WO2023238490A1 - Method for producing electroconductive film, and electroconductive film - Google Patents
Method for producing electroconductive film, and electroconductive film Download PDFInfo
- Publication number
- WO2023238490A1 WO2023238490A1 PCT/JP2023/013790 JP2023013790W WO2023238490A1 WO 2023238490 A1 WO2023238490 A1 WO 2023238490A1 JP 2023013790 W JP2023013790 W JP 2023013790W WO 2023238490 A1 WO2023238490 A1 WO 2023238490A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- resin
- conductive film
- manufacturing
- conductive
- carbon filler
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 65
- 239000012789 electroconductive film Substances 0.000 title abstract 4
- 229920005989 resin Polymers 0.000 claims abstract description 106
- 239000011347 resin Substances 0.000 claims abstract description 106
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 46
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 40
- 239000000945 filler Substances 0.000 claims abstract description 40
- 239000004594 Masterbatch (MB) Substances 0.000 claims abstract description 26
- 229920001169 thermoplastic Polymers 0.000 claims abstract description 4
- 239000004416 thermosoftening plastic Substances 0.000 claims abstract description 4
- 238000000034 method Methods 0.000 claims description 29
- 239000004743 Polypropylene Substances 0.000 claims description 23
- 229920001155 polypropylene Polymers 0.000 claims description 23
- -1 polypropylene Polymers 0.000 claims description 19
- 229920001684 low density polyethylene Polymers 0.000 claims description 10
- 239000004702 low-density polyethylene Substances 0.000 claims description 10
- 238000004898 kneading Methods 0.000 claims description 8
- 229920000092 linear low density polyethylene Polymers 0.000 claims description 8
- 239000004707 linear low-density polyethylene Substances 0.000 claims description 8
- 239000000203 mixture Substances 0.000 claims description 6
- 229920013716 polyethylene resin Polymers 0.000 claims description 6
- 229920005992 thermoplastic resin Polymers 0.000 claims description 3
- 230000000052 comparative effect Effects 0.000 description 12
- 239000006229 carbon black Substances 0.000 description 10
- 239000004952 Polyamide Substances 0.000 description 8
- 229920002647 polyamide Polymers 0.000 description 8
- 239000004698 Polyethylene Substances 0.000 description 5
- 239000004793 Polystyrene Substances 0.000 description 5
- 229920000573 polyethylene Polymers 0.000 description 5
- 239000011116 polymethylpentene Substances 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 238000001125 extrusion Methods 0.000 description 4
- 229920000139 polyethylene terephthalate Polymers 0.000 description 4
- 239000005020 polyethylene terephthalate Substances 0.000 description 4
- 239000004626 polylactic acid Substances 0.000 description 4
- 229920000306 polymethylpentene Polymers 0.000 description 4
- 229920001955 polyphenylene ether Polymers 0.000 description 4
- 229920002223 polystyrene Polymers 0.000 description 4
- 229920000747 poly(lactic acid) Polymers 0.000 description 3
- 239000004417 polycarbonate Substances 0.000 description 3
- 229920000515 polycarbonate Polymers 0.000 description 3
- 229920013636 polyphenyl ether polymer Polymers 0.000 description 3
- NIPNSKYNPDTRPC-UHFFFAOYSA-N N-[2-oxo-2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 NIPNSKYNPDTRPC-UHFFFAOYSA-N 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 229920001903 high density polyethylene Polymers 0.000 description 2
- 239000004700 high-density polyethylene Substances 0.000 description 2
- 239000010410 layer Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 239000006230 acetylene black Substances 0.000 description 1
- 239000004676 acrylonitrile butadiene styrene Substances 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 239000002981 blocking agent Substances 0.000 description 1
- 239000002041 carbon nanotube Substances 0.000 description 1
- 229910021393 carbon nanotube Inorganic materials 0.000 description 1
- 239000006231 channel black Substances 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 239000006232 furnace black Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 239000003273 ketjen black Substances 0.000 description 1
- 239000006233 lamp black Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920005629 polypropylene homopolymer Polymers 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J3/00—Processes of treating or compounding macromolecular substances
- C08J3/20—Compounding polymers with additives, e.g. colouring
- C08J3/22—Compounding polymers with additives, e.g. colouring using masterbatch techniques
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/18—Manufacture of films or sheets
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B13/00—Apparatus or processes specially adapted for manufacturing conductors or cables
Definitions
- the present invention relates to a method for manufacturing a conductive film and a conductive film.
- Patent Document 1 JP-A-63-130644 discloses a conductive film. This conductive film is made of carbon black and thermoplastic resin.
- the present invention was made to solve such problems, and the purpose is to provide a method for manufacturing a conductive film that has sufficient conductivity and can suppress brittle fracture, and The purpose is to provide sex films.
- a method for producing a conductive film according to an aspect of the present invention includes a step of producing a masterbatch by melt-kneading a thermoplastic first resin and a conductive carbon filler; manufacturing a conductive film by mixing a second resin and the masterbatch.
- a masterbatch containing a first resin and a conductive carbon filler is once manufactured, and then a conductive film is manufactured by mixing the second resin and the masterbatch.
- the present inventors have discovered that a conductive film produced through such two-step molding has a sea-island structure.
- the sea portion is made of, for example, a first resin and a conductive carbon filler
- the island portion is made of, for example, a second resin. Since the island portion contains almost no conductive carbon filler and the sea portion maintains a high concentration of conductive carbon filler, the conductivity of the conductive film is relatively high.
- the island portions contain almost no conductive carbon filler and the tensile elongation of the island portions is maintained in a high state, brittle fracture is suppressed in the conductive film. Therefore, according to this method for manufacturing a conductive film, it is possible to manufacture a conductive film that has sufficient conductivity and can suppress brittle fracture.
- the sea portion is constituted by the first resin and the conductive carbon filler, and the island portion is constituted by the second resin.
- a conductive film having a sea-island structure made of resin can be manufactured.
- the content of the second resin in the entire composition constituting the conductive film may be greater than 0 wt% and less than 40 wt%.
- the first resin may be a polypropylene resin
- the second resin may be a polyethylene resin
- the second resin is a polyethylene resin and has higher flexibility than the first resin (polypropylene resin), it is possible to manufacture a conductive film that can further suppress brittle fracture. can.
- a conductive film according to another aspect of the present invention has a sea-island structure.
- the sea portion of the sea-island structure is composed of a thermoplastic first resin and a conductive carbon filler.
- the island portion of the sea-island structure is composed of a second resin that is incompatible with the first resin.
- the sea portion is composed of a first resin and a conductive carbon filler
- the island portion is composed of a second resin. Since the island portion contains almost no conductive carbon filler and the sea portion maintains a high concentration of conductive carbon filler, the conductivity of the conductive film is relatively high. Further, since the island portions contain almost no conductive carbon filler and the tensile elongation of the island portions is maintained in a high state, brittle fracture is suppressed in the conductive film. That is, according to this conductive film, it is possible to maintain relatively high conductivity and suppress brittle fracture.
- FIG. 1 is a diagram schematically showing a cross section of a conductive film manufactured by a method for manufacturing a conductive film according to an embodiment.
- FIG. 2 is a diagram schematically showing a cross section of a conductive film manufactured through a one-stage manufacturing method.
- FIG. 1 is a flowchart showing the manufacturing procedure of the conductive film 10. Each step shown in this flowchart is performed by, for example, an operator using a device.
- Examples of the first resin include polypropylene (PP), polyethylene terephthalate (PET), and polyamide (PA).
- Examples of polypropylene include homopolypropylene, random polypropylene, block polypropylene, polypropylene having a long chain branched structure, and acid-modified polypropylene.
- Examples of conductive carbon fillers include graphite, carbon black (acetylene black, Ketjen black, furnace black, channel black, thermal lamp black, etc.), carbon nanotubes, and mixtures thereof.
- the second resin is, for example, any one of PMP, PP and PS. Good too.
- the first resin is PP
- each of PS, PE, PMP, PA, PC, and PLA is incompatible with PP
- the second resin is, for example, PS, PE, and PLA.
- the first resin is PA
- the second resin may be, for example, either PPE or AB. .
- the content ratio of the second resin to the entire composition (the entire composition including the first resin, the second resin, the conductive carbon filler, additives, etc.) constituting the conductive film 10 is , may be larger than 0 wt% and smaller than 40 wt%. Further, in the conductive film 10, the content ratio of the second resin to the entire composition constituting the conductive film 10 may be greater than 0 wt% and smaller than 30 wt%.
- FIG. 2 is a diagram schematically showing a cross section of the conductive film 10 manufactured by the method for manufacturing a conductive film according to the present embodiment.
- conductive film 10 is made into a polymer alloy by mixing the above-described masterbatch and second resin.
- the concentration of the conductive carbon filler in the portion 11X corresponding to the sea portion 11 of the conductive film 10 is lower than that in the conductive film 10.
- the conductivity of the conductive film 10X is lower than that of the conductive film 10.
- the concentration of the conductive carbon filler in the portion 12X corresponding to the island portion 12 of the conductive film 10 is higher than that in the conductive film 10.
- the tensile elongation of the conductive film 10X is lower than that of the conductive film 10. Therefore, depending on the conductive film 10X manufactured by the one-step manufacturing method, it is possible to maintain relatively high conductivity and suppress brittle fracture (for example, the tensile elongation at break of the conductive film is on the order of 10% or more). It is not possible to balance the two.
- the conductive film 10 manufactured by the two-step manufacturing method it is possible to maintain relatively high conductivity and suppress brittle fracture. Therefore, a two-step manufacturing method is used to manufacture the conductive film 10.
- the island portions 12 contain almost no conductive carbon filler and the tensile elongation of the island portions 12 is maintained in a high state, brittle fracture is suppressed in the conductive film 10. Therefore, according to this method for manufacturing a conductive film, it is possible to manufacture a conductive film 10 that has sufficient conductivity and can suppress brittle fracture.
- the sea portion 11 is composed of the first resin and the conductive carbon filler.
- the island portions 12 are made of the second resin.
- the second resin is a polyethylene resin and has higher flexibility than the first resin (polypropylene resin), so that brittle fracture can be further suppressed.
- a conductive film 10 can be manufactured.
- the second resin is LDPE and has higher flexibility, so that it is possible to manufacture the conductive film 10 that can further suppress brittle fracture. can.
- the film manufactured by the method for manufacturing a conductive film according to the above embodiment is not limited to a single layer film.
- some layers of a film having multiple layers may be manufactured by the method for manufacturing a conductive film according to the above embodiment.
- some or all of the layers of a film having multiple layers may be manufactured by a two-step process.
- a masterbatch was produced by melt-kneading polypropylene (PP) and carbon black (CB) in the first step.
- a conductive film was manufactured by mixing and extruding the masterbatch and LLDPE.
- Comparative Example 2 a conductive film was manufactured by the one-stage manufacturing method described above. In Comparative Example 2, a conductive film was manufactured by melt-kneading and extrusion molding polypropylene, carbon black, and LDPE.
- the weight percent concentration (wt%) of each material in each of Examples 1-6 and Comparative Examples 1-3 was as shown in Table 1 below. Furthermore, in each of Example 1-6 and Comparative Example 1-3, the weight percent concentration (wt%) of each resin with respect to the entire resin was as shown in Table 2 below.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Processes Of Treating Macromolecular Substances (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
Abstract
A method for producing an electroconductive film comprising: a step in which a thermoplastic first resin and an electroconductive carbon filler are melt-kneaded to produce a masterbatch; and a step in which a second resin, which is incompatible with the first resin, is mixed with the masterbatch to produce an electroconductive film.
Description
本発明は、導電性フィルムの製造方法、及び、導電性フィルムに関する。
The present invention relates to a method for manufacturing a conductive film and a conductive film.
特開昭63-130644号公報(特許文献1)は、導電性フィルムを開示する。この導電性フィルムは、カーボンブラック及び熱可塑性樹脂によって構成されている。
JP-A-63-130644 (Patent Document 1) discloses a conductive film. This conductive film is made of carbon black and thermoplastic resin.
上記特許文献1に開示されている導電性フィルムにおいて、例えば、カーボンブラック(導電性炭素フィラーの一例)の含有量が多くなると、導電性が高くなる。しかしながら、カーボンブラックの含有量が多くなると、導電性フィルムが脆くなり、導電性フィルムにおいて脆性破壊が生じやすくなる。
In the conductive film disclosed in Patent Document 1, for example, when the content of carbon black (an example of a conductive carbon filler) increases, the conductivity increases. However, when the content of carbon black increases, the conductive film becomes brittle, and brittle fracture is likely to occur in the conductive film.
本発明は、このような問題を解決するためになされたものであって、その目的は、十分な導電性を有し、かつ、脆性破壊を抑制可能な導電性フィルムの製造方法、及び、導電性フィルムを提供することである。
The present invention was made to solve such problems, and the purpose is to provide a method for manufacturing a conductive film that has sufficient conductivity and can suppress brittle fracture, and The purpose is to provide sex films.
本発明のある局面に従う導電性フィルムの製造方法は、熱可塑性の第1樹脂と導電性炭素フィラーとを溶融混練することによってマスターバッチを製造するステップと、第1樹脂に対して非相溶である第2樹脂と上記マスターバッチとを混合することによって導電性フィルムを製造するステップとを含む。
A method for producing a conductive film according to an aspect of the present invention includes a step of producing a masterbatch by melt-kneading a thermoplastic first resin and a conductive carbon filler; manufacturing a conductive film by mixing a second resin and the masterbatch.
この導電性フィルムの製造方法においては、第1樹脂と導電性炭素フィラーとを含むマスターバッチが一旦製造され、その後、第2樹脂とマスターバッチとを混合することによって導電性フィルムが製造される。このような2段階の成形を通じて製造された導電性フィルムが海島構造を有することを本発明者(ら)は見出した。海部分は、例えば、第1樹脂と導電性炭素フィラーとによって構成され、島部分は、例えば、第2樹脂によって構成される。島部分に導電性炭素フィラーが殆ど含まれず、海部分の導電性炭素フィラーの濃度が高く維持されるため、導電性フィルムの導電性は比較的高くなる。また、島部分に導電性炭素フィラーが殆ど含まれず、島部分の引張伸度が大きい状態で維持されるため、導電性フィルムにおいては脆性破壊が抑制される。したがって、この導電性フィルムの製造方法によれば、十分な導電性を有し、かつ、脆性破壊を抑制可能な導電性フィルムを製造することができる。
In this method for manufacturing a conductive film, a masterbatch containing a first resin and a conductive carbon filler is once manufactured, and then a conductive film is manufactured by mixing the second resin and the masterbatch. The present inventors have discovered that a conductive film produced through such two-step molding has a sea-island structure. The sea portion is made of, for example, a first resin and a conductive carbon filler, and the island portion is made of, for example, a second resin. Since the island portion contains almost no conductive carbon filler and the sea portion maintains a high concentration of conductive carbon filler, the conductivity of the conductive film is relatively high. Further, since the island portions contain almost no conductive carbon filler and the tensile elongation of the island portions is maintained in a high state, brittle fracture is suppressed in the conductive film. Therefore, according to this method for manufacturing a conductive film, it is possible to manufacture a conductive film that has sufficient conductivity and can suppress brittle fracture.
