JP2011143375A - Hydrogen separation system using 5a group metallic hydrogen separation membrane - Google Patents

Hydrogen separation system using 5a group metallic hydrogen separation membrane Download PDF

Info

Publication number
JP2011143375A
JP2011143375A JP2010007613A JP2010007613A JP2011143375A JP 2011143375 A JP2011143375 A JP 2011143375A JP 2010007613 A JP2010007613 A JP 2010007613A JP 2010007613 A JP2010007613 A JP 2010007613A JP 2011143375 A JP2011143375 A JP 2011143375A
Authority
JP
Japan
Prior art keywords
hydrogen separation
hydrogen
separation membrane
gas
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010007613A
Other languages
Japanese (ja)
Other versions
JP5284293B2 (en
Inventor
Hideto Kurokawa
英人 黒川
Takumi Nishii
匠 西井
Yoshinori Shirasaki
義則 白崎
Isamu Yasuda
勇 安田
Masahiko Morinaga
正彦 森永
Hiroshi Yugawa
宏 湯川
Tomonori Nanbu
智憲 南部
Yoshihisa Matsumoto
佳久 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagoya University NUC
Tokyo Gas Co Ltd
Institute of National Colleges of Technologies Japan
Original Assignee
Nagoya University NUC
Tokyo Gas Co Ltd
Institute of National Colleges of Technologies Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagoya University NUC, Tokyo Gas Co Ltd, Institute of National Colleges of Technologies Japan filed Critical Nagoya University NUC
Priority to JP2010007613A priority Critical patent/JP5284293B2/en
Publication of JP2011143375A publication Critical patent/JP2011143375A/en
Application granted granted Critical
Publication of JP5284293B2 publication Critical patent/JP5284293B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hydrogen separation system providing a hydrogen recovery higher than in conventional reformers, by using both a Pd-based alloy hydrogen separation membrane and a 5A group metal alloy hydrogen separation membrane. <P>SOLUTION: In the hydrogen separation system, the hydrogen separation membrane is disposed on the outer peripheral face of a support body consisting of a casing-like or a cylindrical porous support body or a support body consisting of a perforated plate serving for supporting the hydrogen separation membrane, and a plurality of hydrogen separation reformers formed by arranging a reforming catalyst layer are serially arranged on the outer periphery of the hydrogen separation membrane. The hydrogen separation membrane uses the Pd-based alloy hydrogen separation membrane on the upstream of the treating object gas, and the 5A group metal alloy hydrogen separation membrane on the downstream of the treating object gas. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、5A族金属系水素分離膜を用いた水素分離システムに関し、より具体的には、Pd系合金水素分離膜と元素の周期律表5A族金属合金水素分離膜を使用してなる水素分離システムに関する。   The present invention relates to a hydrogen separation system using a Group 5A metal-based hydrogen separation membrane, and more specifically, hydrogen using a Pd-based alloy hydrogen separation membrane and a periodic table of elements of Group 5A metal alloy hydrogen separation membrane. It relates to a separation system.

従来型の水素分離型改質器の水素分離膜としては、一般的にPd系合金水素分離膜(特許文献1等)が知られ、使用されている。水素分離型改質器において、投入原料ガスつまり水素含有被処理ガス(炭化水素の水蒸気改質等により得られる水素を含む被処理ガス)に対して多くの水素分離膜を搭載すれば、分離される水素量も増えて効率的に水素製造が行えるが、Pd系合金水素分離膜は高価であるとともに、装置が大きくなる。   As a hydrogen separation membrane of a conventional hydrogen separation reformer, a Pd-based alloy hydrogen separation membrane (Patent Document 1, etc.) is generally known and used. In a hydrogen separation reformer, if a large number of hydrogen separation membranes are mounted on the input raw material gas, that is, the hydrogen-containing treated gas (treated gas containing hydrogen obtained by steam reforming of hydrocarbons, etc.), the hydrogen separation type reformer is separated. Although the amount of hydrogen to be produced can be increased and hydrogen can be produced efficiently, the Pd-based alloy hydrogen separation membrane is expensive and the apparatus becomes large.

Pd系合金からなる水素分離膜によって水素を選択的に透過精製し、効率的な水素製造を行うためには、例えば1次圧(反応側)=0.8MPaG、2次圧(透過側)=−0.06〜0MPaG、500〜550℃、S/C=2.5〜3.5の条件において、原料投入量2〜6cc/min/cm2、好ましくは3〜4cc/min/cm2程度で運転するのが適当である。 To selectively permeate and purify hydrogen through a hydrogen separation membrane made of a Pd-based alloy and perform efficient hydrogen production, for example, primary pressure (reaction side) = 0.8 MPaG, secondary pressure (permeation side) = -0.06 to 0 MPaG, 500 to 550 ° C., S / C = 2.5 to 3.5, raw material input amount is 2 to 6 cc / min / cm 2 , preferably about 3 to 4 cc / min / cm 2 It is suitable to drive at.

Pd系合金水素分離膜のみの水素分離型改質器においては、そのように最適化された運転条件において、水素分離膜の面積を増やしたり、水素分離膜モジュールの搭載量を増やしたりしても、水素分離膜の増加分に値する水素製造量は得られない。   In a hydrogen separation reformer using only a Pd-based alloy hydrogen separation membrane, even if the area of the hydrogen separation membrane is increased or the mounting amount of the hydrogen separation membrane module is increased under such optimized operating conditions. Thus, the amount of hydrogen production that is equivalent to the increase in the hydrogen separation membrane cannot be obtained.

例えば、炭化水素の改質時における見掛けの水素透過係数が0.7×10-8mol・m-1・s-1・Pa-1/2である、長さ450mm、幅120mm、厚さ20μmのPd系合金水素分離膜に、95NL/h(およそ3cc/min/cm2)の13A都市ガスと、S/C(水蒸気/カーボン比)=3の水蒸気を、1次側(反応側)を0.8MPaGで投入し、2次圧(透過側)を−0.06MPaGにして、550℃において水素製造を行った場合を考えると、長さ600cmとして膜面積を33.3%増加させた場合、水素製造量は294NL/hから355NL/hへと20.7%しか増加しない。 For example, the apparent hydrogen permeation coefficient during hydrocarbon reforming is 0.7 × 10 −8 mol · m −1 · s −1 · Pa −1/2 , length 450 mm, width 120 mm, thickness 20 μm A Pd-based alloy hydrogen separation membrane of 95 NL / h (approximately 3 cc / min / cm 2 ) of 13 A city gas and S / C (water vapor / carbon ratio) = 3 of water vapor on the primary side (reaction side) Considering the case where hydrogen was produced at 550 ° C. with a secondary pressure (permeation side) of −0.06 MPaG and the membrane area was increased by 33.3% by 0.8 MPaG. Hydrogen production increases only 20.7% from 294 NL / h to 355 NL / h.

ところで、Nb、V、Taなどの元素の周期律表5A族金属または5A族金属を含む合金は、Pd−Ag合金などのPd系合金と比較して高い水素透過係数Φを有しているが、水素脆化が起こるために水素分離膜としての使用が困難である。そこで水素脆化を抑制するために、添加元素を加えて水素脆化を抑制する方法などが提案されている(特許文献2、3)。しかし、添加物質を何%加えると言った単純な制御によって、単に高い溶解度や水素透過係数を得るだけでは、耐水素脆性と工業的に重要な高い水素透過速度の両立は困難であり、添加物質、添加量に加えて適切な使用温度、使用圧力(一次側及び二次側)を選択することが必要である。   By the way, the periodic table 5A metal of an element such as Nb, V, or Ta or an alloy containing a 5A metal has a high hydrogen permeability coefficient Φ compared to a Pd-based alloy such as a Pd—Ag alloy. Since hydrogen embrittlement occurs, it is difficult to use as a hydrogen separation membrane. In order to suppress hydrogen embrittlement, methods for suppressing hydrogen embrittlement by adding additional elements have been proposed (Patent Documents 2 and 3). However, it is difficult to achieve both hydrogen embrittlement resistance and industrially important high hydrogen permeation rate by simply obtaining high solubility and hydrogen permeation coefficient by simply controlling what percentage of additive material is added. In addition to the addition amount, it is necessary to select an appropriate use temperature and use pressure (primary side and secondary side).

本発明者らは、PCT曲線(=圧力組成温度曲線)を利用することで、他成分添加によって水素固溶量を抑制しつつ、高い水素濃度差を実現する最適条件を求める方法を先に開発、提案している(特許文献4、5)。この方法によると、脆性破壊を起さない条件を明らかにすることで、低水素分圧、低圧差での使用が可能になることを純Nb、Nb−W合金において示した。しかし、その最高使用圧力は、0.05MPa(絶対圧)と言う大気圧以下であり、高水素分圧では使用できなかった。   The present inventors have first developed a method for obtaining an optimum condition for realizing a high hydrogen concentration difference while suppressing the amount of hydrogen solid solution by adding other components by using a PCT curve (= pressure composition temperature curve). (Patent Documents 4 and 5). According to this method, it was shown that pure Nb and Nb-W alloys can be used at low hydrogen partial pressure and low pressure difference by clarifying the conditions that do not cause brittle fracture. However, the maximum working pressure is below atmospheric pressure of 0.05 MPa (absolute pressure) and cannot be used at a high hydrogen partial pressure.

米国特許第2773561号公報U.S. Pat. No. 2,773,561 特開2001−170460号公報JP 2001-170460 A 特開2006−000722号公報JP 2006-000722 A 特願2008−072607号(2008年3月19日出願)Japanese Patent Application No. 2008-072607 (filed on Mar. 19, 2008) 特願2008−072609号(2008年3月19日出願)Japanese Patent Application No. 2008-072609 (filed on Mar. 19, 2008)

本発明者らは、この度、大気圧以上の水素分圧でも使用可能な5A族金属合金水素分離膜を新たに見出した。すなわち、例えば500℃において、V−W系合金水素分離膜であれば0.3MPa(絶対圧)まで使用可能であり、Ta−W系合金水素分離膜であれば0.15MPa(絶対圧)まで使用可能である。そして、500℃における見掛けの水素透過係数は最大でPd−Ag合金の5倍であることを明らかにした(図1〜4)。   The present inventors have newly found a group 5A metal alloy hydrogen separation membrane that can be used even at a hydrogen partial pressure of atmospheric pressure or higher. That is, for example, at 500 ° C., a VW alloy hydrogen separation membrane can be used up to 0.3 MPa (absolute pressure), and a Ta—W alloy hydrogen separation membrane can be used up to 0.15 MPa (absolute pressure). It can be used. Then, it was clarified that the apparent hydrogen permeation coefficient at 500 ° C. is 5 times as large as that of the Pd—Ag alloy (FIGS. 1 to 4).

本発明は、そのように、例えば500℃において、0.3MPa〔=3気圧(絶対圧)〕まで使用可能なV−W系合金水素分離膜、0.15MPa〔=1.5気圧(絶対圧)〕まで使用可能なTa−W系合金水素分離膜を利用し、それらをPd系合金水素分離膜と併用することにより、すなわち、Pd系合金水素分離膜と5A族金属合金水素分離膜を併用することにより、従来の改質器より高い水素回収率が得られる水素分離システムを提供することを目的とするものである。   In the present invention, for example, a VW alloy hydrogen separation membrane that can be used up to 0.3 MPa [= 3 atm (absolute pressure)] at 500 ° C., 0.15 MPa [= 1.5 atm (absolute pressure), for example. )]] By using Ta-W alloy hydrogen separation membranes that can be used up to and using them together with Pd alloy hydrogen separation membranes, that is, using both Pd alloy hydrogen separation membranes and Group 5A metal alloy hydrogen separation membranes Thus, an object of the present invention is to provide a hydrogen separation system that can obtain a higher hydrogen recovery rate than a conventional reformer.

本発明(1)は、水素分離膜を支持する役割を果たす円筒状の多孔質支持体もしくは多孔板からなる支持体の外周面に水素分離膜を配置し、当該水素分離膜の外周に改質触媒層を配置してなる水素分離型改質器を複数直列に配置してなる水素分離システムであって、前記水素分離膜は、被処理ガスの上流側にはPd系合金水素分離膜を用い、被処理ガスの下流側には5A族金属合金水素分離膜を用いてなることを特徴とする2段式水素分離型改質器である。   In the present invention (1), a hydrogen separation membrane is arranged on the outer peripheral surface of a cylindrical porous support or a porous plate supporting the hydrogen separation membrane, and reformed on the outer periphery of the hydrogen separation membrane. A hydrogen separation system in which a plurality of hydrogen separation type reformers each having a catalyst layer are arranged in series, wherein the hydrogen separation membrane uses a Pd-based alloy hydrogen separation membrane on the upstream side of the gas to be treated The two-stage hydrogen separation reformer is characterized in that a 5A group metal alloy hydrogen separation membrane is used on the downstream side of the gas to be treated.

本発明(2)は、改質触媒としての役割と水素分離膜を支持する役割を同時に果たす円筒状の改質触媒兼多孔質支持体の外周面に水素分離膜を配置してなる水素分離型改質器を複数直列に配置してなる水素分離システムであって、前記水素分離膜は、被処理ガスの上流側にはPd系合金水素分離膜を用い、被処理ガスの下流側には5A族金属合金水素分離膜を用いてなることを特徴とする水素分離システムである。   The present invention (2) is a hydrogen separation type in which a hydrogen separation membrane is disposed on the outer peripheral surface of a cylindrical reforming catalyst / porous support that simultaneously serves as a reforming catalyst and supports a hydrogen separation membrane. A hydrogen separation system comprising a plurality of reformers arranged in series, wherein the hydrogen separation membrane uses a Pd-based alloy hydrogen separation membrane on the upstream side of the gas to be treated and 5A on the downstream side of the gas to be treated. Is a hydrogen separation system using a group III metal alloy hydrogen separation membrane.

本発明(3)は、水素分離膜を支持する役割を果たす筺状の多孔質支持体もしくは多孔板からなる支持体の外周面に水素分離膜を配置し、当該水素分離膜の外周に改質触媒層を配置してなる水素分離型改質器を複数直列に配置してなる水素分離システムであって、前記水素分離膜は、被処理ガスの上流側にはPd系合金水素分離膜を用い、被処理ガスの下流側には5A族金属合金水素分離膜を用いてなることを特徴とする2段式水素分離型改質器である。   In the present invention (3), a hydrogen separation membrane is arranged on the outer peripheral surface of a cage-like porous support or a porous plate that plays a role of supporting the hydrogen separation membrane, and the reforming is performed on the outer periphery of the hydrogen separation membrane. A hydrogen separation system in which a plurality of hydrogen separation type reformers each having a catalyst layer are arranged in series, wherein the hydrogen separation membrane uses a Pd-based alloy hydrogen separation membrane on the upstream side of the gas to be treated The two-stage hydrogen separation reformer is characterized in that a 5A group metal alloy hydrogen separation membrane is used on the downstream side of the gas to be treated.

本発明(4)は、改質触媒としての役割と水素分離膜を支持する役割を同時に果たす筺状の改質触媒兼支持体の外周面に水素分離膜を配置してなる水素分離型改質器を複数直列に配置してなる水素分離システムであって、前記水素分離膜は、被処理ガスの上流側にはPd系合金水素分離膜を用い、被処理ガスの下流側には5A族金属合金水素分離膜を用いてなることを特徴とする水素分離システムである。   The present invention (4) is a hydrogen separation reforming in which a hydrogen separation membrane is disposed on the outer peripheral surface of a bowl-shaped reforming catalyst / support that simultaneously serves as a reforming catalyst and supports a hydrogen separation membrane. A hydrogen separation system comprising a plurality of reactors arranged in series, wherein the hydrogen separation membrane uses a Pd-based alloy hydrogen separation membrane on the upstream side of the gas to be treated, and a group 5A metal on the downstream side of the gas to be treated A hydrogen separation system comprising an alloy hydrogen separation membrane.

本発明(1)〜(4)の水素分離システムにおいて、被処理ガスの下流側に用いる5A族金属合金水素分離膜としては、V−W系合金水素分離膜、Ta−W系合金水素分離膜などを用いることができる。   In the hydrogen separation system of the present invention (1) to (4), the 5A group metal alloy hydrogen separation membrane used downstream of the gas to be treated includes a VW alloy hydrogen separation membrane and a Ta-W alloy hydrogen separation membrane. Etc. can be used.

本発明によれば、以下(1)〜(4)の効果が得られる。
(1)天然ガスなどの原燃料から、従来の改質器より高い水素回収率が得られる水素分離型改質器が実現できる。
(2)Pd等の貴金属の使用量を低減することで水素分離膜の低コスト化につながる。従来と同じ水素製造量が必要であれば、後段に5A族金属合金水素分離膜を付与して前段のPd系合金水素分離膜の量を低減できる。
(3)2段式水素分離膜によって、500℃でもPd系合金水素分離膜のみ550℃のときと同等の水素製造量が得られる。このため、反応炉の運転温度を低下させることが可能であり、高効率化につながる。
(4)高い回収率で水素を引き抜くため、改質器のオフガス中のCO2濃度が上昇し、圧縮液化によるオフガスからの効率的なCO2分離回収が可能になる。
According to the present invention, the following effects (1) to (4) can be obtained.
(1) A hydrogen separation type reformer that can obtain a higher hydrogen recovery rate than a conventional reformer from a raw fuel such as natural gas can be realized.
(2) By reducing the amount of noble metal used such as Pd, the cost of the hydrogen separation membrane can be reduced. If the same amount of hydrogen production as before is required, a group 5A metal alloy hydrogen separation membrane can be provided in the subsequent stage to reduce the amount of the Pd-based alloy hydrogen separation membrane in the previous stage.
(3) With the two-stage hydrogen separation membrane, a hydrogen production amount equivalent to that at 550 ° C. can be obtained only at the Pd-based alloy hydrogen separation membrane even at 500 ° C. For this reason, it is possible to lower the operating temperature of the reactor, leading to higher efficiency.
(4) Since hydrogen is extracted at a high recovery rate, the CO 2 concentration in the reformer off-gas increases, and efficient CO 2 separation and recovery from the off-gas by compression liquefaction becomes possible.

図1はV−W系合金膜について、温度400℃、450℃、500℃における、雰囲気の水素圧力Pと固溶水素量Cの関係をプロットした図である。FIG. 1 is a graph plotting the relationship between the hydrogen pressure P of the atmosphere and the amount of dissolved hydrogen C at temperatures of 400 ° C., 450 ° C., and 500 ° C. for the VW type alloy film. 図2はPd−26Ag合金、Nb−5W合金、V−5W合金について、水素透過速度試験の試験条件、結果を示す図である。FIG. 2 is a diagram showing test conditions and results of a hydrogen permeation rate test for Pd-26Ag alloy, Nb-5W alloy, and V-5W alloy. 図3はTa−W系合金膜について、温度400℃、450℃、500℃における、雰囲気の水素圧力Pと固溶水素量Cの関係をプロットした図である。FIG. 3 is a graph plotting the relationship between the hydrogen pressure P of the atmosphere and the amount C of solute hydrogen at temperatures of 400 ° C., 450 ° C., and 500 ° C. for the Ta—W alloy film. 図4はPd−26Ag合金、Ta−5W合金について、水素透過速度試験の試験条件、結果を示す図である。FIG. 4 is a diagram showing test conditions and results of a hydrogen permeation rate test for a Pd-26Ag alloy and a Ta-5W alloy. 図5は本発明(1)〜(2)の構成態様例を説明する図である。FIG. 5 is a diagram for explaining a configuration example of the present invention (1) to (2). 図6は本発明(3)〜(4)の構成態様例を説明する図である。FIG. 6 is a diagram for explaining a configuration example of the present invention (3) to (4). 図7はPd系合金水素分離膜を設置した水素分離器1等を説明する図である。FIG. 7 is a view for explaining the hydrogen separator 1 and the like provided with a Pd-based alloy hydrogen separation membrane.

本発明(1)は、水素分離膜を支持する役割を果たす円筒状の多孔質支持体もしくは多孔板からなる支持体の外周面に水素分離膜を配置し、当該水素分離膜の外周に改質触媒層を配置してなる水素分離型改質器を複数直列に配置してなる水素分離システムである。そして、前記水素分離膜は、被処理ガスの上流側にはPd系合金水素分離膜を用い、被処理ガスの下流側には5A族金属合金水素分離膜を用いてなることを特徴とする。   In the present invention (1), a hydrogen separation membrane is arranged on the outer peripheral surface of a cylindrical porous support or a porous plate supporting the hydrogen separation membrane, and reformed on the outer periphery of the hydrogen separation membrane. This is a hydrogen separation system in which a plurality of hydrogen separation type reformers each having a catalyst layer are arranged in series. The hydrogen separation membrane is characterized in that a Pd-based alloy hydrogen separation membrane is used on the upstream side of the gas to be processed, and a 5A group metal alloy hydrogen separation membrane is used on the downstream side of the gas to be processed.

本発明(2)は、改質触媒としての役割と水素分離膜を支持する役割を同時に果たす円筒状の改質触媒兼多孔質支持体の外周面に水素分離膜を配置してなる水素分離型改質器を複数直列に配置してなる水素分離システムである。そして、前記水素分離膜は、被処理ガスの上流側にはPd系合金水素分離膜を用い、被処理ガスの下流側には5A族金属合金水素分離膜を用いてなることを特徴とする。   The present invention (2) is a hydrogen separation type in which a hydrogen separation membrane is disposed on the outer peripheral surface of a cylindrical reforming catalyst / porous support that simultaneously serves as a reforming catalyst and supports a hydrogen separation membrane. This is a hydrogen separation system in which a plurality of reformers are arranged in series. The hydrogen separation membrane is characterized in that a Pd-based alloy hydrogen separation membrane is used on the upstream side of the gas to be processed, and a 5A group metal alloy hydrogen separation membrane is used on the downstream side of the gas to be processed.

本発明(3)は、水素分離膜を支持する役割を果たす筺状の多孔質支持体もしくは多孔板からなる支持体の外周面に水素分離膜を配置し、当該水素分離膜の外周に改質触媒層を配置してなる水素分離型改質器を複数直列に配置してなる水素分離システムである。そして、前記水素分離膜は、被処理ガスの上流側にはPd系合金水素分離膜を用い、被処理ガスの下流側には5A族金属合金水素分離膜を用いてなることを特徴とする。   In the present invention (3), a hydrogen separation membrane is arranged on the outer peripheral surface of a cage-like porous support or a porous plate that plays a role of supporting the hydrogen separation membrane, and the reforming is performed on the outer periphery of the hydrogen separation membrane. This is a hydrogen separation system in which a plurality of hydrogen separation type reformers each having a catalyst layer are arranged in series. The hydrogen separation membrane is characterized in that a Pd-based alloy hydrogen separation membrane is used on the upstream side of the gas to be processed, and a 5A group metal alloy hydrogen separation membrane is used on the downstream side of the gas to be processed.

本発明(4)は、改質触媒としての役割と水素分離膜を支持する役割を同時に果たす筺状の改質触媒兼支持体の外周面に水素分離膜を配置してなる水素分離型改質器を複数直列に配置してなる水素分離システムである。そして、前記水素分離膜は、被処理ガスの上流側にはPd系合金水素分離膜を用い、被処理ガスの下流側には5A族金属合金水素分離膜を用いてなることを特徴とする。   The present invention (4) is a hydrogen separation reforming in which a hydrogen separation membrane is disposed on the outer peripheral surface of a bowl-shaped reforming catalyst / support that simultaneously serves as a reforming catalyst and supports a hydrogen separation membrane. This is a hydrogen separation system in which a plurality of vessels are arranged in series. The hydrogen separation membrane is characterized in that a Pd-based alloy hydrogen separation membrane is used on the upstream side of the gas to be processed, and a 5A group metal alloy hydrogen separation membrane is used on the downstream side of the gas to be processed.

本発明(1)〜(4)の水素分離システムにおいて、被処理ガスの下流側に用いる5A族金属合金水素分離膜としては、V−W系合金水素分離膜(VにWを添加して合金化した合金からなる水素分離膜)、Ta−W系合金水素分離膜(TaにWを添加して合金化した合金からなる水素分離膜)などを用いることができる。   In the hydrogen separation system of the present invention (1) to (4), as a 5A group metal alloy hydrogen separation membrane used on the downstream side of the gas to be treated, a VW alloy hydrogen separation membrane (alloy added with W to an alloy) Hydrogen separation membrane made of alloyed alloy), Ta-W alloy hydrogen separation membrane (hydrogen separation membrane made of alloy formed by adding W to Ta) and the like can be used.

例えば、Pd系合金水素分離膜を用いた水素分離では、シーベルトの法則(Sievert's law:C=KP1/2。以下“シーベルツ則”と略称する。)に従うため、高い水素透過量J(J=D・ΔC/d、Dは拡散係数、ΔCは固溶水素量差、dは膜厚)を稼ぐためにある程度の水素分圧差(ΔP)が必要であるが、Nbはシーベルツ則に従わない領域があることがわかった。このため、低水素濃度においても水素圧力差や水素分圧差が発生すれば、高い固溶水素量差(ΔC)が得られ、高い水素透過量(J)を得ることができる。 For example, in hydrogen separation using a Pd-based alloy hydrogen separation membrane, the Sievert's law (C = KP 1/2, hereinafter abbreviated as “Siebert's law”) is used, so a high hydrogen permeation amount J (J = D · ΔC / d, D is a diffusion coefficient, ΔC is a solid solution hydrogen amount difference, and d is a film thickness), but a certain hydrogen partial pressure difference (ΔP) is required, but Nb does not follow the Siebelz rule I found that there was a region. For this reason, if a hydrogen pressure difference or a hydrogen partial pressure difference occurs even at a low hydrogen concentration, a high solid solution hydrogen amount difference (ΔC) can be obtained, and a high hydrogen permeation amount (J) can be obtained.

使用温度でのPCT曲線を測定することで、合金の使用可能な水素圧を決定できる。例えば、500℃においてV−W系合金は0.3MPa〔=3気圧(絶対圧)〕以下、Ta−W系合金は0.15MPa〔=1.5気圧(絶対圧)〕以下の水素分圧であれば水素分離膜として使用可能である(図1、図3)。   By measuring the PCT curve at the operating temperature, the usable hydrogen pressure of the alloy can be determined. For example, at 500 ° C., the hydrogen partial pressure is 0.3 MPa (= 3 atmospheres (absolute pressure)) or less for V-W alloys and 0.15 MPa (= 1.5 atmospheres (absolute pressure)) for Ta-W alloys. Can be used as a hydrogen separation membrane (FIGS. 1 and 3).

また、水素の透過流束Jと合金の膜厚dの積であるJ・d値の評価から圧力条件によっては、V−W系合金やTa−W系合金がPd−Ag合金と比較して高い水素透過速度を得ることが分かった(図2、図4)。   Also, depending on the pressure condition from the evaluation of the J · d value, which is the product of the hydrogen permeation flux J and the film thickness d of the alloy, the VW alloy and the Ta—W alloy may be compared with the Pd—Ag alloy. It was found that a high hydrogen permeation rate was obtained (FIGS. 2 and 4).

図2のとおり、500℃において、水素透過条件、プロセス側(一次側)/透過側(二次側)=0.20MPa/0.01MPaの場合、見掛けの水素透過能Φは、Pd−26Ag合金が2.3×10-8(mol-1・m-1・s-1・Pa-1/2)であるのに対し、V−5W合金膜1.2×10-7(mol-1・m-1・s-1・Pa-1/2)と約5倍であり、同じ面積、同じ厚さの分離膜であれば、約5倍の水素透過量が得られる。 As shown in FIG. 2, at 500 ° C., when hydrogen permeation condition, process side (primary side) / permeation side (secondary side) = 0.20 MPa / 0.01 MPa, the apparent hydrogen permeation capacity Φ is Pd-26Ag alloy Is 2.3 × 10 −8 (mol −1 · m −1 · s −1 · Pa −1/2 ), whereas V-5W alloy film 1.2 × 10 −7 (mol −1 · m −1 · s −1 · Pa −1/2 ) and about 5 times as long as a separation membrane having the same area and thickness, a hydrogen permeation amount of about 5 times can be obtained.

例えば、改質時における見掛けの水素透過係数が0.7×10-8(mol-1・m-1・s-1・Pa-1/2)である、長さ450mm、幅120mm、厚さ20μmのPd系合金水素分離膜に、95NL/h(おおよそ3cm3/min/cm2)の13A都市ガスと、S/C(水蒸気/カーボン比)=3の水蒸気を、一次側(改質側)を0.8MPaで投入し、二次側(透過側)を−0.06MPaGにして、550℃において水素製造を行った場合を考えると、水素製造量は294L/h、原料転化率は80.4%となる。 For example, the apparent hydrogen permeation coefficient during reforming is 0.7 × 10 −8 (mol −1 · m −1 · s −1 · Pa −1/2 ), length 450 mm, width 120 mm, thickness To a 20 μm Pd-based alloy hydrogen separation membrane, 95 NL / h (approximately 3 cm 3 / min / cm 2 ) of 13 A city gas and S / C (water vapor / carbon ratio) = 3 water vapor are added to the primary side (reforming side). ) At 0.8 MPa, the secondary side (permeation side) at −0.06 MPaG, and hydrogen production at 550 ° C., the hydrogen production amount is 294 L / h, and the raw material conversion rate is 80 4%.

このとき反応管出口におけるガス組成は、550℃において、CH4=7.0%、H2O=51.6%、CO=1.9%、CO2=26.9%、H2=12.6%であり、出口部分における水素分圧は0.11MPa(絶対圧)となるため、プロセスガス側の圧力が0.8MPaGであっても、Pd系合金水素分離膜の後段においてV−W系合金水素分離膜やTa−W系合金水素分離膜の使用が可能となる。 At this time, the gas composition at the outlet of the reaction tube is 550 ° C., CH 4 = 7.0%, H 2 O = 51.6%, CO = 1.9%, CO 2 = 26.9%, H 2 = 12. Since the hydrogen partial pressure at the outlet portion is 0.11 MPa (absolute pressure), even if the pressure on the process gas side is 0.8 MPaG, V-W It is possible to use a hydrogen-based alloy hydrogen separation membrane or a Ta-W alloy hydrogen separation membrane.

V−W系合金膜やTa−W系合金膜を使用した水素分離膜モジュールを、Pd系合金水素分離膜の後段、改質器上部の温度が500℃以下の位置に設置すれば、Pd系合金水素分離膜のプロセスガス側オフガスからさらに水素を分離し、高い水素製造量が得られる水素分離型改質器が実現できる。   If a hydrogen separation membrane module using a V-W type alloy membrane or a Ta-W type alloy membrane is installed at a position subsequent to the Pd type alloy hydrogen separation membrane and at a temperature above the reformer, the Pd type A hydrogen separation reformer that can further separate hydrogen from the process gas side off-gas of the alloy hydrogen separation membrane to obtain a high hydrogen production amount can be realized.

特許文献6では、ユニットを直列につなぐことで、並列的に接続して均一に原料ガスを同時に供給する場合に比べて、ユニット内での原料ガスの線流速を上昇させ、流れと直交する方向において改質触媒上で反応した水素の混合拡散を促進し、水素製造量を増大させることが提案されている。   In Patent Document 6, by connecting the units in series, the linear flow rate of the source gas in the unit is increased and the direction orthogonal to the flow is compared to the case where the source gas is uniformly connected and supplied simultaneously. Has been proposed to promote mixed diffusion of hydrogen reacted on the reforming catalyst and increase the amount of hydrogen produced.

特開2004−182297号公報JP 2004-182297 A

効率的な水素製造を行うためには、例えば一次圧(反応側)=0.8MPaG、二次圧(透過側)=−0.06〜0MPaG、500〜550℃、S/C=2.5〜3.5の条件において、原料投入量2〜6cm3/min/cm2、理想的には3〜4cm3/min/cm2程度で運転するのが適当である。同じ単位面積、単位時間当たりの原料投入量であれば、直列に反応管を接続した場合、二つの反応管を直列に接続した場合は2倍、四つの反応管を直列に接続した場合は4倍と、接続した反応管の数に比例して線速度は速くなる。 In order to perform efficient hydrogen production, for example, primary pressure (reaction side) = 0.8 MPaG, secondary pressure (permeation side) = − 0.06 to 0 MPaG, 500 to 550 ° C., S / C = 2.5 It is appropriate to operate at a raw material input amount of 2 to 6 cm 3 / min / cm 2 , ideally about 3 to 4 cm 3 / min / cm 2 under the conditions of ˜3.5. For the same unit area and raw material input per unit time, when connecting reaction tubes in series, double when two reaction tubes are connected in series, 4 when connecting four reaction tubes in series Double the linear velocity in proportion to the number of connected reaction tubes.

上述のPd系合金水素分離膜を用いた反応管を二本つなげ、膜面積当たり同じとなる原料、189NL/h(おおよそ3cm3/min/cm2)を投入し、理想的に全体が550℃と仮定した場合、原料転化率は80.4%、水素製造量は588NL/hとなる。前段の温度の高い部分(〜550℃)にPd系合金水素分離膜を用いた反応管を一本、後段(上部)の温度が低く500℃程度の場所に、5A族金属合金水素分離膜を用いた反応管一本を設置して、3cm3/min/cm2を投入する場合は、一本目のPd系合金水素分離膜を用いた反応管の出口部分における水素分圧が0.152MPa(絶対圧)となるため、Ta−W系合金膜は使用できないが、V−W系合金膜が使用できる。 Two reaction tubes using the above-mentioned Pd alloy hydrogen separation membrane are connected, and the same raw material per membrane area, 189 NL / h (approximately 3 cm 3 / min / cm 2 ) is charged, and ideally the whole is 550 ° C. Assuming that, the raw material conversion is 80.4% and the hydrogen production is 588 NL / h. One reaction tube using a Pd-based alloy hydrogen separation membrane in the high temperature part (up to 550 ° C) in the former stage, and a 5A metal alloy hydrogen separation membrane in a place where the temperature in the latter stage (upper part) is low and around 500 ° C. When one reaction tube used is installed and 3 cm 3 / min / cm 2 is charged, the hydrogen partial pressure at the outlet portion of the reaction tube using the first Pd-based alloy hydrogen separation membrane is 0.152 MPa ( Absolute pressure), a Ta—W alloy film cannot be used, but a V—W alloy film can be used.

二本目のPd系合金水素分離膜の代わりに長さ450mm、幅120mm、厚さ40μm(加工性がPd系合金より低いため)の5A族金属合金水素分離膜を用いたとき、出口の原料転化率は85.8%、水素製造量は679NL/hとなり、Pd系合金水素分離膜のみ2本を用いた場合の水素製造量588NL/hに対して15.5%増加する。   When a 5A group metal alloy hydrogen separation membrane having a length of 450 mm, a width of 120 mm, and a thickness of 40 μm (because workability is lower than that of a Pd alloy) is used instead of the second Pd alloy hydrogen separation membrane, the raw material conversion at the outlet is performed. The rate is 85.8% and the hydrogen production amount is 679 NL / h, which is 15.5% higher than the hydrogen production amount 588 NL / h when only two Pd alloy hydrogen separation membranes are used.

同様に、上述のPd系合金水素分離膜を用いた反応管を三本つなげ、膜面積当たり同じとなる原料、284NL/h(おおよそ3cm3/min/cm2)を投入し、理想的に全体が550℃と仮定した場合、原料転化率は80.4%、水素製造量は883NL/hとなる。前段の温度の高い部分(〜550℃)にPd系合金水素分離膜を用いた反応管を二本を、後段(上部)の温度が低く500℃程度の場所に、5A族金属合金水素分離膜を用いた反応管一本を設置する場合は、Pd系合金水素分離膜を用いた反応管の出口部分における水素分圧が0.138MPa(絶対圧)となり、Ta−W系合金膜も、V−W系合金膜も使用できる。 Similarly, three reaction tubes using the above-mentioned Pd-based alloy hydrogen separation membrane are connected, and the same raw material, 284 NL / h (approximately 3 cm 3 / min / cm 2 ), is charged per membrane area. Is assumed to be 550 ° C., the raw material conversion is 80.4%, and the hydrogen production is 883 NL / h. Two reaction tubes using a Pd-based alloy hydrogen separation membrane in the high temperature part (up to 550 ° C) in the former stage, and a 5A metal alloy hydrogen separation membrane in a place where the temperature in the latter stage (upper part) is low and around 500 ° C When installing one reaction tube using Pd, the hydrogen partial pressure at the outlet of the reaction tube using the Pd-based alloy hydrogen separation membrane is 0.138 MPa (absolute pressure), and the Ta-W-based alloy membrane is also V A -W alloy film can also be used.

このとき、三本目のPd系合金水素分離膜の代わりに上述と同じ寸法の5A族金属合金水素分離膜を用いれば、三本目出口の原料転化率は82.8%となり、水素製造量は974NL/hと10.3%増加する。このように、Pd系合金水素分離膜を用いた反応管の一部を5A族金属合金水素分離膜を用いた反応管に置き換えることにより、低コストで高効率な水素分離型改質器を実現できる。   At this time, if a group 5A metal alloy hydrogen separation membrane having the same dimensions as described above is used instead of the third Pd alloy hydrogen separation membrane, the raw material conversion rate at the third outlet is 82.8%, and the hydrogen production amount is 974 NL. / H and 10.3% increase. Thus, by replacing a part of the reaction tube using the Pd-based alloy hydrogen separation membrane with a reaction tube using the 5A group metal alloy hydrogen separation membrane, a low-cost and high-efficiency hydrogen separation reformer is realized. it can.

また、反応炉全体をほぼ均一な温度にすることが可能であって、500℃で運転を行う場合は、原料の入口側のみにPd系合金水素分離膜があれば十分にプロセスガス側の水素分圧を0.15MPa(絶対圧)以下に下げることができる。500℃で反応管を五本つなげる場合、1本目のPd系合金水素分離膜を用いた反応管の出口部分における水素分圧は0.136MPa(絶対圧)となり、二〜五本目に5A族金属合金水素分離膜を使用できる。   Further, it is possible to bring the entire reactor to a substantially uniform temperature, and when operating at 500 ° C., if there is a Pd-based alloy hydrogen separation membrane only on the inlet side of the raw material, the hydrogen on the process gas side is sufficient. The partial pressure can be lowered to 0.15 MPa (absolute pressure) or less. When five reaction tubes are connected at 500 ° C., the hydrogen partial pressure at the outlet portion of the reaction tube using the first Pd-based alloy hydrogen separation membrane is 0.136 MPa (absolute pressure), and the group 5A metal is used in the second to fifth tubes. An alloy hydrogen separation membrane can be used.

二〜五本目にPd系合金水素分離膜の代わりに上述と同じ寸法の5A族金属合金水素分離膜を用いた場合、五本目出口の原料転化率は89.7%となり、水素製造量は1529NL/hとなり、550℃において5本のPd系合金水素分離膜反応管を用いた場合の1471NL/hと比較して4.0%増加する。Pd系合金水素分離膜の使用量を大幅に減らすことができ、原材料コストを低減できるだけでなく、反応炉の運転温度を低下させることで反応管加熱のための投入エネルギーを低減し、放熱等のエネルギーロスを低く抑えることで高効率化が可能となる。   When a 5A metal alloy hydrogen separation membrane having the same dimensions as described above is used in place of the Pd alloy hydrogen separation membrane in the second to fifth, the raw material conversion rate at the fifth outlet is 89.7%, and the hydrogen production is 1529 NL. / H, an increase of 4.0% compared to 1471 NL / h when five Pd-based alloy hydrogen separation membrane reaction tubes are used at 550 ° C. The amount of Pd-based alloy hydrogen separation membrane can be greatly reduced, not only reducing raw material costs, but also reducing the input energy for reaction tube heating by reducing the operating temperature of the reactor, High efficiency can be achieved by keeping energy loss low.

また、改質ガスつまり水素含有ガスから高い回収率で水素を引き抜くため、改質器からのオフガス中のCO2濃度が相対的に上昇する。現在、世界最高効率を実現している出願人の40Nm3/hメンブレンリフォーマー(改良型)の100%出力時=40Nm3/h水素製造時の改質器オフガス中のCO2濃度は72.2%であるが、条件によってはこれより高いCO2濃度を得ることが可能である。2段式水素分離型改質器のオフガスからは、圧縮液化のみによって、より高効率にCO2を分離し回収することが可能である。 Further, since hydrogen is extracted from the reformed gas, that is, the hydrogen-containing gas with a high recovery rate, the CO 2 concentration in the off-gas from the reformer is relatively increased. At the time of 100% output of the applicant's 40 Nm 3 / h membrane reformer (improved type) that currently achieves the world's highest efficiency = 40 Nm 3 / h The CO 2 concentration in the reformer off-gas during hydrogen production is 72.2 %, But depending on the conditions, higher CO 2 concentrations can be obtained. From the off-gas of the two-stage hydrogen separation reformer, CO 2 can be separated and recovered with higher efficiency only by compression liquefaction.

〈本発明(1)の構成態様例〉
図5は、本発明(1)の構成態様例を説明する図である。図5のとおり、容器10中にPd系合金水素分離膜を設置した水素分離器1と5A族金属合金水素分離膜を設置した水素分離器2を配置する。それら水素分離器1、水素分離器2を収容した容器10にはその下部にバーナー11が配置される。12はバーナーでの燃焼ガスの分散板である。符号13は容器10からの燃焼排ガス導出管である。
<Example of Configuration of the Present Invention (1)>
FIG. 5 is a diagram for explaining an example of the configuration of the present invention (1). As shown in FIG. 5, a hydrogen separator 1 in which a Pd alloy hydrogen separation membrane is installed and a hydrogen separator 2 in which a 5A group metal alloy hydrogen separation membrane is installed are arranged in a container 10. A burner 11 is disposed in the lower part of the container 10 containing the hydrogen separator 1 and the hydrogen separator 2. Reference numeral 12 denotes a burner gas dispersion plate in the burner. Reference numeral 13 denotes a flue gas exhaust pipe from the container 10.

Pd系合金水素分離膜を設置した水素分離器1を図7(a)に示し、5A族金属合金水素分離膜を設置した水素分離器2を図7(b)に示している。図7(a)〜(b)においては、水素分離器に改質触媒層を配置した場合の態様例を示している。   A hydrogen separator 1 provided with a Pd alloy hydrogen separation membrane is shown in FIG. 7A, and a hydrogen separator 2 provided with a 5A group metal alloy hydrogen separation membrane is shown in FIG. 7B. 7A to 7B show an example of a case where a reforming catalyst layer is arranged in the hydrogen separator.

容器10中には、水素分離器1と水素分離器2を直列に組み合わせた列を複数列に配置する。その列の数は適宜設定することができる。図5にはその列数が4列の場合を示している。また、水素分離器1と水素分離器2を直列に組み合わせた列における、水素分離器1の数と水素分離器2の数は適宜設定することができる。図5には水素分離器1が2個、水素分離器2が1個の場合を示している。   In the container 10, a row in which the hydrogen separator 1 and the hydrogen separator 2 are combined in series is arranged in a plurality of rows. The number of the columns can be set as appropriate. FIG. 5 shows a case where the number of columns is four. Moreover, the number of the hydrogen separators 1 and the number of the hydrogen separators 2 in the row | line | column which combined the hydrogen separator 1 and the hydrogen separator 2 in series can be set suitably. FIG. 5 shows a case where there are two hydrogen separators 1 and one hydrogen separator 2.

水素分離器1には改質触媒層を配置する。図5には各列の最下部の水素分離器1に改質触媒層を配置した場合を示している。改質触媒は、プロセスガス(原燃料+水蒸気)中の原燃料を水蒸気改質して水素を生成する。   A reforming catalyst layer is disposed in the hydrogen separator 1. FIG. 5 shows a case where a reforming catalyst layer is arranged in the lowermost hydrogen separator 1 in each row. The reforming catalyst generates hydrogen by steam reforming the raw fuel in the process gas (raw fuel + steam).

水素分離器1は、合金からなる多孔質支持体もしくは多孔板からなる支持体にPd系合金水素分離膜を配置して構成される。多孔質支持体もしくは多孔板からなる支持体は円筒体でもよく筺体でもよい。水素分離器2は、合金からなる多孔質の円筒体または筺体に5A族金属合金水素分離膜を配置して構成される。多孔質とはガスを通す連通孔を有するとの意味である。水素分離器1と水素分離器2の配置は、プロセスガス(原燃料+水蒸気)の流れ方向でみて、まず水素分離器1を配置し、次いで水素分離器2を配置する。符号5はプロセスガス導入管であり、水素分離器1の下端部に開口している。   The hydrogen separator 1 is configured by disposing a Pd-based alloy hydrogen separation membrane on a porous support made of an alloy or a support made of a porous plate. The support made of a porous support or a porous plate may be a cylindrical body or a casing. The hydrogen separator 2 is configured by arranging a group 5A metal alloy hydrogen separation membrane on a porous cylindrical body or casing made of an alloy. The term “porous” means that there are communication holes through which gas passes. As for the arrangement of the hydrogen separator 1 and the hydrogen separator 2, the hydrogen separator 1 is first arranged, and then the hydrogen separator 2 is arranged in the flow direction of the process gas (raw fuel + steam). Reference numeral 5 denotes a process gas introduction pipe, which opens at the lower end of the hydrogen separator 1.

原燃料と水蒸気の混合ガスであるプロセスガスは、その導入管5を介して導入される。最下部の水素分離器1の下端部に導入されたプロセスガス中の原燃料は、水蒸気とともに当該水素分離器1に配置された改質触媒層中を上昇しながら改質触媒により改質されて水素を生成する。改質触媒層の改質触媒により改質されて生成した水素を含むプロセスガスは、水素分離器1中を上昇しながら、水素がPd系合金水素分離膜を透過して精製され、透過した水素は水素導出管8を介して取り出される。   A process gas which is a mixed gas of raw fuel and water vapor is introduced through the introduction pipe 5. The raw fuel in the process gas introduced into the lower end of the lowermost hydrogen separator 1 is reformed by the reforming catalyst while rising in the reforming catalyst layer disposed in the hydrogen separator 1 together with the steam. Produce hydrogen. The process gas containing hydrogen generated by reforming by the reforming catalyst of the reforming catalyst layer is purified by passing through the Pd-based alloy hydrogen separation membrane while the hydrogen is passed through the hydrogen separator 1 and the permeated hydrogen. Is taken out through the hydrogen outlet pipe 8.

最下部の水素分離器1を経たプロセスガス(当該最下部の水素分離器1で分離されなかった生成水素を含む)は、連結管6を介して、次の水素分離器1すなわち第2の水素分離器1に導入され上昇し、プロセスガス中の水素がPd系合金水素分離膜を透過して精製され、透過した水素は水素導出管8を介して取り出される。   The process gas that has passed through the lowermost hydrogen separator 1 (including product hydrogen that has not been separated in the lowermost hydrogen separator 1) passes through the connecting pipe 6 to the next hydrogen separator 1, that is, the second hydrogen. The hydrogen is introduced into the separator 1 and rises, and the hydrogen in the process gas is purified by permeating the Pd-based alloy hydrogen separation membrane, and the permeated hydrogen is taken out through the hydrogen outlet pipe 8.

上記第2の水素分離器1を経たプロセスガス(当該第2の水素分離器1で分離されなかった生成水素を含む)は、連結管6を介して、水素分離器2に導入され、水素分離器2中を上昇しながら、プロセスガス中の水素が5A族金属合金水素分離膜を透過、精製され、透過した水素は水素導出管8を介して取り出される。   The process gas that has passed through the second hydrogen separator 1 (including produced hydrogen that has not been separated by the second hydrogen separator 1) is introduced into the hydrogen separator 2 via the connecting pipe 6, and hydrogen separation is performed. While rising in the vessel 2, hydrogen in the process gas permeates and purifies the 5A metal alloy hydrogen separation membrane, and the permeated hydrogen is taken out through the hydrogen outlet tube 8.

このように、プロセスガスは、順次、最下部の水素分離器1、当該最下部の水素分離器1に続く第2の水素分離器1、当該第2の水素分離器1に続く水素分離器2を経ながら、それらそれぞれで水素を分離精製し、水素導出管8を介して取り出される。   Thus, the process gas is sequentially supplied to the lowermost hydrogen separator 1, the second hydrogen separator 1 following the lowermost hydrogen separator 1, and the hydrogen separator 2 following the second hydrogen separator 1. Then, hydrogen is separated and purified by each of them and taken out through the hydrogen outlet pipe 8.

一方、プロセスガスのオフガス、すなわち、その中の水素を分離した後の残余のガスはオフガス排出管7を介して排出される。より詳しくは、原燃料と水蒸気の混合ガスであるプロセスガスは、水素分離器1に配置された改質触媒層中を上昇しながら改質触媒の触媒作用により原燃料が水蒸気により改質(水蒸気改質)されて水素を生成する。生成水素は水素分離器1、2により分離、精製されるが、分離されなかった残余のガスはオフガス排出管7を介して排出される。   On the other hand, the off gas of the process gas, that is, the remaining gas after separating the hydrogen therein is discharged through the off gas discharge pipe 7. More specifically, the process gas, which is a mixed gas of raw fuel and steam, is reformed by raw steam by steam by the catalytic action of the reforming catalyst while moving up in the reforming catalyst layer disposed in the hydrogen separator 1 (steam Reformed) to produce hydrogen. The produced hydrogen is separated and purified by the hydrogen separators 1 and 2, but the remaining gas that has not been separated is discharged through the off-gas discharge pipe 7.

図5に示す例では水素分離器1、水素分離器2の組み合わせの列が4列であるので、各列毎に水素導出管8があるが、導出水素は、各水素導出管8を1本の水素導出管に纏めて取り出すことができる。また、図5には4列の各列毎のオフガス排出管7があるが、オフガスは、各オフガス排出管7を1本のオフガス排出管に纏めて排出すことができる。   In the example shown in FIG. 5, the number of combinations of the hydrogen separator 1 and the hydrogen separator 2 is four, so there is a hydrogen outlet tube 8 for each column. Can be taken out together in a hydrogen outlet tube. Further, in FIG. 5, there are four rows of off-gas discharge pipes 7 for each row, but the off-gas can be discharged by collecting each off-gas discharge tube 7 into one off-gas discharge tube.

〈本発明(2)の構成態様例〉
図5において、最下部の水素分離器1を構成する「合金からなる多孔質支持体」は、改質触媒としての役割と水素分離膜を支持する役割を同時に果たす円筒状の改質触媒兼多孔質支持体に換えることができる。この構成は本発明(2)の構成態様例となる。その他の構成は〈本発明(1)の構成態様例〉と同様である。
<Configuration Example of the Invention (2)>
In FIG. 5, the “porous support made of an alloy” constituting the lowermost hydrogen separator 1 is a cylindrical reforming catalyst / porous material that simultaneously serves as a reforming catalyst and supports a hydrogen separation membrane. It can be replaced with a quality support. This configuration is a configuration example of the present invention (2). Other configurations are the same as those in <Example of configuration of the present invention (1)>.

〈本発明(3)の構成態様例〉
図6は、本発明(3)の構成態様例を説明する図である。図6のとおり、容器10中にPd系合金水素分離膜を設置した水素分離器1と5A族金属合金水素分離膜を設置した水素分離器2を配置する。それら水素分離器1、水素分離器2を収容した容器10にはその下部にバーナー11が配置される。12はバーナーでの燃焼ガスの分散板である。
<Structural example of the present invention (3)>
FIG. 6 is a diagram for explaining an example of the configuration of the present invention (3). As shown in FIG. 6, a hydrogen separator 1 in which a Pd-based alloy hydrogen separation membrane is installed and a hydrogen separator 2 in which a 5A group metal alloy hydrogen separation membrane is installed are disposed in a container 10. A burner 11 is disposed in the lower part of the container 10 containing the hydrogen separator 1 and the hydrogen separator 2. Reference numeral 12 denotes a burner gas dispersion plate in the burner.

Pd系合金水素分離膜または5A族金属合金水素分離膜を設置した水素分離器を図7(c)に示している。Pd系合金水素分離膜を設置した水素分離器が水素分離器1となり、5A族金属合金水素分離膜を設置した水素分離器が水素分離器2となる。   FIG. 7C shows a hydrogen separator provided with a Pd-based alloy hydrogen separation membrane or a 5A group metal alloy hydrogen separation membrane. The hydrogen separator provided with the Pd alloy hydrogen separation membrane is the hydrogen separator 1, and the hydrogen separator provided with the 5A group metal alloy hydrogen separation membrane is the hydrogen separator 2.

容器10中には、水素分離器1と水素分離器2を直列に組み合わせた列を複数列に配置する。その列の数は適宜設定することができる。図6にはその列数が3列の場合を示している。また、水素分離器1と水素分離器2を直列に組み合わせた列における、水素分離器1の数と水素分離器2の数は適宜設定することができる。図6には水素分離器1が1個、水素分離器2が4個の場合を示している。   In the container 10, a row in which the hydrogen separator 1 and the hydrogen separator 2 are combined in series is arranged in a plurality of rows. The number of the columns can be set as appropriate. FIG. 6 shows a case where the number of columns is three. Moreover, the number of the hydrogen separators 1 and the number of the hydrogen separators 2 in the row | line | column which combined the hydrogen separator 1 and the hydrogen separator 2 in series can be set suitably. FIG. 6 shows a case where there is one hydrogen separator 1 and four hydrogen separators 2.

水素分離器1には改質触媒層を配置する。図6には各列の最下部の水素分離器1に改質触媒層を配置した場合を示している。改質触媒は、プロセスガス(原燃料+水蒸気)中の原燃料を水蒸気により改質して水素を生成する。   A reforming catalyst layer is disposed in the hydrogen separator 1. FIG. 6 shows a case where a reforming catalyst layer is arranged in the lowermost hydrogen separator 1 in each row. The reforming catalyst reforms raw fuel in process gas (raw fuel + steam) with steam to generate hydrogen.

水素分離器1は、合金からなる多孔質支持体もしくは多孔板からなる支持体にPd系合金水素分離膜を配置して構成される。多孔質支持体もしくは多孔板からなる支持体は円筒体でもよく筺体でもよい。水素分離器2は、合金からなる多孔質の円筒体または筺体に5A族金属合金水素分離膜を配置して構成される。多孔質とはガスを通す連通孔を有するとの意味である。水素分離器1と水素分離器2の配置は、プロセスガス(原燃料+水蒸気)の流れ方向でみて、まず水素分離器1を配置し、次いで水素分離器2を配置する。符号5はプロセスガス導入管であり、水素分離器1の下端部に開口している。   The hydrogen separator 1 is configured by disposing a Pd-based alloy hydrogen separation membrane on a porous support made of an alloy or a support made of a porous plate. The support made of a porous support or a porous plate may be a cylindrical body or a casing. The hydrogen separator 2 is configured by arranging a group 5A metal alloy hydrogen separation membrane on a porous cylindrical body or casing made of an alloy. The term “porous” means that there are communication holes through which gas passes. As for the arrangement of the hydrogen separator 1 and the hydrogen separator 2, the hydrogen separator 1 is first arranged, and then the hydrogen separator 2 is arranged in the flow direction of the process gas (raw fuel + steam). Reference numeral 5 denotes a process gas introduction pipe, which opens at the lower end of the hydrogen separator 1.

原燃料と水蒸気の混合ガスであるプロセスガスは、その導入管5を介して導入される。最下部の水素分離器1の左端部に導入されたプロセスガス中の原燃料は、当該水素分離器1中に配置された改質触媒層中を流れながら改質触媒により改質されて水素を生成する。生成水素を含むプロセスガスは、水素分離器1中を流れながら、プロセスガス中の水素がPd系合金水素分離膜を透過して精製され、透過した水素は水素導出管8を介して取り出される。   A process gas which is a mixed gas of raw fuel and water vapor is introduced through the introduction pipe 5. The raw fuel in the process gas introduced into the left end of the lowermost hydrogen separator 1 is reformed by the reforming catalyst while flowing through the reforming catalyst layer disposed in the hydrogen separator 1 to remove hydrogen. Generate. While the process gas containing the produced hydrogen flows through the hydrogen separator 1, the hydrogen in the process gas is purified by permeating the Pd alloy hydrogen separation membrane, and the permeated hydrogen is taken out through the hydrogen outlet pipe 8.

最下部の水素分離器1を経たプロセスガス(当該最下部の水素分離器1で分離されなかった生成水素を含む)は、連結管6を介して、水素分離器2に導入され、水素分離器2中を流れながら、プロセスガス中の水素が5A族金属合金水素分離膜を透過、精製され、透過した水素は水素導出管8を介して取り出される。   Process gas that has passed through the lowermost hydrogen separator 1 (including produced hydrogen that has not been separated by the lowermost hydrogen separator 1) is introduced into the hydrogen separator 2 via the connecting pipe 6, and the hydrogen separator The hydrogen in the process gas permeates and purifies the 5A metal alloy hydrogen separation membrane while flowing in the gas 2, and the permeated hydrogen is taken out through the hydrogen outlet pipe 8.

このように、プロセスガスは、順次、最下部の水素分離器1、当該水素分離器1に続く水素分離器2を経ながら、水素を分離精製し、水素導出管8を介して取り出され、さらにその次の水素分離器2を経ながら、水素を分離精製し、水素導出管8を介して取り出される。   In this way, the process gas is separated and purified through the hydrogen separator 1 at the bottom and the hydrogen separator 2 following the hydrogen separator 1 in this order, and is taken out via the hydrogen outlet pipe 8. The hydrogen is separated and purified through the subsequent hydrogen separator 2 and taken out through the hydrogen outlet pipe 8.

一方、プロセスガスのオフガス、すなわち、その中の水素を分離した後の残余のガスはオフガス排出管7を介して排出される。より詳しくは、原燃料と水蒸気の混合ガスであるプロセスガスは、水素分離器1に配置された改質触媒層中を上昇しながら改質触媒の触媒作用により原燃料が水蒸気により改質(水蒸気改質)されて水素を生成する。生成水素は水素分離器1、2により分離、精製されるが、分離されなかった残余のガスはオフガス排出管7を介して排出される。   On the other hand, the off gas of the process gas, that is, the remaining gas after separating the hydrogen therein is discharged through the off gas discharge pipe 7. More specifically, the process gas, which is a mixed gas of raw fuel and steam, is reformed by raw steam by steam by the catalytic action of the reforming catalyst while moving up in the reforming catalyst layer disposed in the hydrogen separator 1 (steam Reformed) to produce hydrogen. The produced hydrogen is separated and purified by the hydrogen separators 1 and 2, but the remaining gas that has not been separated is discharged through the off-gas discharge pipe 7.

図6に示す例では水素分離器1、水素分離器2の組み合わせの列が3列であるので、各列毎の水素導出管8があるが、導出水素は、各水素導出管8を1本の水素導出管に纏めて取り出すことができる。また、図6には3列の各列毎のオフガス排出管7があるが、オフガスは、各オフガス排出管7を1本のオフガス排出管に纏めて排出することができる。   In the example shown in FIG. 6, since there are three rows of combinations of the hydrogen separator 1 and the hydrogen separator 2, there are hydrogen lead-out tubes 8 for each row. Derived hydrogen has one hydrogen lead-out tube 8. Can be taken out together in a hydrogen outlet tube. Further, in FIG. 6, there are three off-gas discharge pipes 7 for each row, but the off-gas can be discharged by collecting each off-gas discharge pipe 7 into one off-gas discharge pipe.

〈本発明(4)の構成態様例〉
図6において、最下部の水素分離器1を構成する「合金からなる多孔質支持体」は、改質触媒としての役割と水素分離膜を支持する役割を同時に果たす円筒状の改質触媒兼多孔質支持体に換えることができる。この構成は本発明(4)の構成態様例となる。その他の構成は〈本発明(3)の構成態様例〉と同様である。
<Structural example of the present invention (4)>
In FIG. 6, the “porous support made of an alloy” constituting the lowermost hydrogen separator 1 is a cylindrical reforming catalyst / porous material that simultaneously serves as a reforming catalyst and supports a hydrogen separation membrane. It can be replaced with a quality support. This configuration is a configuration example of the present invention (4). Other configurations are the same as those of the <configuration mode example of the present invention (3)>.

1、2 水素分離器
2 多孔質支持体
3 筺状容器
5 プロセスガス導入管
6 連結管
7 オフガス排出管
8 水素導出管
10 容器
11 バーナー
12 分散板
13 燃焼排ガス導出管
DESCRIPTION OF SYMBOLS 1, 2 Hydrogen separator 2 Porous support body 3 Vessel-like container 5 Process gas introduction pipe 6 Connection pipe 7 Off-gas discharge pipe 8 Hydrogen outlet pipe 10 Container 11 Burner 12 Dispersion plate 13 Combustion exhaust gas outlet pipe

Claims (5)

水素分離膜を支持する役割を果たす円筒状の多孔質支持体もしくは多孔板からなる支持体の外周面に水素分離膜を配置し、当該水素分離膜の外周に改質触媒層を配置してなる水素分離型改質器を複数直列に配置してなる水素分離システムであって、
前記水素分離膜は、被処理ガスの上流側にはPd系合金水素分離膜を用い、被処理ガスの下流側には5A族金属合金水素分離膜を用いてなることを特徴とする水素分離システム。
A hydrogen separation membrane is arranged on the outer peripheral surface of a cylindrical porous support or a porous plate supporting the hydrogen separation membrane, and a reforming catalyst layer is arranged on the outer periphery of the hydrogen separation membrane. A hydrogen separation system comprising a plurality of hydrogen separation reformers arranged in series,
The hydrogen separation membrane is characterized in that a Pd alloy hydrogen separation membrane is used on the upstream side of the gas to be processed, and a 5A group metal alloy hydrogen separation membrane is used on the downstream side of the gas to be processed. .
改質触媒としての役割と水素分離膜を支持する役割を同時に果たす円筒状の改質触媒兼多孔質支持体の外周面に水素分離膜を配置してなる水素分離型改質器を複数直列に配置してなる水素分離システムであって、
前記水素分離膜は、被処理ガスの上流側にはPd系合金水素分離膜を用い、被処理ガスの下流側には5A族金属合金水素分離膜を用いてなることを特徴とする水素分離システム。
Multiple hydrogen separation reformers with a hydrogen separation membrane arranged in series on the outer peripheral surface of a cylindrical reforming catalyst / porous support that simultaneously serves as a reforming catalyst and supports the hydrogen separation membrane A hydrogen separation system comprising:
The hydrogen separation membrane is characterized in that a Pd alloy hydrogen separation membrane is used on the upstream side of the gas to be processed, and a 5A group metal alloy hydrogen separation membrane is used on the downstream side of the gas to be processed. .
水素分離膜を支持する役割を果たす筺状の多孔質支持体もしくは多孔板からなる支持体の外周面に水素分離膜を配置し、当該水素分離膜の外周に改質触媒層を配置してなる水素分離型改質器を複数直列に配置してなる水素分離システムであって、
前記水素分離膜は、被処理ガスの上流側にはPd系合金水素分離膜を用い、被処理ガスの下流側には5A族金属合金水素分離膜を用いてなることを特徴とする水素分離システム。
A hydrogen separation membrane is disposed on the outer peripheral surface of a cage-like porous support or a porous plate supporting the hydrogen separation membrane, and a reforming catalyst layer is disposed on the outer periphery of the hydrogen separation membrane. A hydrogen separation system comprising a plurality of hydrogen separation reformers arranged in series,
The hydrogen separation membrane is characterized in that a Pd alloy hydrogen separation membrane is used on the upstream side of the gas to be processed, and a 5A group metal alloy hydrogen separation membrane is used on the downstream side of the gas to be processed. .
改質触媒としての役割と水素分離膜を支持する役割を同時に果たす筺状の改質触媒兼支持体の外周面に水素分離膜を配置してなる水素分離型改質器を複数直列に配置してなる水素分離システムであって、
前記水素分離膜は、被処理ガスの上流側にはPd系合金水素分離膜を用い、被処理ガスの下流側には5A族金属合金水素分離膜を用いてなることを特徴とする水素分離システム。
A plurality of hydrogen separation type reformers, in which a hydrogen separation membrane is arranged on the outer peripheral surface of a bowl-shaped reforming catalyst / support that simultaneously serves as a reforming catalyst and supports a hydrogen separation membrane, are arranged in series. A hydrogen separation system comprising:
The hydrogen separation membrane is characterized in that a Pd alloy hydrogen separation membrane is used on the upstream side of the gas to be processed, and a 5A group metal alloy hydrogen separation membrane is used on the downstream side of the gas to be processed. .
請求項1〜4のいずれか1項に記載の水素分離システムにおいて、前記被処理ガスの下流側に用いる5A族金属合金水素分離膜がV−W系合金水素分離膜、Ta−W系合金水素分離膜であることを特徴とする水素分離システム。
5. The hydrogen separation system according to claim 1, wherein the 5A group metal alloy hydrogen separation membrane used downstream of the gas to be treated is a VW alloy hydrogen separation membrane or a Ta—W alloy hydrogen. A hydrogen separation system characterized by being a separation membrane.
JP2010007613A 2010-01-16 2010-01-16 Hydrogen separation system using 5A group metal hydrogen separation membrane Expired - Fee Related JP5284293B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010007613A JP5284293B2 (en) 2010-01-16 2010-01-16 Hydrogen separation system using 5A group metal hydrogen separation membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010007613A JP5284293B2 (en) 2010-01-16 2010-01-16 Hydrogen separation system using 5A group metal hydrogen separation membrane

Publications (2)

Publication Number Publication Date
JP2011143375A true JP2011143375A (en) 2011-07-28
JP5284293B2 JP5284293B2 (en) 2013-09-11

Family

ID=44458708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010007613A Expired - Fee Related JP5284293B2 (en) 2010-01-16 2010-01-16 Hydrogen separation system using 5A group metal hydrogen separation membrane

Country Status (1)

Country Link
JP (1) JP5284293B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004074070A (en) * 2002-08-21 2004-03-11 Japan Steel Works Ltd:The Hydrogen-permeable membrane
JP2004265803A (en) * 2003-03-04 2004-09-24 Toyota Motor Corp Hydrogen separation device
JP2004344731A (en) * 2003-05-21 2004-12-09 Toyota Motor Corp Hydrogen permeable membrane
JP2006001816A (en) * 2004-06-21 2006-01-05 Mitsubishi Heavy Ind Ltd Apparatus and method for manufacturing hydrogen
JP2007007565A (en) * 2005-06-30 2007-01-18 Tokyo Gas Co Ltd Reinforcing structure for hydrogen-permeable film, and its manufacturing method
JP2011144088A (en) * 2010-01-15 2011-07-28 Tokyo Gas Co Ltd Two-stage hydrogen separation type reformer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004074070A (en) * 2002-08-21 2004-03-11 Japan Steel Works Ltd:The Hydrogen-permeable membrane
JP2004265803A (en) * 2003-03-04 2004-09-24 Toyota Motor Corp Hydrogen separation device
JP2004344731A (en) * 2003-05-21 2004-12-09 Toyota Motor Corp Hydrogen permeable membrane
JP2006001816A (en) * 2004-06-21 2006-01-05 Mitsubishi Heavy Ind Ltd Apparatus and method for manufacturing hydrogen
JP2007007565A (en) * 2005-06-30 2007-01-18 Tokyo Gas Co Ltd Reinforcing structure for hydrogen-permeable film, and its manufacturing method
JP2011144088A (en) * 2010-01-15 2011-07-28 Tokyo Gas Co Ltd Two-stage hydrogen separation type reformer

Also Published As

Publication number Publication date
JP5284293B2 (en) 2013-09-11

Similar Documents

Publication Publication Date Title
EP2181962B1 (en) Method and apparatus for hydrogen production and carbon dioxide recovery
KR102080571B1 (en) Apparatus for production of high purity carbon monoxide
EP2141119B1 (en) Method of hydrogen production and carbon dioxide recovery and apparatus therefor
US8518151B2 (en) Porous hollow fiber supported dense membrane for hydrogen production, separation, or purification
Tosti et al. Design and process study of Pd membrane reactors
JP4801359B2 (en) Hydrogen production method
JP6563452B2 (en) Membrane module for hydrogen separation, fuel processing apparatus and fuel cell system including membrane module
JP6470778B2 (en) Fuel cell system and power generation method
JP2017088490A (en) Hydrogen production apparatus
JP2011195387A (en) Membrane separation type reactor, membrane separation type hydrogen production apparatus and method for producing hydrogen
JP3406021B2 (en) Hydrogen production equipment
Hwang et al. A multi-membrane reformer for the direct production of hydrogen via a steam-reforming reaction of methane
CN117396264A (en) Method for recycling unused gas of membrane reactor
CN113453785A (en) Process for the separation of low hydrogen content from natural gas mixtures
JP2014001109A (en) Hydrogen purification device and hydrogen purification method
JP2019055892A (en) Hydrogen production equipment
JP5284293B2 (en) Hydrogen separation system using 5A group metal hydrogen separation membrane
JP5584477B2 (en) Two-stage hydrogen separation reformer
JP2004075439A (en) Hydrogen generating apparatus
JP5745662B2 (en) Two-stage hydrogen separation reformer
JP2009242216A (en) Apparatus for generating and separating hydrogen, fuel cell system using the same, and internal combustion engine system
JP5037878B2 (en) Permselective membrane reactor and method for producing hydrogen gas
JP2020111492A (en) Hydrogen production system
AU2013204804B2 (en) Method and apparatus for hydrogen production and carbon dioxide recovery
JP2009291740A (en) Hydrogen separation member and hydrogen generating apparatus

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121201

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20121201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130528

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130529

R150 Certificate of patent or registration of utility model

Ref document number: 5284293

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees