JPH0885827A - Production of cold rolled steel sheet by continuous annealing - Google Patents

Production of cold rolled steel sheet by continuous annealing

Info

Publication number
JPH0885827A
JPH0885827A JP25003194A JP25003194A JPH0885827A JP H0885827 A JPH0885827 A JP H0885827A JP 25003194 A JP25003194 A JP 25003194A JP 25003194 A JP25003194 A JP 25003194A JP H0885827 A JPH0885827 A JP H0885827A
Authority
JP
Japan
Prior art keywords
temperature
annealing
coil
steel sheet
cold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25003194A
Other languages
Japanese (ja)
Inventor
Shigeki Nomura
茂樹 野村
Kiwamu Watanabe
極 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP25003194A priority Critical patent/JPH0885827A/en
Publication of JPH0885827A publication Critical patent/JPH0885827A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PURPOSE: To stably produce a cold rolled steel sheet, having homogeneous characteristics in coil and excellent in deep drawability and aging characteristic at ordinary temp., from a low-carbon Al-killed steel stock by applying continuous annealing. CONSTITUTION: A steel slab, having a composition which contains 0.010-0.030% C, <=0.1% Si, 0.05-0.25% Mn, 0.004-0.10% sol.Al, 0.0005-0.015% S, and 0-0.0040% B and in which respective contents of P and N are limited, is hot-rolled, coiled at 600-750 deg.C, cold-rolled, and continuously annealed. The maximum heating temp. in the central part of the coil at annealing and the maximum heating temp. at both ends of the coil are controlled to 840-880 deg.C and 870-930 deg.C, respectively. After annealing heating, the steel sheet is cooled slowly down to 650-780 deg.C at a rate of <=10 deg.C/s, cooled rapidly down to 300-450 deg.C at a rate of >=60 deg.C/s, and then overaged at 300-450 deg.C for 90-270sec, or, after slow cooling the steel sheet is cooled rapidly down to 200-300 deg.C at >=60 deg.C/s cooling rate and then reheated to 320-450 deg.C and cooled slowly down to 200-330 deg.C in 90-240sec to undergo overaging.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、安価な通常の低炭素
Alキルド鋼を素材とし、連続焼鈍法で深絞り性と常温時
効性に優れかつコイル内の特性が均質な冷延鋼板を製造
する方法に関するものである。
BACKGROUND OF THE INVENTION This invention is a low-cost conventional low-carbon
The present invention relates to a method for producing a cold-rolled steel sheet using Al-killed steel as a raw material, which is excellent in deep drawability and normal temperature aging by a continuous annealing method and has uniform properties in a coil.

【0002】[0002]

【従来の技術】従来、自動車用等に用いられる深絞り用
冷延鋼板は箱焼鈍法を組み込んだ製造プロセスにより製
造されていたが、最近では箱焼鈍法に代えて連続焼鈍法
を適用し、その生産性を高めることが行われている。し
かし、連続焼鈍法は短時間で焼鈍・過時効が終了するプ
ロセスであるため、低炭素Alキルド鋼を素材として深絞
り用冷延鋼板を製造する場合には次の2つの問題が指摘
された。1つは、得られる冷延鋼板のr値(深絞り性の
指数として用いられるランクフォ−ド値)が低いことで
ある。即ち、低炭素Alキルド鋼板において連続焼鈍によ
り高r値を得るには、熱延板の段階で「セメンタイトを
凝集粗大化させておくこと」及び「AlNを完全に析出さ
せかつ大きくしておくこと」が重要であり、そのため通
常は高温巻取りが実施される。しかしながら、高温巻取
りを行ったコイルではその内外周部の冷却速度が速くな
る傾向があり、そのためこの部位ではセメンタイトある
いはAlNが十分に凝集粗大化せず、良好な深絞り性を得
ることが難しいことになる。そして、もう1つは、得ら
れる冷延鋼板の残存固溶C量が多く、常温時効性に劣る
ことである。
2. Description of the Related Art Conventionally, cold-rolled steel sheets for deep drawing used for automobiles and the like have been manufactured by a manufacturing process incorporating a box annealing method, but recently, a continuous annealing method is applied instead of the box annealing method, Its productivity is being increased. However, since the continuous annealing method is a process in which annealing and overaging are completed in a short time, the following two problems were pointed out when manufacturing cold-rolled steel sheets for deep drawing using low carbon Al killed steel as a raw material. . One is that the obtained cold-rolled steel sheet has a low r value (rank-ford value used as an index of deep drawability). That is, in order to obtain a high r value by continuous annealing in a low carbon Al-killed steel sheet, "coagulate and coarsen cementite" and "precipitate and increase AlN completely" at the stage of hot rolling. Is important, so high temperature winding is usually performed. However, in a coil that has been wound at a high temperature, the cooling rate of the inner and outer circumferences tends to be faster, so that cementite or AlN does not aggregate and coarsen sufficiently in this part, and it is difficult to obtain good deep drawability. It will be. The other is that the obtained cold-rolled steel sheet has a large amount of residual solid solution C and is inferior in room temperature aging.

【0003】そこで、これらの問題を解決するため、例
えば素材鋼のC,Al量を低い値に規制すると共に微量の
Bを添加する方法が提案された(特開昭62−107025
号)。また、熱間圧延工程において鋼帯の長さ方向両端
部の温度が中央部の温度よりも50〜80℃高くなるよ
うに冷却を制御してから巻取る方法も提案されている
(特開平4−63232 号)。しかし、これらの方法では、
r値の向上に好ましくない微細析出物の生成はある程度
軽減されるものの、その生成を十分に抑制することがで
きず、また、このため高r値を得ようとして焼鈍温度を
上げると、今度は鋼帯の長さ方向中央部と両端部との温
度差が大きくなって両者間のr値の差も大きくなるとい
う傾向が生じた。
Therefore, in order to solve these problems, for example, a method has been proposed in which the amounts of C and Al in the material steel are restricted to low values and a small amount of B is added (Japanese Patent Laid-Open No. 62-107025).
issue). Further, in the hot rolling process, a method has also been proposed in which cooling is controlled so that the temperature of both ends of the steel strip in the lengthwise direction is 50 to 80 ° C. higher than the temperature of the central part, and then the steel strip is wound (Japanese Patent Application Laid-Open No. Hei 4). −63232). But with these methods,
Although the formation of fine precipitates, which is not desirable for improving the r-value, is reduced to some extent, the formation cannot be sufficiently suppressed, and therefore, if the annealing temperature is raised to obtain a high r-value, There was a tendency that the temperature difference between the center and both ends of the steel strip in the lengthwise direction became large, and the difference in r value between them also became large.

【0004】つまり、低炭素Alキルド鋼で高r値を得る
手段を探った本発明者等の実験結果によると、C量を
0.010〜 0.030%(以降、 成分割合を表す%は重量%と
する)に調整した場合、焼鈍温度を従来よりも高い88
0℃にまで上げることでコイルの長さ方向中央部におけ
るr値は焼鈍温度の上昇と共に向上することが判明した
が、この場合でもコイルの長さ方向両端部におけるr値
の上昇量は少なく、コイル内不均質性を回避することが
できなかった。
That is, according to the experimental results of the present inventors who searched for a means for obtaining a high r value in low carbon Al killed steel, the C content was
When adjusted to 0.010 to 0.030% (hereinafter,% indicating the composition ratio is% by weight), the annealing temperature is higher than the conventional value.
It was found that the r-value in the central portion in the length direction of the coil was improved by increasing the temperature to 0 ° C., but even in this case, the amount of increase in the r-value at both end portions in the length direction of the coil was small, Inhomogeneities within the coil could not be avoided.

【0005】また、低炭素Alキルド鋼冷延板の製造に連
続焼鈍法を適用した場合、過時効時間が十分に取れない
ので得られる冷延鋼板は常温時効性に劣り、室温で長期
間保管するとスキンパスで消失した降伏伸びが再び発生
してプレス成形時に“しわ”が発生するという問題も生
じやすかった。
Further, when the continuous annealing method is applied to the production of cold-rolled low carbon Al-killed steel, the cold-rolled steel sheet obtained is inferior in room temperature aging because the overage time cannot be sufficiently taken, and the cold-rolled steel sheet is stored at room temperature for a long time. As a result, the yield elongation that disappeared in the skin pass occurs again and "wrinkles" tend to occur during press forming.

【0006】なお、安価な通常の低炭素Alキルド鋼冷延
板の常温時効性を改善する手段としては、例えば特開平
3−2329号公報に「冷間圧延に続く連続焼鈍の後
に、 一旦低温(200〜300℃) まで急冷してから更
に再加熱するという過時効処理を施す方法」が開示され
ている。即ち、この方法は、急冷終点温度を下げること
によりフェライト粒内に微細な炭化物を析出させ、更に
再加熱することでこれを成長させて固溶Cの低減を図る
ものである。しかし、この方法によると常温時効性は大
幅に改善されるものの、該方法を実施するには冷延板の
再加熱装置等を必要とするなど、従来設備の大幅な改善
を行わねばならないという問題があった。その上、近
年、需要家の要求は益々厳しくなる傾向にあり、上記
“過冷却−再加熱”の過時効処理を施して得られるもの
以上に常温時効性が改善された冷延鋼板が求められるよ
うにもなっている。
As a means for improving the room temperature aging of an ordinary cold-rolled low carbon Al-killed steel, which is inexpensive, for example, Japanese Patent Laid-Open No. 3-23329 discloses, "After continuous annealing following cold rolling, the temperature is temporarily lowered. A method of performing overaging treatment of rapidly cooling to (200 to 300 ° C.) and then reheating is disclosed. That is, in this method, fine carbides are precipitated in the ferrite grains by lowering the quenching end point temperature, and further reheated to grow the fine carbides to reduce the solid solution C. However, according to this method, the room-temperature aging property is significantly improved, but in order to carry out the method, a reheating device for the cold-rolled sheet or the like is required, and thus the conventional equipment must be significantly improved. was there. In addition, in recent years, the demands of customers have tended to become more and more stringent, and a cold-rolled steel sheet having improved room temperature aging more than that obtained by performing the above-mentioned "supercooling-reheating" overaging treatment is required. Is also becoming.

【0007】ところで、前述したように、冷延鋼板の深
絞り性と常温時効性に関する前記問題にはセメンタイト
やAlN,BN等の析出状況が影響しており、そのため特
に素材が低炭素Alキルド鋼程度のCを含有するAlキルド
鋼の場合にはこの問題を回避することが非常に難しいと
考えられた。そこで、このような観点に立って深絞り性
や常温時効性の問題解決を目指した結果として、素材鋼
の溶製段階でCを極力低減すると共に、TiやNb等の炭窒
化物形成元素を添加して残余のCやNを析出物として固
定する製鋼方法が開発され、この方法により得られる鋼
は“IF鋼”として注目を集めるようになった。しか
し、この方法を適用して得られる鋼板には深絞り性や常
温時効性を阻害する固溶C,Nが殆ど存在しないので
“高いr値”と“箱焼鈍なみの非時効性”を連続焼鈍に
て実現することができるが、製鋼段階における成分調整
に長時間の真空脱ガス処理を必要とし、そのための経済
的な不利が幅広い普及を阻んでいた。
By the way, as described above, the precipitation condition of cementite, AlN, BN, etc. has an influence on the above-mentioned problems relating to the deep drawability and cold aging of cold-rolled steel sheets. In the case of Al-killed steel containing some C, it was considered very difficult to avoid this problem. Therefore, as a result of aiming to solve the problems of deep drawability and room temperature aging from such a viewpoint, C is reduced as much as possible at the melting stage of the material steel, and carbonitride forming elements such as Ti and Nb are added. A steelmaking method has been developed in which the residual C and N are added and fixed as precipitates, and the steel obtained by this method has attracted attention as "IF steel". However, the steel sheet obtained by applying this method contains almost no solid solution C or N that hinders deep drawability or room temperature aging, so that a "high r value" and "non-aging similar to box annealing" are continuous. Although it can be achieved by annealing, it requires a long-time vacuum degassing process to adjust the composition in the steelmaking stage, and the economical disadvantage for this has hindered its widespread use.

【0008】一方、コイル内各箇所でのr値の均質化を
図る方法としては、極低炭素鋼板を対象とし、その焼鈍
の最高加熱温度を±10℃の精度に厳密に制御する方法
が特開昭62−124233号公報に開示されている。
しかしながら、この方法を適用できる鋼種は製造コスト
の高い極低炭素鋼に限られるものであり、上記特開昭6
2−124233号公報にも「通常の低炭素鋼ではその
効果が小さい」旨報告されている。
On the other hand, as a method for homogenizing the r-values at various points in the coil, a method of strictly controlling the maximum heating temperature of the annealing with an accuracy of ± 10 ° C. is applied to an extremely low carbon steel sheet. It is disclosed in Japanese Unexamined Patent Publication No. 62-124233.
However, the type of steel to which this method can be applied is limited to ultra-low carbon steel, which has a high production cost, and is disclosed in the above-mentioned Japanese Patent Laid-Open No.
No. 2,124,233 also reports that "the effect is small with ordinary low carbon steel".

【0009】このように、これまで、通常の低炭素Alキ
ルド鋼素材から冷延後の焼鈍に連続焼鈍法を適用して
“深絞り性", "常温時効性”及び“コイル内における特
性の均質性”に優れた冷延鋼板を安定に製造する技術が
十分に確立されているとは言えなかった。
Thus, until now, the continuous annealing method has been applied to the annealing after cold rolling from the ordinary low carbon Al killed steel material to obtain "deep drawability", "normal temperature aging" and "characteristics in the coil". It could not be said that the technology for stably manufacturing cold-rolled steel sheets excellent in "homogeneity" has been sufficiently established.

【0010】そこで、本発明が目的としたのは、連続焼
鈍法を適用して“極低炭素鋼に比べて経済的に有利な低
炭素Alキルド鋼の素材”から“コイル内での特性が均質
でしかも深絞り性及び常温時効性に優れた冷延鋼板”を
安定して製造できる手段を提供することである。
Therefore, the object of the present invention is to apply the continuous annealing method to obtain the properties in the coil from "a material of low carbon Al killed steel which is economically advantageous as compared with an ultra low carbon steel". It is an object of the present invention to provide a means for stably producing a cold-rolled steel sheet which is homogeneous and has excellent deep drawability and room temperature aging.

【0011】[0011]

【課題を解決するための手段】本発明者等は、上記目的
を達成すべく、まず低炭素Alキルド鋼の深絞り性に及ぼ
す冷間圧延後の連続焼鈍条件の影響について数多くの実
験を重ねながら研究を行った結果、「特にC含有量を
0.010〜 0.030%の範囲に調整した場合、 低温オーステ
ナイト域に相当するかなり高温まで焼鈍温度を上昇させ
ることでr値の著しい向上が見られる」との新しい知見
を得ることができた。
[Means for Solving the Problems] In order to achieve the above object, the present inventors first carried out many experiments on the effect of continuous annealing conditions after cold rolling on the deep drawability of low carbon Al killed steel. As a result of conducting research while
In the case of adjusting to the range of 0.010 to 0.030%, the r value can be remarkably improved by increasing the annealing temperature to a considerably high temperature corresponding to the low temperature austenite region. "

【0012】そして、更に、「コイルの長手方向中央部
と両端部とではr値に及ぼす焼鈍温度の影響が異なる」
という事実も明らかとなった。つまり、コイル中央部は
焼鈍温度の上昇に伴いr値が向上するのに対して、その
両端部では焼鈍温度が870℃まではr値の上昇が小さ
く、870℃を越えると急激にr値の向上が見られたの
である。この原因は必ずしも明らかでないが、r値の向
上が焼鈍板のフェライト粒径の粗大化程度と良く相関し
ていることからして、コイルの両端部には一般に“フェ
ライト粒の成長を阻害する微細析出物”が生じており、
これが焼鈍温度を880℃以上にすると急激に粗大化あ
るいは固溶するためにフェライト粒成長を妨げなくなる
ためであると考えられる。
Further, "the influence of the annealing temperature on the r value is different between the central portion and the both end portions in the longitudinal direction of the coil".
It became clear that the fact. That is, the r-value increases in the central part of the coil as the annealing temperature rises, whereas at both ends, the r-value rises only a little until the annealing temperature is 870 ° C., and when the annealing temperature exceeds 870 ° C., the r-value sharply increases. The improvement was seen. The reason for this is not always clear, but since the improvement of the r value correlates well with the degree of coarsening of the ferrite grain size of the annealed plate, it is generally noted that “fine grain that inhibits the growth of ferrite grains is present at both ends of the coil. "Precipitate" is generated,
It is considered that this is because when the annealing temperature is set to 880 ° C. or higher, the grains are abruptly coarsened or solid solution occurs, so that the ferrite grain growth is not hindered.

【0013】また、870℃以上はオーステナイトがか
なり多い温度領域となるが、C含有量を0.010 〜0.030
%に調整した低炭素Alキルド鋼の場合には焼鈍温度が9
30℃を超えさえしなければ“集合組織のランダム化に
よるr値の低下”を見ることはなかった。なお、C含有
量が 0.030%よりも高い低炭素Alキルド鋼の場合は、オ
ーステナイト化する温度が低いため、微細析出物が十分
に固溶あるいは粗大化しない比較的低温の領域において
も集合組織のランダム化が生じ、その結果コイル両端部
の粒成長によるr値の向上が起きなくなってコイル内の
不均質性が改善されないものと考えられる。
Further, at a temperature of 870 ° C. or higher, the temperature range is considerably high in austenite, but the C content is 0.010 to 0.030.
%, The annealing temperature is 9 in the case of low carbon Al killed steel.
As long as the temperature did not exceed 30 ° C., the “r-value decrease due to randomization of texture” was not observed. In the case of a low carbon Al killed steel having a C content higher than 0.030%, the austenitizing temperature is low, so that even in a relatively low temperature region where fine precipitates do not form a solid solution or coarsen sufficiently, It is considered that randomization occurs, and as a result, the r value is not improved due to grain growth at both ends of the coil, and the inhomogeneity in the coil is not improved.

【0014】ところで、既に述べたように、深絞り用冷
延鋼板においては優れた常温時効性を有することも重要
要件として要求される。この常温時効性を改善するため
には固溶Cを低減する必要がある。固溶Cを低減させる
のに有効な手段は、フェライト粒内にセメンタイトを微
細に析出させてセメンタイトが成長するのに必要なCの
拡散距離を短くすることである。そこで、前記特開平3
−2329号公報に開示されている方法では、焼鈍後に
200〜300℃の低温域まで急冷することによりフェ
ライト粒内に微細にセメンタイトを析出させ、更に再加
熱によってセメンタイトを成長させ固溶Cを低減させて
いる。この方法は、再加熱装置が必要なために設備上の
制限があるが、固溶Cの低減には有効な手法であると言
えよう。
By the way, as described above, it is also important for cold-rolled steel sheets for deep drawing to have excellent room temperature aging. In order to improve this room temperature aging property, it is necessary to reduce solid solution C. An effective means for reducing the solid solution C is to finely precipitate cementite in ferrite grains to shorten the diffusion distance of C required for the growth of cementite. Therefore, the above-mentioned Japanese Patent Laid-Open No.
According to the method disclosed in Japanese Patent No. 2329, cementite is finely precipitated in ferrite grains by rapid cooling to a low temperature range of 200 to 300 ° C. after annealing, and cementite is grown by reheating to reduce solid solution C. I am letting you. This method has a facility limitation because a reheating device is required, but it can be said that this method is an effective method for reducing the solid solution C.

【0015】ただ、本発明者等は、更に重ねられた研究
を通して、「粒内にセメンタイトを微細に析出させるた
めには生成するフェライト粒を粗大化するのが極めて有
効である」との知見を得るに至った。なお、コイル両端
部のフェライト粒の粗大化には870℃を越えるような
高温での焼鈍が極めて有効であり、このような高温焼鈍
によるとフェライト粒の粗大化が十分に行われ、前記特
開平3−2329号公報に開示されている“焼鈍急冷後
に再加熱処理を施す手段”を適用しなくても粒内セメン
タイト微細析出が効果的に促進される。しかしながら、
十分に粒内セメンタイトを析出させるこめには再加熱処
理を施すのが好ましい。このことから、深絞り性の改善
に有効であったコイル両端部の高温焼鈍は、粒径粗大化
を通じてコイル両端部の常温時効性を改善することにも
なり、時効性の点でもコイル内均質化を図るのに有効な
手立てであると結論された。
However, the inventors of the present invention have found, through further research, that it is extremely effective to coarsen the ferrite grains to be formed in order to finely precipitate cementite in the grains. I got it. It should be noted that annealing at a high temperature exceeding 870 ° C. is extremely effective for coarsening the ferrite grains at both ends of the coil, and such high-temperature annealing causes sufficient coarsening of the ferrite grains. Even if the "means for performing reheating treatment after annealing and quenching" disclosed in Japanese Patent Laid-Open No. 3-2323 is not applied, intragranular cementite fine precipitation is effectively promoted. However,
Reheating treatment is preferably performed for the purpose of sufficiently precipitating the intra-grain cementite. From this, high temperature annealing of both ends of the coil, which was effective in improving the deep drawability, also improves the room temperature aging of both ends of the coil through grain size coarsening. It was concluded that this is an effective way to promote the transformation.

【0016】本発明は、上記知見事項等を基にして完成
されたものであり、 「C: 0.010〜 0.030%, Si: 0.1%以下, Mn:0.
05〜0.25%,sol.Al: 0.004〜0.10%,S:0.0005〜
0.015%, B:0〜0.0040% を含むと共に残部がFe及び不可避不純物から成り、 かつ
不可避不純物であるP及びNの含有量がそれぞれ P:0.05%以下, N: 50ppm以下 なる化学組成の鋼片を、 Ar3変態点以上で熱間圧延して
から600〜750℃で巻取り、 続いて酸洗後に冷間圧
延及び連続焼鈍を施すに当って、 図1に示すように、 焼
鈍でのコイル中央部の最高加熱温度を840〜880℃
に、 コイルの両端部の最高加熱温度を870〜930℃
にそれぞれ制御すると共に、 焼鈍加熱後は650〜78
0℃の温度域まで10℃/s以下の冷却速度で徐冷した後、
今度は 300〜450℃の温度域まで60℃/s以上の冷却
速度で急冷し、 その後更に300〜450℃の温度域で
90〜240秒の過時効を施すか、 あるいは図2に示す
ように、 徐冷した後200〜300℃の温度域まで60℃
/s以上の冷却速度で急冷し、次いで320〜450℃に
再加熱してから、 200〜330℃の温度域まで90〜
240秒をかけて徐冷する過時効を施すことにより、 深
絞り性と常温時効性に優れかつコイル内特性の均質な冷
延鋼板を安定して製造できるようにした点」に大きな特
徴を有している。
The present invention has been completed based on the above findings and the like. "C: 0.010 to 0.030%, Si: 0.1% or less, Mn: 0.
05 to 0.25%, sol.Al: 0.004 to 0.10%, S: 0.0005 to
Steel pieces with a chemical composition of 0.015%, B: 0 to 0.0040%, the balance consisting of Fe and inevitable impurities, and the contents of P and N, which are inevitable impurities, are P: 0.05% or less and N: 50 ppm or less, respectively. Is hot-rolled at or above the Ar 3 transformation point and then wound at 600 to 750 ° C., followed by pickling, cold rolling and continuous annealing. As shown in FIG. The maximum heating temperature of the central part is 840-880 ℃
The maximum heating temperature of both ends of the coil is 870-930 ° C.
Controlled to 650-78 after annealing heating
After gradually cooling to a temperature range of 0 ° C at a cooling rate of 10 ° C / s or less,
This time, it is rapidly cooled to a temperature range of 300 to 450 ° C at a cooling rate of 60 ° C / s or more, and then overaged for 90 to 240 seconds in a temperature range of 300 to 450 ° C, or as shown in Fig. 2. After slowly cooling, the temperature range of 200-300 ℃ is 60 ℃.
quenching at a cooling rate of / s or more, then reheating to 320 to 450 ° C, and then 90 to a temperature range of 200 to 330 ° C.
By performing over-aging by gradually cooling it for 240 seconds, it is possible to stably manufacture cold-rolled steel sheet with excellent deep drawability and room temperature aging and homogeneous coil internal characteristics. " are doing.

【0017】[0017]

【作用】続いて、本発明において素材鋼の化学成分組成
及び鋼板の製造条件を上記の如くに限定した理由を詳述
する。 (A) 素材鋼の化学成分組成
Next, the reason why the chemical composition of the raw material steel and the conditions for producing the steel sheet in the present invention are limited as described above will be described in detail. (A) Chemical composition of raw steel

【0018】a) C 冷延鋼板の常温時効性を向上させるためには連続焼鈍過
程(焼鈍後の急冷時)で粒内にセメンタイトを析出さ
せ、これにより固溶Cを極力減少させることが必要であ
る。そして、焼鈍後の急冷過程で粒内にセメンタイトを
効果的に析出させるには、フェライト中へ過飽和度にC
を固溶させておかなければならない。本発明において、
C含有量が 0.010%未満ではCの過飽和度が小さいため
にセメンタイトとして析出することができず、固溶C量
が増加して得られる鋼板の時効性が劣化する。一方、
0.030%を越えてCを含有させると粒界にセメンタイト
が析出するようになり、そのため粒界近傍ではCの過飽
和度が不足しセメンタイトとして析出できなくなって固
溶C量が増加すると共に、鋼のC含有量を低減するため
に必要な真空脱ガス処理の時間が長くなってコストアッ
プの要因となる。また、C含有量が 0.030%を超えた場
合には、焼鈍温度を高温に上げてもオーステナイト化に
より集合組織化がランダム化して高r値を得ることがで
きなくなるので、焼鈍温度を上昇させて高r値化を図る
ためにもC含有量は 0.030%以下とする必要がある。従
って、C含有量は 0.010〜 0.030%と定めたが、出来れ
ば 0.013〜 0.027%に調整するのが好ましい。
A) In order to improve the room temperature aging of the C cold-rolled steel sheet, it is necessary to precipitate cementite in the grains in the continuous annealing process (during quenching after annealing), thereby reducing the solid solution C as much as possible. Is. Then, in order to effectively precipitate cementite in the grains during the quenching process after annealing, it is necessary to add C to the ferrite in a supersaturation degree.
Must be in solid solution. In the present invention,
When the C content is less than 0.010%, the supersaturation degree of C is small, so that it cannot be precipitated as cementite, and the aging property of the steel sheet obtained by increasing the amount of solute C deteriorates. on the other hand,
If C is contained in excess of 0.030%, cementite will be precipitated at the grain boundary. Therefore, the supersaturation degree of C is insufficient near the grain boundary and it cannot be precipitated as cementite. The time required for the vacuum degassing treatment for reducing the C content becomes long, which causes a cost increase. Further, if the C content exceeds 0.030%, even if the annealing temperature is raised to a high temperature, the austenitization causes the texture to be randomized and a high r value cannot be obtained, so the annealing temperature should be raised. In order to increase the r-value, the C content needs to be 0.030% or less. Therefore, the C content is set to 0.010 to 0.030%, but it is preferably adjusted to 0.013 to 0.027% if possible.

【0019】b) Si Siは固溶強化元素であり、含有量が多くなると鋼板の強
度を高めて加工性を劣化する作用が顕著化することか
ら、その含有量は 0.1%以下と定めた。
B) Si Si is a solid solution strengthening element, and when the content is large, the effect of increasing the strength of the steel sheet and deteriorating the workability becomes remarkable, so the content was determined to be 0.1% or less.

【0020】c) Mn MnはSと結合してセメンタイトの析出核になり得るMnS
を形成し、セメンタイトの析出を促進させる作用を有し
ている。ただ、セメンタイトを微細に析出させるにはMn
Sを微細に生成させるのが好ましく、そのためにはMn含
有量は少ない方が良い。しかしながら、Mn含有量が少な
くなりすぎて固溶S量が多くなると低融点のFeSが形成
されて圧延時の耳割れの原因となる。これらの観点より
Mn含有量は0.05〜0.25%と定めた。
C) Mn Mn can combine with S to form cementite precipitation nuclei.
And has the effect of promoting the precipitation of cementite. However, in order to precipitate cementite finely, Mn
It is preferable to generate S minutely, and for that purpose, the Mn content is preferably low. However, when the Mn content becomes too small and the amount of solid solution S increases, FeS having a low melting point is formed, which causes ear cracks during rolling. From these perspectives
The Mn content was set to 0.05 to 0.25%.

【0021】d) sol.Al Alは鋼の脱酸剤として添加されるが、その他に固溶Nを
固定して時効性を改善する作用もある。しかしながら、
過度の添加は非金属介在物を形成して加工性を劣化させ
ることにつながる。従って、これらの観点よりAl含有量
をsol.Al含有量で 0.004〜0.10%と定めた。
D) sol.Al Al is added as a deoxidizing agent for steel, but also has a function of fixing solid solution N to improve the aging property. However,
Excessive addition leads to the formation of non-metallic inclusions and deterioration of workability. Therefore, from these viewpoints, the Al content was determined to be 0.004 to 0.10% in terms of sol.Al content.

【0022】e) S Sには、Mnと結合してセメンタイトの析出核になり得る
MnSを形成し、セメンタイトの析出を促進させる作用が
ある。しかしながら、過度の添加はMnSの非金属介在物
を多くしすぎて加工性を劣化させることにつながるほ
か、多量のSは低融点のFeSを形成して圧延時の耳割れ
の原因ともなる。従って、これらの観点よりS含有量は
0.0005〜 0.015%と定めた。
E) S S can combine with Mn to form cementite precipitation nuclei.
It has the function of forming MnS and promoting the precipitation of cementite. However, excessive addition leads to too much non-metallic inclusions of MnS leading to deterioration of workability, and a large amount of S forms FeS having a low melting point, which also causes edge cracking during rolling. Therefore, from these viewpoints, the S content is
It was set as 0.0005 to 0.015%.

【0023】f) B Bには鋼板の常温時効性を改善する作用があるので、鋼
板の常温時効性を更に改善する必要がある場合に必要に
応じて添加される成分である。即ち、BはBNとして析
出して固溶Nを低減すると共に、BNを核としてセメン
タイトの析出が促進する作用を発揮する。また、固溶B
として粒界に偏析し、粒界の固溶C量を低減して粒界で
のセメンタイトの析出を抑制する作用もある。更に、焼
鈍後のフェライト粒を粗大化しやすくする作用も有して
いるため、この作用を通じて鋼板を軟質化し加工性を向
上させると共に、粒内にセメンタイトを析出しやすくす
る効果もある。ただ、これらの作用による効果はその含
有量が0.0040%を越えると飽和してしまうため、B含有
量の上限は0.0040%と定めた。なお、極く微量の含有量
であってもB添加の効果は認められるが、効果の顕著性
からすればBを添加する場合は0.0003〜0.0040%の範囲
に調整するのが好ましいと言える。
F) BB Since B has the effect of improving the room temperature aging of the steel sheet, it is a component added as necessary when the room temperature aging of the steel sheet needs to be further improved. That is, B precipitates as BN and reduces the solid solution N, and exhibits the action of promoting precipitation of cementite with BN as a nucleus. Also, solid solution B
As a result, it also segregates at the grain boundaries, reduces the amount of solid solution C at the grain boundaries, and suppresses the precipitation of cementite at the grain boundaries. Furthermore, since it also has the effect of making the ferrite grains after annealing easier to coarsen, it has the effect of softening the steel sheet through this action and improving the workability as well as facilitating the precipitation of cementite in the grains. However, the effects due to these actions are saturated when the content exceeds 0.0040%, so the upper limit of the B content was set to 0.0040%. It should be noted that the effect of B addition is recognized even with a very small amount of content, but from the standpoint of the effect, it can be said that when B is added, it is preferable to adjust to the range of 0.0003 to 0.0040%.

【0024】g) P Pは固溶強化元素であり鋼板の強度を高めるのに有効で
ある。しかしながら、その含有量が多くなると鋼板の強
度を高めすぎて加工性を劣化する作用が顕著化すること
からP含有量を0.05%以下と限定したが、好ましくは0.
02%以下に調整するのが良い。
G) P P is a solid solution strengthening element and is effective in increasing the strength of the steel sheet. However, the P content was limited to 0.05% or less because the effect of deteriorating the workability by increasing the strength of the steel sheet too much becomes remarkable as the content increases, but preferably 0.
It is good to adjust it to 02% or less.

【0025】h) N 不可避的不純物であるNは、AlやBと結合して一部は微
細析出物を形成し、粒成長性を阻害する。また、析出物
を形成しない固溶Nは、焼鈍時の再結晶に際してr値を
劣化させるような集合組織の形成を促したり、常温時効
性を劣化させたりする。そのため、N含有量を50ppm
以下(0.0050%以下)と限定した。
H) N N, which is an unavoidable impurity, combines with Al and B to partially form fine precipitates, which hinders grain growth. Further, solid solution N that does not form a precipitate promotes the formation of a texture structure that deteriorates the r value during recrystallization during annealing, or deteriorates the room temperature aging property. Therefore, N content is 50ppm
It was limited to below (0.0050% or less).

【0026】(B) 鋼板の製造条件 熱間圧延はAr3変態点以上で終了しなければならない。
なぜなら、Ar3変態点を下回る温度で圧延を終了すると
フェライト相が加工されて集合組織が変化し、r値低下
の原因となるからである。また、熱間圧延後の巻取りは
600〜750℃で行われるが、これは巻取温度が60
0℃未満を下回ると炭窒化物の凝集が不十分で焼鈍後の
冷延鋼板のr値が低下し、また750℃を越える温度で
巻取るとコイルの焼付が生じたり、熱延鋼板の粒径が粗
大化して冷延・焼鈍後のr値が劣化する等の問題が生じ
たりするためである。
(B) Steel Sheet Manufacturing Conditions Hot rolling must be completed at the Ar 3 transformation point or higher.
This is because when rolling is completed at a temperature below the Ar 3 transformation point, the ferrite phase is processed and the texture is changed, which causes a decrease in r value. Further, the winding after the hot rolling is performed at 600 to 750 ° C., but the winding temperature is 60.
If the temperature is lower than 0 ° C, the carbon nitride will not be sufficiently aggregated to reduce the r-value of the cold rolled steel sheet after annealing, and if it is wound at a temperature higher than 750 ° C, seizure of the coil or the grain of the hot rolled steel sheet will occur. This is because the diameter becomes coarse and problems such as deterioration of the r value after cold rolling and annealing may occur.

【0027】なお、熱間圧延後の巻取りに際しては、コ
イル中央部は600〜700℃で巻取り、両端部ではこ
れよりも40℃以上高い温度で巻取るように図るのが好
ましい。ここで、特性劣化が問題となる「熱延コイルに
おける両端部」とは、両方の端部よりそれぞれ20〜6
0mの範囲を言う。ところで、熱間圧延に際しての加熱
温度は特に規定しないが、不純物の偏析を抑制するため
には1050〜1250℃とするのが好ましい。また、
加熱炉へ装入するスラブは、鋳造後の高温のままのスラ
ブでも良いし、また室温まで冷却したスラブでも構わな
い。熱延・巻取り後のコイルは、通常通り酸洗を経て冷
間圧延される。この冷間圧延の圧下率は特に規定しない
が、良好なr値の確保のためには70〜94%とするの
が好ましい。
When the coil is wound after hot rolling, it is preferable that the central part of the coil be wound at 600 to 700 ° C. and the both ends should be wound at a temperature higher by 40 ° C. or more. Here, the “both ends of the hot-rolled coil” in which the characteristic deterioration is a problem is 20 to 6 from both ends.
Says the range of 0m. By the way, the heating temperature at the time of hot rolling is not particularly specified, but it is preferably set to 1050 to 1250 ° C. in order to suppress segregation of impurities. Also,
The slab charged into the heating furnace may be a slab that remains hot after casting or may be a slab that has been cooled to room temperature. The coil after hot rolling and winding is pickled as usual and then cold rolled. The reduction ratio of the cold rolling is not particularly specified, but it is preferably 70 to 94% in order to secure a good r value.

【0028】冷間圧延後に連続焼鈍を施すに当り、本発
明においては、焼鈍でのコイル長手方向中央部の最高加
熱温度を840〜880℃に、そしてコイルの長手方向
両端部の最高加熱温度を870〜930℃に制御するこ
とが重要である。即ち、コイル中央部において良好なr
値を得るためには、840℃以上の焼鈍温度が必要であ
る。しかし、コイル中央部は熱延・巻取り後の冷却が緩
慢であるため析出部の粗大化が達成されており、880
℃を超える焼鈍温度にするとフェライト粒が粗大化しす
ぎて加工後に肌荒れによる表面不良が生じやすくなる。
そのため、コイル中央部の最大加熱温度は840〜88
0℃に制御される。一方、コイル両端部においては、前
述したように微細析出物が多くて粒成長性が悪いため、
微細析出物が粗大化あるいは固溶が著しく進むと思われ
る870℃以上の焼鈍温度より急激にr値の向上が認め
られる。従って、良好なr値を得るためには870℃以
上の焼鈍温度が必要である。しかしながら、930℃を
超える焼鈍温度にするとフェライト粒が粗大化しすぎて
表面不良が生じやすくなる。そのため、コイル両端部の
最大加熱温度は870〜930℃に制御される。
In carrying out continuous annealing after cold rolling, in the present invention, the maximum heating temperature of the central portion in the coil longitudinal direction during annealing is set to 840 to 880 ° C., and the maximum heating temperature of both longitudinal end portions of the coil is set. It is important to control to 870-930 degreeC. That is, good r in the center of the coil
To obtain the value, an annealing temperature of 840 ° C or higher is required. However, in the central part of the coil, the cooling after the hot rolling and winding is slow, so that the coarsening of the precipitation part is achieved.
When the annealing temperature is higher than 0 ° C, the ferrite grains are excessively coarsened, so that the surface defects are likely to occur due to roughening of the surface after processing.
Therefore, the maximum heating temperature of the coil center is 840 to 88.
Controlled to 0 ° C. On the other hand, at both ends of the coil, as described above, since there are many fine precipitates and the grain growth is poor,
It is recognized that the r value is sharply improved from the annealing temperature of 870 ° C. or higher at which the fine precipitates are likely to be coarsened or to form a solid solution significantly. Therefore, in order to obtain a good r value, an annealing temperature of 870 ° C. or higher is necessary. However, when the annealing temperature is higher than 930 ° C., the ferrite grains are excessively coarsened, and surface defects are likely to occur. Therefore, the maximum heating temperature of both ends of the coil is controlled to 870 to 930 ° C.

【0029】なお、上述した焼鈍の最大加熱温度範囲で
はオーステナイトへの変態量がかなり多くなるが、この
温度範囲では焼鈍温度の上昇につれてr値、特に圧延4
5°方向のr値が向上することが判明している。また、
ここでの「コイル両端部」とは、熱延コイルでの両方の
端部よりそれぞれ20〜60mまでに相当する部分を言
うが、両端部としてコイル中央部よりも高温度で焼鈍す
る範囲内は“冷延コイルの長さ”ではその両方の端部よ
りそれぞれ300m以内にするのが好ましい。更に、焼
鈍での均熱時間については特に規定しないが、通常通り
の120秒以下で十分である。
Although the amount of transformation into austenite is considerably large in the above-mentioned maximum heating temperature range of annealing, in this temperature range, the r value, especially rolling 4
It has been found that the r value in the 5 ° direction is improved. Also,
The term “both ends of the coil” as used herein means portions corresponding to 20 to 60 m from both ends of the hot-rolled coil, respectively, but as long as the both ends are annealed at a higher temperature than the center of the coil, The "length of the cold-rolled coil" is preferably within 300 m from both ends. Furthermore, the soaking time in annealing is not particularly specified, but 120 seconds or less as usual is sufficient.

【0030】焼鈍加熱(均熱)後は、急冷開始温度であ
る650〜780℃までは10℃/s以下の冷却速度で徐
冷する。これはr値に好ましいフェライトの成長を促す
ためであり、この際の冷却速度が10℃/sを上回ると、
急冷開始までに生成するフェライト量が少なく、そのた
めフェライトが新たに核生成して集合組織がランダム化
したり、残存しているフェライト内の固溶C量が低くな
りすぎて粒内でのセメンタイトの析出が起こりにくくな
ったりする。
After the annealing heating (soaking), the material is gradually cooled at a cooling rate of 10 ° C./s or less up to a quenching start temperature of 650 to 780 ° C. This is because it promotes the growth of ferrite which is preferable for the r value, and when the cooling rate at this time exceeds 10 ° C / s,
The amount of ferrite generated before the start of quenching is small, so that ferrite nucleates newly and the texture becomes random, and the amount of solid solution C in the remaining ferrite becomes too low and precipitation of cementite in the grains occurs. Is less likely to occur.

【0031】徐冷後は650〜780℃から急冷を開始
するが、この急冷開始温度が650℃未満であると、急
冷後にフェライト粒内のセメンタイト析出の駆動力とな
るCの過飽和度が不十分となってセメンタイトの粒内析
出量が減少し、製造された冷延鋼板中の固溶C量が多く
なって常温時効性が劣化してしまう。一方、急冷開始が
780℃を越える温度域からなされると、ヒートバック
ル等の通板上の問題が生じるほか、残存フェライト比率
が少なくなりすぎてフェライトが新たに核生成し、集合
組織がランダム化したり、残存しているフェライト内の
固溶C量が低くなりすぎて粒内でのセメンタイトの析出
が起こりにくくなったりする。なお、好ましい急冷開始
温度は700〜780℃(より一層好ましくは720〜
760℃)である。つまり、700〜780℃はオース
テナイトが残存している領域であり、この温度域から急
冷するとオーステナイトがフェライトに急速に変態する
ため粒界にCが拡散する時間的余裕がなく、そのため粒
内にセメンタイトが析出しやすく、かつ成長しやすくな
るからである。
After the gradual cooling, the rapid cooling is started from 650 to 780 ° C. When the rapid cooling start temperature is lower than 650 ° C., the supersaturation degree of C which is the driving force for the cementite precipitation in the ferrite grains after the rapid cooling is insufficient. As a result, the amount of cementite precipitated in the grains is reduced, the amount of solid solution C in the manufactured cold rolled steel sheet is increased, and the room temperature aging is deteriorated. On the other hand, if the quenching is started from a temperature range exceeding 780 ° C, problems such as heat buckle on the strip running occur, and the residual ferrite ratio becomes too small, and new nucleation of ferrite occurs, and the texture becomes random. Alternatively, the amount of solid solution C in the remaining ferrite becomes too low, and the precipitation of cementite in the grains becomes difficult to occur. The preferable quenching start temperature is 700 to 780 ° C (even more preferably 720 to 720 ° C).
760 ° C). That is, 700 to 780 ° C. is a region in which austenite remains, and when rapidly cooled from this temperature range, there is no time margin for C to diffuse into grain boundaries because austenite rapidly transforms to ferrite, and therefore cementite is present in the grains. Is easily deposited and easily grown.

【0032】この際の急冷は、急冷開始温度より60℃
/s以上の冷却速度で実施される。冷却速度が60℃/s未
満であると、粒界に析出するセメンタイト量が多くなり
すぎてフェライト粒内の固溶Cの過飽和度が不足し、そ
のため粒内でセメンタイトが析出せず、結果として固溶
C量が増加して常温時効性が劣化する。
The quenching at this time is 60 ° C from the quenching start temperature.
It is carried out at a cooling rate of / s or more. When the cooling rate is less than 60 ° C./s, the amount of cementite precipitated at the grain boundaries becomes too large and the supersaturation degree of solid solution C in the ferrite grains becomes insufficient, so that cementite does not precipitate in the grains, resulting in The amount of solute C increases and the aging property at room temperature deteriorates.

【0033】急冷後は過時効処理を実施するが、過時効
前に再加熱を施さない場合は急冷停止温度を300〜4
50℃とし、また過時効温度は300〜450℃とす
る。これは、粒内にセメンタイトが析出しかつ成長でき
る温度であり、急冷停止温度,過時効温度がこの範囲を
外れるとセメンタイトの析出が遅れるために時効特性の
良好な鋼板が得られない。過時効時間は90〜240秒
であるが、該時間が90秒未満ではセメンタイトの成長
が不十分で固溶C量が十分に低減しておらず、一方、過
時効時間が240秒を越えるとその効果は飽和してしま
うので生産性劣化の原因となる。なお、過時効帯におい
て上記温度範囲内で過時効温度を低下させる“傾斜過時
効”を行ってもその効果は変わらない。
After the rapid cooling, the overaging treatment is carried out. However, if the reheating is not performed before the overaging, the quenching stop temperature is set to 300-4.
The temperature is 50 ° C., and the overaging temperature is 300 to 450 ° C. This is the temperature at which cementite can precipitate and grow in the grains. If the quenching stop temperature or overaging temperature is out of this range, the precipitation of cementite will be delayed, and a steel sheet with good aging characteristics cannot be obtained. The overaging time is 90 to 240 seconds, but if the time is less than 90 seconds, the cementite growth is insufficient and the amount of dissolved C is not sufficiently reduced, while if the overaging time exceeds 240 seconds. Since the effect is saturated, it causes productivity deterioration. In addition, in the overaging zone, the effect does not change even if "gradient overaging" is performed to lower the overaging temperature within the above temperature range.

【0034】一方、過時効前に再加熱を実施する場合
は、急冷停止温度を200〜300℃とし、急冷停止後
は320〜450℃に加熱してから200〜330℃の
温度域まで90〜240秒をかけて徐冷する。この場
合、200〜300℃まで急冷するのは過飽和の固溶C
を粒内セメンタイトとして析出させるためであり、急冷
停止温度が300℃を上回る温度であると引き続く再加
熱による時効性改善効果は期待できず、また200℃を
下回る温度まで急冷すると析出するセメンタイトが微細
すぎて降伏応力が増加し、加工性が劣化する。
On the other hand, when reheating is performed before overaging, the quenching stop temperature is set to 200 to 300 ° C., and after quenching is stopped, the temperature is heated to 320 to 450 ° C. and then to the temperature range of 200 to 330 ° C. Slowly cool over 240 seconds. In this case, quenching to 200 to 300 ° C. is a supersaturated solid solution C
Is to be precipitated as intragranular cementite, and if the quenching stop temperature is higher than 300 ° C, the effect of improving aging due to subsequent reheating cannot be expected, and if it is cooled to a temperature lower than 200 ° C, the precipitated cementite is fine. If it passes, the yield stress increases and the workability deteriorates.

【0035】急冷後に再加熱するのは、Cの拡散速度を
速くして析出したセメンタイトの成長を促進し、固溶C
を低減するためである。この場合、再加熱温度が320
℃未満ではCの拡散が遅くてその効果が小さく、また4
50℃を超える温度に再加熱すると析出したセメンタイ
トが再固溶してセメンタイト数が減少し、時効性が劣化
する。なお、生産性を損なわないためには、急冷後再加
熱までに要する時間は10秒以内、再加熱時の加熱速度
は10℃/s以上とするのが好ましい。
Reheating after quenching accelerates the diffusion rate of C and promotes the growth of precipitated cementite, so that solid solution C is formed.
This is to reduce In this case, the reheating temperature is 320
Below ℃, the diffusion of C is slow and its effect is small.
When reheated to a temperature exceeding 50 ° C., the precipitated cementite re-dissolves, the number of cementite decreases, and the aging property deteriorates. In addition, in order not to impair the productivity, it is preferable that the time required for reheating after quenching is 10 seconds or less and the heating rate at the time of reheating is 10 ° C./s or more.

【0036】再加熱後、200〜330℃の温度域まで
90〜240秒をかけて徐冷するのは、Cの析出をより
促進させるためである。この際、330℃を超える温度
あるいは200℃に満たない温度へ徐冷した場合には、
セメンタイトの析出が遅れるために時効特性の良好な鋼
板が得られない。また、この徐冷時間が90秒未満では
Cの析出が不十分であり、一方、240秒を超えるとそ
の効果が飽和してしまう。
After the reheating, the reason for gradually cooling to a temperature range of 200 to 330 ° C. over 90 to 240 seconds is to accelerate the precipitation of C. At this time, if the temperature is gradually cooled to a temperature higher than 330 ° C or lower than 200 ° C,
Since the precipitation of cementite is delayed, a steel sheet with good aging characteristics cannot be obtained. If the slow cooling time is less than 90 seconds, the precipitation of C is insufficient, while if it exceeds 240 seconds, the effect is saturated.

【0037】以上の条件に従って製造された冷延鋼板
は、コイル内での特性が均質で、かつ優れた深絞り性及
び常温時効性を示すものであるが、この本発明に係る冷
延鋼板は更に電気メッキ等の表面処理を施して使用して
も何ら問題はない。次に、本発明を実施例によって説明
する。
The cold-rolled steel sheet produced according to the above conditions has uniform properties in the coil and exhibits excellent deep drawability and room temperature aging. The cold-rolled steel sheet according to the present invention is Further, there is no problem even if it is used after being subjected to surface treatment such as electroplating. Next, the present invention will be described with reference to examples.

【0038】[0038]

【実施例】【Example】

〔実施例1〕まず、表1に示す化学組成の鋼を転炉溶製
した後、連続鋳造によってスラブを製造した。
Example 1 First, steel having the chemical composition shown in Table 1 was melted in a converter, and then a slab was manufactured by continuous casting.

【0039】[0039]

【表1】 [Table 1]

【0040】次に、このスラブを1150℃に加熱して
から直ちに熱間圧延を開始し、仕上温度900℃で 4.0
mmの熱延鋼板を製造した後、平均冷却速度:20℃/sに
て長手方向両端部では680℃で、中央部では630℃
で巻取った。その後、この熱延鋼板を酸洗してから 0.8
mmまで冷間圧延した。
Next, this slab is heated to 1150 ° C. and immediately hot rolling is started, and the finishing temperature is set to 900 ° C.
After producing a hot rolled steel sheet of mm, the average cooling rate is 20 ° C / s, 680 ° C at both ends in the longitudinal direction, and 630 ° C at the center.
I wound it up. After that, pickling this hot rolled steel sheet 0.8
Cold rolled to mm.

【0041】続いて、得られた冷延コイルにつき、実機
にて表2及び表3に示す条件で連続焼鈍を施し、更に伸
び率:1.2%の調質圧延を実施した。そして、得られた冷
延鋼板から熱延の“トップ部", "ミドル部”及び“ボト
ム部”に相当する部分よりJIS5号引張試験を採取し
て引張試験を行った。この引張試験の結果を表2及び表
3に併せて示した。
Subsequently, the obtained cold rolled coil was continuously annealed by an actual machine under the conditions shown in Tables 2 and 3 and further temper-rolled at an elongation of 1.2%. Then, a JIS No. 5 tensile test was sampled from the obtained cold-rolled steel sheet from the portions corresponding to the "top portion", "middle portion" and "bottom portion" of hot rolling, and the tensile test was performed. The results of this tensile test are also shown in Tables 2 and 3.

【0042】なお、“降伏強度", "引張強さ" 及び "伸
び”は圧延方向で、また“r値”は圧延の0°,45°
及び90°方向の平均値でそれぞれ評価した。また、前
記冷延鋼板から圧延方向に採取したJIS5号引張試験
片につき、2%引張予歪後に170℃×20分の熱処理
を施して再び引張試験をし、熱処理後の降伏強度から熱
処理前の変形応力を引いた値を“BH量”として評価し
た。このBH量は、値が低いほど常温時効性は良好とさ
れる指標である。
The "yield strength", "tensile strength" and "elongation" are in the rolling direction, and the "r value" is 0 °, 45 ° of rolling.
And the average value in the 90 ° direction were evaluated. Also, JIS No. 5 tensile test pieces taken in the rolling direction from the cold-rolled steel sheet were subjected to a heat treatment at 170 ° C. for 20 minutes after a pre-strain of 2% and then subjected to a tensile test again. The value obtained by subtracting the deformation stress was evaluated as "BH amount". This BH amount is an index that the lower the value, the better the room temperature aging property.

【0043】[0043]

【表2】 [Table 2]

【0044】[0044]

【表3】 [Table 3]

【0045】表2及び表3に示される結果からは次のこ
とが分かる。即ち、C含有量が本発明で規定する条件を
満たす鋼A,BあるいはCに本発明で規定する製造条件
を適用することで、コイルのトップからボトムまで良好
な常温時効性と高r値を示す冷延鋼板が得られる。しか
し、C含有量が本発明で規定する条件から外れた鋼Dで
は、本発明で規定する製造法を適用しても両端部のr値
とBHが向上せず、またコイル内の不均質性も改善され
ない。
From the results shown in Tables 2 and 3, the following can be understood. That is, by applying the manufacturing conditions specified in the present invention to steels A, B or C whose C content satisfies the conditions specified in the present invention, good room temperature aging and a high r value can be obtained from the top to the bottom of the coil. The cold rolled steel sheet shown is obtained. However, in the steel D whose C content deviates from the conditions specified in the present invention, the r value and BH at both ends are not improved even if the manufacturing method specified in the present invention is applied, and the heterogeneity in the coil Is not improved.

【0046】また、前記鋼A及び鋼Dに係る冷延後のコ
イルから熱延のトップ部及びミドル部に相当する部分よ
りサンプルを採取し、図3の条件で焼鈍温度を変えて実
験的に連続焼鈍のシミュレーションと 1.2%調質圧延と
を実施した。そして、このサンプルからJIS5号引張
試験片を切り出して引張試験とBH量の測定を前記と同
様に実施した。このように調査した「r値,BH量に及
ぼす焼鈍温度の影響」を整理し、図4に示した。
Samples were taken from the cold rolled coils of Steel A and Steel D from the portions corresponding to the top and middle portions of hot rolling, and the annealing temperature was changed under the conditions of FIG. A simulation of continuous annealing and 1.2% temper rolling were performed. Then, a JIS No. 5 tensile test piece was cut out from this sample, and a tensile test and measurement of the BH amount were carried out in the same manner as described above. The "influence of annealing temperature on r value and BH amount" investigated in this way was arranged and shown in FIG.

【0047】この図4から次のことが明らかである。C
含有量が本発明で規定する条件を満たす鋼Aに係る鋼板
では、熱延ミドル相当部で焼鈍温度を840〜880℃
とすることで、また熱延トップ相当部で焼鈍温度を87
0〜930℃とすることで何れも良好なr値とBHが得
られる。これに対して、C含有量が本発明で規定する条
件から外れた鋼Dでは、焼鈍温度上昇に伴うr値とBH
の向上が小さく、それは特に熱延トップ相当部で顕著で
ある。
The following is clear from FIG. C
In the steel sheet according to Steel A, the content of which satisfies the conditions specified in the present invention, the annealing temperature at the hot rolling middle equivalent portion is 840 to 880 ° C.
By doing so, the annealing temperature at the hot rolled top equivalent part is 87
By setting the temperature to 0 to 930 ° C, good r value and BH can be obtained. On the other hand, in steel D in which the C content deviates from the conditions specified in the present invention, the r value and BH accompanying the increase in the annealing temperature
Improvement is small, especially in the hot rolled top equivalent part.

【0048】〔実施例2〕この実施例では、前記表1に
示した鋼Aに係る鋼板に関し実験室的に焼鈍条件の影響
を調査した。即ち、実施例1と同様に転炉溶製し連続鋳
造して得た表1の鋼Aに係るスラブを、1150℃に加
熱した後、仕上温度900℃で熱間圧延して 4.0mmの熱
延鋼板とし、平均冷却速度:20℃/sにて長手方向両端
部では680℃で、中央部では630℃で巻取った。そ
して、この熱延鋼板を酸洗してから 0.8mmまで冷間圧延
した。続いて、得られた冷延コイルの“熱延でのトップ
相当部”及び“熱延でのミドル相当部”からサンプルを
採取し、これらに表4及び表5に示す条件で連続焼鈍相
当処理を施した。
Example 2 In this example, the effect of annealing conditions was investigated in the laboratory on the steel sheets of Steel A shown in Table 1 above. That is, in the same manner as in Example 1, the slab of Steel A in Table 1 obtained by melting in a converter and continuous casting was heated to 1150 ° C. and then hot-rolled at a finishing temperature of 900 ° C. to obtain a heat of 4.0 mm. The rolled steel sheet was wound at an average cooling rate of 20 ° C./s at 680 ° C. at both ends in the longitudinal direction and at 630 ° C. at the center. Then, the hot rolled steel sheet was pickled and cold rolled to 0.8 mm. Subsequently, samples were taken from the "top equivalent portion in hot rolling" and the "corresponding middle portion in hot rolling" of the obtained cold rolled coil and subjected to continuous annealing equivalent treatment under the conditions shown in Tables 4 and 5. Was applied.

【0049】そして、このサンプルからJIS5号引張
試験を採取して引張試験を行うと共に、各サンプルにつ
き“BH量”を測定した。なお、“降伏強度", "引張強
さ", "伸び", "r値”及び“BH量”は実施例1と同様
に評価した。これらの結果を表4及び表5に併せて示
す。
Then, a JIS No. 5 tensile test was taken from this sample to perform a tensile test, and the "BH amount" was measured for each sample. The "yield strength", "tensile strength", "elongation", "r value" and "BH amount" were evaluated in the same manner as in Example 1. The results are also shown in Tables 4 and 5.

【0050】表4及び表5に示される結果からも次のこ
とを確認できる。即ち、連続焼鈍条件が本発明で規定す
る条件を満たしておれば、熱延トップ相当部,熱延ミド
ル相当部を問わず 1.7を超えるr値と30N/mm2以下の
BHが得られ、良好な深絞り性と常温時効性を有する冷
延鋼板の製造可能である。
From the results shown in Tables 4 and 5, the following can be confirmed. That is, if the continuous annealing conditions satisfy the conditions specified in the present invention, an r value of more than 1.7 and a BH of 30 N / mm 2 or less can be obtained regardless of the hot rolled top portion and the hot rolled middle portion. It is possible to manufacture a cold-rolled steel sheet having excellent deep drawability and room temperature aging.

【0051】[0051]

【効果の総括】以上に説明した如く、この発明によれ
ば、深絞り性及び常温時効性に優れる上にコイル内の特
性バラツキも小さく、例えば自動車の内装,外装用に好
適な冷延鋼板を低コストで安価に提供することが可能と
なるなど、産業上有用な効果がもたらされる。
[Summary of Effects] As described above, according to the present invention, a cold-rolled steel sheet which is excellent in deep drawability and room temperature aging and has little characteristic variation in the coil is suitable for, for example, interior and exterior of automobiles. Industrially useful effects such as low cost and low cost can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る連続焼鈍ヒ−トパタ−ンの説明図
である。
FIG. 1 is an explanatory view of a continuous annealing heat pattern according to the present invention.

【図2】本発明の別例に係る連続焼鈍ヒ−トパタ−ンの
説明図である。
FIG. 2 is an explanatory view of a continuous annealing heat pattern according to another example of the present invention.

【図3】実施例1において実験室的に行った連続焼鈍条
件の説明図である。
FIG. 3 is an explanatory view of continuous annealing conditions performed in a laboratory in Example 1.

【図4】鋼A及びDに係る冷延鋼板の熱延トップ相当部
及びミドル相当部でのr値,BHに及ぼす焼鈍温度の影
響を示したグラフである。
FIG. 4 is a graph showing the effect of annealing temperature on the r value and BH at the hot-rolled top-corresponding portion and middle-corresponding portion of the cold rolled steel sheets of Steels A and D.

【表4】 [Table 4]

【表5】 [Table 5]

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 重量割合にて C: 0.010〜 0.030%, Si: 0.1%以下, Mn:0.05
〜0.25%,sol.Al: 0.004〜0.10%, S:0.0005〜
0.015%,B:0〜0.0040% を含むと共に残部がFe及び不可避不純物から成り、かつ
不可避不純物であるP及びNの含有量がそれぞれ P:0.05%以下, N: 50ppm以下 なる化学組成の鋼片を、Ar3変態点以上で熱間圧延して
から600〜750℃で巻取り、続いて酸洗後に冷間圧
延及び連続焼鈍を施すに当って、焼鈍でのコイル中央部
の最高加熱温度を840〜880℃に、コイルの両端部
の最高加熱温度を870〜930℃にそれぞれ制御する
と共に、焼鈍加熱後は650〜780℃の温度域まで1
0℃/s以下の冷却速度で徐冷した後、今度は300〜4
50℃の温度域まで60℃/s以上の冷却速度で急冷し、
その後更に300〜450℃の温度域で90〜240秒
の過時効を施すことを特徴とする、深絞り性と常温時効
性に優れ、かつコイル内特性の均質な冷延鋼板の製造方
法。
1. By weight ratio, C: 0.010 to 0.030%, Si: 0.1% or less, Mn: 0.05
~ 0.25%, sol.Al: 0.004 ~ 0.10%, S: 0.0005 ~
Steel pieces with a chemical composition of 0.015%, B: 0 to 0.0040%, the balance being Fe and unavoidable impurities, and the contents of P and N, which are unavoidable impurities, are P: 0.05% or less and N: 50 ppm or less, respectively. Is hot-rolled above the Ar 3 transformation point and then wound at 600 to 750 ° C., followed by pickling, followed by cold rolling and continuous annealing, the maximum heating temperature of the coil central part during annealing is Control the maximum heating temperature of both ends of the coil to 840 to 880 ° C. and 870 to 930 ° C., respectively, and keep the temperature range of 650 to 780 ° C. 1 after annealing heating.
After gradually cooling at a cooling rate of 0 ° C / s or less, this time 300-4
Quench to a temperature range of 50 ° C at a cooling rate of 60 ° C / s or more,
A method for producing a cold-rolled steel sheet, which is further excellent in deep drawability and normal temperature aging and has uniform coil internal characteristics, characterized by further performing overaging for 90 to 240 seconds in a temperature range of 300 to 450 ° C.
【請求項2】 重量割合にて C: 0.010〜 0.030%, Si: 0.1%以下, Mn:0.05
〜0.25%,sol.Al: 0.004〜0.10%, S:0.0005〜
0.015%,B:0〜0.0040% を含むと共に残部がFe及び不可避不純物から成り、かつ
不可避不純物であるP及びNの含有量がそれぞれ P:0.05%以下, N: 50ppm以下 なる化学組成の鋼片を、Ar3変態点以上で熱間圧延して
から600〜750℃で巻取り、続いて酸洗後に冷間圧
延及び連続焼鈍を施すに当って、焼鈍でのコイル中央部
の最高加熱温度を840〜880℃に、コイルの両端部
の最高加熱温度を870〜930℃にそれぞれ制御する
と共に、焼鈍加熱後は650〜780℃の温度域まで1
0℃/s以下の冷却速度で徐冷した後、今度は200〜3
00℃の温度域まで60℃/s以上の冷却速度で急冷し、
次いで320〜450℃に再加熱してから、200〜3
30℃の温度域まで90〜240秒をかけて徐冷する過
時効を施すことを特徴とする、深絞り性と常温時効性に
優れ、かつコイル内特性の均質な冷延鋼板の製造方法。
2. C: 0.010 to 0.030% by weight, Si: 0.1% or less, Mn: 0.05
~ 0.25%, sol.Al: 0.004 ~ 0.10%, S: 0.0005 ~
Steel pieces with a chemical composition of 0.015%, B: 0 to 0.0040%, the balance being Fe and unavoidable impurities, and the contents of P and N, which are unavoidable impurities, are P: 0.05% or less and N: 50 ppm or less, respectively. Is hot-rolled above the Ar 3 transformation point and then wound at 600 to 750 ° C., followed by pickling, followed by cold rolling and continuous annealing, the maximum heating temperature of the coil central part during annealing is Control the maximum heating temperature of both ends of the coil to 840 to 880 ° C. and 870 to 930 ° C., respectively, and keep the temperature range of 650 to 780 ° C. 1 after annealing heating.
After slowly cooling at a cooling rate of 0 ° C / s or less, this time 200 to 3
Rapid cooling to a temperature range of 00 ° C at a cooling rate of 60 ° C / s or more,
Then reheat to 320-450 ° C, then 200-3
A method for producing a cold-rolled steel sheet, which is excellent in deep drawability and normal temperature aging and has uniform coil internal characteristics, which is characterized by performing over-aging by gradually cooling to a temperature range of 30 ° C over 90 to 240 seconds.
JP25003194A 1994-09-19 1994-09-19 Production of cold rolled steel sheet by continuous annealing Pending JPH0885827A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25003194A JPH0885827A (en) 1994-09-19 1994-09-19 Production of cold rolled steel sheet by continuous annealing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25003194A JPH0885827A (en) 1994-09-19 1994-09-19 Production of cold rolled steel sheet by continuous annealing

Publications (1)

Publication Number Publication Date
JPH0885827A true JPH0885827A (en) 1996-04-02

Family

ID=17201810

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25003194A Pending JPH0885827A (en) 1994-09-19 1994-09-19 Production of cold rolled steel sheet by continuous annealing

Country Status (1)

Country Link
JP (1) JPH0885827A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006503183A (en) * 2002-10-14 2006-01-26 ユジノール Manufacturing method of heat-curable steel plate, and steel plate and parts obtained by the manufacturing method
WO2011087112A1 (en) * 2010-01-15 2011-07-21 Jfeスチール株式会社 Cold-rolled steel plate and method for producing same
CN102492823A (en) * 2011-12-27 2012-06-13 上海宝翼制罐有限公司 Continuous annealing process of cold rolling low alloy high-strength steel plate with yield strength at grade of 420 MPa

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006503183A (en) * 2002-10-14 2006-01-26 ユジノール Manufacturing method of heat-curable steel plate, and steel plate and parts obtained by the manufacturing method
JP2011006792A (en) * 2002-10-14 2011-01-13 Arcelormittal France Fabrication of bake hardened steel strip, and steel strip and component obtainable therefrom
KR101044741B1 (en) * 2002-10-14 2011-06-28 아르셀러 프랑스 Method for making hardenable steel plates by firing, resulting steel plates
WO2011087112A1 (en) * 2010-01-15 2011-07-21 Jfeスチール株式会社 Cold-rolled steel plate and method for producing same
JP2011144426A (en) * 2010-01-15 2011-07-28 Jfe Steel Corp Cold rolled steel sheet and method for producing the same
CN102492823A (en) * 2011-12-27 2012-06-13 上海宝翼制罐有限公司 Continuous annealing process of cold rolling low alloy high-strength steel plate with yield strength at grade of 420 MPa

Similar Documents

Publication Publication Date Title
JP4650006B2 (en) High carbon hot-rolled steel sheet excellent in ductility and stretch flangeability and method for producing the same
US20040123924A1 (en) High carbon steel sheet and production method thereof
US4116729A (en) Method for treating continuously cast steel slabs
JPH0885827A (en) Production of cold rolled steel sheet by continuous annealing
JP2776203B2 (en) Manufacturing method of cold rolled steel sheet excellent in non-aging at normal temperature
JP3516747B2 (en) Manufacturing method of cold-rolled steel sheet for non-aging deep drawing at room temperature with excellent material uniformity and surface quality in the coil longitudinal direction
JP3194120B2 (en) Manufacturing method of cold-rolled steel sheet for non-aging deep drawing excellent in material uniformity in coil by continuous annealing
JPH07242995A (en) Cold rolled sheet of low carbon aluminum killed steel for deep drawing and its production
KR100435466B1 (en) A method for manufacturing p added extra low carbon cold rolled steel sheet with superior deep drawability
CN115491598B (en) 1180 MPa-grade phase-change induced plasticity steel and preparation method thereof
JPS60103128A (en) Production of cold rolled steel sheet having composite structure
JPH09263838A (en) Production of high strength cold rolled steel sheet excellent in stretch-flange formability
JP3224732B2 (en) Cold rolled steel sheet having good aging resistance and method for producing the same
JP3704790B2 (en) Cold-rolled steel sheet with good aging resistance
JPH0784618B2 (en) Method for producing cold-rolled steel sheet for deep drawing excellent in secondary processing brittleness resistance
JP3261037B2 (en) Manufacturing method of cold rolled steel sheet with good aging resistance
JPH01188630A (en) Manufacture of cold rolled steel sheet having superior press formability
JPH07100817B2 (en) Method for manufacturing slow-aging cold-rolled steel sheet
KR100544724B1 (en) Cold Rolled Steel Sheet with Superior Workability and Method for Manufacturing the Sheet
JPS6349726B2 (en)
KR20010017609A (en) Low carbon cold rolled with low plastic deformation ratio and anisotropic coefficient
JP3406735B2 (en) Manufacturing method of cold rolled steel sheet for processing with excellent aging resistance and punching property
JPS62139822A (en) Production of cold rolled steel sheet for deep drawing having excellent uniformity of material quality
JPH09263879A (en) Cold rolled steel sheet excellent in workability and aging resistance and its production
JPH06240363A (en) Production of high strength cold rolled steel sheet excellent in workability