JP2011143434A - Laser beam drilling method - Google Patents

Laser beam drilling method Download PDF

Info

Publication number
JP2011143434A
JP2011143434A JP2010005508A JP2010005508A JP2011143434A JP 2011143434 A JP2011143434 A JP 2011143434A JP 2010005508 A JP2010005508 A JP 2010005508A JP 2010005508 A JP2010005508 A JP 2010005508A JP 2011143434 A JP2011143434 A JP 2011143434A
Authority
JP
Japan
Prior art keywords
laser
hole
glass substrate
processing
drilling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010005508A
Other languages
Japanese (ja)
Inventor
Keigo Shigenobu
圭吾 重信
Kunio Arai
邦夫 荒井
Yasuhiko Kanetani
保彦 金谷
Kazuhisa Ishii
和久 石井
Hiroshi Honda
寛 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Via Mechanics Ltd
Original Assignee
Hitachi Via Mechanics Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Via Mechanics Ltd filed Critical Hitachi Via Mechanics Ltd
Priority to JP2010005508A priority Critical patent/JP2011143434A/en
Publication of JP2011143434A publication Critical patent/JP2011143434A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Laser Beam Processing (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide laser beam drilling (with a hole diameter of about 1 to 10 mm) for rapidly forming a hole in a glass substrate having a thickness of about 1-10 mm by using laser beam while the residual stress is suppressed. <P>SOLUTION: First, a hole is rapidly drilled in a glass substrate with CO<SB>2</SB>laser beam, and then an inner wall of the hole is finished with the removing width being ≥100 μm by using UV laser beam to the hole. Thus, the hole with less residual stress, and less burrs in the inner wall of the hole or the like can be formed in the glass substrate without using any drill. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、ガラス基板にレーザで穴あけする場合に好適なレーザ穴あけ方法に関するものである。   The present invention relates to a laser drilling method suitable for drilling a glass substrate with a laser.

プラズマディスプレイ(PDP)、液晶ディスプレイ(LCD)、フィールドエミッションディスプレイ(FED)、エレクトロルミネセンスディスプレイ(ELD)等のフラットパネルディスプレイは、薄型映像表示デバイスとして非常に注目されている。
そのフラットパネルディスプレイにおいて、自発光ディスプレイデバイスであるプラズマディスプレイ(以下、PDPと呼ぶ。)には、ガラス板厚が1.8mm〜2.8mmで、耐熱性を有し、熱変形および熱収縮を抑えた高い歪点を持つ青板ガラス(ソーダライムガラス)が使用されている。
一般にPDPのパネル部は、2枚の対向する上記青板ガラス基板にそれぞれ規則的に配列した一対の電極を設け、その間に隔壁にて放電セルを形成し、隔壁間に放電ガスを封入させ、これらの電極間に電圧を印加し隔壁にて挟まれた微小な放電セル内で放電を発生させることにより、蛍光体を塗布した各放電セルを発光させて画像表示を行うようにしている。
Flat panel displays such as a plasma display (PDP), a liquid crystal display (LCD), a field emission display (FED), and an electroluminescence display (ELD) are attracting a great deal of attention as thin video display devices.
In the flat panel display, a plasma display (hereinafter referred to as a PDP) which is a self-luminous display device has a glass plate thickness of 1.8 mm to 2.8 mm, has heat resistance, and is not subject to thermal deformation and thermal contraction. Blue plate glass (soda lime glass) with a suppressed high strain point is used.
In general, a panel portion of a PDP is provided with a pair of electrodes regularly arranged on two opposing blue plate glass substrates, a discharge cell is formed between the barrier ribs, and a discharge gas is sealed between the barrier ribs. By applying a voltage between the electrodes and generating a discharge in a minute discharge cell sandwiched between barrier ribs, each discharge cell coated with a phosphor emits light to display an image.

PDPパネルの製作工程において、放電ガスを封入方法は、表示面側とは反対のガラス基板の隅の一箇所に予めあけられた直径2mm程の貫通穴に排気管を取り付け、そこから排気を行うことにより、パネル内部を真空にし、その後、Xe、Neを主体とする放電ガスの封入・封止を行っている。   In the manufacturing process of the PDP panel, the discharge gas is sealed by attaching an exhaust pipe to a through-hole having a diameter of about 2 mm, which is previously opened at one corner of the glass substrate opposite to the display surface side, and exhausting from there. Thus, the inside of the panel is evacuated, and thereafter, discharge gas mainly containing Xe and Ne is sealed and sealed.

このような2〜3mm厚程度のガラス基板への直径2mm程度の貫通穴は、一般的に、ダイヤモンド砥粒を有するドリルによるメカニカル加工により形成する(例えば、特許文献1、特許文献2参照)。しかし、ドリルの磨耗が激しく、磨耗によるドリル交換および交換後の調整が頻繁に行われておりランニングコストがネックとなっている。例えば、特許文献1に開示されているように、ガラス基板厚さ2.8mm、穴径4mm加工の場合、ドリル1本であけられる加工穴数は150穴弱となっている。   Such a through hole having a diameter of about 2 mm to a glass substrate having a thickness of about 2 to 3 mm is generally formed by mechanical processing using a drill having diamond abrasive grains (see, for example, Patent Document 1 and Patent Document 2). However, the wear of the drill is severe, and drill replacement due to wear and adjustment after the replacement are frequently performed, and running cost becomes a bottleneck. For example, as disclosed in Patent Document 1, in the case of processing with a glass substrate thickness of 2.8 mm and a hole diameter of 4 mm, the number of holes to be drilled with one drill is less than 150 holes.

ガラス基板への穴あけ加工はダイヤモンド砥粒を有するドリルによるメカニカル加工が主流ではあるが、レーザによる加工も技術的には可能である。レーザによる加工のメリットとしては、(1)ドリルの磨耗による頻繁的な刃交換・交換後の加工調整が無い、(2)レーザ発振器の交換寿命は機種によっても異なるが10,000時間程度は有する為、年間を通してのダウンタイムが少ない、等が考えられる。   In the drilling of a glass substrate, mechanical processing using a drill having diamond abrasive grains is the mainstream, but laser processing is also technically possible. The advantages of laser processing are as follows: (1) There is no frequent blade replacement due to drill wear and processing adjustment after replacement. (2) The laser oscillator replacement life varies depending on the model, but it has about 10,000 hours. Therefore, there may be little downtime throughout the year.

