JP2011141969A - ナトリウム−硫黄電池システム - Google Patents

ナトリウム−硫黄電池システム Download PDF

Info

Publication number
JP2011141969A
JP2011141969A JP2010000756A JP2010000756A JP2011141969A JP 2011141969 A JP2011141969 A JP 2011141969A JP 2010000756 A JP2010000756 A JP 2010000756A JP 2010000756 A JP2010000756 A JP 2010000756A JP 2011141969 A JP2011141969 A JP 2011141969A
Authority
JP
Japan
Prior art keywords
power
nas battery
battery system
heater
sodium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010000756A
Other languages
English (en)
Inventor
Kenichi Suzuki
健一 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electric Power Company Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc filed Critical Tokyo Electric Power Co Inc
Priority to JP2010000756A priority Critical patent/JP2011141969A/ja
Publication of JP2011141969A publication Critical patent/JP2011141969A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Landscapes

  • Secondary Cells (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

【課題】配電系統に太陽光発電設備が大量に連系した場合に、配電系統の安定化をナトリウム−硫黄電池システムにより実現する。
【解決手段】配電用変電所の一次母線又は二次母線と連系するナトリウム−硫黄電池システム(NaS電池システム)であり、NaS電池システムのヒータへは、配電用変電所の構内電源から電力供給し、配電用変電所の電力系統との連系点に設置した計測装置からの計測値をNaS電池システムの交直変換装置の制御装置に伝送し、この計測値を基に充放電を制御することを特徴とするものである。
【選択図】 図1

Description

本発明は、ナトリウム−硫黄電池システムを電力系統の安定化、特に、配電系統の安定化のために使用する場合の制御に関するものである。
ナトリウム−硫黄電池(以下、元素記号を用いて「NaS電池」と称することもある)は、300℃程度以上で動作する高温動作型蓄電池であり、高いエネルギー密度と長いサイクル寿命から普及が進んでいる。NaS電池は、当初は、電力需要の平準化のために電気事業者(電力会社)の設備として設置することを目的に開発されたが、現在は、需要家の負荷平準化対策や瞬時電圧低下対策としての設置が主流であり、また、出力変動抑制用途として風力発電設備に併設されることも多くなっている。
一方、低炭素社会の実現が望まれるようになり、発電時に二酸化炭素を排出しない太陽光発電設備(太陽電池)の設置が期待されている。しかし、太陽光発電は日光の照射状況により出力が変動するため、太陽光発電設備の大量設置により、太陽光発電設備が連系される電力系統、特に、配電系統に、周波数や電圧の変動等の悪影響が発生することが懸念されている。
そのため、太陽光発電設備と蓄電池を組み合わせて太陽光発電の出力の不安定さを補償することが提案されている(例えば、特許文献1を参照)。これは、需要家側の対策であるが、電力系統を維持管理する電気事業者側としても、何らかの対策を検討しておく必要がある。
そこで、NaS電池システムの持つ充放電の即応性を活かし、所与の条件で系統電力を充放電することにより、特に、太陽光発電設備が直接連系される配電系統の安定化を図ることが考えられる。
特開平11−171107号公報
そのため、配電系統の安定化のためのNaS電池システムの具体的な構成と制御方法の具体化が問題となる。
NaS電池システムを配電系統の安定化のために電気事業者の設備として設置する場合は、配電用変電所に連系するのが基本になるものと考えられる。また、配電用変電所の容量は殆どの場合で6〜9万kVAであり、需要家での太陽光発電設備の大量設置が進展した場合を考えると、連系するNaS電池システムの容量は1万kW程度のものとなることが予想される。そして、系統安定化のための大容量なNaS電池システムの設置においては、ヒータ稼働の集中による系統安定化の阻害を防止することが必要となる。
以下、ヒータ稼働の集中が問題となることを説明する。
NaS電池システム1は、図4に示すように、直流で入出力するNaS電池本体3と交流の電力系統に連系するための交直変換装置4が主要な構成要素であるが、これらの制御装置(6、8)は別々に設置されており、それらの駆動用電力の供給も別々になされる。
つまり、交直変換装置の制御装置8への電力供給は交直変換装置4からなされる。一方、NaS電池本体は、多数の単電池(セル)を断熱容器内部で直並列に接続してモジュール電池となし、そのモジュール電池を更に直並列に接続して構成される。NaS電池は300℃程度以上に昇温するため、モジュール電池の断熱容器の内部に電気式のヒータ7を内蔵し、ヒータ7により昇温し、又は、高温に保持する。そして、NaS電池の制御装置6及びヒータ7への電力供給は交直変換装置の制御装置8への電力供給ルートとは別になっている。
現在市販のモジュール電池は出力50kWであるが、この一つのモジュール電池には出力8kWのヒータが内蔵されており、ヒータは、モジュール電池の断熱容器内部が300℃〜360℃程度の温度範囲に収まるように図5に示すように間欠的に稼働される(温度は、ヒータ稼働がONの時間とOFFの時間で調整し、ヒータ出力を連続的に変化させるなどの調整は行わない。このため、モジュール電池を幾つか組み合わせたNaS電池システムでは、場合によっては各モジュール電池のヒータ稼働のONの時間帯が重なってしまい、ヒータの消費電力(の合計値)が大きくなる場合がある。
しかし、電気化学的な性質から、NaS電池は放電時(ナトリウムと硫黄が結合し、多硫化ナトリウムが生成されるとき)に発熱し、充電時(多硫化ナトリウムがナトリウムと硫黄に分離されるとき)に吸熱する。このため、需要家の昼夜間の需要(負荷)平準化用途でNaS電池を充放電した場合は、ヒータの動作は図6に示したようになる。つまり、昼間の放電が主体となる時間帯では、放電に伴う発熱がモジュール電池の断熱容器内に蓄積されることで断熱容器内の温度は上昇し、ヒータは稼働しない。また、夜間の充電が主体となる時間帯においても、放電により上昇したモジュール電池の断熱容器内部の温度は徐々に降下していくことから、その時間帯の末期(つまり、朝方)および充電も放電もしない待機時間帯にヒータが稼働することになる。つまり、一日でヒータが稼働する時間帯は限られている。また、確率的に考えても、各ヒータの稼働はばらつくので、精々数百から数千kW規模の小中容量のNaS電池システムでは、ヒータ稼働の集中によるヒータ消費電力の増大が問題となることはなかった。
しかし、需要(負荷)平準化ではなく系統安定化用として運用すると(つまり、充電と放電を頻繁に切り換えるように運用すると)、モジュール内部での発熱と吸熱の差が小さくなることから、ヒータ稼働も頻繁になり、需要(負荷)平準化の用途の場合よりもヒータ稼働の時間帯が格段に長くなる。また、大容量なNaS電池システムの場合は、モジュール電池の数が多くなることから、ヒータ稼働が集中してしまった場合の消費電力も小中容量の場合より大きくなり、確率的には大きくはないものの、ヒータ消費電力が系統安定化を阻害することも考慮しなければならない(例えば、10000kWのNaS電池システムの場合、全ヒータが稼働すると容量の8/50=16%の1600kWの消費電力となる)。
このため、系統安定化のための大容量なNaS電池システムの設置においては、ヒータ稼働の集中による系統安定化の阻害を防止することが必要となる。
そこで、発明者は、この課題を解決すべく、次の構成のNaS電池システム、つまり、
NaS電池本体、前記NaS電池本体を昇温するヒータ、交直変換装置、前記交直変換装置の制御装置を備え、
配電用変電所の一次母線又は二次母線と連系し、
前記ヒータへは、前記配電用変電所の構内電源から電力供給されるNaS電池システムであり、
前記配電用変電所が電力系統と連系する点に計測装置を設置し、
前記計測装置の計測値を前記交直変換装置の制御装置に伝送し、これらの計測値を基に充放電を制御することを特徴とするNaS電池システム、
を発明した。
本発明により、配電系統に太陽光発電設備が大量に連系され、その系統安定を確保するために大容量NaS電力システムが設置された場合に、配電系統での消費電力(配電用変電所への流入電力)が急変しても(つまり、太陽光発電設備からの出力やNaS電池システムのヒータ消費電力が急変しても)、この急変に対応してNaS電池システムを充放電できることから、配電系統の安定化を図ることができる。
本発明の実施形態であり、配電用変電所へ連系するNaS電池システム及び配電用変電所の概略構成を示す図面である。 本発明の実施形態での動作を説明する図面である。 (A)は、配電用変電所から配電系統へ流入する電力の変動ΔPの補償の概念を示している。 (B)は、1日における変動ΔPの補償状況を示している。 変化率により電力急変を補償する動作を説明する図面である。 従来からのNaS電池システムの構成を示す図面である。 ヒータ稼働(出力)の概念を示す図面である。 需要(負荷)平準化時のヒータ稼働の概念を説明する図面である。 (A)は、NaS電池の充放電の変化を示している。 (B)は、NaS電池のモジュール電池の断熱容器内の温度変化を示している。 (C)は、ヒータ出力の変化を示している。 時刻軸は(A)、(B)、(C)いずれも同一にしている。
以下、図面を参照しながら、本発明の実施形態について説明する。
なお、以下の実施形態は、本発明の具体例であり、本発明の技術的範囲を限定するものではない。
(実施例の説明)
図1は、発明の構成を示すものである。
図1では、NaS電池システム1を、特別高圧で2回線受電する電気事業者の配電用変電所2に連系線22により連系した場合のものであり、配電用変電所2においては2次母線11に高圧(殆どの場合6600V)で連系している。
NaS電池システム1はNaS電池本体3、交直変換装置4、変圧器5、NaS電池制御装置6、及び交直変換装置の制御装置8を主たる構成要素とする。NaS電池システム1は、配電用変電所2の2次母線11に連系され、充電する場合は、変圧器5で降圧し、交直変換装置4にて直流に変換し、NaS電池本体3に蓄電される(放電の場合は逆のプロセスとなる)。NaS電池は高温動作型蓄電池であり、300℃程度以上で動作するため、NaS電池本体3の各モジュール電池に内蔵されたヒータ7にて昇温し、又は、高温を保持する。
NaS電池システム1の容量がより大きい場合には、配電用変電所2の1次母線10に特別高圧で連系してもよい。また、変圧器5以下、又は、交直変換装置4以下は、容量により複数個を並列に設置してもよい。なお、配電用変電所2の受電電圧は、多くの場合77kV又は66kVであるが、それ以外にも154kV、33kV、22kV等であってもよい。
連系線22は、電力損失を少なくするために短くした方がよく、NaS電池システム1は配電用変電所2に隣接するのが望ましい。しかし、NaS電池システム1の設置スペースが確保できない場合は、離れた場所に設置せざるを得ない。
図1に示すとおり、配電用変電所2の電力系統(特別高圧線)との連系点100の近傍に計測装置9a、9bを設置する。これは、配電用変電所2に流入する電力、電力系統の電圧や周波数等を計測するためのものであり、PT、CT等を構成要素とする。そして、計測装置9a、9bでの計測値を交直変換装置の制御装置8に伝送するよう制御線20e、20fが配設される。連系点100で配電用変電所2への流入電力を計測すると、この計測値には配電用変電所2のフィーダー13からの配電線(図1には図示せず)に連系される太陽光発電設備(図1には図示せず)の出力およびNaS電池システム1のヒータ7の消費電力をも含むものになり、後述のとおり、この計測値によりNaS電池システム1の系統安定化運転を行うことになる。
更に、この二つの制御装置(6、8)とヒータ7を駆動させるため、低圧電力線21が配設されており、これを介して、それぞれに駆動電力が供給される。図1では、NaS電池制御装置6とヒータ7には、配電用変電所2の主変圧器12の三次巻線を源とする低圧電力線21a、21bにより駆動電力を供給するように記載されているが、実際は、ヒータ7で用いられる電力は後述のとおり大きいことから、NaS電池制御装置6への駆動電力を送る低圧電力線の電圧(100V程度)は、途中で変圧器(図1には図示せず)を置き、降圧している。
NaS電池本体3の各モジュール電池の断熱容器内部には、熱電対による温度計(図1には図示せず)が設置されており、その温度計にて計測した温度データが制御線20bを介してNaS電池の制御装置6に伝送される。そして、その計測温度を基にして、NaS電池の電池制御装置6から各モジュール電池のヒータ7に稼働、停止の信号が制御線20cを介して伝送される。つまり、温度がある基準温度(例えば、295℃)になった場合に、ヒータ稼働(ON)の信号が出され、また、温度が別のある基準温度(例えば、315℃)になった場合に、ヒータ停止(OFF)の信号が出される。
また、交直変換装置の制御装置8の駆動電力は、交直変換装置4から(その内部に設置された図1に図示しない変圧器を介し、低圧の電力線21cにより)供給される。
NaS電池本体3及びヒータ7を制御するNaS電池制御装置6と交直変換装置の制御装置8は制御線20aにて連携され、協調制御をなすように各々プログラムが内蔵されている。NaS電池システム1は、その外部からの制御信号に基づいて、又は、交直変換装置の制御装置8に収納されたプログラムに基づいて、充放電が行われる。
NaS電池システム1による系統安定の方法を、まずは概念的に述べる。
まず、有効電力の変動に対応する方法がある。つまり、電力系統のある一部分の有効電力Pの変動分ΔPを計測し、そのΔPを補償すべくNaS電池システム1の充放電を行うものである。ΔPは、季節別、月別、時刻別等により予め設定しておく基準電力Poと有効電力Pの差分ΔP=P−P0として表される。NaS電池システム1は、ΔP>0の場合には充電し、ΔP<0の場合には放電する。
また、系統周波数の変動に対応する方法もある。系統周波数の計測値fと基準周波数f0(東日本では50ヘルツ、西日本では60ヘルツ)の偏差Δf=f−f0に基づき、Δf>0の場合には、NaS電池システム1の充電を行い、Δf<0の場合には、放電を行う。
更に、太陽光発電設備の出力変動は、無効電力の変動も伴うこともあり、系統電圧を不安定にすることもある。そのため、系統の無効電力Qの変動分ΔQを計測し、交直変換装置4の機能を用いてΔPとともにΔQの補償を行ってもよい(ただし、ΔPとΔQの両方を補償する場合、それぞれの補償範囲が狭まってしまう)。
なお、ΔP、ΔQ及びΔfに閾値を設け、その値以上となった場合のみに充放電させてもよい。
また更に、有効電力P等の変化率に着目した方法もある。つまり、有効電力Pに着目した場合、変化率dP/dtがある正の定数以上(又は、負の定数以下)になった時点で、変化率dP/dtを一定にするようにNaS電池システム1による充電(又は、放電)を行い、系統における有効電力Pの急変を抑制するものである。
次に、具体的な充放電制御を図2にて説明する。
図2(A)において、実線は配電用変電所2へ流入する電力(つまり、NaS電池システム1にて安定化運転しない場合の電力)を表し、点線は基準電力曲線を表す。基準電力曲線は、前述のとおり、過去の配電用変電所2の運用実績から、季節別、月別、時刻別等により予め設定し、交直変換装置の制御装置8に入力しておく(このようにするため、実質は、曲線ではなく、折線ないしは階段関数状のものとなる)。計測装置9a、9bにて流入電力を計測し、その計測値が、交直変換装置の制御装置8に伝送され、流入電力と基準電力曲線の設定値が比較される。この比較の結果、流入電力が基準電力曲線の設定値を上回った場合は(例えば、太陽光発電設備からの出力が減少した、又は、NaS電池システム1のヒータ消費電力が増加した等の場合は)、交直変換装置の制御装置8はNaS電池システム1を放電するよう信号を出す。また、下回った場合は(例えば、太陽光発電設備からの出力が増加した、又は、NaS電池システム1のヒータ消費電力が減少した等の場合は)、充電するよう信号を出す。そして、刻々変化する流入電力を補償すべく前述のように充放電を制御し、流入電力を基準電力曲線に沿ったものに維持する。これにより、配電用変電所2により構成される配電系統においては、基準電力曲線に沿った形で有効電力を安定的に推移させることができる。また、配電用変電所2に供給する特別高圧の送電線の変動も抑制され、この送電線と連系する他の配電用変電所により構成される配電系統に擾乱を波及させなくてもすむ。
これを一日行った場合は、配電用変電所2への流入電力と基準電力曲線の変化は図2(B)に示すようになる。日中の比較的大きな変動は、主には太陽光発電発電設備の出力変動に起因するものであり、夜間から朝方にかけての小さな変動は(希に大変動もあり得るが)、主にNaS電池システム1のヒータ7の消費電力に起因するものである。
また、図3は、変化率に着目した場合の説明図である。実線は図2と同様に実際の配電用変電所2へ流入する電力(つまり、NaS電池システム1にて安定化運転しない場合の電力)を表している。
流入電力Pを、計測装置9a、9bにて、定められたサンプリング間隔で計測し、その計測値が、交直変換装置の制御装置8に伝送され、流入電力Pとサンプリング間隔から変化率dP/dtが導出される。
そして、変化率dP/dtが予め定められた正の定数α0以上となったのがA時点だとすると、A時点以後は予め定められた正の定数α1(α0>α1)にて流入電力が直線的に緩やかに増加するよう、交直変換装置の制御装置8からNaS電池システム1を放電させるべく信号が出される(この放電による修正された流入電力直線を点線で表す)。そして、放電が再びゼロとなるB時点にて、流入電力の曲線(実線)と電力の急変を回避させるために補正された流入電力直線(点線)が交わり、それ以降は、NaS電池システム1は動作しない。
さらに、変化率dP/dtが予め定められた負の定数β0以下となったのがC時点だとすると、C時点以後は予め定められた負の定数β1(β0<β1)にて流入電力が直線的に緩やかに増加するよう、交直変換装置の制御装置8からNaS電池システム1を充電させるべく信号が出される(前述のとおり点線で表す)。そして、放電が再びゼロとなるD時点にて、流入電力の曲線と電力の急変を回避させるために緩やかに減少させるように補正された流入電力直線(点線)が交わり、それ以降は、NaS電池システム1は動作しない。
また、NaS電池システム1は、太陽光発電設備の出力が小さい、又は、その変動が小さい場合は、需要平準化(日中なので放電)運転をしつつ、系統安定化も行えることができる(ただし、日中、NaS電池システム1を最大出力では運転できず、変動を補償できる余地を残しての運転となる)。
1 NaS電池システム(ナトリウム−硫黄電池システム)
2 配電用変電所
3 NaS電池本体(ナトリウム−硫黄電池本体)
4 交直変換装置
7 NaS電池ヒータ(ナトリウム−硫黄電池ヒータ)
8 交直変換装置の制御装置
9 計測装置
31 遮断器
32 開閉器

Claims (1)

  1. ナトリウム−硫黄電池本体、前記ナトリウム−硫黄電池本体を昇温するヒータ、交直変換装置、前記交直変換装置の制御装置を備え、
    配電用変電所の一次母線又は二次母線と連系し、
    前記ヒータへは、前記配電用変電所の構内電源から電力供給されるナトリウム−硫黄電池システムであり、
    前記配電用変電所が電力系統と連系する点に計測装置を設置し、
    前記計測装置の計測値を前記交直変換装置の制御装置に伝送し、これらの計測値を基に充放電を制御することを特徴とするナトリウム−硫黄電池システム。
JP2010000756A 2010-01-05 2010-01-05 ナトリウム−硫黄電池システム Pending JP2011141969A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010000756A JP2011141969A (ja) 2010-01-05 2010-01-05 ナトリウム−硫黄電池システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010000756A JP2011141969A (ja) 2010-01-05 2010-01-05 ナトリウム−硫黄電池システム

Publications (1)

Publication Number Publication Date
JP2011141969A true JP2011141969A (ja) 2011-07-21

Family

ID=44457689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010000756A Pending JP2011141969A (ja) 2010-01-05 2010-01-05 ナトリウム−硫黄電池システム

Country Status (1)

Country Link
JP (1) JP2011141969A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140162091A1 (en) * 2011-08-19 2014-06-12 Ngk Insulators, Ltd. Method of controlling storage battery, apparatus for controlling storage battery, and electric power control system
CN104113080A (zh) * 2014-07-03 2014-10-22 广州市金洋水产养殖有限公司 光伏发电水产工厂化养殖车间
CN104600379A (zh) * 2014-12-29 2015-05-06 上海电气钠硫储能技术有限公司 钠硫电池管理单元的温控功能检测装置及检测方法
CN106549501A (zh) * 2016-12-09 2017-03-29 国网安徽省电力公司池州供电公司 用于通信电源的智能管理监控单元和变电站通信电源系统
JP2020145921A (ja) * 2016-09-14 2020-09-10 サード イクエーション リミテッドThird Equation LTD 配電ネットワークおよび処理方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140162091A1 (en) * 2011-08-19 2014-06-12 Ngk Insulators, Ltd. Method of controlling storage battery, apparatus for controlling storage battery, and electric power control system
JP2014529161A (ja) * 2011-08-19 2014-10-30 日本碍子株式会社 蓄電池の制御方法、蓄電池の制御装置及び電力制御システム
US9660305B2 (en) * 2011-08-19 2017-05-23 Ngk Insulators, Ltd. Method of controlling storage battery, apparatus for controlling storage battery, and electric power control system
CN104113080A (zh) * 2014-07-03 2014-10-22 广州市金洋水产养殖有限公司 光伏发电水产工厂化养殖车间
CN104600379A (zh) * 2014-12-29 2015-05-06 上海电气钠硫储能技术有限公司 钠硫电池管理单元的温控功能检测装置及检测方法
JP2020145921A (ja) * 2016-09-14 2020-09-10 サード イクエーション リミテッドThird Equation LTD 配電ネットワークおよび処理方法
CN106549501A (zh) * 2016-12-09 2017-03-29 国网安徽省电力公司池州供电公司 用于通信电源的智能管理监控单元和变电站通信电源系统
CN106549501B (zh) * 2016-12-09 2023-05-16 国网安徽省电力公司池州供电公司 用于通信电源的智能管理监控单元和变电站通信电源系统

Similar Documents

Publication Publication Date Title
JP5590033B2 (ja) エネルギーシステム
WO2017026287A1 (ja) 制御装置、エネルギー管理装置、システム、及び制御方法
JP4759587B2 (ja) 風力発電所
ES2777887T3 (es) Sistema para intercambiar energía eléctrica entre una batería y una red eléctrica y procedimiento respectivo
JP5028517B2 (ja) 直流給電システム
JP5100132B2 (ja) 周波数調整システムおよび周波数調整方法
JP5395251B2 (ja) ハイブリッドエネルギー貯蔵システム、該貯蔵システムを含む再生可能エネルギーシステムおよびその使用方法
KR101696999B1 (ko) 에너지 저장 장치의 제어 방법 및 전력 관리 시스템
JP5073258B2 (ja) ナトリウム−硫黄電池の制御方法
WO2011074561A1 (ja) 充放電システム
CA2839813C (en) A method in an electric power system, controller, computer programs, computer program products and electric power system
JP2017038432A (ja) 制御装置、システムおよび制御方法
JPWO2017150376A1 (ja) 電力システム
JP6828567B2 (ja) 系統連系システムおよび電力システム
JP2013115871A (ja) 給電システムおよび給電システムの制御方法
WO2012057307A1 (ja) 電力管理用の制御装置
JP2015015793A (ja) マイクログリッドの制御装置及びその制御方法
JP2014054072A (ja) 蓄電装置
JP2017051083A (ja) 発電システム、発電方法およびプログラム
JP2011141969A (ja) ナトリウム−硫黄電池システム
JP2011205824A (ja) 蓄電システム
KR101464411B1 (ko) 전력 관리 시스템 및 관리 방법
JP2013066278A (ja) 電力系統支援システム
JP2014121151A (ja) 蓄電システム及び電力供給システム
KR101850426B1 (ko) 하이브리드를 활용한 안정적 전력 공급 시스템 및 그 방법