上記導電性フィルムにおいて、第1樹脂及び第2樹脂の含有量の合計に占める第2樹脂の含有量の割合は、0wt%よりも大きく、かつ、50wt%よりも小さくてもよい。
In the conductive film, the content of the second resin in the total content of the first resin and the second resin may be larger than 0 wt% and smaller than 50 wt%.
この導電性フィルムの製造方法によれば、第2樹脂の含有量が第1樹脂の含有量よりも少ないため、海部分が第1樹脂と導電性炭素フィラーとによって構成され、島部分が第2樹脂によって構成された海島構造を有する導電性フィルムを製造することができる。
According to this method for manufacturing a conductive film, since the content of the second resin is lower than the content of the first resin, the sea portion is constituted by the first resin and the conductive carbon filler, and the island portion is constituted by the second resin. A conductive film having a sea-island structure made of resin can be manufactured.
上記導電性フィルムにおいて、導電性フィルムを構成する組成物全体に占める第2樹脂の含有量の割合は、0wt%よりも大きく、かつ、40wt%よりも小さくてもよい。
In the conductive film, the content of the second resin in the entire composition constituting the conductive film may be greater than 0 wt% and less than 40 wt%.
上記導電性フィルムの製造方法において、第1樹脂はポリプロピレン樹脂であり、第2樹脂はポリエチレン樹脂であってもよい。
In the above method for manufacturing a conductive film, the first resin may be a polypropylene resin, and the second resin may be a polyethylene resin.
この導電性フィルムの製造方法によれば、第2樹脂がポリエチレン樹脂であり第1樹脂(ポリプロピレン樹脂)よりも高い柔軟性を有するため、脆性破壊をより抑制可能な導電性フィルムを製造することができる。
According to this method for manufacturing a conductive film, since the second resin is a polyethylene resin and has higher flexibility than the first resin (polypropylene resin), it is possible to manufacture a conductive film that can further suppress brittle fracture. can.
上記導電性フィルムの製造方法において、ポリエチレン樹脂は、LDPE(Low Density Polyethylene)又はLLDPE(Linear Low Density Polyethylene)であってもよい。
In the above method for manufacturing a conductive film, the polyethylene resin may be LDPE (Low Density Polyethylene) or LLDPE (Linear Low Density Polyethylene).
この導電性フィルムの製造方法によれば、第2樹脂が、LDPE又はLLDPEであり、より高い柔軟性を有するため、脆性破壊をより抑制可能な導電性フィルムを製造することができる。
According to this method for manufacturing a conductive film, since the second resin is LDPE or LLDPE and has higher flexibility, it is possible to manufacture a conductive film that can further suppress brittle fracture.
本発明の他の局面に従う導電性フィルムは、海島構造を有する。海島構造の海部分は、熱可塑性の第1樹脂と導電性炭素フィラーとによって構成されている。海島構造の島部分は、第1樹脂に対して非相溶である第2樹脂によって構成されている。
A conductive film according to another aspect of the present invention has a sea-island structure. The sea portion of the sea-island structure is composed of a thermoplastic first resin and a conductive carbon filler. The island portion of the sea-island structure is composed of a second resin that is incompatible with the first resin.
この導電性フィルムにおいて、海部分は第1樹脂と導電性炭素フィラーとによって構成され、島部分は第2樹脂によって構成される。島部分に導電性炭素フィラーが殆ど含まれず、海部分の導電性炭素フィラーの濃度が高く維持されるため、導電性フィルムの導電性は比較的高くなる。また、島部分に導電性炭素フィラーが殆ど含まれず、島部分の引張伸度が大きい状態で維持されるため、導電性フィルムにおいては脆性破壊が抑制される。すなわち、この導電性フィルムによれば、導電性を比較的高く維持し、かつ、脆性破壊を抑制することができる。
In this conductive film, the sea portion is composed of a first resin and a conductive carbon filler, and the island portion is composed of a second resin. Since the island portion contains almost no conductive carbon filler and the sea portion maintains a high concentration of conductive carbon filler, the conductivity of the conductive film is relatively high. Further, since the island portions contain almost no conductive carbon filler and the tensile elongation of the island portions is maintained in a high state, brittle fracture is suppressed in the conductive film. That is, according to this conductive film, it is possible to maintain relatively high conductivity and suppress brittle fracture.
本発明によれば、十分な導電性を有し、かつ、脆性破壊を抑制可能な導電性フィルムの製造方法、及び、導電性フィルムを提供することができる。
According to the present invention, it is possible to provide a method for producing a conductive film that has sufficient conductivity and can suppress brittle fracture, and a conductive film.
以下、本発明の一側面に係る実施の形態について、図面を用いて詳細に説明する。なお、図中同一又は相当部分には同一符号を付してその説明は繰り返さない。また、各図面は、理解の容易のために、適宜対象を省略又は誇張して模式的に描かれている。
Hereinafter, embodiments according to one aspect of the present invention will be described in detail using the drawings. In addition, the same reference numerals are attached to the same or corresponding parts in the drawings, and the description thereof will not be repeated. Further, each drawing is schematically drawn with objects omitted or exaggerated as appropriate for ease of understanding.
[1.導電性フィルムの製造方法]
図1は、導電性フィルム10の製造手順を示すフローチャートである。このフローチャートに示される各工程は、例えば、作業者が装置を用いることによって行なう。 [1. Manufacturing method of conductive film]
FIG. 1 is a flowchart showing the manufacturing procedure of theconductive film 10. Each step shown in this flowchart is performed by, for example, an operator using a device.
図1は、導電性フィルム10の製造手順を示すフローチャートである。このフローチャートに示される各工程は、例えば、作業者が装置を用いることによって行なう。 [1. Manufacturing method of conductive film]
FIG. 1 is a flowchart showing the manufacturing procedure of the
図1を参照して、まず、熱可塑性の第1樹脂と導電性炭素フィラーとを溶融混練することによって、マスターバッチが製造される(ステップS100)。例えば、第1樹脂と導電性炭素フィラーとが二軸押出機に投入され、二軸押出機において溶融混練が行なわれ、マスターバッチが製造される。なお、ステップS100において用いられる第1樹脂は、予め粉砕されていても粉砕されていなくてもよい。例えば、第1樹脂が予め粉砕されている場合には、第1樹脂と導電性炭素フィラーとの分散混合が良好になる。ステップS100においては、分散剤、酸化防止剤、アンチブロッキング剤及び紫外線防止剤等の添加剤の一部又は全部がさらに用いられてもよい。
Referring to FIG. 1, first, a masterbatch is manufactured by melt-kneading a first thermoplastic resin and a conductive carbon filler (step S100). For example, the first resin and the conductive carbon filler are put into a twin-screw extruder, and melt-kneaded in the twin-screw extruder to produce a masterbatch. Note that the first resin used in step S100 may or may not be crushed in advance. For example, if the first resin is pulverized in advance, the first resin and the conductive carbon filler can be well dispersed and mixed. In step S100, some or all of additives such as a dispersant, an antioxidant, an anti-blocking agent, and an ultraviolet inhibitor may be further used.
第1樹脂の一例としては、ポリプロピレン(PP)、ポリエチレンテレフタレート(PET)及びポリアミド(PA)が挙げられる。ポリプロピレンの一例としては、ホモポリプロピレン、ランダムポリプロピレン、ブロックポリプロピレン、長鎖分岐構造を有するポリプロピレン及び酸変性ポリプロピレンが挙げられる。
Examples of the first resin include polypropylene (PP), polyethylene terephthalate (PET), and polyamide (PA). Examples of polypropylene include homopolypropylene, random polypropylene, block polypropylene, polypropylene having a long chain branched structure, and acid-modified polypropylene.
また、導電性炭素フィラーの一例としては、例えば、黒鉛(グラファイト)、カーボンブラック(アセチレンブラック、ケッチェンブラック、ファーネスブラック、チャンネルブラック、サーマルランプブラック等)、カーボンナノチューブ及びこれらの混合物が挙げられる。
Examples of conductive carbon fillers include graphite, carbon black (acetylene black, Ketjen black, furnace black, channel black, thermal lamp black, etc.), carbon nanotubes, and mixtures thereof.
そして、第1樹脂に対して非相溶である第2樹脂と、ステップS100において製造されたマスターバッチとを混合することによって、導電性フィルムが製造される(ステップS110)。例えば、第2樹脂とマスターバッチとが単軸押出機に投入され、単軸押出機において第2樹脂とマスターバッチとが混合され、押出成形によって導電性フィルムが製造される。
Then, a conductive film is manufactured by mixing a second resin that is incompatible with the first resin and the masterbatch manufactured in step S100 (step S110). For example, the second resin and the masterbatch are put into a single-screw extruder, the second resin and the masterbatch are mixed in the single-screw extruder, and a conductive film is manufactured by extrusion molding.
第2樹脂は、例えば、第1樹脂よりも引張伸度が高い。すなわち、第2樹脂は、例えば、第1樹脂よりも高い柔軟性を有する。第2樹脂の一例としては、ポリエチレン(PE)、ポリメチルペンテン(PMP)、ポリプロピレン(PP)、ポリスチレン(PS)、ポリカーボネート(PC)、ポリアミド(PA)、ポリ乳酸(PLA)、変性ポリフェニレンエーテル(PPE)及びアクリロニトリルブタジエンスチレン(ABS)が挙げられる。ポリエチレンの一例としては、LDPE(Low Density Polyethylene)、LLDPE(Linear Low Density Polyethylene)及びHDPE(High Density Polyethylene)が挙げられる。
For example, the second resin has a higher tensile elongation than the first resin. That is, the second resin has higher flexibility than the first resin, for example. Examples of the second resin include polyethylene (PE), polymethylpentene (PMP), polypropylene (PP), polystyrene (PS), polycarbonate (PC), polyamide (PA), polylactic acid (PLA), and modified polyphenylene ether ( PPE) and acrylonitrile butadiene styrene (ABS). Examples of polyethylene include LDPE (Low Density Polyethylene), LLDPE (Linear Low Density Polyethylene), and HDPE (High Density Polyethylene).
第1樹脂がPETである場合には、例えば、PMP、PP及びPSの各々がPETに対して非相溶であるため、第2樹脂は、例えば、PMP、PP及びPSの何れかであってもよい。また、第1樹脂がPPである場合には、例えば、PS、PE、PMP、PA、PC及びPLAの各々がPPに対して非相溶であるため、第2樹脂は、例えば、PS、PE、PMP、PA、PC及びPLAの何れかであってもよい。また、第1樹脂がPAである場合には、例えば、PPE及びABの各々がPAに対して非相溶であるため、第2樹脂は、例えば、PPE及びABの何れかであってもよい。
When the first resin is PET, for example, each of PMP, PP and PS is incompatible with PET, so the second resin is, for example, any one of PMP, PP and PS. Good too. Furthermore, when the first resin is PP, each of PS, PE, PMP, PA, PC, and PLA is incompatible with PP, so the second resin is, for example, PS, PE, and PLA. , PMP, PA, PC, and PLA. Further, when the first resin is PA, for example, since each of PPE and AB is incompatible with PA, the second resin may be, for example, either PPE or AB. .
なお、導電性フィルム10において、第1樹脂及び第2樹脂の含有量の合計に占める第2樹脂の含有量の割合は、0wt%よりも大きく、かつ、50wt%よりも小さい。また、導電性フィルム10において、第1樹脂及び第2樹脂の含有量の合計に占める第2樹脂の含有量の割合は、0wt%よりも大きく、かつ、40wt%よりも小さくてもよい。また、導電性フィルム10において、第1樹脂及び第2樹脂の含有量の合計に占める第2樹脂の含有量の割合は、0wt%よりも大きく、かつ、30wt%よりも小さくてもよい。
Note that in the conductive film 10, the ratio of the content of the second resin to the total content of the first resin and the second resin is larger than 0 wt% and smaller than 50 wt%. Moreover, in the conductive film 10, the ratio of the content of the second resin to the total content of the first resin and the second resin may be larger than 0 wt% and smaller than 40 wt%. Moreover, in the conductive film 10, the ratio of the content of the second resin to the total content of the first resin and the second resin may be larger than 0 wt% and smaller than 30 wt%.
また、導電性フィルム10において、導電性フィルム10を構成する組成物全体(第1樹脂、第2樹脂、導電性炭素フィラー及び添加剤等を含む全体)に占める第2樹脂の含有量の割合は、0wt%よりも大きく、かつ、40wt%よりも小さくてもよい。また、導電性フィルム10において、導電性フィルム10を構成する組成物全体に占める第2樹脂の含有量の割合は、0wt%よりも大きく、かつ、30wt%よりも小さくてもよい。
In addition, in the conductive film 10, the content ratio of the second resin to the entire composition (the entire composition including the first resin, the second resin, the conductive carbon filler, additives, etc.) constituting the conductive film 10 is , may be larger than 0 wt% and smaller than 40 wt%. Further, in the conductive film 10, the content ratio of the second resin to the entire composition constituting the conductive film 10 may be greater than 0 wt% and smaller than 30 wt%.
このように、本実施の形態に従う導電性フィルムの製造方法においては、第1樹脂と導電性炭素フィラーとによってマスターバッチを製造する第1工程と、第2樹脂とマスターバッチとによって導電性フィルムを製造する第2工程とが行なわれる。すなわち、本実施の形態に従う導電性フィルムの製造方法においては、2段階の工程を経て、導電性フィルム10が製造される。このような2段階の工程を経て導電性フィルム10を製造する方法を、以下では、「2段製法」とも称する。2段製法によって導電性フィルム10が製造される理由については、後程詳しく説明する。
As described above, in the method for manufacturing a conductive film according to the present embodiment, the first step is to manufacture a masterbatch using a first resin and a conductive carbon filler, and the second step is to manufacture a conductive film using a second resin and a masterbatch. A second step of manufacturing is performed. That is, in the method for manufacturing a conductive film according to the present embodiment, conductive film 10 is manufactured through two steps. The method of manufacturing the conductive film 10 through such a two-step process is hereinafter also referred to as a "two-step manufacturing method." The reason why the conductive film 10 is manufactured by the two-stage manufacturing method will be explained in detail later.
[2.導電性フィルムの構成]
図2は、本実施の形態に従う導電性フィルムの製造方法によって製造された導電性フィルム10の断面を模式的に示す図である。図2を参照して、導電性フィルム10は、上述のマスターバッチと第2樹脂との混合によってポリマーアロイ化されている。 [2. Structure of conductive film]
FIG. 2 is a diagram schematically showing a cross section of theconductive film 10 manufactured by the method for manufacturing a conductive film according to the present embodiment. Referring to FIG. 2, conductive film 10 is made into a polymer alloy by mixing the above-described masterbatch and second resin.
図2は、本実施の形態に従う導電性フィルムの製造方法によって製造された導電性フィルム10の断面を模式的に示す図である。図2を参照して、導電性フィルム10は、上述のマスターバッチと第2樹脂との混合によってポリマーアロイ化されている。 [2. Structure of conductive film]
FIG. 2 is a diagram schematically showing a cross section of the
導電性フィルム10は、いわゆる海島構造を有しており、海部分11と、島部分12とを含んでいる。海部分11は、主に第1樹脂と導電性炭素フィラーとによって構成されている。島部分12は、主に第2樹脂によって構成されている。上述のように、導電性フィルム10においては、第1樹脂の含有量が第2樹脂の含有量よりも多いためである。
The conductive film 10 has a so-called sea-island structure and includes a sea portion 11 and an island portion 12. The sea portion 11 is mainly composed of a first resin and a conductive carbon filler. The island portion 12 is mainly composed of the second resin. This is because, as described above, in the conductive film 10, the content of the first resin is greater than the content of the second resin.
導電性フィルム10においては、島部分12に導電性炭素フィラーが殆ど含まれず、海部分11の導電性炭素フィラーの濃度が高く維持されるため、導電性フィルム10の導電性は比較的高い。例えば、導電性フィルム10の体積抵抗率は、10の6乗オーダー以下である。また、島部分12に導電性炭素フィラーが殆ど含まれず、島部分12の引張伸度が大きい状態で維持されるため、導電性フィルム10においては脆性破壊が抑制される。すなわち、この導電性フィルム10によれば、導電性を比較的高く維持し、かつ、脆性破壊を抑制することができる。
In the conductive film 10, the island portions 12 contain almost no conductive carbon filler, and the concentration of the conductive carbon filler in the sea portions 11 is maintained high, so the conductivity of the conductive film 10 is relatively high. For example, the volume resistivity of the conductive film 10 is on the order of 10 to the sixth power or less. Further, since the island portions 12 contain almost no conductive carbon filler and the tensile elongation of the island portions 12 is maintained in a high state, brittle fracture is suppressed in the conductive film 10. That is, this conductive film 10 can maintain relatively high conductivity and suppress brittle fracture.
[3.2段製法が用いられる理由]
第1樹脂、第2樹脂及び導電性炭素フィラーを同時に溶融混練し、押出成形によって導電性フィルムを製造する方法を、以下では「1段製法」とも称する。2段製法においては、第1樹脂及び導電性炭素フィラーによってマスターバッチを製造する第1工程と、第2樹脂及びマスターバッチによって導電性フィルムを製造する第2工程とが行なわれるのに対して、1段製法においては、第1樹脂、第2樹脂及び導電性炭素フィラーによって導電性フィルムを製造する工程のみが行なわれる。 [3. Reasons why the two-stage manufacturing method is used]
The method of simultaneously melt-kneading a first resin, a second resin, and a conductive carbon filler and manufacturing a conductive film by extrusion molding is hereinafter also referred to as a "one-stage manufacturing method." In the two-stage manufacturing method, a first step of manufacturing a masterbatch using a first resin and a conductive carbon filler, and a second step of manufacturing a conductive film using a second resin and a masterbatch are performed. In the one-stage manufacturing method, only the step of manufacturing a conductive film using a first resin, a second resin, and a conductive carbon filler is performed.
第1樹脂、第2樹脂及び導電性炭素フィラーを同時に溶融混練し、押出成形によって導電性フィルムを製造する方法を、以下では「1段製法」とも称する。2段製法においては、第1樹脂及び導電性炭素フィラーによってマスターバッチを製造する第1工程と、第2樹脂及びマスターバッチによって導電性フィルムを製造する第2工程とが行なわれるのに対して、1段製法においては、第1樹脂、第2樹脂及び導電性炭素フィラーによって導電性フィルムを製造する工程のみが行なわれる。 [3. Reasons why the two-stage manufacturing method is used]
The method of simultaneously melt-kneading a first resin, a second resin, and a conductive carbon filler and manufacturing a conductive film by extrusion molding is hereinafter also referred to as a "one-stage manufacturing method." In the two-stage manufacturing method, a first step of manufacturing a masterbatch using a first resin and a conductive carbon filler, and a second step of manufacturing a conductive film using a second resin and a masterbatch are performed. In the one-stage manufacturing method, only the step of manufacturing a conductive film using a first resin, a second resin, and a conductive carbon filler is performed.
図3は、1段製法を経て製造された導電性フィルム10Xの断面を模式的に示す図である。図3を参照して、導電性フィルム10Xにおいては、第1樹脂と導電性炭素フィラーとが十分に混ざり合うと共に、第2樹脂と導電性炭素フィラーとも十分に混ざり合っている。
FIG. 3 is a diagram schematically showing a cross section of a conductive film 10X manufactured through a one-stage manufacturing method. Referring to FIG. 3, in the conductive film 10X, the first resin and the conductive carbon filler are sufficiently mixed, and the second resin and the conductive carbon filler are also sufficiently mixed.
そのため、導電性フィルム10Xにおいては、導電性フィルム10(図2)の海部分11に対応する部分11Xにおける導電性炭素フィラーの濃度が、導電性フィルム10と比較して低くなっている。その結果、導電性フィルム10Xにおいては、導電性フィルム10と比較して、導電性が低くなっている。
Therefore, in the conductive film 10X, the concentration of the conductive carbon filler in the portion 11X corresponding to the sea portion 11 of the conductive film 10 (FIG. 2) is lower than that in the conductive film 10. As a result, the conductivity of the conductive film 10X is lower than that of the conductive film 10.
また、導電性フィルム10Xにおいては、導電性フィルム10の島部分12に対応する部分12Xにおける導電性炭素フィラーの濃度が、導電性フィルム10と比較して高くなっている。その結果、導電性フィルム10Xにおいては、導電性フィルム10と比較して、引張伸度が低くなっている。そのため、1段製法により製造された導電性フィルム10Xによっては、導電性を比較的高く維持することと、脆性破壊を抑制すること(例えば、導電性フィルムの引張破断伸度が10%オーダー以上)とを両立することができない。
Furthermore, in the conductive film 10X, the concentration of the conductive carbon filler in the portion 12X corresponding to the island portion 12 of the conductive film 10 is higher than that in the conductive film 10. As a result, the tensile elongation of the conductive film 10X is lower than that of the conductive film 10. Therefore, depending on the conductive film 10X manufactured by the one-step manufacturing method, it is possible to maintain relatively high conductivity and suppress brittle fracture (for example, the tensile elongation at break of the conductive film is on the order of 10% or more). It is not possible to balance the two.
一方、上述のように、2段製法によって製造された導電性フィルム10によれば、導電性を比較的高く維持し、かつ、脆性破壊を抑制することができる。そのため、導電性フィルム10の製造に、2段製法が用いられている。
On the other hand, as described above, according to the conductive film 10 manufactured by the two-step manufacturing method, it is possible to maintain relatively high conductivity and suppress brittle fracture. Therefore, a two-step manufacturing method is used to manufacture the conductive film 10.
[4.特徴]
以上のように、本実施の形態に従う導電性フィルムの製造方法においては、第1樹脂と導電性炭素フィラーとを含むマスターバッチが一旦製造され、その後、第2樹脂とマスターバッチとを混合することによって導電性フィルム10が製造される。このような2段階の成形を通じて製造された導電性フィルム10が海島構造を有することを本発明者(ら)は見出した。海部分11は、例えば、第1樹脂と導電性炭素フィラーとによって構成され、島部分12は、例えば、第2樹脂によって構成される。島部分12に導電性炭素フィラーが殆ど含まれず、海部分11の導電性炭素フィラーの濃度が高く維持されるため、導電性フィルム10の導電性は比較的高くなる。また、島部分12に導電性炭素フィラーが殆ど含まれず、島部分12の引張伸度が大きい状態で維持されるため、導電性フィルム10においては脆性破壊が抑制される。したがって、この導電性フィルムの製造方法によれば、十分な導電性を有し、かつ、脆性破壊を抑制可能な導電性フィルム10を製造することができる。 [4. Features]
As described above, in the method for manufacturing a conductive film according to the present embodiment, a masterbatch containing a first resin and a conductive carbon filler is once manufactured, and then the second resin and the masterbatch are mixed. Theconductive film 10 is manufactured by the following steps. The present inventors have discovered that the conductive film 10 manufactured through such two-step molding has a sea-island structure. The sea portion 11 is made of, for example, a first resin and a conductive carbon filler, and the island portion 12 is made of, for example, a second resin. Since the island portions 12 contain almost no conductive carbon filler and the concentration of the conductive carbon filler in the sea portions 11 is maintained high, the conductivity of the conductive film 10 is relatively high. Further, since the island portions 12 contain almost no conductive carbon filler and the tensile elongation of the island portions 12 is maintained in a high state, brittle fracture is suppressed in the conductive film 10. Therefore, according to this method for manufacturing a conductive film, it is possible to manufacture a conductive film 10 that has sufficient conductivity and can suppress brittle fracture.
以上のように、本実施の形態に従う導電性フィルムの製造方法においては、第1樹脂と導電性炭素フィラーとを含むマスターバッチが一旦製造され、その後、第2樹脂とマスターバッチとを混合することによって導電性フィルム10が製造される。このような2段階の成形を通じて製造された導電性フィルム10が海島構造を有することを本発明者(ら)は見出した。海部分11は、例えば、第1樹脂と導電性炭素フィラーとによって構成され、島部分12は、例えば、第2樹脂によって構成される。島部分12に導電性炭素フィラーが殆ど含まれず、海部分11の導電性炭素フィラーの濃度が高く維持されるため、導電性フィルム10の導電性は比較的高くなる。また、島部分12に導電性炭素フィラーが殆ど含まれず、島部分12の引張伸度が大きい状態で維持されるため、導電性フィルム10においては脆性破壊が抑制される。したがって、この導電性フィルムの製造方法によれば、十分な導電性を有し、かつ、脆性破壊を抑制可能な導電性フィルム10を製造することができる。 [4. Features]
As described above, in the method for manufacturing a conductive film according to the present embodiment, a masterbatch containing a first resin and a conductive carbon filler is once manufactured, and then the second resin and the masterbatch are mixed. The
また、本実施の形態に従う導電性フィルムの製造方法によれば、第2樹脂の含有量が第1樹脂の含有量よりも少ないため、海部分11が第1樹脂と導電性炭素フィラーとによって構成され、島部分12が第2樹脂によって構成された海島構造を有する導電性フィルム10を製造することができる。
Further, according to the method for manufacturing a conductive film according to the present embodiment, since the content of the second resin is lower than the content of the first resin, the sea portion 11 is composed of the first resin and the conductive carbon filler. Thus, it is possible to manufacture a conductive film 10 having a sea-island structure in which the island portions 12 are made of the second resin.
また、本実施の形態に従う導電性フィルムの製造方法によれば、例えば、第2樹脂がポリエチレン樹脂であり第1樹脂(ポリプロピレン樹脂)よりも高い柔軟性を有するため、脆性破壊をより抑制可能な導電性フィルム10を製造することができる。
Further, according to the method for manufacturing a conductive film according to the present embodiment, for example, the second resin is a polyethylene resin and has higher flexibility than the first resin (polypropylene resin), so that brittle fracture can be further suppressed. A conductive film 10 can be manufactured.
また、本実施の形態に従う導電性フィルムの製造方法によれば、第2樹脂が、LDPEであり、より高い柔軟性を有するため、脆性破壊をより抑制可能な導電性フィルム10を製造することができる。
Further, according to the method for manufacturing a conductive film according to the present embodiment, the second resin is LDPE and has higher flexibility, so that it is possible to manufacture the conductive film 10 that can further suppress brittle fracture. can.
[5.他の実施の形態]
上記実施の形態の思想は、以上で説明された実施の形態に限定されない。以下、上記実施の形態の思想を適用できる他の実施の形態の一例について説明する。 [5. Other embodiments]
The idea of the above embodiments is not limited to the embodiments described above. Hereinafter, an example of another embodiment to which the idea of the above embodiment can be applied will be described.
上記実施の形態の思想は、以上で説明された実施の形態に限定されない。以下、上記実施の形態の思想を適用できる他の実施の形態の一例について説明する。 [5. Other embodiments]
The idea of the above embodiments is not limited to the embodiments described above. Hereinafter, an example of another embodiment to which the idea of the above embodiment can be applied will be described.
上記実施の形態においては、第1樹脂と導電性炭素フィラーとによってマスターバッチを製造する第1工程において二軸押出機が用いられ、第2樹脂とマスターバッチとによって導電性フィルムを製造する第2工程において単軸押出機が用いられる例が説明された。しかしながら、各工程で用いられる装置はこれに限定されない。例えば、第1工程及び第2工程の各々で二軸押出機が用いられてもよいし、第1工程及び第2工程の各々で単軸押出機が用いられてもよい。また、第1工程で単軸押出機が用いられ、第2工程で二軸押出機が用いられてもよい。
In the above embodiment, a twin-screw extruder is used in the first step of manufacturing a masterbatch using the first resin and the conductive carbon filler, and the second step is used to manufacture a conductive film using the second resin and the masterbatch. An example was described in which a single screw extruder was used in the process. However, the equipment used in each step is not limited to this. For example, a twin-screw extruder may be used in each of the first step and the second step, or a single-screw extruder may be used in each of the first step and the second step. Further, a single screw extruder may be used in the first step, and a twin screw extruder may be used in the second step.
また、上記実施の形態に従う導電性フィルムの製造方法によって製造されるフィルムは、単層フィルムに限定されない。例えば、複数層を有するフィルムの一部の層が、上記実施の形態に従う導電性フィルムの製造方法によって製造されてもよい。例えば、複数層を有するフィルムの一部又は全部の層が2段製法によって製造されてもよい。
Furthermore, the film manufactured by the method for manufacturing a conductive film according to the above embodiment is not limited to a single layer film. For example, some layers of a film having multiple layers may be manufactured by the method for manufacturing a conductive film according to the above embodiment. For example, some or all of the layers of a film having multiple layers may be manufactured by a two-step process.
以上、本発明の実施の形態について例示的に説明した。すなわち、例示的な説明のために、詳細な説明及び添付の図面が開示された。よって、詳細な説明及び添付の図面に記載された構成要素の中には、課題解決のために必須でない構成要素が含まれることがある。したがって、それらの必須でない構成要素が詳細な説明及び添付の図面に記載されているからといって、それらの必須でない構成要素が必須であると直ちに認定されるべきではない。
The embodiments of the present invention have been exemplarily described above. That is, the detailed description and accompanying drawings have been disclosed for purposes of illustration. Therefore, some of the components described in the detailed description and the attached drawings may not be essential for solving the problem. Therefore, just because non-essential components are described in the detailed description and accompanying drawings, such non-essential components should not be immediately identified as essential.
また、上記実施の形態は、あらゆる点において本発明の例示にすぎない。上記実施の形態は、本発明の範囲内において、種々の改良や変更が可能である。すなわち、本発明の実施にあたっては、実施の形態に応じて具体的構成を適宜採用することができる。
Furthermore, the above embodiments are merely illustrative of the present invention in all respects. Various improvements and changes can be made to the above embodiments within the scope of the present invention. That is, in implementing the present invention, specific configurations can be adopted as appropriate depending on the embodiment.
[6.実施例]
<6-1.実施例及び比較例>
実施例1-6及び比較例3の各々においては、上述の2段製法によって導電性フィルムが製造された。実施例1-3及び比較例3の各々においては、第1工程において、ポリプロピレン(PP)及びカーボンブラック(CB)を溶融混練することによってマスターバッチが製造された。第2工程において、マスターバッチとLDPEとを混合し押出成形することによって導電性フィルムが製造された。 [6. Example]
<6-1. Examples and comparative examples>
In each of Examples 1-6 and Comparative Example 3, conductive films were manufactured by the two-step manufacturing method described above. In each of Examples 1-3 and Comparative Example 3, a masterbatch was produced by melt-kneading polypropylene (PP) and carbon black (CB) in the first step. In the second step, a conductive film was manufactured by mixing and extruding the masterbatch and LDPE.
<6-1.実施例及び比較例>
実施例1-6及び比較例3の各々においては、上述の2段製法によって導電性フィルムが製造された。実施例1-3及び比較例3の各々においては、第1工程において、ポリプロピレン(PP)及びカーボンブラック(CB)を溶融混練することによってマスターバッチが製造された。第2工程において、マスターバッチとLDPEとを混合し押出成形することによって導電性フィルムが製造された。 [6. Example]
<6-1. Examples and comparative examples>
In each of Examples 1-6 and Comparative Example 3, conductive films were manufactured by the two-step manufacturing method described above. In each of Examples 1-3 and Comparative Example 3, a masterbatch was produced by melt-kneading polypropylene (PP) and carbon black (CB) in the first step. In the second step, a conductive film was manufactured by mixing and extruding the masterbatch and LDPE.
また、実施例4-6の各々においては、第1工程において、ポリプロピレン(PP)及びカーボンブラック(CB)を溶融混練することによってマスターバッチが製造された。第2工程において、マスターバッチとLLDPEとを混合し押出成形することによって導電性フィルムが製造された。
Furthermore, in each of Examples 4-6, a masterbatch was produced by melt-kneading polypropylene (PP) and carbon black (CB) in the first step. In the second step, a conductive film was manufactured by mixing and extruding the masterbatch and LLDPE.
比較例1においては、上述の1段製法によって導電性フィルムが製造された。比較例1においては、ポリプロピレン及びカーボンブラックを溶融混練し押出成形することによって導電性フィルムが製造された。
In Comparative Example 1, a conductive film was manufactured by the above-mentioned one-stage manufacturing method. In Comparative Example 1, a conductive film was manufactured by melt-kneading and extrusion molding polypropylene and carbon black.
比較例2においては、上述の1段製法によって導電性フィルムが製造された。比較例2においては、ポリプロピレン、カーボンブラック及びLDPEを溶融混練し押出成形することによって導電性フィルムが製造された。
In Comparative Example 2, a conductive film was manufactured by the one-stage manufacturing method described above. In Comparative Example 2, a conductive film was manufactured by melt-kneading and extrusion molding polypropylene, carbon black, and LDPE.
実施例1-6及び比較例1-3の各々における各材料の重量パーセント濃度(wt%)は、以下の表1に示す通りであった。また、実施例1-6及び比較例1-3の各々における、樹脂全体に対する各樹脂の重量パーセント濃度(wt%)は、以下の表2に示す通りであった。
The weight percent concentration (wt%) of each material in each of Examples 1-6 and Comparative Examples 1-3 was as shown in Table 1 below. Furthermore, in each of Example 1-6 and Comparative Example 1-3, the weight percent concentration (wt%) of each resin with respect to the entire resin was as shown in Table 2 below.
<6-2.各種測定>
実施例1-6及び比較例1-3の各導電性フィルムに関し、膜厚(μm)、引張強度(MPa)、降伏強度(MPa)、引張伸度(%)、引裂強度(N/mm)、表面抵抗率(Ω/□)及び体積抵抗率(Ω・cm)の各々を測定した。各導電性フィルムの膜厚は、フィルム膜厚計(Mitutoyo製のDigimatic Micrometer)を用いることによって測定された。引張強度(引張破断強度)は、JIS K 7127に準拠した方法で測定された。降伏強度は、JIS K 7127に準拠した方法で測定された。引張伸度(引張破断伸度)は、JIS K 7127に準拠した方法で測定された。引裂強度(引裂き強さ)は、JIS-K 7128-3に準拠した方法で測定された。表面抵抗率は、JIS K 7194に準拠した方法で測定された。体積抵抗率は、JIS K 7194に準拠した方法で測定された。 <6-2. Various measurements>
Regarding each conductive film of Example 1-6 and Comparative Example 1-3, film thickness (μm), tensile strength (MPa), yield strength (MPa), tensile elongation (%), tear strength (N/mm) , surface resistivity (Ω/□), and volume resistivity (Ω·cm) were measured. The thickness of each conductive film was measured using a film thickness meter (Digimatic Micrometer manufactured by Mitutoyo). The tensile strength (tensile strength at break) was measured according to JIS K 7127. The yield strength was measured according to JIS K 7127. Tensile elongation (tensile elongation at break) was measured according to JIS K 7127. Tear strength was measured according to JIS-K 7128-3. The surface resistivity was measured according to JIS K 7194. Volume resistivity was measured according to JIS K 7194.
実施例1-6及び比較例1-3の各導電性フィルムに関し、膜厚(μm)、引張強度(MPa)、降伏強度(MPa)、引張伸度(%)、引裂強度(N/mm)、表面抵抗率(Ω/□)及び体積抵抗率(Ω・cm)の各々を測定した。各導電性フィルムの膜厚は、フィルム膜厚計(Mitutoyo製のDigimatic Micrometer)を用いることによって測定された。引張強度(引張破断強度)は、JIS K 7127に準拠した方法で測定された。降伏強度は、JIS K 7127に準拠した方法で測定された。引張伸度(引張破断伸度)は、JIS K 7127に準拠した方法で測定された。引裂強度(引裂き強さ)は、JIS-K 7128-3に準拠した方法で測定された。表面抵抗率は、JIS K 7194に準拠した方法で測定された。体積抵抗率は、JIS K 7194に準拠した方法で測定された。 <6-2. Various measurements>
Regarding each conductive film of Example 1-6 and Comparative Example 1-3, film thickness (μm), tensile strength (MPa), yield strength (MPa), tensile elongation (%), tear strength (N/mm) , surface resistivity (Ω/□), and volume resistivity (Ω·cm) were measured. The thickness of each conductive film was measured using a film thickness meter (Digimatic Micrometer manufactured by Mitutoyo). The tensile strength (tensile strength at break) was measured according to JIS K 7127. The yield strength was measured according to JIS K 7127. Tensile elongation (tensile elongation at break) was measured according to JIS K 7127. Tear strength was measured according to JIS-K 7128-3. The surface resistivity was measured according to JIS K 7194. Volume resistivity was measured according to JIS K 7194.
<6-3.結果>
各種測定の結果は、以下の表3に示す通りであった。 <6-3. Results>
The results of various measurements were as shown in Table 3 below.
各種測定の結果は、以下の表3に示す通りであった。 <6-3. Results>
The results of various measurements were as shown in Table 3 below.
表3に示されるように、比較例1,2においては、十分な引張伸度を得ることができなかった。また、比較例3においては、表面抵抗率及び体積抵抗率を十分に小さくすることができなかった。一方、実施例1-6の各々においては、各抵抗率を十分に低く抑える(例えば、体積抵抗率が10の6乗オーダー以下)と共に、十分な引張伸度を得ることができた。
As shown in Table 3, in Comparative Examples 1 and 2, sufficient tensile elongation could not be obtained. Furthermore, in Comparative Example 3, the surface resistivity and volume resistivity could not be made sufficiently small. On the other hand, in each of Examples 1-6, it was possible to keep each resistivity sufficiently low (for example, the volume resistivity was on the order of 10 to the 6th power or less) and to obtain sufficient tensile elongation.
10,10X 導電性フィルム、11 海部分、11X,12X 部分、12 島部分。
10, 10X conductive film, 11 sea area, 11X, 12X area, 12 island area.
10, 10X conductive film, 11 sea area, 11X, 12X area, 12 island area.
Claims (6)
- 熱可塑性の第1樹脂と導電性炭素フィラーとを溶融混練することによってマスターバッチを製造するステップと、
前記第1樹脂に対して非相溶である第2樹脂と前記マスターバッチとを混合することによって導電性フィルムを製造するステップとを含む、導電性フィルムの製造方法。 producing a masterbatch by melt-kneading a first thermoplastic resin and a conductive carbon filler;
A method for manufacturing a conductive film, the method comprising: manufacturing a conductive film by mixing a second resin that is incompatible with the first resin and the masterbatch. - 前記導電性フィルムにおいて、前記第1樹脂及び前記第2樹脂の含有量の合計に占める前記第2樹脂の含有量の割合は、0wt%よりも大きく、かつ、50wt%よりも小さい、請求項1に記載の導電性フィルムの製造方法。 Claim 1: In the conductive film, the content of the second resin in the total content of the first resin and the second resin is larger than 0 wt% and smaller than 50 wt%. A method for producing a conductive film as described in .
- 前記導電性フィルムにおいて、前記導電性フィルムを構成する組成物全体に占める前記第2樹脂の含有量の割合は、0wt%よりも大きく、かつ、40wt%以下よりも小さい、請求項1に記載の導電性フィルムの製造方法。 In the conductive film, the content ratio of the second resin to the entire composition constituting the conductive film is greater than 0 wt% and less than 40 wt%, according to claim 1. Method for manufacturing conductive film.
- 前記第1樹脂はポリプロピレン樹脂であり、前記第2樹脂はポリエチレン樹脂である、請求項1から請求項3のいずれか1項に記載の導電性フィルムの製造方法。 The method for manufacturing a conductive film according to any one of claims 1 to 3, wherein the first resin is a polypropylene resin and the second resin is a polyethylene resin.
- 前記ポリエチレン樹脂は、LDPE(Low Density Polyethylene)又はLLDPE(Linear Low Density Polyethylene)である、請求項4に記載の導電性フィルムの製造方法。 The method for manufacturing a conductive film according to claim 4, wherein the polyethylene resin is LDPE (Low Density Polyethylene) or LLDPE (Linear Low Density Polyethylene).
- 海島構造を有する導電性フィルムであって、
前記海島構造の海部分は、熱可塑性の第1樹脂と導電性炭素フィラーとによって構成されており、
前記海島構造の島部分は、前記第1樹脂に対して非相溶である第2樹脂によって構成されている、導電性フィルム。
A conductive film having a sea-island structure,
The sea portion of the sea-island structure is composed of a thermoplastic first resin and a conductive carbon filler,
In the conductive film, the island portion of the sea-island structure is made of a second resin that is incompatible with the first resin.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022-091358 | 2022-06-06 | ||
JP2022091358A JP2023178587A (en) | 2022-06-06 | 2022-06-06 | Method for producing conductive film and conductive film |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023238490A1 true WO2023238490A1 (en) | 2023-12-14 |
Family
ID=89118056
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/013790 WO2023238490A1 (en) | 2022-06-06 | 2023-04-03 | Method for producing electroconductive film, and electroconductive film |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2023178587A (en) |
WO (1) | WO2023238490A1 (en) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61294702A (en) * | 1985-06-21 | 1986-12-25 | 新神戸電機株式会社 | Manufacture of polyolefin based conducting resin composition |
JPS624749A (en) * | 1985-07-02 | 1987-01-10 | Asahi Chem Ind Co Ltd | Blend type electrically conductive composite material |
JPS63207855A (en) * | 1987-02-24 | 1988-08-29 | Inoue Mtp Co Ltd | Conductive polymer alloy and production thereof |
JPH01263156A (en) * | 1988-04-15 | 1989-10-19 | Showa Denko Kk | Electrically conductive plastic |
JP2003261688A (en) * | 2002-03-06 | 2003-09-19 | Yuka Denshi Co Ltd | Semi-conductive resin molded article |
JP2011144270A (en) * | 2010-01-15 | 2011-07-28 | Toyo Ink Sc Holdings Co Ltd | Electroconductive resin composition and method for producing electroconductive film |
JP2023047486A (en) * | 2021-09-27 | 2023-04-06 | 株式会社イノアックコーポレーション | Conductive resin composition, sheet, and method for producing conductive resin composition |
-
2022
- 2022-06-06 JP JP2022091358A patent/JP2023178587A/en active Pending
-
2023
- 2023-04-03 WO PCT/JP2023/013790 patent/WO2023238490A1/en unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61294702A (en) * | 1985-06-21 | 1986-12-25 | 新神戸電機株式会社 | Manufacture of polyolefin based conducting resin composition |
JPS624749A (en) * | 1985-07-02 | 1987-01-10 | Asahi Chem Ind Co Ltd | Blend type electrically conductive composite material |
JPS63207855A (en) * | 1987-02-24 | 1988-08-29 | Inoue Mtp Co Ltd | Conductive polymer alloy and production thereof |
JPH01263156A (en) * | 1988-04-15 | 1989-10-19 | Showa Denko Kk | Electrically conductive plastic |
JP2003261688A (en) * | 2002-03-06 | 2003-09-19 | Yuka Denshi Co Ltd | Semi-conductive resin molded article |
JP2011144270A (en) * | 2010-01-15 | 2011-07-28 | Toyo Ink Sc Holdings Co Ltd | Electroconductive resin composition and method for producing electroconductive film |
JP2023047486A (en) * | 2021-09-27 | 2023-04-06 | 株式会社イノアックコーポレーション | Conductive resin composition, sheet, and method for producing conductive resin composition |
Also Published As
Publication number | Publication date |
---|---|
JP2023178587A (en) | 2023-12-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5582586B2 (en) | Polyolefin resin foamed molded body | |
JP6757395B2 (en) | Conductive foam beads and their manufacturing method | |
KR101309738B1 (en) | Polymer/conductive filler composite with high electrical conductivity and the preparation method thereof | |
WO2013132957A1 (en) | Polypropylene resin foamed particles and moulded article of polypropylene resin foamed particles | |
JP2017145414A (en) | Method for producing conductive resin composition | |
JP2015036383A (en) | Continuously moldable heat-conductive resin composition and continuous molding method of heat-conductive resin molded article | |
JP2012204292A (en) | Conductive film and manufacturing method thereof | |
JP6705881B2 (en) | Conductive resin composition and method for producing the same | |
WO2013099550A1 (en) | Polypropylene-based resin foamed particles, method for producing same, and molded article of polypropylene-based resin foamed particles | |
CN111484681A (en) | Graphene modified antistatic polypropylene composite material and preparation method thereof | |
JP6343607B2 (en) | Synthetic resin-based stretched film | |
WO2023238490A1 (en) | Method for producing electroconductive film, and electroconductive film | |
CN115867608B (en) | Ethylene polymer composition and use thereof | |
JP2012214625A (en) | Resin foam and method of manufacturing the same | |
EP3244421A1 (en) | Electroconductive resin composite and electroconductive resin composition having excellent impact strength, and method of producing the same | |
JP2020157651A (en) | Laminate film | |
KR20170112929A (en) | Electro-conductive polymer composite and resin composition having improved impact strength and method for preparing the same | |
JP7187800B2 (en) | Conductive stretched film and secondary battery comprising the same | |
KR20090026534A (en) | Multilayered film having antistatic property and method for manufacturing the same | |
JP2014084341A (en) | Polyolefin-based resin composition for extrusion foaming and expanded material thereof | |
KR102084641B1 (en) | An electrically conductive resin composition and a method for preparing the same | |
JP2010180318A (en) | Pellet mixture, molded product and method for producing the molded product | |
CN110669296A (en) | Carbon nano material reinforced polystyrene and preparation method and application thereof | |
JP2008255256A (en) | Method of manufacturing resin molded object | |
JP4813397B2 (en) | Conductive sheet and molded product for packaging electronic parts |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23819477 Country of ref document: EP Kind code of ref document: A1 |