一般的な透明な青板ガラス基板へのレーザによる穴あけ加工の場合、レーザ光のガラス基板への吸収率の関係から、YAGやYVOの1064nmや第2高調波の532nm(グリーンレーザ)域のレーザ光はガラス基板への吸収率が低い為、これら波長域のレーザ光を利用するには短パルスレーザや特殊な条件下によるレーザ光吸収を考慮する必要があり、通常は10,600nm程度の長波長を持つCOレーザや355nm付近の短波長のUVレーザでの穴あけ加工が一般的と考えられている(例えば、特許文献3、特許文献4参照)。 In the case of drilling with a laser on a general transparent blue plate glass substrate, the laser in the 1064 nm of YAG and YVO 4 and the 532 nm (green laser) region of the second harmonic is considered from the relationship of the absorption rate of the laser beam to the glass substrate. Since light has a low absorption rate to the glass substrate, it is necessary to consider laser light absorption under a short pulse laser or special conditions in order to use laser light in these wavelength ranges. Drilling with a CO 2 laser having a wavelength or a UV laser with a short wavelength near 355 nm is considered to be common (see, for example, Patent Document 3 and Patent Document 4).

先ず、このようなガラス基板へレーザを用いて穴あけ加工を行うレーザ加工装置の例を図10に示す。図10はレーザ加工装置の平面図である。この加工装置の場合、レーザ発振器302から照射されたレーザ光306が反射ミラー303で光路を変え、ガルバノスキャナ304、集光レンズ(fθレンズ)305を通してガラス基板1へ照射し目的寸法の貫通穴を形成できる構造となっている。図示はしていないが、実際の装置にはレーザ光306が照射されるガラス基板1の周辺位置には穴あけ加工時に発生する削りクズを集める為の集塵機等が備わっている。   First, FIG. 10 shows an example of a laser processing apparatus that performs drilling using such a laser on such a glass substrate. FIG. 10 is a plan view of the laser processing apparatus. In the case of this processing apparatus, the laser beam 306 irradiated from the laser oscillator 302 changes the optical path by the reflection mirror 303, and irradiates the glass substrate 1 through the galvano scanner 304 and the condensing lens (fθ lens) 305 to form a through hole having a target size. It has a structure that can be formed. Although not shown, the actual apparatus is provided with a dust collector or the like for collecting shavings generated at the time of drilling at a peripheral position of the glass substrate 1 to which the laser beam 306 is irradiated.

レーザ加工装置によるガラス基板への穴あけ加工としては、ガラス基板1をレーザ加工装置本体のステージ301に供給・搭載する。ステージ301はXY軸移動テーブルとなっている。ステージ301へのガラス基板1の供給方法は、本装置が工場生産ラインのなかで上流装置と搬送ローダで接続されている場合は搬送ローダ部よりガラス基板が供給される。搬送ローダで接続されていない場合は搬送ロボット等で供給すればよい。また実験室等でのスタンドアローン設置の場合は、基板の大きさにもよるが手動ハンドリングで供給すればよい。   As the drilling process on the glass substrate by the laser processing apparatus, the glass substrate 1 is supplied and mounted on the stage 301 of the laser processing apparatus main body. The stage 301 is an XY axis movement table. As for the method of supplying the glass substrate 1 to the stage 301, when this apparatus is connected to the upstream apparatus and the transfer loader in the factory production line, the glass substrate is supplied from the transfer loader unit. If not connected by a transfer loader, it may be supplied by a transfer robot or the like. In the case of stand-alone installation in a laboratory or the like, it may be supplied by manual handling depending on the size of the substrate.

ステージ301に供給・搭載されたガラス基板1はガラス基板保持部(図示せず)によってチャックされ、ステージのXY軸を駆動させることによってガラス基板1の位置をステージの移動を介して変えることができる。   The glass substrate 1 supplied and mounted on the stage 301 is chucked by a glass substrate holder (not shown), and the position of the glass substrate 1 can be changed through the movement of the stage by driving the XY axes of the stage. .

レーザ発振器を制御しレーザ光306を照射し、反射ミラー303で光路を変え、ガルバノスキャナ304、集光レンズ(fθレンズ)305を通過したレーザ光306をガラス基板1へ照射することによって貫通穴を形成する。レーザ光306による加工によって、レーザ光306が照射された位置のガラスが飛ばされることにより発塵するが、これは集塵機(図示せず)によって集められる。   The laser oscillator 306 is irradiated with laser light 306, the optical path is changed by the reflection mirror 303, and the glass substrate 1 is irradiated with the laser light 306 that has passed through the galvano scanner 304 and the condensing lens (fθ lens) 305. Form. The processing by the laser beam 306 generates dust when the glass at the position irradiated with the laser beam 306 is blown, and this is collected by a dust collector (not shown).

なお本例で示したレーザ加工装置の場合、ガルバノスキャナ304を搭載している為、ガルバノスキャナ304、集光レンズ(fθレンズ)305の制御範囲内(約50mm□程度)ならステージを移動させること無く任意の位置へ穴あけ加工することができる。   In the case of the laser processing apparatus shown in this example, since the galvano scanner 304 is mounted, the stage is moved within the control range (about 50 mm □) of the galvano scanner 304 and the condenser lens (fθ lens) 305. And can be drilled at any position.

この動作を図11のフローチャートにより説明する。ガラス基板1を搬送してステージ301に供給・搭載される。供給されたガラス基板1はガラス基板保持部(図示せず)によってチャックされ(ステップ401)、ステージのXY軸方向への移動を介して変えることができる。   This operation will be described with reference to the flowchart of FIG. The glass substrate 1 is transported and supplied to and mounted on the stage 301. The supplied glass substrate 1 is chucked by a glass substrate holding unit (not shown) (step 401), and can be changed through movement of the stage in the XY axis direction.

加工がオペレータの指示等で開始されると、ガルバノスキャナ304、集光レンズ(fθレンズ)305(以下、まとめて「加工ヘッド」という)部からのレーザ光306照射ポイントへガラス基板1の穴あけ加工位置が合うようにステージ301の移動制御を行い、ガラス基板1を所定の位置に移動させる(ステップ402)。ガラス基板1が予定の位置に移動・固定後(ステップ403)、レーザ光306の照射を開始し、目的の大きさの貫通穴の加工を行う(ステップ404)。穴あけ加工終了後(ステップ405)、ガラス基板チャックを解除し、ステージからガラス基板1を搬出・加工完了となる(ステップ406)。   When processing is started by an operator's instruction or the like, the glass substrate 1 is drilled at the irradiation point of a laser beam 306 from a galvano scanner 304 and a condenser lens (fθ lens) 305 (hereinafter collectively referred to as “processing head”). The movement of the stage 301 is controlled so that the positions match, and the glass substrate 1 is moved to a predetermined position (step 402). After the glass substrate 1 is moved and fixed to a predetermined position (step 403), irradiation with the laser beam 306 is started and a through hole having a target size is processed (step 404). After completion of the drilling process (step 405), the glass substrate chuck is released, and the glass substrate 1 is unloaded and processed from the stage (step 406).

加工に用いるレーザは上記のようにCOレーザやUVレーザが用いられるが、COレーザはガラス穴加工のスピードが速いものの穴内壁の品質がUVレーザによる加工と比べて劣り、また穴周辺の残留応力もUVレーザに比べ大きくなるという問題を持つ。特に、穴出入口部に応力集中が生じクラックが発生しやすくなる。 As described above, a CO 2 laser or a UV laser is used as a laser for processing. However, although the CO 2 laser has a high speed of glass hole processing, the quality of the inner wall of the hole is inferior to the processing by the UV laser, and the periphery of the hole There is a problem that the residual stress is also larger than that of the UV laser. In particular, stress concentration occurs at the hole entrance and exit, and cracks are likely to occur.

一方、UVレーザはガラス穴加工内壁の品質が極めて良く、穴周辺の残留応力も殆ど生じないが、加工時間はCOレーザに比べ極めて長いという問題を持つ。 On the other hand, the UV laser has a very good quality of the inner wall of the glass hole processing and hardly generates residual stress around the hole, but has a problem that the processing time is extremely longer than that of the CO 2 laser.

このようなレーザ加工の問題を解決する方法として、穴内壁品質は劣るが加工速度が速いCOレーザで粗穴あけ加工を高速で行い、粗穴あけ加工直後に穴内壁仕上げとして加工品質が良く穴内壁の劣化した部分を除去できるUVレーザで仕上げ加工を行うという方法が特許文献5に開示されている。しかしながら、この方法はプリント基板に対して開発されたものであり、このような方法がガラス基板に適用された例は無く、残留応力の緩和効果まで有するのかどうかが疑問であった。 As a method for solving such a laser processing problems, poor hole wall quality but performs rough drilling fast CO 2 laser processing speed at a high speed, good hole wall machining quality as hole wall finish immediately after rough drilling Patent Document 5 discloses a method of performing a finishing process with a UV laser that can remove the deteriorated portion. However, this method has been developed for printed circuit boards, and there has been no example in which such a method has been applied to a glass substrate, and it has been questioned whether it has a residual stress relaxation effect.

特開2001−172035号公報JP 2001-172035 A

特開2006−305672号公報JP 2006-305672 A

特開平6−79486号公報(段落0008、段落0011)JP-A-6-79486 (paragraph 0008, paragraph 0011)

特開2003−183054号公報(段落0021、段落0044)JP 2003-183054 A (paragraph 0021, paragraph 0044)

特開平2−182390号公報JP-A-2-182390

本発明では、板厚が1mm〜10mm程度を有するガラス基板に、レーザを用いて高速かつ残留応力を抑えた穴あけ加工(穴径1mm〜10mm程度)を提供することを課題とする。   An object of the present invention is to provide a drilling process (hole diameter of about 1 mm to 10 mm) using a laser and suppressing residual stress on a glass substrate having a plate thickness of about 1 mm to 10 mm.

上記課題を解決する為には、先ず、COレーザにてガラス基板へ高速に穴あけ加工を行い、次に該穴に対してUVレーザを用いて除去幅を100μm以上とした穴内壁の仕上げ加工を行うことにより、穴内壁のバリをとることができ、さらに穴周辺の残留応力も緩和できることを見出した。 In order to solve the above-mentioned problems, first, a glass substrate is drilled at high speed with a CO 2 laser, and then the inner wall of the hole is finished with a UV laser to remove the removal width to 100 μm or more. As a result, it was found that the inner wall of the hole can be deburred and the residual stress around the hole can be reduced.

本発明のレーザ穴あけ方法は、ドリルを用いることなく、ガラス基板に残留応力や穴内壁のバリ等の少ない穴を加工することができるという利点がある。   The laser drilling method of the present invention has an advantage that holes with less residual stress and burrs on the inner wall of the hole can be machined without using a drill.

本発明によるレーザ穴あけ方法に好適なレーザ加工装置の概略図であり、COレーザで加工する場合を示す。It is a schematic view of a preferred laser processing apparatus for laser drilling method according to the invention, showing a case of processing with a CO 2 laser. 本発明によるレーザ穴あけ方法に好適なレーザ加工装置の概略図であり、UVレーザで加工する場合を示す。It is the schematic of the laser processing apparatus suitable for the laser drilling method by this invention, and shows the case where it processes with UV laser. 本発明によるレーザ穴あけ方法のフローチャートである。3 is a flowchart of a laser drilling method according to the present invention. 本発明によるレーザ穴あけ方法と従来方法による穴形状を示した図面代用写真である。(実施例1)It is the drawing substitute photograph which showed the hole shape by the laser drilling method by this invention, and the conventional method. Example 1 本発明によるレーザ穴あけ方法と従来方法による残留応力の測定結果を示した図面代用写真である。(実施例1)4 is a drawing-substituting photograph showing measurement results of residual stresses by a laser drilling method according to the present invention and a conventional method. Example 1 本発明によるレーザ穴あけ方法による穴形状を模式的に示した説明図である。(実施例1)It is explanatory drawing which showed typically the hole shape by the laser drilling method by this invention. Example 1 本発明による他のレーザ穴あけ方法による穴断面形状を模式的に示した説明図である。(実施例2)It is explanatory drawing which showed typically the hole cross-sectional shape by the other laser drilling method by this invention. (Example 2) 本発明による他のレーザ穴あけ方法によるUV仕上げ加工を模式的に示した説明図である。(実施例2)It is explanatory drawing which showed typically the UV finishing process by the other laser drilling method by this invention. (Example 2) 図8のD部拡大図である。(実施例2)It is the D section enlarged view of FIG. (Example 2) 従来のレーザ穴あけ方法に用いるレーザ加工装置を示した説明図である。It is explanatory drawing which showed the laser processing apparatus used for the conventional laser drilling method. 従来のレーザ穴あけ方法のフローチャートである。It is a flowchart of the conventional laser drilling method.

図1及び図2は、本発明に係るレーザによるガラス基板への穴あけ方法に好適なレーザ加工装置を示す。図1、図2はともに正面図であり、図1は本発明における加工プロセスの手順1、図2は加工プロセスの手順2である。   1 and 2 show a laser processing apparatus suitable for a method of drilling a glass substrate with a laser according to the present invention. 1 and 2 are both front views, FIG. 1 shows a procedure 1 of the machining process according to the present invention, and FIG. 2 shows a procedure 2 of the machining process.

本レーザ加工装置は、粗穴あけ用のレーザ発振器102および穴内壁仕上げ用のレーザ発振器112を同一装置内に備え、XY軸方向に移動制御可能でガラス基板1を搭載可能なステージ101およびガラス基板1の真上には、粗穴あけ用レーザ102および穴内壁仕上げレーザ112それぞれに対応したガルバノスキャナ104、114集光レンズ(fθレンズ)105、115から構成される加工ヘッドを設置し、加工ヘッドへレーザ光を進入させる反射ミラー103、113、加工ヘッド周辺にはガラス基板1の穴あけ加工の際に発生するガラス削りクズを集める集塵機(図示せず)を有している。   This laser processing apparatus includes a laser oscillator 102 for rough drilling and a laser oscillator 112 for finishing the inner wall of the hole in the same apparatus. The stage 101 and the glass substrate 1 can be mounted in the XY axis direction and can be mounted on the glass substrate 1. A machining head composed of galvano scanners 104 and 114 condensing lenses (fθ lenses) 105 and 115 corresponding to the rough hole drilling laser 102 and the hole inner wall finishing laser 112, respectively, is installed immediately above the laser beam. Reflecting mirrors 103 and 113 for allowing light to enter, and a dust collector (not shown) for collecting glass shavings generated during drilling of the glass substrate 1 are provided around the processing head.

この動作を図3のフローチャートにより説明する。ガラス基板1を搬送してステージ101に供給・搭載される。供給されたガラス基板1はガラス基板保持部(図示せず)によってチャックされ(ステップ201)、ステージのXY軸方向への移動を介して変えることができる。   This operation will be described with reference to the flowchart of FIG. The glass substrate 1 is conveyed and supplied to and mounted on the stage 101. The supplied glass substrate 1 is chucked by a glass substrate holding unit (not shown) (step 201), and can be changed through movement of the stage in the XY axis direction.

加工がオペレータの指示等で開始されると、ガルバノスキャナ104、集光レンズ(fθレンズ)105から構成される加工ヘッドからのレーザ光106照射ポイントへガラス基板1の穴あけ加工位置が合うようにステージ101の移動制御を行い、ガラス基板1を所定の位置に移動させる(ステップ202)。ガラス基板1が予定の位置に移動・固定後(ステップ203)、レーザ光106の照射を開始し、目的とする大きさよりも小さい貫通穴の加工を行う(ステップ204)。なお、この時の穴加工は加工速度重視の粗穴形成加工である。   When the processing is started by an operator's instruction or the like, the stage is set so that the drilling position of the glass substrate 1 is aligned with the irradiation point of the laser beam 106 from the processing head constituted by the galvano scanner 104 and the condenser lens (fθ lens) 105. 101 is controlled to move the glass substrate 1 to a predetermined position (step 202). After the glass substrate 1 is moved and fixed to a predetermined position (step 203), irradiation with the laser beam 106 is started and a through hole smaller than the target size is processed (step 204). In addition, the hole processing at this time is a rough hole forming processing in which processing speed is emphasized.

粗加工終了後(ステップ205)、穴内壁仕上げ加工のため、違う種類のレーザ発振器を搭載・加工ヘッドを設置したレーザ照射ポイントへ、ガラス基板1の穴あけ加工位置が合うようにステージ101の移動制御を行い、ガラス基板1を所定の位置に移動させる(ステップ206)。ガラス基板1が予定の位置に移動・固定後(ステップ207)、レーザ光116の照射を開始し、目的の穴寸法となるよう穴内壁の仕上げ加工を行う(ステップ208)。   After completion of rough machining (step 205), the stage 101 is moved so that the drilling position of the glass substrate 1 is aligned with the laser irradiation point where a different type of laser oscillator is mounted and the machining head is installed for finishing the inner wall of the hole. The glass substrate 1 is moved to a predetermined position (step 206). After the glass substrate 1 is moved and fixed to a predetermined position (step 207), irradiation with the laser beam 116 is started, and finishing of the inner wall of the hole is performed so as to obtain a target hole size (step 208).

仕上げ加工終了後(ステップ209)、ガラス基板チャックを解除し、ステージからガラス基板1を搬出・加工完了となる(ステップ210)。   After finishing (step 209), the glass substrate chuck is released, and the glass substrate 1 is unloaded and processed from the stage (step 210).

なお本例で示したレーザ加工装置の場合、ガルバノスキャナ104及び集光レンズ(fθレンズ)105、又はガルバノスキャナ114及び集光レンズ(fθレンズ)115のそれぞれの制御範囲内(約50mm□程度)に関してはステージを移動させること無く任意の位置へ穴あけ加工することができる。   In the case of the laser processing apparatus shown in this example, the galvano scanner 104 and the condenser lens (fθ lens) 105 or the galvano scanner 114 and the condenser lens (fθ lens) 115 are within the respective control ranges (about 50 mm □). Can be drilled to any position without moving the stage.

本発明に係るガラス基板へのレーザによる穴あけ加工の例を図4に挙げて説明する。図4(a)、(c)は従来の加工方法によるガラス基板への貫通穴形成例、図4(b)は本発明によるガラス基板へのレーザによる貫通穴形成例である。ガラス基板は厚さ約2mm程度の一般的な青板ガラスで、貫通穴径は約3mm程度である。   An example of drilling with a laser on a glass substrate according to the present invention will be described with reference to FIG. FIGS. 4A and 4C are examples of through-hole formation in a glass substrate by a conventional processing method, and FIG. 4B is an example of through-hole formation by a laser in a glass substrate according to the present invention. The glass substrate is a general blue plate glass having a thickness of about 2 mm, and the through hole diameter is about 3 mm.

図4(a)はCOレーザによる加工例である。この時の加工条件を下記に示す。
加工モード :トレパニング加工
波長 :9400nm
パルス繰り返し周波数 :600Hz
パルス幅 :100μs
平均出力 :22W
ビーム形状 :ガウシアンビーム
ビーム径 :180μm
ビームピッチ(円周方向):90μm
ビームシフト(半径方向):66μm
加工穴径(穴出口) :3.0mmφ
ここで、ビームピッチ、ビームシフトは図9を参照のこと。
FIG. 4A shows a processing example using a CO 2 laser. The processing conditions at this time are shown below.
Processing mode: Trepanning processing Wavelength: 9400nm
Pulse repetition frequency: 600 Hz
Pulse width: 100 μs
Average output: 22W
Beam shape: Gaussian beam Beam diameter: 180 μm
Beam pitch (circumferential direction): 90 μm
Beam shift (radial direction): 66 μm
Processing hole diameter (hole exit): 3.0mmφ
Here, see FIG. 9 for beam pitch and beam shift.

COレーザによる加工では、穴内壁にバリが存在し粗い状態であったが、この時の加工時間は約85秒であった。 In the processing with the CO 2 laser, burrs existed on the inner wall of the hole and were rough, but the processing time at this time was about 85 seconds.

図4(c)はUVレーザによる加工例である。この時の加工条件を下記に示す。
加工モード :トレパニング加工
波長 :355nm
パルス繰り返し周波数 :30kHz
パルス幅 :25ns
平均出力 :4W
ビーム形状 :ガウシアンビーム
ビーム径 :25μm
ビームピッチ(円周方向):4μm
ビームシフト(半径方向):10μm
加工穴径(穴出口) :3.0mmφ
FIG. 4C shows an example of processing using a UV laser. The processing conditions at this time are shown below.
Processing mode: Trepanning processing Wavelength: 355nm
Pulse repetition frequency: 30 kHz
Pulse width: 25 ns
Average output: 4W
Beam shape: Gaussian beam Beam diameter: 25 μm
Beam pitch (circumferential direction): 4 μm
Beam shift (radial direction): 10 μm
Processing hole diameter (hole exit): 3.0mmφ

UVレーザによる加工では、図4(a)と比べ穴内壁にバリは無く綺麗な面状態であるが、加工時間が約750秒と、図4(a)と比べ約9倍の加工時間を要した。   In the processing by UV laser, there is no burr on the inner wall of the hole compared to FIG. 4 (a), but the surface is clean, but the processing time is about 750 seconds, which is about 9 times longer than that of FIG. 4 (a). did.

図4(b)は図4(a)、図4(c)で使用したレーザにて、図3に示した本発明による加工プロセスにて実施した加工例である。COレーザ(波長:9400nm)による粗穴加工の条件は加工穴径のみ次ステップのUV仕上げ加工による除去幅を考慮して、2.4mmφ(穴出口径)とし、UV仕上げ加工後3.0mmφ(穴出口径)になるようにした。それ以外の条件は図4(a)の条件と同じである。 FIG. 4B shows an example of processing performed in the processing process according to the present invention shown in FIG. 3 with the laser used in FIGS. 4A and 4C. The conditions for rough hole machining with a CO 2 laser (wavelength: 9400 nm) are set to 2.4 mmφ (hole exit diameter) only for the machining hole diameter in consideration of the removal width in the next step UV finishing, and 3.0 mmφ after UV finishing. (Hole exit diameter). The other conditions are the same as those in FIG.

UVレーザ(波長:355nm)による仕上げ加工においては、除去幅(W)を300μmとし、それ以外の条件は図4(c)の条件と同じにした。ここで、残留応力を緩和するにはUVレーザによる除去幅(W)を100μm以上にすれば良いことがわかっているが、本実施例においてはより確実に応力緩和させ、かつ加工時間を短縮するという観点から除去幅(W)を300μmとした。また、ビーム径は25〜30μm、ビームピッチは3〜5μm、ビームシフトは10〜15μmであれば良い。   In the finishing process using a UV laser (wavelength: 355 nm), the removal width (W) was set to 300 μm, and other conditions were the same as those in FIG. Here, it is known that the removal width (W) by the UV laser should be 100 μm or more in order to relieve the residual stress. However, in this embodiment, the stress is more reliably relieved and the processing time is shortened. Therefore, the removal width (W) was set to 300 μm. The beam diameter may be 25 to 30 μm, the beam pitch may be 3 to 5 μm, and the beam shift may be 10 to 15 μm.

上記の穴あけ加工により、穴内壁にはバリがなく、加工時間も約120秒と、図4(c)のように全てUVレーザで穴を形成するのと比べ、約1/6に短縮された。   By the above drilling process, there is no burr on the inner wall of the hole, and the processing time is about 120 seconds, which is reduced to about 1/6 compared with the case where all holes are formed by UV laser as shown in FIG. .

図5は図4(a)〜(c)の加工穴周辺に残留している応力状態を光弾性法にて可視化・残留応力を計測した例である。図5(a)のCOレーザによる加工の場合の加工穴周辺の残留応力が約0.37MPaであったのに対して、図5(b)の粗穴加工を上記COレーザで行い、穴内壁仕上げ加工をUVレーザで行った場合の残留応力は約0.19MPaであり、図5(c)に示したUVレーザだけでの加工穴の場合と同じレベルであった。 FIG. 5 shows an example in which the stress state remaining in the periphery of the machining hole in FIGS. 4A to 4C is visualized and the residual stress is measured by the photoelastic method. While the residual stress around the processing hole in the case of processing with the CO 2 laser in FIG. 5A was about 0.37 MPa, the rough hole processing in FIG. 5B was performed with the CO 2 laser, The residual stress when the hole inner wall finishing was performed with a UV laser was about 0.19 MPa, which was the same level as in the case of a hole processed with only the UV laser shown in FIG.

図6は、図4(a)と図4(b)穴加工後を模式的に示した平面図および断面図である。レーザによるガラス基板1への穴あけ加工のメカニズムは、(1)レーザの照射にて、照射部のガラスが溶融し、(2)溶融部が蒸発する、という一連の流れによる。図6(a)に示すCOレーザでの穴加工の場合、加工パルスが100μsと長い為、レーザ照射部のガラスの溶融時間が長くなり、穴内壁ガラスの熱影響部が大きい。その結果、穴あけ加工速度は速いが溶融固化部がUVレーザの場合に比べ大きく、結果として穴内壁に粗が生じてしまい、またそこに応力集中が起こる為、穴あけ完了後の残留応力も大きくなってしまう。 6A and 6B are a plan view and a cross-sectional view schematically showing the holes after drilling in FIGS. 4A and 4B. The mechanism of drilling the glass substrate 1 by the laser is based on a series of flows in which (1) the glass of the irradiated part is melted and (2) the molten part is evaporated by laser irradiation. In the case of drilling with a CO 2 laser shown in FIG. 6A, since the machining pulse is as long as 100 μs, the glass melting time in the laser irradiation part becomes long, and the heat-affected zone of the hole inner wall glass is large. As a result, the drilling speed is fast, but the melted and solidified part is larger than when the UV laser is used. As a result, the inner wall of the hole becomes rough, and stress concentration occurs there, so the residual stress after completion of drilling also increases. End up.

一方、図6(b)に示すCOレーザでの穴加工後に、UVレーザにての穴内壁を仕上げた場合、COレーザでの穴加工後の穴内壁は、上記理由により穴内壁に粗が生じており、またそこに応力集中が起きている状態であるが、UVレーザでの加工では、加工パルスが25nsとCOレーザに比べ非常に短い。その為、レーザ照射部のガラスの溶融時間は短く、穴内壁の熱影響部は小さくて済む。その結果、穴あけ加工速度は遅くなるが、溶融固化部がCOレーザの場合に比べて非常に小さくなる。すなわち、COレーザ加工後のUVレーザでの加工にて、COレーザ加工で生じた穴内壁の粗部を除去することにより、UVレーザのみで貫通穴をあけるより高速加工ができ、また穴内壁粗部除去により応力集中部もなくなるので、穴あけ完了後の残留応力も小さくすることができる。 On the other hand, when the hole inner wall is finished with the UV laser after the hole machining with the CO 2 laser shown in FIG. 6B, the hole inner wall after the hole machining with the CO 2 laser is rough on the hole inner wall for the above reason. However, in the processing with the UV laser, the processing pulse is 25 ns, which is very short compared to the CO 2 laser. Therefore, the melting time of the glass in the laser irradiation part is short, and the heat-affected part on the inner wall of the hole can be small. As a result, the drilling speed is reduced, but is much smaller than when the melt-solidified portion is a CO 2 laser. That is, in the processing of a UV laser after CO 2 laser processing, by removing the coarse portion of the hole wall generated by the CO 2 laser processing, it can speed machining than the through holes only by UV laser, also holes Since there is no stress concentration part by removing the inner wall rough part, the residual stress after completion of drilling can be reduced.

図7は他の実施例による穴加工後を模式的に示した断面図である。まず、COレーザ(波長:9400nm)で図4(a)と同じ条件で粗穴加工を行い、穴内壁仕上げ加工をUVレーザ(波長:355nm)で穴入口部(範囲A)と出口部(範囲C)のみ行った場合を示す。UVレーザによる除去幅は、入口部(W1)で120μm、出口部(W3)で80μmとし、他の条件は図4(c)と同じにした。 FIG. 7 is a cross-sectional view schematically showing after drilling according to another embodiment. First, rough hole machining is performed with a CO 2 laser (wavelength: 9400 nm) under the same conditions as in FIG. 4A, and hole inner wall finishing is performed using a UV laser (wavelength: 355 nm) with a hole inlet (range A) and outlet ( The case where only range C) is performed is shown. The removal width by the UV laser was 120 μm at the entrance (W1) and 80 μm at the exit (W3), and other conditions were the same as in FIG. 4 (c).

図8はUV仕上げ加工の除去幅の平面図における関係を示し、図9はそのD部拡大図を示す。図8からわかるように、COレーザでの穴加工径(穴出口)は次ステップのUV仕上げ加工による除去幅を考慮して、UV仕上げ加工後3.0mmφになるようにした。また、図9に穴入口部(除去幅W1)と穴出口部(除去幅W3)のトレパニング加工の状況を2周分ずつ示したが、実際は除去幅とビームピッチから計算されるように、穴入口部(除去幅W1)は10周、穴出口部(除去幅W3)は7周である。ここで、穴入口部の除去幅(W1)は100μm以上、穴出口部の除去幅(W3)は60μm以上で応力緩和の効果があることがわかっている。また、図4(b)の場合と同様にビーム径は25〜30μm、ビームピッチは3〜5μm、ビームシフトは10〜15μmであれば良い。 FIG. 8 shows the relationship in the plan view of the removal width of the UV finishing process, and FIG. 9 shows an enlarged view of the D part. As can be seen from FIG. 8, the hole processing diameter (hole exit) with the CO 2 laser was set to 3.0 mmφ after the UV finishing processing in consideration of the removal width by the UV finishing processing in the next step. FIG. 9 shows the state of trepanning processing of the hole entrance part (removal width W1) and the hole exit part (removal width W3) for two rounds, but in actuality, as calculated from the removal width and beam pitch, The inlet portion (removal width W1) has 10 turns, and the hole outlet portion (removal width W3) has 7 turns. Here, it is known that the removal width (W1) of the hole entrance portion is 100 μm or more, and the removal width (W3) of the hole exit portion is 60 μm or more, which has a stress relaxation effect. Similarly to the case of FIG. 4B, the beam diameter may be 25 to 30 μm, the beam pitch may be 3 to 5 μm, and the beam shift may be 10 to 15 μm.

穴内壁中央部(図7の範囲B)は隣接するガラス溶融固化部では互いに応力を打ち消しあう形(応力安定分布)となりクラックの発生はないが、穴入口・出口の表面近く(図7の範囲A、範囲C)の溶融固化部では、残留応力を打ち消しあう効果がえられない(応力不安定分布)ため、穴出入口のクラック発生の主因となっている。   The central part of the inner wall of the hole (range B in FIG. 7) has a shape in which stresses cancel each other (stress stable distribution) in the adjacent glass melt-solidified part, but no cracks occur, but near the surface of the hole inlet / outlet (range in FIG. 7) In the melted and solidified portion in A and range C), the effect of canceling out the residual stress cannot be obtained (stress instability distribution), and this is the main cause of cracks at the hole entrance and exit.

そこで、前述の残留応力によるクラック発生の主因である、穴入口・出口部の内壁(図7の範囲A,範囲C)の粗部(溶融固化部)を、パルス幅25ns(COレーザの1/1000以下)のUVレーザで加工して除去すると、溶融時間が短いため、溶融固化部が小さく残留応力が低減され、穴側壁全面を加工しないでも、クラックの発生がないことを確認した。しかも、穴内壁全面を加工する場合と比べ、UV仕上げ加工の加工時間を約50%短縮できることがわかった。 Therefore, the rough portion (melted and solidified portion) of the inner wall (range A and range C in FIG. 7), which is the main cause of the occurrence of cracks due to the residual stress described above, has a pulse width of 25 ns (1 of the CO 2 laser). When processed and removed with a UV laser of / 1000 or less), since the melting time was short, the melted and solidified portion was small, the residual stress was reduced, and it was confirmed that no cracks were generated even if the entire hole sidewall was not processed. Moreover, it was found that the processing time for UV finishing can be reduced by about 50% compared to the case of processing the entire inner wall of the hole.

尚、本実施例をパルス繰り返し周波数100kHz、パルス幅35ns、平均出力16WのUV(355nm)レーザで仕上げ加工することも試みたが、同じ効果が得られ、かつUV仕上げ加工時間がさらに短縮化されることを確認した。   In addition, although the present embodiment tried to finish with a UV (355 nm) laser having a pulse repetition frequency of 100 kHz, a pulse width of 35 ns, and an average output of 16 W, the same effect was obtained and the UV finishing time was further shortened. I was sure that.

1 ガラス基板
101 ガラス基板ステージ(XY軸移動テーブル)
102 レーザ発振器(粗穴あけ用)
103 反射ミラー
104 ガルバノスキャナ
105 集光レンズ(fθレンズ)
106 レーザ光
112 レーザ発振器(穴内壁仕上げ用)
113 反射ミラー
114 ガルバノスキャナ
115 集光レンズ(fθレンズ)
116 レーザ光
301 ガラス基板ステージ(XY軸移動テーブル)
302 レーザ発振器
303 反射ミラー
304 ガルバノスキャナ
305 集光レンズ(fθレンズ)
306 レーザ光
1 Glass substrate 101 Glass substrate stage (XY axis moving table)
102 Laser oscillator (for rough drilling)
103 Reflective mirror 104 Galvano scanner 105 Condensing lens (fθ lens)
106 Laser light 112 Laser oscillator (for finishing the inner wall of the hole)
113 Reflecting mirror 114 Galvano scanner 115 Condensing lens (fθ lens)
116 Laser light 301 Glass substrate stage (XY axis moving table)
302 Laser oscillator 303 Reflecting mirror 304 Galvano scanner 305 Condensing lens (fθ lens)
306 Laser light

Claims (3)

ガラス基板へのレーザによる穴あけ方法において,粗穴あけ用のCOレーザにてガラス基板へ高速に穴あけ加工を行い,該穴に対してUVレーザにて穴内壁仕上げを行うことを特徴とするレーザ穴あけ方法。 In a laser drilling method for a glass substrate, laser drilling is characterized by drilling a glass substrate at high speed with a CO 2 laser for rough drilling, and finishing the inner wall of the hole with a UV laser. Method. 前記穴内壁仕上げにおいて、前記UVレーザによる除去幅を100μm以上とすることを特徴とする請求項1記載のレーザ穴あけ方法。   2. The laser drilling method according to claim 1, wherein a removal width by the UV laser is 100 μm or more in the inner wall finishing of the hole. 前記穴内壁仕上げにおいて、穴の入口部と出口部のみを加工することを特徴とする請求項1記載のレーザ穴あけ方法。   2. The laser drilling method according to claim 1, wherein in finishing the inner wall of the hole, only the inlet portion and the outlet portion of the hole are processed.
JP2010005508A 2010-01-14 2010-01-14 Laser beam drilling method Withdrawn JP2011143434A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010005508A JP2011143434A (en) 2010-01-14 2010-01-14 Laser beam drilling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010005508A JP2011143434A (en) 2010-01-14 2010-01-14 Laser beam drilling method

Publications (1)

Publication Number Publication Date
JP2011143434A true JP2011143434A (en) 2011-07-28

Family

ID=44458754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010005508A Withdrawn JP2011143434A (en) 2010-01-14 2010-01-14 Laser beam drilling method

Country Status (1)

Country Link
JP (1) JP2011143434A (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014001217A1 (en) * 2012-06-25 2014-01-03 Voith Patent Gmbh Method for introducing through-holes with the aid of different laser beams into a sheet-like substrate, in particular a band-like sheet; fabric for a papermaking machine having different holes
JP2014153483A (en) * 2013-02-06 2014-08-25 Japan Display Inc Display device and electronic apparatus
JP2015079790A (en) * 2013-10-15 2015-04-23 株式会社ディスコ Wafer processing method
JP2015080800A (en) * 2013-10-23 2015-04-27 旭硝子株式会社 Method for forming through-hole through glass substrate by using laser beam
JP2016056046A (en) * 2014-09-08 2016-04-21 旭硝子株式会社 Open hole formation method
US9346706B2 (en) 2012-11-29 2016-05-24 Corning Incorporated Methods of fabricating glass articles by laser damage and etching
US9758876B2 (en) 2012-11-29 2017-09-12 Corning Incorporated Sacrificial cover layers for laser drilling substrates and methods thereof
US9938186B2 (en) 2012-04-13 2018-04-10 Corning Incorporated Strengthened glass articles having etched features and methods of forming the same
US10077206B2 (en) * 2015-06-10 2018-09-18 Corning Incorporated Methods of etching glass substrates and glass substrates
JP2019043823A (en) * 2017-09-06 2019-03-22 三星ダイヤモンド工業株式会社 Residual stress reduction method of glass substrate and residual stress reduction device of glass substrate
US10756003B2 (en) 2016-06-29 2020-08-25 Corning Incorporated Inorganic wafer having through-holes attached to semiconductor wafer
CN112264724A (en) * 2020-10-28 2021-01-26 北京理工大学重庆创新中心 Method for processing microporous structure based on Bessel light beam
US11062986B2 (en) 2017-05-25 2021-07-13 Corning Incorporated Articles having vias with geometry attributes and methods for fabricating the same
US11078112B2 (en) 2017-05-25 2021-08-03 Corning Incorporated Silica-containing substrates with vias having an axially variable sidewall taper and methods for forming the same
US11114309B2 (en) 2016-06-01 2021-09-07 Corning Incorporated Articles and methods of forming vias in substrates
US11123822B2 (en) 2016-03-31 2021-09-21 AGC Inc. Manufacturing method for glass substrate, method for forming hole in glass substrate, and apparatus for forming hole in glass substrate
JPWO2021200953A1 (en) * 2020-03-31 2021-10-07
US11554984B2 (en) 2018-02-22 2023-01-17 Corning Incorporated Alkali-free borosilicate glasses with low post-HF etch roughness
US11774233B2 (en) 2016-06-29 2023-10-03 Corning Incorporated Method and system for measuring geometric parameters of through holes
CN116851941A (en) * 2023-05-26 2023-10-10 武汉亚新汽车零部件有限公司 Device and method for punching U-shaped frame tube of seat framework

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9938186B2 (en) 2012-04-13 2018-04-10 Corning Incorporated Strengthened glass articles having etched features and methods of forming the same
US11001523B2 (en) 2012-04-13 2021-05-11 Corning Incorporated Strengthened glass articles having etched features and methods of forming the same
WO2014001217A1 (en) * 2012-06-25 2014-01-03 Voith Patent Gmbh Method for introducing through-holes with the aid of different laser beams into a sheet-like substrate, in particular a band-like sheet; fabric for a papermaking machine having different holes
US10435796B2 (en) 2012-11-29 2019-10-08 Corning Incorporated Work piece including a sacrificial cover layer for laser drilling substrates
US9346706B2 (en) 2012-11-29 2016-05-24 Corning Incorporated Methods of fabricating glass articles by laser damage and etching
US9656910B2 (en) 2012-11-29 2017-05-23 Corning Incorporated Methods of fabricating glass articles by laser damage and etching
US9758876B2 (en) 2012-11-29 2017-09-12 Corning Incorporated Sacrificial cover layers for laser drilling substrates and methods thereof
JP2014153483A (en) * 2013-02-06 2014-08-25 Japan Display Inc Display device and electronic apparatus
KR102210945B1 (en) * 2013-10-15 2021-02-01 가부시기가이샤 디스코 Wafer processing method
KR20150043975A (en) * 2013-10-15 2015-04-23 가부시기가이샤 디스코 Wafer processing method
JP2015079790A (en) * 2013-10-15 2015-04-23 株式会社ディスコ Wafer processing method
JP2015080800A (en) * 2013-10-23 2015-04-27 旭硝子株式会社 Method for forming through-hole through glass substrate by using laser beam
JP2016056046A (en) * 2014-09-08 2016-04-21 旭硝子株式会社 Open hole formation method
US10077206B2 (en) * 2015-06-10 2018-09-18 Corning Incorporated Methods of etching glass substrates and glass substrates
US11123822B2 (en) 2016-03-31 2021-09-21 AGC Inc. Manufacturing method for glass substrate, method for forming hole in glass substrate, and apparatus for forming hole in glass substrate
US11114309B2 (en) 2016-06-01 2021-09-07 Corning Incorporated Articles and methods of forming vias in substrates
US10756003B2 (en) 2016-06-29 2020-08-25 Corning Incorporated Inorganic wafer having through-holes attached to semiconductor wafer
US11774233B2 (en) 2016-06-29 2023-10-03 Corning Incorporated Method and system for measuring geometric parameters of through holes
US11972993B2 (en) 2017-05-25 2024-04-30 Corning Incorporated Silica-containing substrates with vias having an axially variable sidewall taper and methods for forming the same
US11062986B2 (en) 2017-05-25 2021-07-13 Corning Incorporated Articles having vias with geometry attributes and methods for fabricating the same
US11078112B2 (en) 2017-05-25 2021-08-03 Corning Incorporated Silica-containing substrates with vias having an axially variable sidewall taper and methods for forming the same
JP2019043823A (en) * 2017-09-06 2019-03-22 三星ダイヤモンド工業株式会社 Residual stress reduction method of glass substrate and residual stress reduction device of glass substrate
JP7037167B2 (en) 2017-09-06 2022-03-16 三星ダイヤモンド工業株式会社 Residual stress reduction method for glass substrate and residual stress reduction device for glass substrate
US11554984B2 (en) 2018-02-22 2023-01-17 Corning Incorporated Alkali-free borosilicate glasses with low post-HF etch roughness
JPWO2021200953A1 (en) * 2020-03-31 2021-10-07
JP7289988B2 (en) 2020-03-31 2023-06-12 本田技研工業株式会社 Laser processing method
CN112264724A (en) * 2020-10-28 2021-01-26 北京理工大学重庆创新中心 Method for processing microporous structure based on Bessel light beam
CN116851941A (en) * 2023-05-26 2023-10-10 武汉亚新汽车零部件有限公司 Device and method for punching U-shaped frame tube of seat framework
CN116851941B (en) * 2023-05-26 2024-01-26 武汉亚新汽车零部件有限公司 Device and method for punching U-shaped frame tube of seat framework

Similar Documents

Publication Publication Date Title
JP2011143434A (en) Laser beam drilling method
KR101998761B1 (en) Method and apparatus for performing laser filamentation within transparent materials
JP2006150385A (en) Laser cutting method
JP2005268752A (en) Method of laser cutting, workpiece and semiconductor-element chip
JP2013075802A (en) Method for cutting tempered glass plate
CN104690428A (en) Method of closed form release for brittle materials using burst ultrafast laser pulses
JPWO2006038565A1 (en) Method and apparatus for scribing brittle materials
WO2013039012A1 (en) Laser machining method and laser machining device
JP2013126683A (en) Laser beam machining method
GB2459669A (en) Dielectric layer pulsed laser scribing and metal layer and semiconductor wafer dicing
JP2015076115A (en) Disk-shaped glass substrate for magnetic recording medium, and manufacturing method of disk-shaped glass substrate for magnetic recording medium
JP2006035710A (en) Glass processing method using laser and device
US7767929B2 (en) Method for removing foreign matter on glass substrate surface
JP2009220142A (en) Laser beam machining apparatus and laser beam machining method
JP2005095936A (en) Apparatus and method for laser machining
JP2010087041A (en) Method of removing thin film by laser beam, and method of manufacturing thin-film solar cell panel
JP2009023885A (en) Repairing method of part of surface scar on surface of glass substrate by laser irradiation
JP2007284270A (en) Method for correcting flaw part on the surface of glass plate
JP2005338281A (en) Manufacturing method of thin film device and bonding method of glass substrate
JP2012240881A (en) Method of processing fragile material substrate
JP4086796B2 (en) Substrate cutting method
TW201332696A (en) Laser machining method
WO2011046052A1 (en) Method for forming ventilation holes in an electrode plate
JP2006179790A (en) Laser cutting method and member that can be cut by it
KR20170001447A (en) High speed surface machining device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20130402