JP2011144270A - Electroconductive resin composition and method for producing electroconductive film - Google Patents

Electroconductive resin composition and method for producing electroconductive film Download PDF

Info

Publication number
JP2011144270A
JP2011144270A JP2010006379A JP2010006379A JP2011144270A JP 2011144270 A JP2011144270 A JP 2011144270A JP 2010006379 A JP2010006379 A JP 2010006379A JP 2010006379 A JP2010006379 A JP 2010006379A JP 2011144270 A JP2011144270 A JP 2011144270A
Authority
JP
Japan
Prior art keywords
resin
weight
carbon black
conductive
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010006379A
Other languages
Japanese (ja)
Other versions
JP5267468B2 (en
JP2011144270A5 (en
Inventor
Shuichi Tao
周一 田尾
Keisuke Masuko
啓介 増子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Artience Co Ltd
Original Assignee
Toyo Ink SC Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Ink SC Holdings Co Ltd filed Critical Toyo Ink SC Holdings Co Ltd
Priority to JP2010006379A priority Critical patent/JP5267468B2/en
Publication of JP2011144270A publication Critical patent/JP2011144270A/en
Publication of JP2011144270A5 publication Critical patent/JP2011144270A5/ja
Application granted granted Critical
Publication of JP5267468B2 publication Critical patent/JP5267468B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Processes Of Treating Macromolecular Substances (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electroconductive resin composition forming an electroconductive film having a good appearance with little reduction of electroconductivity even after stretching at a high ratio, and to provide a method for producing the electroconductive film with good productivity. <P>SOLUTION: The resin composition includes: a thermoplastic resin (A); carbon black (B); and a resin (C). The glass transition temperature of the resin (C) is lower than that of the thermoplastic resin (A), and the interfacial free energy between the carbon black (B) and resin (C) is lower than that between the carbon black (B) and thermoplastic resin (A). Furthermore, the interfacial free energy between the carbon black (B) and resin (C) is 0-50 mN/m. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、導電性樹脂組成物、および二軸延伸の導電性フィルムの製造方法に関する。   The present invention relates to a conductive resin composition and a method for producing a biaxially stretched conductive film.

熱可塑性樹脂に導電性を付与した導電性樹脂組成物は、電子部品包装容器用途、画像形成装置用中間転写ベルト、帯電(除電)ブラシ用途、衣料用途など様々な分野に展開されている。   Conductive resin compositions obtained by imparting conductivity to a thermoplastic resin have been developed in various fields such as electronic component packaging container applications, intermediate transfer belts for image forming apparatuses, charging (static charge) brush applications, and clothing applications.

そして導電性物質としては、カーボンブラック、炭素繊維などの炭素系材料、酸化錫、酸化チタン、酸化アンチモン、酸化インジウムなどの金属酸化物、銅、銀、ニッケルなどの金属粉が知られており、中でも安価で導電性の良好なカーボンブラックが導電剤として使用されるのが一般的である。   And as a conductive substance, carbon-based materials such as carbon black, carbon fiber, metal oxides such as tin oxide, titanium oxide, antimony oxide, indium oxide, metal powder such as copper, silver, nickel are known, Among these, carbon black that is inexpensive and has good conductivity is generally used as a conductive agent.

ところで、熱可塑性樹脂からなるフィルムに導電性を付与する方法としては、主に塗工方式または練り込み方式が知られている。   By the way, as a method for imparting conductivity to a film made of a thermoplastic resin, a coating method or a kneading method is mainly known.

塗工方式はフィルム表面にカーボンブラックなどの導電性物質を含む塗工剤を塗布し皮膜を形成する方法である。この方式によると、ピンホールや塗工ムラを完全に避けることが難しく品質性能が低いうえに不安定になりがちである。また、基材タック性の強い溶剤型塗工剤を使用することから基材を劣化させることも多い。更に、練り込み方式に比べて、製造工程が煩雑かつ製造コストが高価であるという問題点が存在する。   The coating method is a method of forming a film by applying a coating agent containing a conductive material such as carbon black on the film surface. According to this method, it is difficult to completely avoid pinholes and coating unevenness, and the quality performance is low, and it tends to be unstable. Moreover, since a solvent-type coating agent having a strong substrate tackiness is used, the substrate is often deteriorated. Furthermore, there are problems in that the manufacturing process is complicated and the manufacturing cost is high compared to the kneading method.

一方、練り込み方式は、カーボンブラックなどの導電性物質を溶融させた熱可塑性樹脂中に練り込み、成形する方法である。この方式によると、塗工式に比べて製造工程が比較的簡便かつ製造コストが安価であるという利点があるが、高導電性発現のためには、導電性物質を大量に添加する必要が有るため、外観良好な成形体を得ることが難しいという問題が存在する。   On the other hand, the kneading method is a method of kneading into a thermoplastic resin in which a conductive material such as carbon black is melted and molding. According to this method, there are advantages that the manufacturing process is relatively simple and the manufacturing cost is low compared to the coating type, but in order to achieve high conductivity, it is necessary to add a large amount of conductive material. Therefore, there is a problem that it is difficult to obtain a molded article having a good appearance.

また、熱可塑性樹脂からなるフィルムに延伸加工を施した延伸フィルムは、優れた機械物性や光学特性を有することから、高付加価値フィルムとして多方面で利用されている。しかしながら、カーボンブラックにより導電性を付与したフィルムは、この延伸によって導電性が低下する。この理由は、フィルムを延伸することによって、樹脂中に分散しているカーボンブラックによる導電ネットワーク構造が破壊されるためであると考えられる。   In addition, a stretched film obtained by stretching a film made of a thermoplastic resin has excellent mechanical properties and optical characteristics, and thus is used in various fields as a high-value-added film. However, the conductivity of the film imparted with carbon black is reduced by this stretching. The reason for this is considered to be that the conductive network structure by carbon black dispersed in the resin is destroyed by stretching the film.

前記の問題を解決するために、不飽和カルボン酸または誘導体を添着したカーボンブラックを熱可塑性樹脂に配合してなる導電性樹脂組成物が開示されている(例えば、特許文献1参照)。しかしながら、低倍率(5倍)延伸下におけるフィルムの表面抵抗率が記載されているだけであり、満足な導電性は得られていない。また、不飽和カルボン酸をカーボンブラックに添着する際に、アセトンやトルエン等の有機溶媒を使用するため、環境面において問題がある。更に、不飽和カルボン酸誘導体を添着したカーボンブラックを使用するために、製造工程が煩雑化し、製造コストが高くなるという問題点がある。   In order to solve the above-described problem, a conductive resin composition obtained by blending a carbon black with an unsaturated carboxylic acid or derivative added to a thermoplastic resin is disclosed (for example, see Patent Document 1). However, only the surface resistivity of the film under low magnification (5 times) stretching is described, and satisfactory conductivity is not obtained. In addition, when an unsaturated carboxylic acid is attached to carbon black, an organic solvent such as acetone or toluene is used, which is problematic in terms of environment. Furthermore, since carbon black to which an unsaturated carboxylic acid derivative is added is used, there are problems in that the manufacturing process becomes complicated and the manufacturing cost increases.

また、前記問題を解決するために、マトリックス樹脂中に炭素繊維を分散させてなる半導電性樹脂組成物を用いた成形体が開示されている(例えば、特許文献2参照)。しかしながら、一般的に炭素繊維は比表面積が大きく凝集エネルギーが高いため、その凝集を抑制することは困難である。さらに炭素繊維の凝集を抑制するために特定の比表面積とアスペクト比を有する炭素繊維を使用しているが、依然として成形体中の凝集塊の存在割合は多く、外観良好な成形体は得られていない。また、樹脂との混練中に炭素繊維の一部が破断されるため、安定的な導電性を有する成形体は得られていない。   Moreover, in order to solve the said problem, the molded object using the semiconductive resin composition which disperse | distributes carbon fiber in matrix resin is disclosed (for example, refer patent document 2). However, since carbon fibers generally have a large specific surface area and high cohesive energy, it is difficult to suppress the coagulation. In addition, carbon fibers with a specific surface area and aspect ratio are used to suppress the aggregation of carbon fibers, but there are still many agglomerates present in the molded products, and molded products with good appearance have not been obtained. Absent. In addition, since a part of the carbon fiber is broken during kneading with the resin, a molded article having stable conductivity has not been obtained.

特開平5−81925号公報JP-A-5-81925 特開2009−126985号公報JP 2009-126985 A

本発明は、外観良好で高倍率延伸後も導電性低下の少ない導電性フィルムを形成できる導電性樹脂組成物、および生産性良好な導電性フィルムの製造方法の提供を目的とする。   An object of the present invention is to provide a conductive resin composition capable of forming a conductive film having a good appearance and having a small decrease in conductivity even after stretching at a high magnification, and a method for producing a conductive film having good productivity.

本発明者等は、上記課題を解決するため、鋭意研究した。
すなわち、本発明の第1の発明は、熱可塑性樹脂(A)と、カーボンブラック(B)と、樹脂(C)とを含む樹脂組成物であって、
樹脂(C)のガラス転移温度が熱可塑性樹脂(A)のガラス転移温度よりも低く、
カーボンブラック(B)と樹脂(C)との界面自由エネルギーが、カーボンブラック(B)と熱可塑性樹脂(A)との界面自由エネルギーよりも低く、
カーボンブラック(B)と樹脂(C)との界面自由エネルギーが、0〜50mN/mであることを特徴とする導電性樹脂組成物に関する。
The present inventors have intensively studied to solve the above problems.
That is, the first invention of the present invention is a resin composition comprising a thermoplastic resin (A), carbon black (B), and resin (C),
The glass transition temperature of the resin (C) is lower than the glass transition temperature of the thermoplastic resin (A),
The interface free energy between the carbon black (B) and the resin (C) is lower than the interface free energy between the carbon black (B) and the thermoplastic resin (A),
It is related with the conductive resin composition characterized by the interface free energy of carbon black (B) and resin (C) being 0-50 mN / m.

本発明の第2の発明は、カーボンブラック(B)のDBP吸油量が30〜750ml/100gであることを特徴とする上記発明の導電性樹脂組成物に関する。   2nd invention of this invention is related with the conductive resin composition of the said invention characterized by the DBP oil absorption of carbon black (B) being 30-750 ml / 100g.

本発明の第3の発明は、樹脂(C)が、熱可塑性エラストマーまたはポリエチレンであることを特徴とする上記発明の導電性樹脂組成物に関する。   A third invention of the present invention relates to the conductive resin composition of the above invention, wherein the resin (C) is a thermoplastic elastomer or polyethylene.

本発明の第4の発明は、上記発明の導電性樹脂組成物を含むことを特徴とする導電性マスターバッチに関する。   4th invention of this invention is related with the electroconductive masterbatch characterized by including the conductive resin composition of the said invention.

本発明の第5の発明は、上記発明の導電性樹脂組成物を用いて形成され、かつ延伸されてなる導電性フィルムに関する。   5th invention of this invention is related with the electroconductive film formed using the conductive resin composition of the said invention, and extending | stretched.

本発明の第6の発明は、上記発明の導電性樹脂組成物を含む樹脂組成物を溶融混練する工程(1)、次に、フィルムを形成する工程(2)、更に、前記フィルムを延伸する工程(3)を含むことを特徴とする導電性フィルムの製造方法に関する。   The sixth invention of the present invention is a step (1) of melt-kneading a resin composition containing the conductive resin composition of the above invention, then a step (2) of forming a film, and further stretching the film. It is related with the manufacturing method of the electroconductive film characterized by including a process (3).

本発明の第7の発明は、前記工程(3)において、フィルムを二軸延伸することを特徴とする上記発明の導電性フィルムの製造方法に関する。   7th invention of this invention is related with the manufacturing method of the electroconductive film of the said invention characterized by biaxially stretching a film in the said process (3).

本発明の第8の発明は、前記工程(3)において、フィルムの延伸倍率が面積比で1.5〜25倍であることを特徴とする上記発明の導電性フィルムの製造方法に関する。   The eighth invention of the present invention relates to the method for producing a conductive film of the above invention, wherein, in the step (3), the draw ratio of the film is 1.5 to 25 times in terms of area ratio.

本発明の第9の発明は、上記発明の製造方法で得られた導電性フィルムに関する。   The ninth invention of the present invention relates to a conductive film obtained by the production method of the above invention.

本発明の第10の発明は、上記発明の導電性フィルムの表面抵抗率が、1×107Ω/□以下であることを特徴とする導電性フィルムに関する。 A tenth aspect of the present invention relates to a conductive film, wherein the conductive film of the present invention has a surface resistivity of 1 × 10 7 Ω / □ or less.

本発明により、高倍率延伸後も導電性低下の少ない導電性樹脂組成物、これを用いた外観良好な導電性フィルム及び生産性良好な導電性フィルムの製造方法が実現できた。   According to the present invention, a conductive resin composition with little decrease in conductivity even after high-stretching, a conductive film with good appearance using the same, and a method for producing a conductive film with good productivity can be realized.

本発明の導電性樹脂組成物は、熱可塑性樹脂(A)と、カーボンブラック(B)と、樹脂(C)とを含むことを特徴とする。また導電性樹脂組成物は、二軸延伸される導電性フィルムの形成用に用いることが好ましい。本発明では、樹脂(C)のガラス転移温度が熱可塑性樹脂(A)より低いものを用い、さらにカーボンブラック(B)と樹脂(C)との界面自由エネルギーが、カーボンブラック(B)と熱可塑性樹脂(A)との界面自由エネルギーよりも低く、かつカーボンブラック(B)と樹脂(C)との界面自由エネルギーが、0〜50mN/mであることが重要である。これにより導電性樹脂組成物中のカーボンブラック(B)が樹脂(C)中に偏在するため、カーボンブラック(B)間の距離を短くできる。そして本発明の導電性樹脂組成物は二軸延伸される導電性フィルムに用いた場合に、単にカーボンブラック(B)を熱可塑性樹脂(A)中に均質に練り込んだ場合と比較して、延伸時にカーボンブラック(B)による導電ネットワーク構造が破壊されにくいため、導電性フィルムの延伸後の導電性の低下を最小限に抑えることができる。
以下、本発明について具体的に説明する。
The conductive resin composition of the present invention comprises a thermoplastic resin (A), carbon black (B), and resin (C). The conductive resin composition is preferably used for forming a biaxially stretched conductive film. In the present invention, the resin (C) having a glass transition temperature lower than that of the thermoplastic resin (A) is used, and the free energy of the interface between the carbon black (B) and the resin (C) is higher than that of the carbon black (B) and the heat. It is important that the interface free energy is lower than the interface free energy with the plastic resin (A) and the interface free energy between the carbon black (B) and the resin (C) is 0 to 50 mN / m. Thereby, since carbon black (B) in a conductive resin composition is unevenly distributed in resin (C), the distance between carbon black (B) can be shortened. And when the conductive resin composition of the present invention is used for a biaxially stretched conductive film, compared with the case of simply kneading carbon black (B) into the thermoplastic resin (A), Since the conductive network structure by carbon black (B) is hard to be destroyed at the time of stretching, a decrease in conductivity after stretching of the conductive film can be minimized.
Hereinafter, the present invention will be specifically described.

<熱可塑性樹脂(A)>
本発明において熱可塑性樹脂(A)としては、加熱溶融により成形可能な樹脂であれば特に制限されるものではないが、例えば、ポリエチレン樹脂、ポリプロピレン樹脂などのポリオレフィン系樹脂、ポリスチレン系樹脂、ポリフェニレンエーテル系樹脂、アクリロニトリル−ブタジエン−スチレン共重合体樹脂、ポリカーボネート樹脂、ポリアミド樹脂、ポリアセタール樹脂、ポリエステル系樹脂、ポリ塩化ビニル樹脂、ポリメチルメタアクリレート樹脂、ポリエーテルイミド樹脂やこれらの混合物などが挙げられる。特に好ましい熱可塑性樹脂としては、安価かつ加工性に優れ、耐熱性、機械物性、耐薬品性、軽量性などの特徴により電子部品包装材、家電や自動車部品、繊維等幅広く使用されている結晶性ポリプロピレンが挙げられる。
<Thermoplastic resin (A)>
In the present invention, the thermoplastic resin (A) is not particularly limited as long as it is a resin that can be molded by heating and melting. For example, polyolefin resin such as polyethylene resin and polypropylene resin, polystyrene resin, polyphenylene ether Resin, acrylonitrile-butadiene-styrene copolymer resin, polycarbonate resin, polyamide resin, polyacetal resin, polyester resin, polyvinyl chloride resin, polymethyl methacrylate resin, polyetherimide resin, and mixtures thereof. As a particularly preferred thermoplastic resin, it is inexpensive and excellent in workability, and is widely used for electronic parts packaging materials, home appliances, automobile parts, fibers, etc. due to its characteristics such as heat resistance, mechanical properties, chemical resistance, and light weight. A polypropylene is mentioned.

また、熱可塑性樹脂(A)はメルトフローレート(以下、MFRという)(JIS K 7210に準拠し、230℃、荷重2.16kgで測定)が、0.1〜100g/10分が好ましく、より好ましくは1〜50g/10分である。MFRが0.1g/10分より小さいと、導電性樹脂組成物の溶融粘度が著しく増加し、フィルムの成形性が悪化する恐れがある。MFRが100g/10分を超えると、カーボンブラック(B)の樹脂中への溶融分散が難しく、外観良好なフィルムが得られないことがある。   The thermoplastic resin (A) preferably has a melt flow rate (hereinafter referred to as MFR) (measured at 230 ° C. under a load of 2.16 kg according to JIS K 7210) of 0.1 to 100 g / 10 min. Preferably it is 1-50 g / 10min. If the MFR is less than 0.1 g / 10 min, the melt viscosity of the conductive resin composition is remarkably increased and the moldability of the film may be deteriorated. When the MFR exceeds 100 g / 10 min, it is difficult to melt and disperse the carbon black (B) in the resin, and a film having a good appearance may not be obtained.

本発明において熱可塑性樹脂(A)の使用量は、導電性樹脂組成物100重量%中、40〜90重量%であることが好ましく、47〜85重量%がより好ましく55〜80重量%が特に好ましい。40重量%より少ないとフィルムの延伸による機械物性向上の効果が十分に発揮されない場合がある。また、フィルムの耐熱性が低下し、延伸時にフィルムが破れる場合がある。一方、90重量%より多いとカーボンブラック(B)及び樹脂(C)の分散が困難になるため、安定的な導電性を有するフィルムが得られないことがある。   In the present invention, the amount of the thermoplastic resin (A) used is preferably 40 to 90% by weight, more preferably 47 to 85% by weight, particularly 55 to 80% by weight, in 100% by weight of the conductive resin composition. preferable. If it is less than 40% by weight, the effect of improving the mechanical properties by stretching the film may not be sufficiently exhibited. Moreover, the heat resistance of a film falls and a film may be broken at the time of extending | stretching. On the other hand, when the amount is more than 90% by weight, it becomes difficult to disperse the carbon black (B) and the resin (C), so that a film having stable conductivity may not be obtained.

また、上記熱可塑性樹脂(A)の使用量は、樹脂(C)の使用量に比べて多量であることが好ましい。熱可塑性樹脂(A)の使用量が、樹脂(C)の使用量に比べて少量である場合、樹脂(C)中に偏在したカーボンブラック(B)間の距離が熱可塑性樹脂(A)の使用量が樹脂(C)の使用量に比べて多量である場合と比べて長くなるため、フィルム延伸後に導電性が低下しすぎることがある。   Moreover, it is preferable that the usage-amount of the said thermoplastic resin (A) is large compared with the usage-amount of resin (C). When the amount of the thermoplastic resin (A) used is small compared to the amount of the resin (C) used, the distance between the carbon blacks (B) unevenly distributed in the resin (C) is that of the thermoplastic resin (A). Since the amount used is longer than the amount used for the resin (C), the conductivity may decrease too much after the film is stretched.

<カーボンブラック(B)>
本発明においてカーボンブラック(B)は、アスペクト比が1〜5の範囲にある粒子状の形態であることが好ましい。具体的には、例えばケッチェンブラック、アセチレンブラック、ファーネスブラック、チャンネルブラック並びにナフサなどの炭化水素を水素及び酸素の存在下で部分酸化して、水素及び一酸化炭素を含む合成ガスを製造する際に副生するカーボンブラック、あるいはこれを酸化または還元処理したカーボンブラック、グラファイト、カーボンナノチューブ、フラーレンなどが挙げられる。特に好ましいカーボンブラックとしては、デンカブラック、ケッチェンブラックなどが挙げられる。カーボンブラックは平均粒子径が50nm以下のものが好ましく使用される。なお、本発明においてアスペクト比とは、カーボンブラック(B)が粒子状の形態である場合、カーボンブラックのストラクチャーを構成する球状成分の長軸の長さを球状成分の短軸の長さで割った値を指す。一方、カーボンブラック(B)が繊維状の形態である場合、繊維長を繊維径で割った値を指す。
<Carbon black (B)>
In the present invention, the carbon black (B) is preferably in the form of particles having an aspect ratio in the range of 1 to 5. Specifically, for example, when a synthesis gas containing hydrogen and carbon monoxide is produced by partially oxidizing hydrocarbons such as ketjen black, acetylene black, furnace black, channel black and naphtha in the presence of hydrogen and oxygen. And carbon black produced as a by-product, or carbon black, graphite, carbon nanotube, fullerene and the like obtained by oxidizing or reducing it. Particularly preferred carbon blacks include Denka black and Ketjen black. Carbon black having an average particle size of 50 nm or less is preferably used. In the present invention, the aspect ratio means that when the carbon black (B) is in a particulate form, the major axis length of the spherical component constituting the carbon black structure is divided by the minor axis length of the spherical component. Refers to the value. On the other hand, when carbon black (B) is a fibrous form, the value which divided the fiber length by the fiber diameter is pointed out.

更に、上記カーボンブラック(B)のDBP吸油量は、30〜750ml/100gが好ましく、100〜400ml/100gがより好ましい。DBP吸油量が30ml/100g未満のカーボンブラックでは、樹脂中への溶融分散は良好であるが、目的とする導電性が得られないことがある。DBP吸油量が750ml/100gを超えるカーボンブラックでは、目的とする導電性は得られるが、樹脂中への溶融分散が難しく、カーボンブラックの未分散凝集塊が残り、フィルム形成過程及び延伸過程における安定性が著しく低下する傾向がある。
なお、本発明においてDBP吸油量とは、カーボンブラック粒子間の化学的ないし物理的結合による複雑な凝集形態(ストラクチャー)の尺度で、カーボンブラック100g当りに包含することのできるジブチルフタレート(DBP)の量(ml)であって、この数値が大きいカーボンブラックほど優れた導電性能を示す。
Furthermore, the DBP oil absorption of the carbon black (B) is preferably 30 to 750 ml / 100 g, and more preferably 100 to 400 ml / 100 g. Carbon black having a DBP oil absorption of less than 30 ml / 100 g has good melt dispersion in the resin, but the intended conductivity may not be obtained. Carbon black with a DBP oil absorption exceeding 750 ml / 100 g provides the desired conductivity, but it is difficult to melt and disperse in the resin, leaving an undispersed agglomerate of carbon black, which is stable during film formation and stretching. Tend to decrease significantly.
In the present invention, the DBP oil absorption is a measure of a complex agglomeration form (structure) due to chemical or physical bonding between the carbon black particles, and the dibutyl phthalate (DBP) that can be included per 100 g of carbon black. The larger the numerical value (ml), the higher the carbon black, the better the conductive performance.

更に、本発明においては、カーボンブラック(B)と樹脂(C)との界面自由エネルギーがカーボンブラック(B)と熱可塑性樹脂(A)との界面自由エネルギーより低いことが必要である。カーボンブラック(B)と樹脂(C)との界面自由エネルギーが、カーボンブラック(B)と熱可塑性樹脂(A)との界面自由エネルギーより高くなると、フィルム延伸後に導電性が低下しすぎることがある。これは、カーボンブラック(B)が樹脂(C)に比べて熱可塑性樹脂(A)中に偏在しやすくなり、樹脂組成物中における導電ネットワーク構造の形成が不十分であるためと考えられる。   Furthermore, in the present invention, it is necessary that the interface free energy between the carbon black (B) and the resin (C) is lower than the interface free energy between the carbon black (B) and the thermoplastic resin (A). If the interfacial free energy between the carbon black (B) and the resin (C) is higher than the interfacial free energy between the carbon black (B) and the thermoplastic resin (A), the conductivity may be reduced too much after the film stretching. . This is presumably because the carbon black (B) tends to be unevenly distributed in the thermoplastic resin (A) compared to the resin (C), and the formation of a conductive network structure in the resin composition is insufficient.

更に、本発明においては、カーボンブラック(B)と樹脂(C)との界面自由エネルギーが0〜50mN/mであることが必要である。更に好ましくは0〜40mN/mであり、特に好ましくは0〜30mN/mである。カーボンブラック(B)と樹脂(C)との界面自由エネルギーが50mN/mを超えると、カーボンブラック(B)の樹脂(C)への分散が悪化する傾向がある。その結果、樹脂組成物中に導電ネットワーク構造が形成されにくくなるため、フィルム延伸後に導電性が低下しすぎることがある。   Furthermore, in the present invention, the interface free energy between the carbon black (B) and the resin (C) needs to be 0 to 50 mN / m. More preferably, it is 0-40 mN / m, Most preferably, it is 0-30 mN / m. When the interface free energy between the carbon black (B) and the resin (C) exceeds 50 mN / m, the dispersion of the carbon black (B) into the resin (C) tends to deteriorate. As a result, since it becomes difficult to form a conductive network structure in the resin composition, the conductivity may be excessively lowered after the film is stretched.

カーボンブラック(B)を複数種類用いる場合は、カーボンブラック(B)と樹脂(C)との界面自由エネルギーが、カーボンブラック(B)と熱可塑性樹脂(A)との界面自由エネルギーよりそれぞれ低く、カーボンブラック(B)と樹脂(C)との界面自由エネルギーがそれぞれ50mN/m以下であることが好ましい。1種類でも上記条件を満たさないと、カーボンブラック(B)の樹脂(C)への分散が悪化する傾向がある。その結果、樹脂組成物中に導電ネットワーク構造が形成されにくくなるため、フィルム延伸後に導電性が低下しすぎることがある。   When a plurality of types of carbon black (B) are used, the interfacial free energy between carbon black (B) and resin (C) is lower than the interfacial free energy between carbon black (B) and thermoplastic resin (A), It is preferable that the interface free energy of carbon black (B) and resin (C) is 50 mN / m or less, respectively. If even one type does not satisfy the above conditions, the dispersion of the carbon black (B) into the resin (C) tends to deteriorate. As a result, since it becomes difficult to form a conductive network structure in the resin composition, the conductivity may be excessively lowered after the film is stretched.

また、上記界面自由エネルギーを調整するため、カーボンブラックの表面処理をしても良い。
なお、本発明において界面自由エネルギーとは試料間の親和性を表すファクターであり、各試料の表面自由エネルギーより拡張Fowkesの式を用いて算出されるものである。界面自由エネルギーの値が小さいほど試料間の親和性が高いことを示す。
各試料の表面自由エネルギーは、自動接触角計(協和界面科学(株)製、DCA−VZ)及び表面自由エネルギー解析ソフトウェア(協和界面科学(株)製、EG−11)を用いて測定した。具体的には、まず、上記接触角計(環境温度:23℃、50%RH)を使用し、標準液を試料表面に滴下して接触角を測定した。標準液として非極性液体、極性液体、水素結合性液体の3種類の液体が必要であり、本発明においては非極性液体としてヘキサデカン、極性液体としてヨウ化メチレン、水素結合性液体として水を用いて測定した値を用いた。
次いで、上記表面自由エネルギー解析ソフトウェアを使用し、得られた接触角の測定結果に基づき、各試料の表面自由エネルギーを解析した。最後に、得られた表面自由エネルギーの測定結果に基づき、拡張Fowkesの式(日本接着協会誌、8(3)、131 (1972))を用いて、各試料間の界面自由エネルギーを算出した。
Further, in order to adjust the interface free energy, a surface treatment of carbon black may be performed.
In the present invention, the interfacial free energy is a factor representing the affinity between samples, and is calculated from the surface free energy of each sample using the extended Fowkes equation. It shows that the affinity between samples is so high that the value of interface free energy is small.
The surface free energy of each sample was measured using an automatic contact angle meter (Kyowa Interface Science Co., Ltd., DCA-VZ) and surface free energy analysis software (Kyowa Interface Science Co., Ltd., EG-11). Specifically, first, using the contact angle meter (environmental temperature: 23 ° C., 50% RH), the standard solution was dropped onto the sample surface to measure the contact angle. Three types of liquids are required as a standard liquid: a nonpolar liquid, a polar liquid, and a hydrogen bonding liquid. In the present invention, hexadecane is used as the nonpolar liquid, methylene iodide is used as the polar liquid, and water is used as the hydrogen bonding liquid. The measured value was used.
Next, using the surface free energy analysis software, the surface free energy of each sample was analyzed based on the measurement result of the obtained contact angle. Finally, based on the measurement result of the obtained surface free energy, the interface free energy between each sample was calculated using the extended Fowkes formula (Journal of Japan Adhesion Association, 8 (3), 131 (1972)).

本発明においてカーボンブラック(B)の使用量は、導電性樹脂組成物100重量%中、5〜30重量%であることが好ましく、5〜28重量%がより好ましく5〜25重量%が特に好ましい。5重量%より少ないとフィルム形成の際、良好な導電性が得られない恐れがある。一方、30重量%より多いとカーボンブラックの分散不良が生じ、外観良好なフィルムを得ることができない可能性がある。また、押出時やフィルム成形時にカーボンブラックの未分散凝集塊による目詰まりが発生し、生産効率が悪化することがある。   In the present invention, the amount of carbon black (B) used is preferably 5 to 30% by weight, more preferably 5 to 28% by weight, and particularly preferably 5 to 25% by weight, in 100% by weight of the conductive resin composition. . If it is less than 5% by weight, good conductivity may not be obtained during film formation. On the other hand, when the amount is more than 30% by weight, poor dispersion of carbon black occurs, and a film having a good appearance may not be obtained. In addition, clogging due to the undispersed agglomerates of carbon black may occur during extrusion or film forming, and production efficiency may deteriorate.

<樹脂(C)>
本発明において樹脂(C)としては、熱可塑性エラストマーやポリエチレンが好ましい。そして熱可塑性樹脂(A)で使用する樹脂とは異種で、熱可塑性樹脂(A)とは非相溶の樹脂を使用することが好ましい。また、樹脂(C)のガラス転移温度が熱可塑性樹脂(A)のガラス転移温度よりも低く、かつ、カーボンブラック(B)と樹脂(C)との界面自由エネルギーが、カーボンブラック(B)と熱可塑性樹脂(A)との界面自由エネルギーよりも低く、かつ、カーボンブラック(B)と樹脂(C)との界面自由エネルギーが、50mN/m以下であることが必要である。
<Resin (C)>
In the present invention, the resin (C) is preferably a thermoplastic elastomer or polyethylene. It is preferable to use a resin that is different from the resin used for the thermoplastic resin (A) and incompatible with the thermoplastic resin (A). Further, the glass transition temperature of the resin (C) is lower than the glass transition temperature of the thermoplastic resin (A), and the interface free energy between the carbon black (B) and the resin (C) is carbon black (B). It is necessary that the interface free energy is lower than the interface free energy with the thermoplastic resin (A) and the interface free energy between the carbon black (B) and the resin (C) is 50 mN / m or less.

熱可塑性エラストマーとは、加熱により軟化して流動性を示すが、常温ではゴム弾性を示す材料を指す。分子構造としては、ゴム弾性を発揮するソフトセグメントと高温では流動するが常温で塑性変形を防止するハードセグメントから成り、ハードセグメントが会合又は凝集してミクロ相分離構造を形成しているものを指す。例えば、エチレン−プロピレン共重合体(EPM)やエチレン−プロピレン−ジエン共重合体(EPDM)のようなオレフィン系エラストマー、スチレン−ブタジエン共重合体(SBS)やスチレン−エチレン−ブタジエン共重合体(SEBS)から成るスチレン系エラストマー、シリコン系エラストマー、ニトリル系エラストマー、ブタジエン系エラストマー、ウレタン系エラストマー、ナイロン系エラストマー、エステル系エラストマー、フッ素系エラストマー、およびそれらのエラストマーに反応部位(二重結合、無水カルボキシル基等)を導入した変性物などを挙げることができる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。   A thermoplastic elastomer refers to a material that softens by heating and exhibits fluidity, but exhibits rubber elasticity at room temperature. The molecular structure consists of a soft segment that exhibits rubber elasticity and a hard segment that flows at high temperatures but prevents plastic deformation at room temperature, and the hard segments associate or aggregate to form a microphase separation structure. . For example, olefin elastomers such as ethylene-propylene copolymer (EPM) and ethylene-propylene-diene copolymer (EPDM), styrene-butadiene copolymer (SBS) and styrene-ethylene-butadiene copolymer (SEBS). ) -Based styrene elastomers, silicon elastomers, nitrile elastomers, butadiene elastomers, urethane elastomers, nylon elastomers, ester elastomers, fluorine elastomers, and reactive sites (double bonds, anhydrous carboxyl groups). Etc.) may be mentioned. These may be used alone or in combination of two or more.

前記熱可塑性エラストマーには、硫黄等で分子鎖間を架橋した、いわゆる架橋ゴムも含めることができる。架橋ゴムとしては、例えば、天然ゴム、合成イソプレンゴム(IR)、ブタジエンゴム(BR)、スチレン−ブタジエンゴム(SBR)、クロロプレンゴム(CR)、アクリロニトリル−ブタジエン共重合ゴム(NBR)、ブチルゴム(IIR)、ハロゲン化ブチルゴム、ウレタンゴム、シリコーンゴム、フッ素ゴム、多硫化ゴムなどの架橋化物を挙げることができる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。   The thermoplastic elastomer can also include a so-called crosslinked rubber in which molecular chains are crosslinked with sulfur or the like. Examples of the crosslinked rubber include natural rubber, synthetic isoprene rubber (IR), butadiene rubber (BR), styrene-butadiene rubber (SBR), chloroprene rubber (CR), acrylonitrile-butadiene copolymer rubber (NBR), and butyl rubber (IIR). ), Cross-linked products such as halogenated butyl rubber, urethane rubber, silicone rubber, fluorine rubber, and polysulfide rubber. These may be used alone or in combination of two or more.

本発明においてポリエチレンとは、高密度ポリエチレン(HDPE)、超高分子量ポリエチレン(UHMWPE)、低密度ポリエチレン(LDPE)、直鎖状低密度ポリエチレン(LLDPE)、密度0.90未満の超低密度ポリエチレン(VLDPE)及びエチレンと他のα−オレフィン、不飽和カルボン酸またはその誘導体の中から選ばれる2種以上の化合物の共重合体、例えばエチレン−ブテン−1共重合体、エチレン−アクリル酸共重合体、エチレン−アクリル酸エステル共重合体、エチレン−メタクリル酸共重合体、エチレン−メタクリル酸エステル共重合体等を挙げることが出来る。   In the present invention, polyethylene means high density polyethylene (HDPE), ultra high molecular weight polyethylene (UHMWPE), low density polyethylene (LDPE), linear low density polyethylene (LLDPE), and ultra low density polyethylene having a density of less than 0.90 ( VLDPE) and copolymers of two or more compounds selected from ethylene and other α-olefins, unsaturated carboxylic acids or derivatives thereof, such as ethylene-butene-1 copolymers, ethylene-acrylic acid copolymers , Ethylene-acrylic acid ester copolymer, ethylene-methacrylic acid copolymer, ethylene-methacrylic acid ester copolymer, and the like.

本発明における樹脂(C)のガラス転移温度(以下、Tgともいう)は、熱可塑性樹脂(A)のTgよりも低いことが必要であり、好ましくは熱可塑性樹脂(A)のTgに対して10℃以上低温であり、より好ましくは20℃以上低温である。樹脂(C)のTgが熱可塑性樹脂(A)のTgよりも高い場合又は樹脂(C)のTgが熱可塑性樹脂(A)のTgよりも10℃未満低温である場合、延伸後に導電性が低下する傾向がある。これは、カーボンブラック(B)の樹脂(C)への偏在が不十分であり、樹脂組成物中に十分に発達した導電ネットワーク構造を形成できないためと考えられる。
なお本発明においてTgは、示差走査型熱量計(セイコーインスツルメンツ社製、DSC220)により窒素雰囲気下においてJIS K 7121に準拠して測定を行った。容量50μlの密閉型サンプル容器に15〜20mgの試料を詰め、昇温速度10℃/分にて測定を行った。具体的には、得られたDSC曲線の階段状変化を示す部分において、各ベースラインの延長した直線上から縦軸方向に等距離にある直線と、ガラス転移の階段状変化部分の曲線とが交わる点の温度をTgとした。またTgが複数存在する場合、本発明においては最も低温の値を採用するものとする。
The glass transition temperature (hereinafter also referred to as Tg) of the resin (C) in the present invention needs to be lower than the Tg of the thermoplastic resin (A), and preferably with respect to the Tg of the thermoplastic resin (A). The temperature is 10 ° C. or more, more preferably 20 ° C. or more. When the Tg of the resin (C) is higher than the Tg of the thermoplastic resin (A) or the Tg of the resin (C) is lower than the Tg of the thermoplastic resin (A) by less than 10 ° C., the conductivity after stretching is There is a tendency to decrease. This is presumably because the carbon black (B) is not sufficiently unevenly distributed in the resin (C), and a sufficiently developed conductive network structure cannot be formed in the resin composition.
In the present invention, Tg was measured according to JIS K 7121 in a nitrogen atmosphere using a differential scanning calorimeter (DSC220, manufactured by Seiko Instruments Inc.). A sealed sample container having a capacity of 50 μl was packed with 15 to 20 mg of sample, and the measurement was performed at a heating rate of 10 ° C./min. Specifically, in the portion showing the step-like change of the obtained DSC curve, a straight line equidistant from the extended straight line of each baseline in the vertical axis direction and the curve of the step-like change portion of the glass transition The temperature at the intersecting point was defined as Tg. When there are a plurality of Tg, the lowest temperature value is adopted in the present invention.

樹脂(C)の使用量は、本発明の目的とする導電性フィルムの特性を損なわない範囲で用いることが好ましい。すなわち導電性樹脂組成物100重量%中に、5〜30重量%が好ましく、10〜25重量%がより好ましく、15〜20重量%が特に好ましい。樹脂(C)の使用量が5重量%未満であると、フィルム延伸後に導電性が低下しすぎることがある。これは、樹脂(C)中に偏在するカーボンブラック(B)の割合が減少し、フィルム中に十分に発達した導電ネットワーク構造を形成できなくなるためと考えられる。逆に、樹脂(C)の添加量が30重量%を超えると、フィルムの耐熱性が低下し、延伸時にフィルムが破れる場合がある。   It is preferable to use the resin (C) in an amount that does not impair the properties of the conductive film of the present invention. That is, 5 to 30% by weight is preferable, 100 to 25% by weight is more preferable, and 15 to 20% by weight is particularly preferable in 100% by weight of the conductive resin composition. When the amount of the resin (C) used is less than 5% by weight, the conductivity may be lowered too much after the film is stretched. This is presumably because the proportion of carbon black (B) unevenly distributed in the resin (C) decreases, and a sufficiently developed conductive network structure cannot be formed in the film. On the contrary, when the addition amount of resin (C) exceeds 30 weight%, the heat resistance of a film will fall and a film may be broken at the time of extending | stretching.

<導電性樹脂組成物>
本発明の導電性樹脂組成物は、上記(A)〜(C)成分を混合し溶融混練して得られた溶融混練物と希釈樹脂との混合物、いわゆるマスターバッチや上記(A)〜(C)成分を混合し溶融混練して得られた溶融混練物、いわゆるコンパウンドの形態が好ましい。
<Conductive resin composition>
The conductive resin composition of the present invention is a mixture of a melt-kneaded product obtained by mixing and melting and kneading the above components (A) to (C) and a diluted resin, a so-called master batch or the above (A) to (C ) A melt-kneaded product obtained by mixing and melt-kneading the components, so-called compound form, is preferred.

また、前記導電性樹脂組成物には、前記(A)〜(C)の主成分以外に、導電性フィルムの成形性、ブロッキング性、導電性に影響を及ぼさない範囲で、1種類以上の添加剤を適宜混合しても良い。使用する添加剤としては、特に制限は無く、例えば、一般に使用される各種レベリング剤、染料、顔料、顔料分散剤、紫外線吸収剤、酸化防止剤、粘性改質剤、耐光安定剤、金属不活性剤、過酸化物分解剤、充填剤、補強剤、可塑剤、潤滑剤、防食剤、防錆剤、乳化剤、鋳型脱色剤、蛍光性増白剤、有機防炎剤、無機防炎剤、滴下防止剤、溶融流改質剤、帯電防止剤などを挙げることができる。   In addition to the main components (A) to (C), the conductive resin composition may be added with one or more types within a range that does not affect the moldability, blocking properties, and conductivity of the conductive film. You may mix an agent suitably. There are no particular limitations on the additive used, for example, various commonly used leveling agents, dyes, pigments, pigment dispersants, ultraviolet absorbers, antioxidants, viscosity modifiers, light stabilizers, metal inertness Agent, peroxide decomposer, filler, reinforcing agent, plasticizer, lubricant, anticorrosive agent, rust inhibitor, emulsifier, mold bleaching agent, fluorescent whitening agent, organic flameproofing agent, inorganic flameproofing agent, dripping Examples thereof include an inhibitor, a melt flow modifier, and an antistatic agent.

<導電性フィルム>
本発明の導電性フィルムとは、前記導電性樹脂組成物を用いて形成され、かつ延伸されてなる導電性フィルムである。導電性フィルムの製造方法は、導電性樹脂組成物を含む樹脂組成物を溶融混練する工程(1)、次に、フィルムを形成する工程(2)、更に、前記フィルムを延伸する工程(3)を含むことが好ましい。
以下、各工程について具体的に説明する。
<Conductive film>
The conductive film of the present invention is a conductive film formed using the conductive resin composition and stretched. The method for producing a conductive film includes a step (1) of melt-kneading a resin composition containing a conductive resin composition, a step (2) for forming a film, and a step (3) for further stretching the film. It is preferable to contain.
Hereinafter, each step will be specifically described.

まず始めに、導電性樹脂組成物を含む樹脂組成物を溶融混練する工程(1)について述べる。本発明において、導電性樹脂組成物を含む樹脂組成物を溶融混練する方法としては、熱可塑性樹脂(A)および樹脂(C)の融点より高温で溶融混練する方法であれば特に限定されない。溶融混練に用いられる装置としては、特に制限されるものではなく、公知の溶融混練装置が挙げられ、例えば単軸押出機や二軸押出機、バンバリーミキサーなどが挙げられるが、高い分散能力と生産性を有することから二軸押出機による混練が望ましい。二軸押出機に使用するスクリューエレメントとしては、カーボンブラックの凝集とストラクチャーの破壊を防ぐため、せん断を低減したスクリューエレメントを使用することが好ましい。また、加圧ニーダーのような、高せん断力が掛からなくて、時間をかけて分散が達成できるものも好ましく用いられる。   First, the step (1) of melt-kneading a resin composition containing a conductive resin composition will be described. In the present invention, the method of melt kneading the resin composition containing the conductive resin composition is not particularly limited as long as it is a method of melt kneading at a temperature higher than the melting points of the thermoplastic resin (A) and the resin (C). The apparatus used for melt kneading is not particularly limited, and examples thereof include known melt kneading apparatuses, such as a single screw extruder, a twin screw extruder, a Banbury mixer, etc., but have a high dispersion capacity and production. Therefore, kneading with a twin screw extruder is desirable. As the screw element used in the twin screw extruder, it is preferable to use a screw element with reduced shearing in order to prevent agglomeration of carbon black and destruction of the structure. A pressure kneader that does not apply a high shearing force and can achieve dispersion over time is also preferably used.

このとき溶融混練温度としては、樹脂組成により異なるが、熱可塑性樹脂(A)として結晶性ポリプロピレンを用いた場合、180〜230℃、更には200℃〜220℃で好ましく行われる。溶融混練温度が180℃未満の場合、熱可塑性樹脂(A)が十分に可塑化されず、熱可塑性樹脂(A)とカーボンブラック(B)(又は樹脂(C))との混練が不十分になることがある。逆に、230℃を超える場合、熱可塑性樹脂(A)及び樹脂(C)の劣化が必要以上に進行し、フィルム強度が低下することがある。   At this time, the melt-kneading temperature varies depending on the resin composition, but when crystalline polypropylene is used as the thermoplastic resin (A), it is preferably carried out at 180 to 230 ° C, more preferably 200 to 220 ° C. When the melt kneading temperature is less than 180 ° C., the thermoplastic resin (A) is not sufficiently plasticized and the kneading of the thermoplastic resin (A) and the carbon black (B) (or the resin (C)) is insufficient. May be. On the contrary, when it exceeds 230 degreeC, deterioration of a thermoplastic resin (A) and resin (C) may progress more than needed, and film strength may fall.

上記導電性樹脂組成物を含む樹脂組成物を溶融混練する順序としては、初めに(A)と(B)とを混合し、溶融混練後、次いで(C)を添加して更に溶融混練しても良いし、又は、初めに(B)と(C)とを混合し、溶融混練後、次いで(A)を添加して更に溶融混練しても良いし、又は、(A)、(B)、(C)を同時に混合し、溶融混練しても良い。
更に(B)を複数種類用いる場合は、まず、(B)1種類と(A)又は(C)とを混合し、溶融混練して溶融混練物を作製した後に、複数種類の(B)(A)又は(B)(C)溶融混練物を混合し、再度溶融混練しても良い。
The order of melt-kneading the resin composition containing the conductive resin composition is as follows. First, (A) and (B) are mixed, melt-kneaded, and then (C) is added and further melt-kneaded. Alternatively, (B) and (C) may be first mixed and melt kneaded, then (A) may be added and further melt kneaded, or (A), (B) , (C) may be mixed simultaneously and melt-kneaded.
Further, when using a plurality of types (B), first, (B) one type and (A) or (C) are mixed, melt-kneaded to prepare a melt-kneaded product, and then a plurality of types (B) ( A) or (B) (C) the melt-kneaded material may be mixed and melt-kneaded again.

次に、導電性フィルムを形成する工程(2)について述べる。本発明で用いられる導電性フィルムの形成方法については特に制限されるものではなく、例えばTダイ法、インフレーション法などの溶融押出法、カレンダー法などが挙げられる。   Next, step (2) for forming a conductive film will be described. The method for forming the conductive film used in the present invention is not particularly limited, and examples thereof include a melt extrusion method such as a T-die method and an inflation method, a calendar method, and the like.

本発明の導電性フィルムの形成温度は樹脂組成により異なるが、熱可塑性樹脂(A)として結晶性ポリプロピレンを用いた場合、前記導電性樹脂組成物の溶融混練時の温度と同じ温度で行うことができる。   The formation temperature of the conductive film of the present invention varies depending on the resin composition, but when crystalline polypropylene is used as the thermoplastic resin (A), the temperature may be the same as the temperature at the time of melt kneading of the conductive resin composition. it can.

最後に、前記導電性フィルムを延伸する工程(3)について述べる。本発明で用いられる導電性フィルムの延伸方法については特に制限しないが、例えば、湿式一軸延伸法、乾式一軸延伸法、テンター式逐次二軸延伸法、テンター式同時二軸延伸法、チューブラー式二軸延伸法などが挙げられる。   Finally, the step (3) of stretching the conductive film will be described. The method for stretching the conductive film used in the present invention is not particularly limited. For example, the wet uniaxial stretching method, the dry uniaxial stretching method, the tenter sequential biaxial stretching method, the tenter simultaneous biaxial stretching method, the tubular two Examples thereof include an axial stretching method.

また、延伸温度は樹脂組成により異なるが、熱可塑性樹脂(A)として結晶性ポリプロピレンを用いた場合、通常120〜150℃、好ましくは125℃〜145℃で行われる。上記範囲を外れると、均一にフィルムを延伸することが困難になる傾向がある。   Moreover, although extending | stretching temperature changes with resin compositions, when crystalline polypropylene is used as a thermoplastic resin (A), it is 120-150 degreeC normally, Preferably it is performed at 125 to 145 degreeC. If it is out of the above range, it tends to be difficult to stretch the film uniformly.

本発明で用いられる導電性フィルムの延伸倍率は1.5〜25倍が好ましく、4〜16倍の範囲内がより好ましい。なお本発明において延伸倍率とは、未延伸フィルムを流れ方向(以下、MD方向ともいう)に延伸したときの倍率と垂直方向(以下、TD方向ともいう)に延伸したときの倍率とを掛けた値(単位:倍)を差す。
延伸倍率が1.5倍未満であると、十分な機械物性を有するフィルムを得ることは難しい。一方、延伸倍率が25倍を超えると、延伸後に導電性が大きく低下する恐れがある。また、延伸時にフィルムが破損する可能性がある。
更に二軸延伸の場合、MD,TD各方向の延伸倍率はそれぞれ1倍より大きく5倍以下が好ましい。MD,TD各方向の延伸倍率が5倍を超えると、延伸後にこの方向における導電性が大きく低下する恐れがある。また、延伸時にフィルムが破損する可能性がある。
The draw ratio of the conductive film used in the present invention is preferably 1.5 to 25 times, and more preferably 4 to 16 times. In the present invention, the draw ratio is obtained by multiplying the unstretched film by the ratio when stretched in the flow direction (hereinafter also referred to as MD direction) and the ratio when stretched in the vertical direction (hereinafter also referred to as TD direction). Insert the value (unit: times).
If the draw ratio is less than 1.5, it is difficult to obtain a film having sufficient mechanical properties. On the other hand, when the draw ratio exceeds 25 times, the conductivity may be greatly lowered after drawing. In addition, the film may be damaged during stretching.
Further, in the case of biaxial stretching, the stretching ratio in each of the MD and TD directions is preferably more than 1 and not more than 5 times. If the draw ratio in each direction of MD and TD exceeds 5 times, the conductivity in this direction may be greatly lowered after drawing. In addition, the film may be damaged during stretching.

また、上記製造方法で得られた本発明の導電性フィルムの表面抵抗率は、1×107Ω/□以下、更には1×106Ω/□以下が好ましい。延伸後における導電性フィルムの表面抵抗率が1×107Ω/□を超えると、フィルムを各種部材として使用した場合、十分な帯電防止効果が発揮されない場合が有る。 Moreover, the surface resistivity of the conductive film of the present invention obtained by the above production method is preferably 1 × 10 7 Ω / □ or less, more preferably 1 × 10 6 Ω / □ or less. When the surface resistivity of the conductive film after stretching exceeds 1 × 10 7 Ω / □, when the film is used as various members, a sufficient antistatic effect may not be exhibited.

本発明の成形体は、外観に優れ、その表面において優れた導電性を示し、フィルム、シート、容器、テープ、フラットヤーンなどに好適である。従って、精密電子部品、電子機器などの包装体、トレイなどの収容体、各種保護用部材、フレキシブルコンテナ材、磁気記録用テープなどとして有効である。   The molded article of the present invention is excellent in appearance and exhibits excellent conductivity on its surface, and is suitable for films, sheets, containers, tapes, flat yarns and the like. Therefore, it is effective as a packaging body for precision electronic parts and electronic devices, a container such as a tray, various protective members, a flexible container material, and a magnetic recording tape.

以下本発明を実施例により具体的に説明するが、本発明の技術思想を逸脱しない限り、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited to these examples without departing from the technical idea of the present invention.

実施例及び比較例において用いられる熱可塑性樹脂(A)と樹脂(C)のガラス転移温度、カーボンブラック(B)と熱可塑性樹脂(A)又は樹脂(C)との界面自由エネルギーについて表1にまとめた。   Table 1 shows the glass transition temperature of the thermoplastic resin (A) and the resin (C) used in Examples and Comparative Examples, and the interfacial free energy between the carbon black (B) and the thermoplastic resin (A) or the resin (C). Summarized.

また、実施例および比較例における導電性樹脂組成物の配合を表2および表3に示す。   In addition, Tables 2 and 3 show the blends of the conductive resin compositions in Examples and Comparative Examples.

(実施例1)
(1)溶融混練
PP(熱可塑性樹脂(A))59.9重量部に対して、デンカブラック粒状品(カーボンブラック(B))40重量部と、イルガノックス1010(酸化防止剤)0.1重量部とをスクリュー直径32mm、L/D(スクリュー径/スクリュー長さ)=45.75の二軸押出機に供給し、シリンダー温度200℃〜230℃、スクリュー回転数230rpmの条件で溶融混練、押出してペレット状となし、カーボンマスターバッチ(CMB−1)を作製した。
上記CMB−1 52.5重量部に対して、SBS(ア)(樹脂(C))15重量部と希釈樹脂としてPP(熱可塑性樹脂(A))32.5重量部とをドライブレンドした。この混合物をスクリュー直径30mm、L/D(スクリュー径/スクリュー長さ)=42の二軸押出機に供給し、シリンダー温度200℃〜220℃、スクリュー回転数230rpmの条件で溶融混練、押出してペレット状となし、導電性樹脂組成物(各成分の重量比 熱可塑性樹脂(A):63.95重量%、カーボンブラック(B):21重量%、樹脂(C):15重量%、酸化防止剤:0.05重量%)を作製した。
Example 1
(1) Melt-kneading PP part (thermoplastic resin (A)) 59.9 parts by weight Denka black granular product (carbon black (B)) 40 parts by weight, Irganox 1010 (antioxidant) 0.1 Parts by weight are supplied to a twin screw extruder having a screw diameter of 32 mm and L / D (screw diameter / screw length) = 45.75, and melt kneaded under the conditions of a cylinder temperature of 200 ° C. to 230 ° C. and a screw rotation speed of 230 rpm. A carbon master batch (CMB-1) was produced by extrusion.
With respect to 52.5 parts by weight of the above CMB-1, 15 parts by weight of SBS (A) (resin (C)) and 32.5 parts by weight of PP (thermoplastic resin (A)) as a dilution resin were dry blended. This mixture is supplied to a twin screw extruder having a screw diameter of 30 mm and L / D (screw diameter / screw length) = 42, and melt-kneaded and extruded under conditions of a cylinder temperature of 200 ° C. to 220 ° C. and a screw rotation speed of 230 rpm. Conductive resin composition (weight ratio of each component: thermoplastic resin (A): 63.95% by weight, carbon black (B): 21% by weight, resin (C): 15% by weight, antioxidant) : 0.05% by weight).

(2)フィルムの形成
上記導電性樹脂組成物をTダイ押出成形機((株)東洋精機製製作所、ラボプラストミル)に供給し、Lip開度0.35mm 120メッシュ、シリンダー温度200℃〜230℃、スクリュー回転数100rpmの条件で溶融混練、押出して厚さ0.1mmの導電性フィルムを作製した。
(2) Formation of film The conductive resin composition is supplied to a T-die extruder (Toyo Seiki Seisakusho, Labo Plast Mill), Lip opening 0.35 mm 120 mesh, cylinder temperature 200 ° C to 230 ° C. A conductive film having a thickness of 0.1 mm was produced by melt-kneading and extruding under the conditions of ° C and a screw rotation speed of 100 rpm.

(3)フィルムの延伸
上記導電性フィルムを二軸延伸装置((株)東洋精機製作所、EX−10B)を用いて、125℃、延伸速度500mm/分の条件で同時二軸延伸(延伸倍率9倍;MD方向の延伸倍率:3倍、TD方向の延伸倍率:3倍)し、導電性二軸延伸フィルムを得た。
(3) Stretching of film Simultaneously biaxial stretching (drawing ratio: 9) using the biaxial stretching device (Toyo Seiki Seisakusho, EX-10B) was conducted on the conductive film under the conditions of 125 ° C and a stretching speed of 500 mm / min. Double: Stretch ratio in MD direction: 3 times, Stretch ratio in TD direction: 3 times) to obtain a conductive biaxially stretched film.

(4)フィルムの評価
上記導電性フィルムを以下の方法により評価を行った。評価結果を表4に示す。
(4) Evaluation of film The conductive film was evaluated by the following method. The evaluation results are shown in Table 4.

[生産安定性]
フィルム成形時において、成形機内の樹脂圧の上昇値が1時間後に3MPa未満の場合を◎(特に良好)、3MPa以上5MPa未満の場合を○(良好)、5MPa以上7MPa未満の場合を△(やや不良)、7MPa以上の場合を×(不良)とした。7MPa以上の場合、メッシュの目詰まりにより樹脂温度が上昇し樹脂劣化が進行する傾向があるため(かつ吐出が安定せず厚み一定のフィルムが得られなくなる傾向があるため)、Tダイヘッドを外してメッシュを交換する必要が有り、生産効率が特に低下する。
[Production stability]
At the time of film forming, ◎ (particularly good) when the increase value of the resin pressure in the molding machine is less than 3 MPa after 1 hour ○ (good) when 3 MPa or more and less than 5 MPa △ (somewhat when 5 MPa or more and less than 7 MPa) Defect), the case of 7 MPa or more was evaluated as x (defect). In the case of 7 MPa or more, since the resin temperature tends to increase due to clogging of the mesh and the resin deterioration tends to progress (and the discharge tends to be unstable and a film with a constant thickness cannot be obtained), remove the T die head. It is necessary to replace the mesh, and production efficiency is particularly reduced.

[外観]
延伸前のフィルム10cm角(100cm2)当たりのブツ個数を目視により数えて評価した。ブツは形状が円、楕円、四角等の各種形状で、フィルムの平面の最長の長さが
0.1mm以上の突起物とした。ブツが50個未満の場合を◎(特に良好)、50個以上75個未満の場合を○(良好)、75個以上100個未満の場合を△(やや不良)、100個以上の場合を×(不良)とした。
[appearance]
The number of bumps per 10 cm square (100 cm 2 ) of the film before stretching was counted and evaluated. The protrusions were various shapes such as circles, ellipses, and squares, and the longest length of the plane of the film was a projection having a length of 0.1 mm or more. ◎ (particularly good) when the number is less than 50, ○ (good) when the number is 50 or more and less than 75, △ (somewhat bad) when the number is 75 or more and less than 100, and × when the number is 100 or more (Defect).

[導電性]
延伸前及び延伸後のフィルムについて、恒温恒湿室(23℃、50%RH)において表面抵抗計(シムコジャパン社製、ワークサーフェイステスターST−3、印加電圧15V以下)を用いて表面抵抗率を測定した。なお測定は、恒温恒湿室に1日間静置したフィルムを用いて1試料につき3回測定し、その平均値を求めた。
[Conductivity]
About the film before extending | stretching and a film after extending | stretching, surface resistance is measured using a surface resistance meter (Simco Japan Co., Ltd. work surface tester ST-3, applied voltage 15V or less) in a constant temperature and humidity chamber (23 degreeC, 50% RH). It was measured. In addition, the measurement measured 3 times per sample using the film left still for one day in a constant temperature and humidity chamber, and calculated | required the average value.

(実施例2)
実施例1で得られたCMB−1 52.5重量部とSBS(イ)(樹脂(C))15重量部と希釈樹脂としてPP(熱可塑性樹脂(A))32.5重量部とをドライブレンドして導電性樹脂組成物(各成分の重量比 熱可塑性樹脂(A):63.95重量%、カーボンブラック(B):21重量%、樹脂(C):15重量%、酸化防止剤:0.05重量%)を作製した以外は、実施例1と同様にして導電性フィルムを作製し、二軸延伸を行った。導電性フィルムの評価結果を表4に示した。
(Example 2)
Dry 52.5 parts by weight of CMB-1 obtained in Example 1, 15 parts by weight of SBS (I) (resin (C)) and 32.5 parts by weight of PP (thermoplastic resin (A)) as a dilution resin. Blended conductive resin composition (weight ratio of each component Thermoplastic resin (A): 63.95% by weight, carbon black (B): 21% by weight, resin (C): 15% by weight, antioxidant: Except for producing 0.05 wt%), a conductive film was produced in the same manner as in Example 1 and biaxially stretched. The evaluation results of the conductive film are shown in Table 4.

(実施例3)
実施例1で得られたCMB−1 52.5重量部とSEBS(ア)(樹脂(C))15重量部と希釈樹脂としてPP(熱可塑性樹脂(A))32.5重量部とをドライブレンドして導電性樹脂組成物(各成分の重量比 熱可塑性樹脂(A):63.95重量%、カーボンブラック(B):21重量%、樹脂(C):15重量%、酸化防止剤:0.05重量%)を作製した以外は、実施例1と同様にして導電性フィルムを作製し、二軸延伸を行った。導電性フィルムの評価結果を表4に示した。
(Example 3)
Dry 52.5 parts by weight of CMB-1 obtained in Example 1, 15 parts by weight of SEBS (A) (resin (C)) and 32.5 parts by weight of PP (thermoplastic resin (A)) as a dilution resin. Blended conductive resin composition (weight ratio of each component Thermoplastic resin (A): 63.95% by weight, carbon black (B): 21% by weight, resin (C): 15% by weight, antioxidant: Except for producing 0.05 wt%), a conductive film was produced in the same manner as in Example 1 and biaxially stretched. The evaluation results of the conductive film are shown in Table 4.

(実施例4)
実施例1で得られたCMB−1 52.5重量部とSEBS(イ)(樹脂(C))15重量部と希釈樹脂としてPP(熱可塑性樹脂(A))32.5重量部とをドライブレンドして導電性樹脂組成物(各成分の重量比 熱可塑性樹脂(A):63.95重量%、カーボンブラック(B):21重量%、樹脂(C):15重量%、酸化防止剤:0.05重量%)を作製した以外は、実施例1と同様にして導電性フィルムを作製し、二軸延伸を行った。導電性フィルムの評価結果を表4に示した。
Example 4
52.5 parts by weight of CMB-1 obtained in Example 1, 15 parts by weight of SEBS (I) (resin (C)), and 32.5 parts by weight of PP (thermoplastic resin (A)) as a dilution resin were dried. Blended conductive resin composition (weight ratio of each component Thermoplastic resin (A): 63.95% by weight, carbon black (B): 21% by weight, resin (C): 15% by weight, antioxidant: Except for producing 0.05 wt%), a conductive film was produced in the same manner as in Example 1 and biaxially stretched. The evaluation results of the conductive film are shown in Table 4.

(実施例5)
実施例1で得られたCMB−1 52.5重量部とポリウレタン(ア)(樹脂(C))15重量部と希釈樹脂としてPP(熱可塑性樹脂(A))32.5重量部とをドライブレンドして導電性樹脂組成物(各成分の重量比 熱可塑性樹脂(A):63.95重量%、カーボンブラック(B):21重量%、樹脂(C):15重量%、酸化防止剤:0.05重量%)を作製した以外は、実施例1と同様にして導電性フィルムを作製し、二軸延伸を行った。導電性フィルムの評価結果を表4に示した。
(Example 5)
Dry 52.5 parts by weight of CMB-1 obtained in Example 1, 15 parts by weight of polyurethane (A) (resin (C)) and 32.5 parts by weight of PP (thermoplastic resin (A)) as a dilution resin. Blended conductive resin composition (weight ratio of each component Thermoplastic resin (A): 63.95% by weight, carbon black (B): 21% by weight, resin (C): 15% by weight, antioxidant: Except for producing 0.05 wt%), a conductive film was produced in the same manner as in Example 1 and biaxially stretched. The evaluation results of the conductive film are shown in Table 4.

(実施例6)
実施例1で得られたCMB−1 52.5重量部とポリウレタン(イ)(樹脂(C))15重量部と希釈樹脂としてPP(熱可塑性樹脂(A))32.5重量部とをドライブレンドして導電性樹脂組成物(各成分の重量比 熱可塑性樹脂(A):63.95重量%、カーボンブラック(B):21重量%、樹脂(C):15重量%、酸化防止剤:0.05重量%)を作製した以外は、実施例1と同様にして導電性フィルムを作製し、二軸延伸を行った。導電性フィルムの評価結果を表4に示した。
(Example 6)
Dry 52.5 parts by weight of CMB-1 obtained in Example 1, 15 parts by weight of polyurethane (I) (resin (C)) and 32.5 parts by weight of PP (thermoplastic resin (A)) as a dilution resin. Blended conductive resin composition (weight ratio of each component Thermoplastic resin (A): 63.95% by weight, carbon black (B): 21% by weight, resin (C): 15% by weight, antioxidant: Except for producing 0.05 wt%), a conductive film was produced in the same manner as in Example 1 and biaxially stretched. The evaluation results of the conductive film are shown in Table 4.

(実施例7)
実施例1で得られたCMB−1 52.5重量部とポリエーテル(ア)(樹脂(C))15重量部と希釈樹脂としてPP(熱可塑性樹脂(A))32.5重量部とをドライブレンドして導電性樹脂組成物(各成分の重量比 熱可塑性樹脂(A):63.95重量%、カーボンブラック(B):21重量%、樹脂(C):15重量%、酸化防止剤:0.05重量%)を作製した以外は、実施例1と同様にして導電性フィルムを作製し、二軸延伸を行った。導電性フィルムの評価結果を表4に示した。
(Example 7)
52.5 parts by weight of CMB-1 obtained in Example 1, 15 parts by weight of polyether (A) (resin (C)), and 32.5 parts by weight of PP (thermoplastic resin (A)) as a dilution resin Conductive resin composition by dry blending (weight ratio of each component: thermoplastic resin (A): 63.95% by weight, carbon black (B): 21% by weight, resin (C): 15% by weight, antioxidant : 0.05% by weight) except that the conductive film was produced in the same manner as in Example 1 and biaxially stretched. The evaluation results of the conductive film are shown in Table 4.

(実施例8)
実施例1で得られたCMB−1 52.5重量部とポリエーテル(イ)(樹脂(C))15重量部と希釈樹脂としてPP(熱可塑性樹脂(A))32.5重量部とをドライブレンドして導電性樹脂組成物(各成分の重量比 熱可塑性樹脂(A):63.95重量%、カーボンブラック(B):21重量%、樹脂(C):15重量%、酸化防止剤:0.05重量%)を作製した以外は、実施例1と同様にして導電性フィルムを作製し、二軸延伸を行った。導電性フィルムの評価結果を表4に示した。
(Example 8)
52.5 parts by weight of CMB-1 obtained in Example 1, 15 parts by weight of polyether (I) (resin (C)), and 32.5 parts by weight of PP (thermoplastic resin (A)) as a dilution resin Conductive resin composition by dry blending (weight ratio of each component: thermoplastic resin (A): 63.95% by weight, carbon black (B): 21% by weight, resin (C): 15% by weight, antioxidant : 0.05% by weight) except that the conductive film was produced in the same manner as in Example 1 and biaxially stretched. The evaluation results of the conductive film are shown in Table 4.

(実施例9)
実施例1で得られたCMB−1 52.5重量部とEPDM(樹脂(C))15重量部と希釈樹脂としてPP(熱可塑性樹脂(A))32.5重量部とをドライブレンドして導電性樹脂組成物(各成分の重量比 熱可塑性樹脂(A):63.95重量%、カーボンブラック(B):21重量%、樹脂(C):15重量%、酸化防止剤:0.05重量%)を作製した以外は、実施例1と同様にして導電性フィルムを作製し、二軸延伸を行った。導電性フィルムの評価結果を表4に示した。
Example 9
Dry blend of 52.5 parts by weight of CMB-1 obtained in Example 1, 15 parts by weight of EPDM (resin (C)) and 32.5 parts by weight of PP (thermoplastic resin (A)) as a dilution resin Conductive resin composition (weight ratio of each component Thermoplastic resin (A): 63.95% by weight, carbon black (B): 21% by weight, resin (C): 15% by weight, antioxidant: 0.05 A conductive film was produced in the same manner as in Example 1 except that (% by weight) was produced, and biaxial stretching was performed. The evaluation results of the conductive film are shown in Table 4.

(実施例10)
実施例1で得られたCMB−1 52.5重量部とLDPE(樹脂(C))15重量部と希釈樹脂としてPP(熱可塑性樹脂(A))32.5重量部とをドライブレンドして導電性樹脂組成物(各成分の重量比 熱可塑性樹脂(A):63.95重量%、カーボンブラック(B):21重量%、樹脂(C):15重量%、酸化防止剤:0.05重量%)を作製した以外は、実施例1と同様にして導電性フィルムを作製し、二軸延伸を行った。導電性フィルムの評価結果を表4に示した。
(Example 10)
Dry blend of 52.5 parts by weight of CMB-1 obtained in Example 1, 15 parts by weight of LDPE (resin (C)) and 32.5 parts by weight of PP (thermoplastic resin (A)) as a dilution resin Conductive resin composition (weight ratio of each component Thermoplastic resin (A): 63.95% by weight, carbon black (B): 21% by weight, resin (C): 15% by weight, antioxidant: 0.05 A conductive film was produced in the same manner as in Example 1 except that (% by weight) was produced, and biaxial stretching was performed. The evaluation results of the conductive film are shown in Table 4.

(実施例11)
実施例1で得られたCMB−1 37.5重量部とSBS(ア)(樹脂(C))15重量部と希釈樹脂としてPP(熱可塑性樹脂(A))47.5重量部とをドライブレンドして導電性樹脂組成物(各成分の重量比 熱可塑性樹脂(A):69.96重量%、カーボンブラック(B):15重量%、樹脂(C):15重量%、酸化防止剤:0.04重量%)を作製した以外は、実施例1と同様にして導電性フィルムを作製し、二軸延伸を行った。導電性フィルムの評価結果を表4に示した。
(Example 11)
Dry 37.5 parts by weight of CMB-1 obtained in Example 1, 15 parts by weight of SBS (A) (resin (C)) and 47.5 parts by weight of PP (thermoplastic resin (A)) as a dilution resin. Blended conductive resin composition (weight ratio of each component Thermoplastic resin (A): 69.96 wt%, carbon black (B): 15 wt%, resin (C): 15 wt%, antioxidant: Except for producing 0.04% by weight, a conductive film was produced in the same manner as in Example 1 and biaxially stretched. The evaluation results of the conductive film are shown in Table 4.

(実施例12)
実施例1で得られたCMB−1 75重量部とSBS(ア)(樹脂(C))15重量部と希釈樹脂としてPP(熱可塑性樹脂(A))10重量部とをドライブレンドして導電性樹脂組成物(各成分の重量比 熱可塑性樹脂(A):54.92重量%、カーボンブラック(B):30重量%、樹脂(C):15重量%、酸化防止剤:0.08重量%)を作製した以外は、実施例1と同様にして導電性フィルムを作製し、二軸延伸を行った。導電性フィルムの評価結果を表4に示した。
(Example 12)
Conductive by dry blending 75 parts by weight of CMB-1 obtained in Example 1, 15 parts by weight of SBS (A) (resin (C)) and 10 parts by weight of PP (thermoplastic resin (A)) as a dilution resin Resin composition (weight ratio of each component Thermoplastic resin (A): 54.92 wt%, carbon black (B): 30 wt%, resin (C): 15 wt%, antioxidant: 0.08 wt% %) Was produced in the same manner as in Example 1, except that biaxial stretching was performed. The evaluation results of the conductive film are shown in Table 4.

(実施例13)
実施例1で得られたCMB−1 52.5重量部とSBS(ア)(樹脂(C))10重量部と希釈樹脂としてPP(熱可塑性樹脂(A))37.5重量部とをドライブレンドして導電性樹脂組成物(各成分の重量比 熱可塑性樹脂(A):68.95重量%、カーボンブラック(B):21重量%、樹脂(C):10重量%、酸化防止剤:0.05重量%)を作製した以外は、実施例1と同様にして導電性フィルムを作製し、二軸延伸を行った。導電性フィルムの評価結果を表4に示した。
(Example 13)
Dry 52.5 parts by weight of CMB-1 obtained in Example 1, 10 parts by weight of SBS (A) (resin (C)) and 37.5 parts by weight of PP (thermoplastic resin (A)) as a dilution resin. Blended conductive resin composition (weight ratio of each component Thermoplastic resin (A): 68.95% by weight, carbon black (B): 21% by weight, resin (C): 10% by weight, antioxidant: Except for producing 0.05 wt%), a conductive film was produced in the same manner as in Example 1 and biaxially stretched. The evaluation results of the conductive film are shown in Table 4.

(実施例14)
実施例1で得られたCMB−1 52.5重量部とSBS(ア)(樹脂(C))25重量部と希釈樹脂としてPP(熱可塑性樹脂(A))22.5重量部とをドライブレンドして導電性樹脂組成物(各成分の重量比 熱可塑性樹脂(A):53.95重量%、カーボンブラック(B):21重量%、樹脂(C):25重量%、酸化防止剤:0.05重量%)を作製した以外は、実施例1と同様にして導電性フィルムを作製し、二軸延伸を行った。導電性フィルムの評価結果を表4に示した。
(Example 14)
Dry 52.5 parts by weight of CMB-1 obtained in Example 1, 25 parts by weight of SBS (A) (resin (C)) and 22.5 parts by weight of PP (thermoplastic resin (A)) as a dilution resin. Blended conductive resin composition (weight ratio of each component Thermoplastic resin (A): 53.95% by weight, carbon black (B): 21% by weight, resin (C): 25% by weight, antioxidant: Except for producing 0.05 wt%), a conductive film was produced in the same manner as in Example 1 and biaxially stretched. The evaluation results of the conductive film are shown in Table 4.

(実施例15)
PP(熱可塑性樹脂(A))84.93重量部に対して、ケッチェンブラックEC300−J(カーボンブラック(B))15重量部と、イルガノックス1010(酸化防止剤)0.07重量部とをスクリュー直径32mm、L/D(スクリュー径/スクリュー長さ)=45.75の二軸押出機に供給し、シリンダー温度200℃〜230℃、スクリュー回転数230rpmの条件で溶融混練、押出してペレット状となし、カーボンマスターバッチ(CMB−2)を作製した。
上記CMB−2 66.7重量部に対して、SBS(ア)(樹脂(C))15重量部と希釈樹脂としてPP(熱可塑性樹脂(A))18.3重量部とをドライブレンドして導電性樹脂組成物(各成分の重量比 熱可塑性樹脂(A):74.95重量%、カーボンブラック(B):10重量%、樹脂(C):15重量%、酸化防止剤:0.05重量%)を作製した以外は、実施例1と同様にして導電性フィルムを作製し、二軸延伸を行った。導電性フィルムの評価結果を表4に示した。
(Example 15)
15 parts by weight of Ketjen Black EC300-J (carbon black (B)) and 0.07 parts by weight of Irganox 1010 (antioxidant) with respect to 84.93 parts by weight of PP (thermoplastic resin (A)) Is supplied to a twin screw extruder having a screw diameter of 32 mm and L / D (screw diameter / screw length) = 45.75, and melt kneaded and extruded under conditions of a cylinder temperature of 200 ° C. to 230 ° C. and a screw speed of 230 rpm. A carbon master batch (CMB-2) was produced.
Dry blend of 15 parts by weight of SBS (A) (resin (C)) and 18.3 parts by weight of PP (thermoplastic resin (A)) as a dilution resin with respect to 66.7 parts by weight of CMB-2. Conductive resin composition (weight ratio of each component Thermoplastic resin (A): 74.95% by weight, carbon black (B): 10% by weight, resin (C): 15% by weight, antioxidant: 0.05 A conductive film was produced in the same manner as in Example 1 except that (% by weight) was produced, and biaxial stretching was performed. The evaluation results of the conductive film are shown in Table 4.

(実施例16)
実施例15で得られたCMB−2 66.7重量部とポリウレタン(ア)(樹脂(C))15重量部と希釈樹脂としてPP(熱可塑性樹脂(A))18.3重量部とをドライブレンドして導電性樹脂組成物(各成分の重量比 熱可塑性樹脂(A):74.95重量%、カーボンブラック(B):10重量%、樹脂(C):15重量%、酸化防止剤:0.05重量%)を作製した以外は、実施例1と同様にして導電性フィルムを作製し、二軸延伸を行った。導電性フィルムの評価結果を表4に示した。
(Example 16)
Dry 66.7 parts by weight of CMB-2 obtained in Example 15, 15 parts by weight of polyurethane (A) (resin (C)) and 18.3 parts by weight of PP (thermoplastic resin (A)) as a dilution resin. Blended conductive resin composition (weight ratio of each component Thermoplastic resin (A): 74.95% by weight, carbon black (B): 10% by weight, resin (C): 15% by weight, antioxidant: Except for producing 0.05 wt%), a conductive film was produced in the same manner as in Example 1 and biaxially stretched. The evaluation results of the conductive film are shown in Table 4.

(実施例17)
実施例15で得られたCMB−2 66.7重量部とLDPE(樹脂(C))15重量部と希釈樹脂としてPP(熱可塑性樹脂(A))18.3重量部とをドライブレンドして導電性樹脂組成物(各成分の重量比 熱可塑性樹脂(A):74.95重量%、カーボンブラック(B):10重量%、樹脂(C):15重量%、酸化防止剤:0.05重量%)を作製した以外は、実施例1と同様にして導電性フィルムを作製し、二軸延伸を行った。導電性フィルムの評価結果を表4に示した。
(Example 17)
65.7 parts by weight of CMB-2 obtained in Example 15, 15 parts by weight of LDPE (resin (C)) and 18.3 parts by weight of PP (thermoplastic resin (A)) as a dilution resin were dry blended. Conductive resin composition (weight ratio of each component Thermoplastic resin (A): 74.95% by weight, carbon black (B): 10% by weight, resin (C): 15% by weight, antioxidant: 0.05 A conductive film was produced in the same manner as in Example 1 except that (% by weight) was produced, and biaxial stretching was performed. The evaluation results of the conductive film are shown in Table 4.

(実施例18)
PP(熱可塑性樹脂(A))59.9重量部に対して、#650B(カーボンブラック(B))40重量部と、イルガノックス1010(酸化防止剤)0.1重量部とをスクリュー直径32mm、L/D(スクリュー径/スクリュー長さ)=45.75の二軸押出機に供給し、シリンダー温度200℃〜230℃、スクリュー回転数230rpmの条件で溶融混練、押出してペレット状となし、カーボンマスターバッチ(CMB−3)を作製した。
上記CMB−3 52.5重量部に対して、SBS(ア)(樹脂(C))15重量部と希釈樹脂としてPP(熱可塑性樹脂(A))32.5重量部とをドライブレンドして導電性樹脂組成物(各成分の重量比 熱可塑性樹脂(A):63.95重量%、カーボンブラック(B):21重量%、樹脂(C):15重量%、酸化防止剤:0.05重量%)を作製した以外は、実施例1と同様にして導電性フィルムを作製し、二軸延伸を行った。導電性フィルムの評価結果を表4に示した。
(Example 18)
40 parts by weight of # 650B (carbon black (B)) and 0.1 parts by weight of Irganox 1010 (antioxidant) are added to 59.9 parts by weight of PP (thermoplastic resin (A)), and the screw diameter is 32 mm. , L / D (screw diameter / screw length) = 45.75, supplied to a twin screw extruder, melt kneaded and extruded under the conditions of a cylinder temperature of 200 ° C. to 230 ° C. and a screw rotation speed of 230 rpm, and formed into a pellet, A carbon master batch (CMB-3) was produced.
Dry blend of 52.5 parts by weight of CMB-3 with 15 parts by weight of SBS (A) (resin (C)) and 32.5 parts by weight of PP (thermoplastic resin (A)) as a dilution resin Conductive resin composition (weight ratio of each component Thermoplastic resin (A): 63.95% by weight, carbon black (B): 21% by weight, resin (C): 15% by weight, antioxidant: 0.05 A conductive film was produced in the same manner as in Example 1 except that (% by weight) was produced, and biaxial stretching was performed. The evaluation results of the conductive film are shown in Table 4.

(実施例19)
実施例18で得られたCMB−3 52.5重量部とポリウレタン(ア)(樹脂(C))15重量部と希釈樹脂としてPP(熱可塑性樹脂(A))32.5重量部とをドライブレンドして導電性樹脂組成物(各成分の重量比 熱可塑性樹脂(A):63.95重量%、カーボンブラック(B):21重量%、樹脂(C):15重量%、酸化防止剤:0.05重量%)を作製した以外は、実施例1と同様にして導電性フィルムを作製し、二軸延伸を行った。導電性フィルムの評価結果を表4に示した。
(Example 19)
Dry 52.5 parts by weight of CMB-3 obtained in Example 18, 15 parts by weight of polyurethane (A) (resin (C)) and 32.5 parts by weight of PP (thermoplastic resin (A)) as a dilution resin. Blended conductive resin composition (weight ratio of each component Thermoplastic resin (A): 63.95% by weight, carbon black (B): 21% by weight, resin (C): 15% by weight, antioxidant: Except for producing 0.05 wt%), a conductive film was produced in the same manner as in Example 1 and biaxially stretched. The evaluation results of the conductive film are shown in Table 4.

(実施例20)
実施例18で得られたCMB−3 52.5重量部とLDPE(樹脂(C))15重量部と希釈樹脂としてPP(熱可塑性樹脂(A))32.5重量部とをドライブレンドして導電性樹脂組成物(各成分の重量比 熱可塑性樹脂(A):63.95重量%、カーボンブラック(B):21重量%、樹脂(C):15重量%、酸化防止剤:0.05重量%)を作製した以外は、実施例1と同様にして導電性フィルムを作製し、二軸延伸を行った。導電性フィルムの評価結果を表4に示した。
(Example 20)
52.5 parts by weight of CMB-3 obtained in Example 18, 15 parts by weight of LDPE (resin (C)) and 32.5 parts by weight of PP (thermoplastic resin (A)) as a dilution resin were dry blended. Conductive resin composition (weight ratio of each component Thermoplastic resin (A): 63.95% by weight, carbon black (B): 21% by weight, resin (C): 15% by weight, antioxidant: 0.05 A conductive film was produced in the same manner as in Example 1 except that (% by weight) was produced, and biaxial stretching was performed. The evaluation results of the conductive film are shown in Table 4.

(比較例1)
実施例1で得られたCMB−1 52.5重量部に対して、希釈樹脂としてPP(熱可塑性樹脂(A))47.5重量部とをドライブレンドして導電性樹脂組成物(各成分の重量比 熱可塑性樹脂(A):78.95重量%、カーボンブラック(B):21重量%、酸化防止剤:0.05重量%)を作製した以外は、実施例1と同様にして導電性フィルムを作製し、二軸延伸を行った。導電性フィルムの評価結果を表4に示した。
(Comparative Example 1)
A conductive resin composition (each component) was dry blended with 52.5 parts by weight of CMB-1 obtained in Example 1 and 47.5 parts by weight of PP (thermoplastic resin (A)) as a diluent resin. The conductive ratio is the same as in Example 1 except that a thermoplastic resin (A): 78.95% by weight, carbon black (B): 21% by weight, antioxidant: 0.05% by weight) was prepared. A conductive film was prepared and biaxially stretched. The evaluation results of the conductive film are shown in Table 4.

(比較例2)
実施例1で得られたCMB−1 75重量部に対して、希釈樹脂としてPP(熱可塑性樹脂(A))25重量部とをドライブレンドして導電性樹脂組成物(各成分の重量比 熱可塑性樹脂(A):69.92重量%、カーボンブラック(B):30重量%、酸化防止剤:0.08重量%)を作製した以外は、実施例1と同様にして導電性フィルムを作製し、二軸延伸を行った。導電性フィルムの評価結果を表4に示した。
(Comparative Example 2)
Conductive resin composition (weight ratio of each component) by dry blending 25 parts by weight of PP (thermoplastic resin (A)) as a dilution resin to 75 parts by weight of CMB-1 obtained in Example 1 A conductive film was prepared in the same manner as in Example 1 except that the plastic resin (A): 69.92 wt%, carbon black (B): 30 wt%, and antioxidant: 0.08 wt% were prepared. Then, biaxial stretching was performed. The evaluation results of the conductive film are shown in Table 4.

(比較例3)
実施例15で得られたCMB−2 66.7重量部に対して、希釈樹脂としてPP(熱可塑性樹脂(A))33.3重量部とをドライブレンドして導電性樹脂組成物(各成分の重量比 熱可塑性樹脂(A):89.95重量%、カーボンブラック(B):10重量%、酸化防止剤:0.05重量%)を作製した以外は、実施例1と同様にして導電性フィルムを作製し、二軸延伸を行った。導電性フィルムの評価結果を表4に示した。
(Comparative Example 3)
Conductive resin composition (each component) was obtained by dry blending 66.7 parts by weight of CMB-2 obtained in Example 15 with 33.3 parts by weight of PP (thermoplastic resin (A)) as a dilution resin. The weight ratio of the thermoplastic resin (A): 89.95% by weight, carbon black (B): 10% by weight, antioxidant: 0.05% by weight) was conducted in the same manner as in Example 1 except that it was produced. A conductive film was prepared and biaxially stretched. The evaluation results of the conductive film are shown in Table 4.

(比較例4)
実施例18で得られたCMB−3 52.5重量部に対して、希釈樹脂としてPP(熱可塑性樹脂(A))47.5重量部とをドライブレンドして導電性樹脂組成物(各成分の重量比 熱可塑性樹脂(A):78.95重量%、カーボンブラック(B):21重量%、酸化防止剤:0.05重量%)を作製した以外は、実施例1と同様にして導電性フィルムを作製し、二軸延伸を行った。導電性フィルムの評価結果を表4に示した。
(Comparative Example 4)
Conductive resin composition (each component) was dry blended with 52.5 parts by weight of CMB-3 obtained in Example 18 and 47.5 parts by weight of PP (thermoplastic resin (A)) as a dilution resin. The conductive ratio is the same as in Example 1 except that a thermoplastic resin (A): 78.95% by weight, carbon black (B): 21% by weight, antioxidant: 0.05% by weight) was prepared. A conductive film was prepared and biaxially stretched. The evaluation results of the conductive film are shown in Table 4.

(比較例5)
実施例1で得られたCMB−1 52.5重量部に対して、PS(樹脂(C))15重量部と希釈樹脂としてPP(熱可塑性樹脂(A))32.5重量部とをドライブレンドして導電性樹脂組成物(各成分の重量比 熱可塑性樹脂(A):63.95重量%、カーボンブラック(B):21重量%、樹脂(C):15重量%、酸化防止剤:0.05重量%)を作製した以外は、実施例1と同様にして導電性フィルムを作製し、二軸延伸を行った。導電性フィルムの評価結果を表4に示した。
(Comparative Example 5)
With respect to 52.5 parts by weight of CMB-1 obtained in Example 1, 15 parts by weight of PS (resin (C)) and 32.5 parts by weight of PP (thermoplastic resin (A)) as a dilution resin were dried. Blended conductive resin composition (weight ratio of each component Thermoplastic resin (A): 63.95% by weight, carbon black (B): 21% by weight, resin (C): 15% by weight, antioxidant: Except for producing 0.05 wt%), a conductive film was produced in the same manner as in Example 1 and biaxially stretched. The evaluation results of the conductive film are shown in Table 4.

(比較例6)
実施例15で得られたCMB−2 66.7重量部に対して、PS(樹脂(C))15重量部と希釈樹脂としてPP(熱可塑性樹脂(A))18.3重量部とをドライブレンドして導電性樹脂組成物(各成分の重量比 熱可塑性樹脂(A):74.95重量%、カーボンブラック(B):10重量%、樹脂(C):15重量%、酸化防止剤:0.05重量%)を作製した以外は、実施例1と同様にして導電性フィルムを作製し、二軸延伸を行った。導電性フィルムの評価結果を表4に示した。
(Comparative Example 6)
With respect to 66.7 parts by weight of CMB-2 obtained in Example 15, 15 parts by weight of PS (resin (C)) and 18.3 parts by weight of PP (thermoplastic resin (A)) as a dilution resin were dried. Blended conductive resin composition (weight ratio of each component Thermoplastic resin (A): 74.95% by weight, carbon black (B): 10% by weight, resin (C): 15% by weight, antioxidant: Except for producing 0.05 wt%), a conductive film was produced in the same manner as in Example 1 and biaxially stretched. The evaluation results of the conductive film are shown in Table 4.

(比較例7)
実施例18で得られたCMB−3 52.5重量部に対して、PS(樹脂(C))15重量部と希釈樹脂としてPP(熱可塑性樹脂(A))32.5重量部とをドライブレンドして導電性樹脂組成物(各成分の重量比 熱可塑性樹脂(A):63.95重量%、カーボンブラック(B):21重量%、樹脂(C):15重量%、酸化防止剤:0.05重量%)を作製した以外は、実施例1と同様にして導電性フィルムを作製し、二軸延伸を行った。導電性フィルムの評価結果を表4に示した。
(Comparative Example 7)
With respect to 52.5 parts by weight of CMB-3 obtained in Example 18, 15 parts by weight of PS (resin (C)) and 32.5 parts by weight of PP (thermoplastic resin (A)) as a dilution resin were dried. Blended conductive resin composition (weight ratio of each component Thermoplastic resin (A): 63.95% by weight, carbon black (B): 21% by weight, resin (C): 15% by weight, antioxidant: Except for producing 0.05 wt%), a conductive film was produced in the same manner as in Example 1 and biaxially stretched. The evaluation results of the conductive film are shown in Table 4.

(比較例8)
PP(熱可塑性樹脂(A))84.93重量部に対して、VGCF(カーボンブラック(B))15重量部と、イルガノックス1010(酸化防止剤)0.07重量部とをスクリュー直径32mm、L/D(スクリュー径/スクリュー長さ)=45.75の二軸押出機に供給し、シリンダー温度200℃〜230℃、スクリュー回転数230rpmの条件で溶融混練、押出してペレット状となし、カーボンマスターバッチ(CMB−4)を作製した。
上記CMB−4 66.7重量部に対して、希釈樹脂としてPP(熱可塑性樹脂(A))33.3重量部とをドライブレンドして導電性樹脂組成物(各成分の重量比 熱可塑性樹脂(A):89.95重量%、カーボンブラック(B):10重量%、樹脂酸化防止剤:0.05重量%)を作製した以外は、実施例1と同様にして導電性フィルムを作製し、二軸延伸を行った。導電性フィルムの評価結果を表4に示した。
(Comparative Example 8)
With respect to 84.93 parts by weight of PP (thermoplastic resin (A)), 15 parts by weight of VGCF (carbon black (B)) and 0.07 parts by weight of Irganox 1010 (antioxidant) have a screw diameter of 32 mm, L / D (screw diameter / screw length) = 45.75, supplied to a twin screw extruder, melt kneaded and extruded under the conditions of a cylinder temperature of 200 ° C. to 230 ° C. and a screw rotation speed of 230 rpm, and formed into a pellet, carbon A master batch (CMB-4) was produced.
Conductive resin composition (weight ratio of each component thermoplastic resin) by dry blending 33.3 parts by weight of PP (thermoplastic resin (A)) as a dilution resin with respect to 66.7 parts by weight of CMB-4 (A): 89.95% by weight, carbon black (B): 10% by weight, resin antioxidant: 0.05% by weight) A conductive film was prepared in the same manner as in Example 1. Biaxial stretching was performed. The evaluation results of the conductive film are shown in Table 4.

(比較例9)
比較例8で得られたCMB−4 66.7重量部に対して、SBS(ア)(樹脂(C))15重量部と希釈樹脂としてPP(熱可塑性樹脂(A))18.3重量部とをドライブレンドして導電性樹脂組成物(各成分の重量比 熱可塑性樹脂(A):74.95重量%、カーボンブラック(B):10重量%、樹脂(C):15重量%、酸化防止剤:0.05重量%)を作製した以外は、実施例1と同様にして導電性フィルムを作製し、二軸延伸を行った。導電性フィルムの評価結果を表4に示した。
(Comparative Example 9)
15 parts by weight of SBS (A) (resin (C)) and 18.3 parts by weight of PP (thermoplastic resin (A)) as a dilution resin with respect to 66.7 parts by weight of CMB-4 obtained in Comparative Example 8 And a conductive resin composition (weight ratio of each component: thermoplastic resin (A): 74.95% by weight, carbon black (B): 10% by weight, resin (C): 15% by weight, oxidation A conductive film was prepared and biaxially stretched in the same manner as in Example 1 except that the inhibitor: 0.05% by weight) was prepared. The evaluation results of the conductive film are shown in Table 4.

(比較例10)
比較例8で得られたCMB−4 66.7重量部に対して、PS(樹脂(C))15重量部と希釈樹脂としてPP(熱可塑性樹脂(A))18.3重量部とをドライブレンドして導電性樹脂組成物(各成分の重量比 熱可塑性樹脂(A):74.95重量%、カーボンブラック(B):10重量%、樹脂(C):15重量%、酸化防止剤:0.05重量%)を作製した以外は、実施例1と同様にして導電性フィルムを作製し、二軸延伸を行った。導電性フィルムの評価結果を表4に示した。
(Comparative Example 10)
With respect to 66.7 parts by weight of CMB-4 obtained in Comparative Example 8, 15 parts by weight of PS (resin (C)) and 18.3 parts by weight of PP (thermoplastic resin (A)) as a dilution resin were dried. Blended conductive resin composition (weight ratio of each component Thermoplastic resin (A): 74.95% by weight, carbon black (B): 10% by weight, resin (C): 15% by weight, antioxidant: Except for producing 0.05 wt%), a conductive film was produced in the same manner as in Example 1 and biaxially stretched. The evaluation results of the conductive film are shown in Table 4.

Figure 2011144270
Figure 2011144270

[熱可塑性樹脂(A)]
PP:(株)プライムポリマー 結晶性ポリプロピレン樹脂 J105G MFR=9g/10分
[Thermoplastic resin (A)]
PP: Prime polymer Co., Ltd. Crystalline polypropylene resin J105G MFR = 9 g / 10 min

[カーボンブラック(B)]
電気化学工業(株) デンカブラック(粒状品) 粒子径=35nm DBP吸油量=160ml/100g アスペクト比≒1
ケッチェン・ブラック・インターナショナル(株) ケッチェンブラックEC−300J 粒子径=40nm DBP吸油量=365ml/100g アスペクト比≒1
三菱化学(株) #650B 粒子径=22nm DBP吸油量=114ml/100gアスペクト比≒1
昭和電工(株) VGCF(気相法炭素繊維) 繊維径=150nm 繊維長=10〜20μm アスペクト比=10〜500
[Carbon black (B)]
Denka Black (granular product) Particle size = 35 nm DBP oil absorption = 160 ml / 100 g Aspect ratio≈1
Ketjen Black International Co., Ltd. Ketjen Black EC-300J Particle size = 40 nm DBP oil absorption = 365 ml / 100 g Aspect ratio≈1
Mitsubishi Chemical Corporation # 650B Particle size = 22 nm DBP oil absorption = 114 ml / 100 g Aspect ratio≈1
Showa Denko Co., Ltd. VGCF (Gas phase grown carbon fiber) Fiber diameter = 150 nm Fiber length = 10-20 μm Aspect ratio = 10-500

[樹脂(C)]
SBS(ア):旭化成ケミカルズ(株)スチレン−ブタジエン系熱可塑性エラストマー タフプレン126S
SBS(イ):旭化成ケミカルズ(株)スチレン−ブタジエン系熱可塑性エラストマー アサフレックス805
SEBS(ア):旭化成ケミカルズ(株)水添スチレン−エチレン−ブタジエン系熱可塑性エラストマー タフテックH1043
SEBS(イ):旭化成ケミカルズ(株)水添スチレン−エチレン−ブタジエン系熱可塑性エラストマー タフテックH1221
ポリウレタン(ア):ディーアイシーバイエルポリマー(株)ポリウレタン系熱可塑性エラストマー パンデックスT−2190
ポリウレタン(イ):ディーアイシーバイエルポリマー(株)ポリウレタン系熱可塑性エラストマー パンデックスT−8190
ポリエーテル(ア):三洋化成工業(株)ポリエーテル系熱可塑性エラストマー ペレスタット230
ポリエーテル(イ):三洋化成工業(株)ポリエーテル系熱可塑性エラストマー ペレスタット6500
EPDM:JSR(株) エチレン−プロピレン−ジエンゴム EP57P
LDPE:旭化成ケミカルズ(株) 低密度ポリエチレン サンテックLD M2270
PS:日本ポリスチレン(株) ポリスチレン679
[Resin (C)]
SBS (A): Asahi Kasei Chemicals Co., Ltd. Styrene-butadiene thermoplastic elastomer Toughprene 126S
SBS (b): Asahi Kasei Chemicals Co., Ltd. Styrene-butadiene thermoplastic elastomer Asaflex 805
SEBS (A): Asahi Kasei Chemicals Co., Ltd. Hydrogenated styrene-ethylene-butadiene thermoplastic elastomer Tuftec H1043
SEBS (b): Asahi Kasei Chemicals Corporation hydrogenated styrene-ethylene-butadiene thermoplastic elastomer Tuftec H1221
Polyurethane (A): DIC Bayer Polymer Co., Ltd. Polyurethane-based thermoplastic elastomer Pandex T-2190
Polyurethane (I): DIC Bayer Polymer Co., Ltd. Polyurethane-based thermoplastic elastomer Pandex T-8190
Polyether (A): Sanyo Chemical Industries, Ltd. Polyether-based thermoplastic elastomer Pelestat 230
Polyether (I): Sanyo Chemical Industries, Ltd. Polyether-based thermoplastic elastomer Pelestat 6500
EPDM: JSR Corporation Ethylene-propylene-diene rubber EP57P
LDPE: Asahi Kasei Chemicals Corporation Low density polyethylene Suntech LD M2270
PS: Nippon Polystyrene Co., Ltd. Polystyrene 679

[酸化防止剤]
チバ・スペシャルティ・ケミカルズ(株) イルガノックス1010
[Antioxidant]
Ciba Specialty Chemicals Co., Ltd. Irganox 1010

Figure 2011144270
Figure 2011144270

Figure 2011144270
Figure 2011144270

Figure 2011144270
Figure 2011144270

表4の結果から、比較例は、樹脂(C)が未添加の場合(比較例1〜4)、二軸延伸フィルムの表面抵抗率は1×1012Ω/□程度を示し、延伸によって導電性が大きく低下した。このとき生産安定性は良好〜やや不良、外観はやや不良〜不良であった。また、熱可塑性樹脂(A)のガラス転移温度より高いガラス転移温度を示す樹脂(C)を使用した場合(比較例5〜7)も、二軸延伸フィルムの表面抵抗率は1×1012Ω/□を示し、延伸によって導電性が大きく低下した。このとき生産安定性はやや不良〜不良、外観は不良であった。また、カーボンブラック(B)としてVGCF(気相法炭素繊維)を使用した場合(比較例8〜10)は、生産安定性、外観共に不良であり、延伸時に炭素繊維の身分散凝集塊を起点としてフィルムが破れたため、表面抵抗率を測定することは不可能であった。
一方、実施例は、熱可塑性樹脂(A)と、カーボンブラック(B)と、樹脂(C)とを含む導電性樹脂組成物から得られた導電性フィルムであるため、二軸延伸後も導電性を維持(1×107Ω/□以下)しており、外観、生産安定性についても共に良好であった(実施例1〜10)。また、カーボンブラック(B)の使用量を変化した場合(実施例11又は12)又は樹脂(C)の使用量を変化した場合(実施例13又は14)又はカーボンブラック(B)の種類・グレードを変化した場合(実施例15〜20)においても、二軸延伸後のフィルムは導電性を維持(1×107Ω/□以下)しており、外観、生産安定性についても共に良好であった。
以上のことから、本発明により、外観良好で高倍率延伸後も導電性低下の少ない導電性フィルムを形成できる導電性樹脂組成物、および生産性良好な導電性フィルムの製造方法を提供できる。従って、本発明の産業上の利用価値は極めて大きい。
From the results of Table 4, the comparative example shows that when the resin (C) is not added (Comparative Examples 1 to 4), the surface resistivity of the biaxially stretched film is about 1 × 10 12 Ω / □, and is conductive by stretching. The characteristics were greatly reduced. At this time, the production stability was good to somewhat poor, and the appearance was slightly poor to poor. Also when the resin (C) showing a glass transition temperature higher than that of the thermoplastic resin (A) is used (Comparative Examples 5 to 7), the surface resistivity of the biaxially stretched film is 1 × 10 12 Ω. / □ indicates that the conductivity was greatly reduced by stretching. At this time, the production stability was slightly poor to poor, and the appearance was poor. Further, when VGCF (vapor phase carbon fiber) is used as the carbon black (B) (Comparative Examples 8 to 10), both the production stability and the appearance are poor, and the carbon fiber body dispersed aggregate is the starting point at the time of stretching. As the film was torn, it was impossible to measure the surface resistivity.
On the other hand, since an Example is a conductive film obtained from the conductive resin composition containing thermoplastic resin (A), carbon black (B), and resin (C), it is conductive even after biaxial stretching. (1 × 10 7 Ω / □ or less) and the appearance and production stability were both good (Examples 1 to 10). Also, when the amount of carbon black (B) used is changed (Example 11 or 12) or when the amount of resin (C) used is changed (Example 13 or 14), or the type / grade of carbon black (B) Even in the case where the film thickness was changed (Examples 15 to 20), the film after biaxial stretching maintained the conductivity (1 × 10 7 Ω / □ or less), and both the appearance and the production stability were good. It was.
From the above, according to the present invention, it is possible to provide a conductive resin composition capable of forming a conductive film having a good appearance and having a low conductivity decrease even after high-stretch stretching, and a method for producing a conductive film with good productivity. Therefore, the industrial utility value of the present invention is extremely large.

Claims (10)

熱可塑性樹脂(A)と、カーボンブラック(B)と、樹脂(C)とを含む樹脂組成物であって、
樹脂(C)のガラス転移温度が熱可塑性樹脂(A)のガラス転移温度よりも低く、
カーボンブラック(B)と樹脂(C)との界面自由エネルギーが、カーボンブラック(B)と熱可塑性樹脂(A)との界面自由エネルギーよりも低く、
カーボンブラック(B)と樹脂(C)との界面自由エネルギーが、0〜50mN/mであることを特徴とする導電性樹脂組成物。
A resin composition comprising a thermoplastic resin (A), carbon black (B), and resin (C),
The glass transition temperature of the resin (C) is lower than the glass transition temperature of the thermoplastic resin (A),
The interface free energy between the carbon black (B) and the resin (C) is lower than the interface free energy between the carbon black (B) and the thermoplastic resin (A),
A conductive resin composition, wherein an interface free energy between carbon black (B) and resin (C) is 0 to 50 mN / m.
カーボンブラック(B)のDBP吸油量が30〜750ml/100gであることを特徴とする請求項1記載の導電性樹脂組成物。   The conductive resin composition according to claim 1, wherein the carbon black (B) has a DBP oil absorption of 30 to 750 ml / 100 g. 樹脂(C)が、熱可塑性エラストマーまたはポリエチレンであることを特徴とする請求項1又は2記載の導電性樹脂組成物。   The conductive resin composition according to claim 1 or 2, wherein the resin (C) is a thermoplastic elastomer or polyethylene. 請求項1〜3いずれか記載の導電性樹脂組成物を含むことを特徴とする導電性マスターバッチ。   A conductive masterbatch comprising the conductive resin composition according to claim 1. 請求項1〜3いずれか記載の導電性樹脂組成物を用いて形成され、かつ延伸されてなる導電性フィルム。   The electroconductive film formed using the conductive resin composition in any one of Claims 1-3, and being extended | stretched. 請求項1〜3いずれか記載の導電性樹脂組成物を含む樹脂組成物を溶融混練する工程(1)、次に、フィルムを形成する工程(2)、更に、前記フィルムを延伸する工程(3)を含むことを特徴とする導電性フィルムの製造方法。   A step (1) of melt-kneading a resin composition containing the conductive resin composition according to any one of claims 1 to 3, a step (2) of forming a film, and a step of stretching the film (3) The manufacturing method of the electroconductive film characterized by including this. 前記工程(3)において、フィルムを二軸延伸することを特徴とする請求項6記載の導電性フィルムの製造方法。   The method for producing a conductive film according to claim 6, wherein in the step (3), the film is biaxially stretched. 前記工程(3)において、フィルムの延伸倍率が面積比で1.5〜25倍であることを特徴とする請求項6又は7記載の導電性フィルムの製造方法。   In the said process (3), the draw ratio of a film is 1.5-25 times by area ratio, The manufacturing method of the conductive film of Claim 6 or 7 characterized by the above-mentioned. 請求項6〜8いずれか記載の製造方法で得られた導電性フィルム。   The electroconductive film obtained with the manufacturing method in any one of Claims 6-8. 請求項5又は9記載の導電性フィルムの表面抵抗率が、1×107Ω/以下であることを特徴とする導電性フィルム。 The surface resistivity of the conductive film according to claim 5 or 9 is 1 × 10 7 Ω / or less.
JP2010006379A 2010-01-15 2010-01-15 Conductive resin composition and method for producing conductive film Active JP5267468B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010006379A JP5267468B2 (en) 2010-01-15 2010-01-15 Conductive resin composition and method for producing conductive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010006379A JP5267468B2 (en) 2010-01-15 2010-01-15 Conductive resin composition and method for producing conductive film

Publications (3)

Publication Number Publication Date
JP2011144270A true JP2011144270A (en) 2011-07-28
JP2011144270A5 JP2011144270A5 (en) 2012-10-25
JP5267468B2 JP5267468B2 (en) 2013-08-21

Family

ID=44459413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010006379A Active JP5267468B2 (en) 2010-01-15 2010-01-15 Conductive resin composition and method for producing conductive film

Country Status (1)

Country Link
JP (1) JP5267468B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015140943A1 (en) * 2014-03-18 2015-09-24 日立金属株式会社 Electroconductive resin composition and pressure sensor
WO2016103350A1 (en) * 2014-12-24 2016-06-30 日本メクトロン株式会社 Pressure-sensitive element and pressure sensor
JP2022189301A (en) * 2021-06-11 2022-12-22 聚紡股▲ふん▼有限公司 Functional cloth and method for manufacturing the same
WO2023238490A1 (en) * 2022-06-06 2023-12-14 グンゼ株式会社 Method for producing electroconductive film, and electroconductive film

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107708960B (en) * 2015-06-19 2020-08-04 Ehc加拿大股份公司 Method and apparatus for extruding thermoplastic handrail

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0482194A (en) * 1990-07-24 1992-03-16 Lion Corp Electromagnetic wave exothermic body
JP2001288310A (en) * 2000-04-06 2001-10-16 Toyo Ink Mfg Co Ltd Electroconductive resin composition and its molding
JP2006160834A (en) * 2004-12-03 2006-06-22 Daicel Polymer Ltd Electrically-conductive resin composition
JP2006321564A (en) * 2006-06-21 2006-11-30 Denki Kagaku Kogyo Kk Thermoplastic resin sheet
JP2007148326A (en) * 2005-11-01 2007-06-14 Bridgestone Corp Conductive endless belt
JP2007148325A (en) * 2005-11-01 2007-06-14 Bridgestone Corp Conductive endless belt
JP2008180985A (en) * 2007-01-25 2008-08-07 Mitsubishi Chemicals Corp Endless belt for image forming apparatus, and the image forming apparatus
JP2008291098A (en) * 2007-05-23 2008-12-04 Kureha Corp Semiconductive polyvinylidene fluoride resin compound, semiconductive resin molding, and charge control member
JP2009025787A (en) * 2007-06-19 2009-02-05 Bridgestone Corp Conductive endless belt

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0482194A (en) * 1990-07-24 1992-03-16 Lion Corp Electromagnetic wave exothermic body
JP2001288310A (en) * 2000-04-06 2001-10-16 Toyo Ink Mfg Co Ltd Electroconductive resin composition and its molding
JP2006160834A (en) * 2004-12-03 2006-06-22 Daicel Polymer Ltd Electrically-conductive resin composition
JP2007148326A (en) * 2005-11-01 2007-06-14 Bridgestone Corp Conductive endless belt
JP2007148325A (en) * 2005-11-01 2007-06-14 Bridgestone Corp Conductive endless belt
JP2006321564A (en) * 2006-06-21 2006-11-30 Denki Kagaku Kogyo Kk Thermoplastic resin sheet
JP2008180985A (en) * 2007-01-25 2008-08-07 Mitsubishi Chemicals Corp Endless belt for image forming apparatus, and the image forming apparatus
JP2008291098A (en) * 2007-05-23 2008-12-04 Kureha Corp Semiconductive polyvinylidene fluoride resin compound, semiconductive resin molding, and charge control member
JP2009025787A (en) * 2007-06-19 2009-02-05 Bridgestone Corp Conductive endless belt

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015140943A1 (en) * 2014-03-18 2015-09-24 日立金属株式会社 Electroconductive resin composition and pressure sensor
JPWO2015140943A1 (en) * 2014-03-18 2017-04-06 日立金属株式会社 Conductive resin composition and pressure-sensitive sensor
US9991022B2 (en) 2014-03-18 2018-06-05 Hitachi Metals, Ltd. Electroconductive resin composition and pressure sensor
US10431348B2 (en) 2014-03-18 2019-10-01 Hitachi Metals, Ltd. Pressure sensor including electrical conductors comprising electroconductive resin composition that does not need cross-linking
WO2016103350A1 (en) * 2014-12-24 2016-06-30 日本メクトロン株式会社 Pressure-sensitive element and pressure sensor
CN106030267A (en) * 2014-12-24 2016-10-12 日本梅克特隆株式会社 Pressure-sensitive element and pressure sensor
JPWO2016103350A1 (en) * 2014-12-24 2017-09-28 日本メクトロン株式会社 Pressure sensitive element and pressure sensor
EP3244179A4 (en) * 2014-12-24 2018-08-01 Nippon Mektron, Ltd. Pressure-sensitive element and pressure sensor
US10048141B2 (en) 2014-12-24 2018-08-14 Nippon Mektron, Ltd. Pressure sensing element and pressure sensor
JP2022189301A (en) * 2021-06-11 2022-12-22 聚紡股▲ふん▼有限公司 Functional cloth and method for manufacturing the same
JP7323947B2 (en) 2021-06-11 2023-08-09 聚紡股▲ふん▼有限公司 Functional cloth and its manufacturing method
WO2023238490A1 (en) * 2022-06-06 2023-12-14 グンゼ株式会社 Method for producing electroconductive film, and electroconductive film

Also Published As

Publication number Publication date
JP5267468B2 (en) 2013-08-21

Similar Documents

Publication Publication Date Title
AU739038B2 (en) Conductive polymer blends with finely divided conductive material selectively localized in continuous polymer phase or continuous interface
EP1813649B1 (en) Electroconductive masterbatch and resin composition including the same
JP5267468B2 (en) Conductive resin composition and method for producing conductive film
US20110260116A1 (en) Thermoplastic and/or elastomeric composite based on carbon nanotubes and graphenes
JP6757395B2 (en) Conductive foam beads and their manufacturing method
JP6386114B2 (en) Method for producing conductive resin composition
TW201700613A (en) Resin composition
JP2006097006A (en) Method for producing electrically conductive resin composition and application thereof
JP6780363B2 (en) Conductive resin composition, molded product and method for producing the same
WO2013111862A1 (en) Method for producing master batch for conductive resin, and master batch
WO2012014676A1 (en) Fiber-reinforced thermoplastic resin composition and process for producing fiber-reinforced thermoplastic resin composition
WO2021072357A1 (en) Melt-compounded polyamide graphene composites
JP2006089710A (en) Carbon-based conductive filler and composition thereof
JP2005264059A (en) Method for producing composite resin composition, composite resin composition and composite resin molding
WO2013157621A1 (en) Masterbatch for electrically conductive resin, and electrically conductive resin
JP4070707B2 (en) Fluororesin composition
KR101301661B1 (en) Manufacturing method of plastic sheets preventing of static electricity with excellent durability
US20170287585A1 (en) Electroconductive Resin Composite and Electroconductive Resin Composition Having Excellent Impact Strength, and Method of Producing the Same
JP2004149634A (en) Insulating part using abrasion-resistant resin composition
JP7341353B2 (en) Ethylene polymer composition and its uses
JP4099354B2 (en) Propylene resin composition for automobile, method for producing the same, and molded article thereof
JP2006097005A (en) Electrically conductive resin composition and method for producing the same
JP2013227538A (en) Electroconductive filler-containing polyolefin resin composition
WO2022249993A1 (en) Resin composition, method for producing same, and molded body
JP6598669B2 (en) Semiconductive resin composition and electrophotographic seamless belt using the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120907

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121001

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130321

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130409

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130422

R150 Certificate of patent or registration of utility model

Ref document number: 5267468

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250