度化、低延性化してしまい、さらに、板厚1.0mm程度以下に仕上げようとした場合、熱延板を過度に薄くせざるを得ず、熱延コストの増加を招いてしまう。以上から圧下率は55%以上とする。なお、圧下率が高くなりすぎると、圧延荷重が大きくなりすぎ圧延が困難となって生産効率が低下する場合があるため、圧下率は85%程度以下とすることが好ましい。
Rolling ratio during cold rolling (cold rolling ratio): After winding 55% or more, pickling is performed by a normal method, cold rolling is performed at a rolling reduction of 55% or more, and a desired sheet thickness is formed. A lower rolling reduction is preferable for lowering the r value, but if it is excessively low, sufficient driving force for recrystallization cannot be obtained, resulting in a structure in which strain remains even after annealing, resulting in higher strength and lower ductility. In addition, when trying to finish the plate to a thickness of about 1.0 mm or less, the hot-rolled plate must be made excessively thin, resulting in an increase in hot-rolling cost. From the above, the rolling reduction is 55% or more. If the rolling reduction is too high, the rolling load becomes too large and rolling may be difficult and the production efficiency may be reduced. Therefore, the rolling reduction is preferably about 85% or less.

焼鈍温度:650〜800℃
650℃以上800℃以下の焼鈍温度で焼鈍を行うことで粒成長を促す。焼鈍温度は過度に高くするとAlNが溶解し、鋼中に固溶Nが出現しストレッチャーストレインの原因となってしまう。一方で過度に低くすると冷間圧延時に導入されたひずみが解放されずに高YP化、低延性化につながる。よって、焼鈍温度は650℃以上800℃以下とする。
Annealing temperature: 650-800 ° C
Grain growth is promoted by annealing at an annealing temperature of 650 ° C or higher and 800 ° C or lower. If the annealing temperature is excessively high, AlN dissolves and solid solution N appears in the steel, causing stretcher strain. On the other hand, if it is too low, the strain introduced during cold rolling is not released, leading to high YP and low ductility. Therefore, the annealing temperature is set to 650 ° C. or higher and 800 ° C. or lower.

保持時間:30〜200s(好適条件)
上記の焼鈍温度に保持する時間が短いと、再結晶が完了しないか、あるいは、完了しても粒成長が抑制されるために、伸びが低下する。また、固溶Nの拡散が不十分となり、フェライト粒内での固溶Nが残存し、降伏強度が大きくなり、伸びが低下する。したがって、焼鈍時の保持時間は30s以上とすることが好ましい。一方、均熱時間が長くなると、粒が過度に成長し大きくなるため、加工時に肌荒れの問題を発生し、表面性状が悪くなる。したがって、加熱時の均熱時間は200s以下とすることが好ましい。
Holding time: 30-200s (preferred conditions)
If the time for maintaining the annealing temperature is short, recrystallization will not be completed, or even if it is completed, grain growth will be suppressed and elongation will be reduced. Further, the diffusion of the solid solution N becomes insufficient, the solid solution N remains in the ferrite grains, the yield strength increases, and the elongation decreases. Therefore, the holding time during annealing is preferably 30 s or longer. On the other hand, if the soaking time is long, the grains grow excessively and become large, which causes a problem of rough skin at the time of processing, resulting in poor surface properties. Therefore, the soaking time during heating is preferably set to 200 s or less.

また、固溶Cを析出させて全伸びを向上するために、焼鈍後の冷却過程において、300℃〜400℃で60〜300s程度の過時効処理を行うことが好ましい。
過時効処理温度を400℃以下とするのはセメンタイト析出の駆動力を高め、析出を促進するためであり、300℃以上とするのはFeおよびCの拡散およびセメンタイトの析出を促進するためである。
また、過時効処理時間は、60s未満であるとその効果が小さく、300sを超えてもその効果が飽和し、生産効率を低下するためであるため、上記範囲とすることが好ましい。
焼鈍後には、板形状の矯正などを目的として調質圧延やレベリングを行っても良い。また、鋼板の表面に亜鉛、クロム、ニッケルといった耐食性を向上させる元素をめっきしたり、耐食性や摺動性などを向上させる化成処理を行っても良い。
In order to precipitate solid solution C and improve the total elongation, it is preferable to perform an overaging treatment at 300 ° C. to 400 ° C. for about 60 to 300 seconds in the cooling process after annealing.
The over-aging temperature is set to 400 ° C or lower to increase the driving force of cementite precipitation and promote precipitation, and the temperature to 300 ° C or higher is to promote diffusion of Fe and C and precipitation of cementite. .
Further, the overaging treatment time is less than 60 seconds, the effect is small, and even if it exceeds 300 seconds, the effect is saturated and the production efficiency is lowered.
After annealing, temper rolling and leveling may be performed for the purpose of correcting the plate shape. Further, the surface of the steel plate may be plated with an element that improves corrosion resistance such as zinc, chromium, or nickel, or chemical conversion treatment may be performed to improve the corrosion resistance or slidability.

なお、本発明の実施に当たり、溶製方法は、通常の転炉法、電炉法等、適宜適用することができる。溶製された鋼は、スラブに鋳造後、そのまま、あるいは、冷却して加熱し、熱間圧延を施す。熱間圧延では、前述の冷却速度で冷却し、前述の巻取り温度で巻取る。その後、通常の酸洗後に、前述の冷間圧延、焼鈍を施す。必要に応じて、480℃近傍で溶融亜鉛によるめっきを行ってもよい。また、めっき後、500℃以上に再加熱してめっきを合金化してもよい。あるいは、冷却途中で保持をおこなうなどの熱履歴をとってもよい。さらに、必要に応じて、0.5〜2%程度の伸び率で調質圧延を行ってもよい。また、焼鈍途中でめっきを施さなかった場合には、耐腐食性を向上させるために電気亜鉛メッキなどを行ってもよい。さらに、冷延鋼板やめっき鋼板の上に、化成処理などにより皮膜をつけてもよい。
以上により、成形性と形状凍結性に優れた冷延鋼板が得られる。
In carrying out the present invention, a melting method can be appropriately applied, such as a normal converter method or an electric furnace method. The molten steel is cast into a slab and then heated as it is or after cooling and hot rolling. In hot rolling, the steel sheet is cooled at the above cooling rate and wound at the above winding temperature. Then, after the usual pickling, the above-mentioned cold rolling and annealing are performed. If necessary, plating with hot dip zinc may be performed at around 480 ° C. Further, after plating, the plating may be alloyed by reheating to 500 ° C. or higher. Alternatively, a heat history such as holding during cooling may be taken. Furthermore, if necessary, temper rolling may be performed at an elongation rate of about 0.5 to 2%. In addition, when plating is not performed during annealing, electrogalvanization or the like may be performed in order to improve corrosion resistance. Further, a film may be formed on the cold-rolled steel plate or the plated steel plate by chemical conversion treatment or the like.
As described above, a cold-rolled steel sheet having excellent formability and shape freezing property is obtained.

表1に示す化学組成を有するスラブを溶製したのち、表2に示す仕上げ温度(FT)で熱間圧延を行い、表2に示す条件で冷却し、表2に示す巻取り温度(CT)で巻取り処理を行った。次いで、得られた熱延板に対して酸洗した後に70%の圧下率で冷間圧延し、730℃以上800℃以下の範囲の表2に示す焼鈍温度(AT)で焼鈍を行い、1%の伸長率で調質圧延を行って供試材を作製した。なお、冷延後の板厚は0.6〜0.8mmとし、焼鈍時の保持時間は50〜200sとした。また、一部鋼板は、焼鈍後表2に示す条件で過時効処理を行った。
以上により得られた供試材に対して、平均のr値と平均の全伸び(El)を測定した。測定方法は、供試材の圧延方向(L方向)、圧延45°方向(D方向)、圧延直角方向(C方向)からJIS5号引張試験片をそれぞれ切り出し、JIS Z 2241に準拠した引張試験およびJIS Z 2254に準拠した塑性ひずみ比試験を予歪み15%にて行った。そして、前述の(a)式および(b)式により平均のr値と平均の全伸び(El)を求めた。
得られた結果を条件と併せて表2に示す。また、図1にC、N量と適正巻取り温度(CT)と鋼板の平均全伸び(El)、平均r値との関係を示す。
なお、表2に巻取り条件として、巻取り温度が、0℃以上かつ[{8×(C量+N量×12/14 (ppm))}−1850]℃〜[{ 0.5×(C量+N量×12/14(ppm))}+520]℃を満足する場合を△、さらに500℃以上を満足する場合を○とし、これらを満足しない場合を×として記載した。
After the slab having the chemical composition shown in Table 1 is melted, it is hot-rolled at the finishing temperature (FT) shown in Table 2, cooled under the conditions shown in Table 2, and the coiling temperature (CT) shown in Table 2 The winding process was performed. Next, after pickling the obtained hot-rolled sheet, it was cold-rolled at a reduction rate of 70%, and annealed at the annealing temperature (AT) shown in Table 2 in the range of 730 ° C to 800 ° C. Samples were prepared by temper rolling at an elongation rate of%. The plate thickness after cold rolling was 0.6 to 0.8 mm, and the holding time during annealing was 50 to 200 s. In addition, some steel plates were over-aged under the conditions shown in Table 2 after annealing.
The average r value and average total elongation (El) were measured for the specimens obtained as described above. The measuring method is to cut out JIS No. 5 tensile specimens from the rolling direction (L direction), rolling 45 ° direction (D direction), and perpendicular direction (C direction) of the specimen, A plastic strain ratio test based on JIS Z 2254 was performed at a pre-strain of 15%. And average r value and average total elongation (El) were calculated | required by the above-mentioned (a) Formula and (b) Formula.
The results obtained are shown in Table 2 together with the conditions. Fig. 1 shows the relationship between the amount of C and N, the appropriate coiling temperature (CT), the average total elongation (El) of the steel sheet, and the average r value.
In Table 2, as the winding conditions, the winding temperature is 0 ° C. or higher and [{8 × (C amount + N amount × 12/14 (ppm))} − 1850] ° C. to [{0.5 × (C amount + N (Quantity × 12/14 (ppm))} + 520] ° C. is indicated by Δ, the case where 500 ° C. or more is satisfied is indicated by ○, and the case where these are not satisfied is indicated by ×.

Figure 0005549232
Figure 0005549232

Figure 0005549232
Figure 0005549232

表2によれば、本発明の組成を有し、本発明の製造方法で製造した鋼板は、平均の全伸び(El)が41%以上であり平均のr値が1.2以下であった。これに対して組成が本発明の範囲外であるか、組成が本発明の範囲内であっても製造方法が本発明の範囲外である鋼板は、El、平均r値のいずれかが劣っていた。   According to Table 2, the steel sheet having the composition of the present invention and manufactured by the manufacturing method of the present invention had an average total elongation (El) of 41% or more and an average r value of 1.2 or less. On the other hand, a steel sheet whose composition is outside the scope of the present invention or whose manufacturing method is outside the scope of the present invention even if the composition is within the scope of the present invention is inferior in either El or average r value. It was.

また、図1に本発明に記す適正巻取り温度範囲を図中点線で囲った。この範囲内で製造することにより、平均の全伸び(El)が41%以上であり、平均のr値が1.2以下の鋼板が得られる。さらに、巻取り温度を500℃以上かつC量+N量×12/14を300ppm以下とすることにより、平均の全伸び(El)が44%以上の鋼板が得られる。   Further, in FIG. 1, an appropriate winding temperature range described in the present invention is surrounded by a dotted line in the figure. By manufacturing within this range, a steel sheet having an average total elongation (El) of 41% or more and an average r value of 1.2 or less can be obtained. Furthermore, by setting the coiling temperature to 500 ° C. or more and the C content + N content × 12/14 to 300 ppm or less, a steel sheet having an average total elongation (El) of 44% or more can be obtained.

そして、以上の結果、本発明の冷延鋼板は、平均の全伸び及び平均のr値が制御され、成形性と形状凍結性に優れることになる。   As a result of the above, the cold rolled steel sheet of the present invention is controlled in average total elongation and average r value, and is excellent in formability and shape freezeability.

Claims (4)

質量%で、C:0.010%以上0.030%未満、Si:0.05%以下、Mn:0.3%以下、P:0.05%以下、S:0.02%以下、Al:0.02%以上0.10%以下、N:0.005%以下で、残部が鉄および不可避不純物である組成を有し、
下記式(a)で表される平均のr値(r が1.2以下であり、
かつ下記式(b)で表される平均の全伸び(El が41%以上であることを特徴とする冷延鋼板。
=(r L +2r D +r C )/4 ・・・(a)
ここで、r L :圧延方向のr値、r D :圧延45°方向のr値、r C :圧延直角方向のr値である。
El =(El L +2El D +El C )/4 ・・・(b)
ここで、El L :圧延方向の伸び、El D :圧延45°方向の伸び、El C :圧延直角方向の伸びである。
By mass%, C: 0.010% or more and less than 0.030%, Si: 0.05% or less, Mn: 0.3% or less, P: 0.05% or less, S: 0.02% or less, Al: 0.02% or more, 0.10% or less, N: 0.005% In the following, the balance has a composition of iron and inevitable impurities,
The average r value (r m ) represented by the following formula (a) is 1.2 or less,
Cold-rolled steel sheet, wherein a total elongation of average (El m) is 41% or more and represented by the following formula (b).
r m = (r L + 2r D + r C ) / 4 (a)
Here, r L : r value in rolling direction, r D : r value in rolling 45 ° direction, r C : r value in rolling perpendicular direction.
El m = (El L + 2El D + El C ) / 4 (b)
Here, El L : elongation in the rolling direction, El D : elongation in the 45 ° direction of rolling , El C : elongation in the direction perpendicular to the rolling.
さらに、質量%で、Ti、Bのうちの1種以上をTi:0.02%以下、B:0.005%以下の範囲内で含有することを特徴とする請求項1に記載の冷延鋼板。   The cold-rolled steel sheet according to claim 1, further comprising, in mass%, at least one of Ti and B within a range of Ti: 0.02% or less and B: 0.005% or less. 請求項1または請求項2に記載の組成を有するスラブを用いて、熱間圧延を行い、次いで、平均冷却速度:20℃/s以下で冷却し、巻取り温度:0℃以上かつ[{8×(C量+N量×12/14)}−1850]℃〜[{ 0.5×(C量+N量×12/14)}+520](ただし、式中C量、N量は鋼中のC含有量(ppm)、N含有量(ppm))℃の範囲で巻取った後、圧下率:55%以上で冷間圧延を行い、次いで、焼鈍温度:650℃〜800℃で焼鈍することを特徴とする冷延鋼板の製造方法。 Using the steel slab having the composition according to claim 1 or 2, hot rolling is performed, and then cooling is performed at an average cooling rate of 20 ° C./s or less, a winding temperature of 0 ° C. or more and [{ 8 x (C amount + N amount x 12/14)}-1850] ° C to [{0.5 x (C amount + N amount x 12/14)} + 520] (where C amount and N amount are C in steel) After rolling in the range of content (ppm), N content (ppm) ° C, cold rolling at a reduction rate of 55% or more, then annealing at 650 ° C to 800 ° C A method for producing a cold-rolled steel sheet. 前記焼鈍後、引き続き300℃〜400℃の温度で、60s〜300sの過時効処理を行うことを特徴とする請求項3に記載の冷延鋼板の製造方法。   The method for producing a cold-rolled steel sheet according to claim 3, wherein after the annealing, an overaging treatment is performed at a temperature of 300 ° C to 400 ° C for 60 s to 300 s.
JP2010006552A 2010-01-15 2010-01-15 Cold rolled steel sheet and method for producing the same Expired - Fee Related JP5549232B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2010006552A JP5549232B2 (en) 2010-01-15 2010-01-15 Cold rolled steel sheet and method for producing the same
PCT/JP2011/050594 WO2011087112A1 (en) 2010-01-15 2011-01-07 Cold-rolled steel plate and method for producing same
MYPI2012002745A MY161580A (en) 2010-01-15 2011-01-07 Cold rolled steel sheet and method for manufacturing the same
MX2012007913A MX339156B (en) 2010-01-15 2011-01-07 Cold-rolled steel plate and method for producing same.
KR1020127018164A KR101528014B1 (en) 2010-01-15 2011-01-07 Cold-rolled steel plate and method for producing same
CN201180006114.1A CN102712981B (en) 2010-01-15 2011-01-07 Cold-rolled steel plate and method for producing same
TW100101214A TWI427161B (en) 2010-01-15 2011-01-13 Cold rolled steel sheet and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010006552A JP5549232B2 (en) 2010-01-15 2010-01-15 Cold rolled steel sheet and method for producing the same

Publications (2)

Publication Number Publication Date
JP2011144426A JP2011144426A (en) 2011-07-28
JP5549232B2 true JP5549232B2 (en) 2014-07-16

Family

ID=44304382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010006552A Expired - Fee Related JP5549232B2 (en) 2010-01-15 2010-01-15 Cold rolled steel sheet and method for producing the same

Country Status (7)

Country Link
JP (1) JP5549232B2 (en)
KR (1) KR101528014B1 (en)
CN (1) CN102712981B (en)
MX (1) MX339156B (en)
MY (1) MY161580A (en)
TW (1) TWI427161B (en)
WO (1) WO2011087112A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5903884B2 (en) * 2011-12-27 2016-04-13 Jfeスチール株式会社 Manufacturing method of high-strength thin steel sheet with excellent resistance to folding back

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0672257B2 (en) * 1988-04-14 1994-09-14 新日本製鐵株式会社 Method for producing cold rolled steel sheet with excellent workability by continuous annealing
JP2671737B2 (en) * 1992-12-10 1997-10-29 住友金属工業株式会社 Manufacturing method of thin steel sheet for deep drawing
JPH0885827A (en) * 1994-09-19 1996-04-02 Sumitomo Metal Ind Ltd Production of cold rolled steel sheet by continuous annealing
JP3466298B2 (en) * 1994-11-15 2003-11-10 新日本製鐵株式会社 Manufacturing method of cold rolled steel sheet with excellent workability
JP3532138B2 (en) * 2000-04-25 2004-05-31 新日本製鐵株式会社 Ferrite thin steel sheet excellent in shape freezing property and method for producing the same
CN100447280C (en) * 2005-10-10 2008-12-31 燕山大学 Impact stage low carbon steel hot-rolled sheet and mfg. method thereof

Also Published As

Publication number Publication date
KR20120092705A (en) 2012-08-21
MX2012007913A (en) 2012-08-01
WO2011087112A1 (en) 2011-07-21
TWI427161B (en) 2014-02-21
CN102712981A (en) 2012-10-03
MX339156B (en) 2016-05-13
TW201200603A (en) 2012-01-01
CN102712981B (en) 2014-11-12
MY161580A (en) 2017-04-28
KR101528014B1 (en) 2015-06-10
JP2011144426A (en) 2011-07-28

Similar Documents

Publication Publication Date Title
CN107761006B (en) Strong dual phase steel of low-carbon hot galvanizing superelevation and preparation method thereof
JP2013064169A (en) High-strength steel sheet and plated steel sheet excellent in bake-hardenability and formability, and method for production thereof
CN113832386A (en) High-strength hot-rolled substrate, hot-dip galvanized steel and manufacturing method thereof
JP5407591B2 (en) Cold-rolled steel sheet, manufacturing method thereof, and backlight chassis
KR101463667B1 (en) Cold-rolled steel plate and method for producing same
JP5018900B2 (en) Cold-rolled steel sheet excellent in formability and shape freezing property after aging and method for producing the same
JP7421650B2 (en) High-strength ferritic stainless steel for clamps and its manufacturing method
JP5549232B2 (en) Cold rolled steel sheet and method for producing the same
CN112226674B (en) Aging-resistant cold-rolled hot-galvanized steel plate for household appliances and production method thereof
JP5434375B2 (en) High-strength hot-dip galvanized steel sheet excellent in workability and manufacturing method thereof
JP4962527B2 (en) Cold-rolled steel sheet excellent in formability, shape freezing property, surface appearance, and method for producing the same
JP2013076132A (en) High strength thin steel sheet having excellent bake hardenability and formability and method for manufacturing the same
JP5481920B2 (en) Cold-rolled steel sheet excellent in formability and shape freezing property, and manufacturing method thereof
JP5586704B2 (en) Cold-rolled steel sheet for processing excellent in heat resistance and method for producing the same
JP2012172159A (en) High-strength cold-rolled steel sheet excellent in homogeneous deformability and local deformability
JP2005015882A (en) High-strength cold rolled steel sheet for deep drawing and method for manufacturing the same
CN117966011A (en) Hot dip galvanized steel sheet for easy-open end pull ring and manufacturing method thereof
JP2016194136A (en) High strength high ductility steel sheet excellent in production stability, manufacturing method thereof and cold rolled original sheet used for manufacturing high strength high ductility steel sheet
JPH05140655A (en) Manufacture of hot rolled steel sheet excellent in deep drawability
KR20110063189A (en) High heat-resistance cold-rolled steel sheet having excellent formability, heat resistance, surface properties for working and manufacturing method thereof

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140422

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140505

R150 Certificate of patent or registration of utility model

Ref document number: 5549232

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees