JP2011205824A - 蓄電システム - Google Patents

蓄電システム Download PDF

Info

Publication number
JP2011205824A
JP2011205824A JP2010072083A JP2010072083A JP2011205824A JP 2011205824 A JP2011205824 A JP 2011205824A JP 2010072083 A JP2010072083 A JP 2010072083A JP 2010072083 A JP2010072083 A JP 2010072083A JP 2011205824 A JP2011205824 A JP 2011205824A
Authority
JP
Japan
Prior art keywords
power
battery
storage system
power storage
chopper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010072083A
Other languages
English (en)
Inventor
Kenichi Suzuki
健一 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electric Power Company Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc filed Critical Tokyo Electric Power Co Inc
Priority to JP2010072083A priority Critical patent/JP2011205824A/ja
Publication of JP2011205824A publication Critical patent/JP2011205824A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

【課題】リチウムイオン電池とナトリウム−硫黄電池の特長を同時に引き出すべく、これらの電池を複合的に利用した系統安定化に資する蓄電システムの提案。
【解決手段】リチウムイオン電池、及びナトリウム−硫黄電池を接続したチョッパを並列にして、配電用変電所の二次母線に連系したインバータに接続して構成されることを特徴とする蓄電システム。
【選択図】 図1

Description

本発明は、リチウムイオン電池(又は、キャパシタ)及びナトリウム−硫黄電池を複合的に用いた蓄電システムに関するものである。
近年、地球温暖化の防止のため、低炭素社会の実現が強く求められている。そして、その方策として、運転時に二酸化炭素を排出しない太陽光発電設備(太陽電池。以下、「PV」(Photovoltaics)ということもある)の普及が望まれている。一方、PVの出力は日射強度により変動することから、大量のPVが電力系統に連系されると、電力系統の安定性を阻害しかねない。
この電力系統の安定性を阻害する様を、一つの配電線を例に図4にて説明する。
図4(A)において、配電線25に流れる電力をPa、需要家の負荷30での消費電力をPb、太陽電池(PV)31からの出力電力をPcとすると、これら3変数の関係はPb=Pa+Pc、つまり、Pa=Pb−Pcが成り立つ。ここで、図4(A)には負荷30とPV31が各1つしか表示されていないが、これは便宜上のものであり、配電線に連系されている複数の負荷、複数のPVを代表して図示しているものである。このため、Pbはこれらの複数の負荷の総和、Pcはこれら複数のPVの総和を意味する(つまり、iを負荷の番号、jをPVの番号とすると、Pb=ΣPbi、Pc=ΣPcjとなる)。
ここで、需要家の負荷30での消費電力Pbは、短時間では余り変化しないため、図4(B)の様にほぼ水平として表されるものとする。他方、PV31からの出力電力Pcは、日射により変動するため、図4(C)の様に大きな変動を有するギザギザ状の曲線となることがある。そして、Pa=Pb−Pcだから、Pbに−Pc(時間軸を対称軸としてPcを反転させたものであり、図4(C)にて点線で示す)を加えればPaが表される。これを図4(D)に示す。
このように、配電線25に流れる電力Paの曲線は、PV31の出力電力Pcにより大きな変動を有するものとなり、電力系統の周波数変動等を引き起こしかねない。
そのため、蓄電池を用いてPV出力の変動を補償しようとする先行技術が既に幾つか提案されている。例えば、ナトリウム−硫黄電池(以下、元素記号を用いて「NaS電池」ということもある)とキャパシタを接続し、自然エネルギー発電設備の出力変動をNaS電池で平滑化し、NaS電池で吸収できない変動分はキャパシタで吸収する考えが提案されている(特許文献1「系統安定化装置」)。また、二次電池(蓄電池)及びキャパシタをDC/DCコンバータを介して需要家構内の直流母線で連系し、バッファ用途として瞬発力が必要な場合にはキャパシタを用い、持続力が必要な場合には二次電池を用いることが提案されている(特許文献2「電力バッファ装置システム」)。
電力系統の安定化に用いることができそうな蓄電池としては、現状、リチウムイオン電池(以下、元素記号等を用いて「LiI電池」と称することもある)及びNaS電池などの蓄電池、並びに、蓄電池ではないがキャパシタ(電気二重層キャパシタなど)が挙げられる。
LiI電池は、高いエネルギー密度、高いセルの起電力、高い充放電効率などから携帯電話その他の家電製品に広く用いられており、更に、電気自動車の駆動電源としても実用化され、普及が期待されている。また、NaS電池は、300℃程度以上で動作する高温動作型蓄電池であり、高いエネルギー密度と長いサイクル寿命から、需要平準化や瞬時電圧低下対策などで導入が図られている。
LiI電池とNaS電池は、各々優れた特長を有するが、利用方法には制約があり、それは、設備コストに起因する。つまり、出力当たりの価格(万円/kW)で比較すると、NaS電池はLiI電池より2〜3倍程度高価であるが、出力量当たりの価格(円/kWh)で比較すると、LiI電池はNaS電池より5〜10倍程度高価になるためである。そのため、LiI電池は、短時間で高出力を要する使用には適しているが、長時間に亘っての大量の電力の充放電には適さず、逆に、NaS電池は、短時間で高出力を要する使用には適さないが、長時間に亘っての大量の電力の充放電には適する(キャパシタもLiI電池と特長をほぼ共通にしているため、以下においてはLiI電池のみで記述する)。
しかし、上記の二つの特許文献には、二つの蓄電媒体を用いることは記載されているが、特許文献1では、具体的なシステム構成が全く開示されておらず、また、特許文献2は、需要家構内におけるバッファ用途に特化した発明であり、電力系統における安定化には言及していない。
特開2007−135355号公報 特開2007−060796号公報
そのため、LiI電池とNaS電池の特長を同時に引き出すべく、これらの電池を複合的に利用した系統安定化に資する蓄電システムの提案が望まれる。
そこで、発明者は、この課題を解決すべく、次の構成の発明を考えた(図1にその構成を示す)。
ナトリウム−硫黄電池2を接続したチョッパ(DC/DCコンバータ)3、リチウムイオン電池4及びインバータ5からなる蓄電システム1であり、
インバータ5の交流側を配電用変電所20の二次母線23に連系し、直流側にチョッパ3及びリチウムイオン電池4を並列に接続して構成されることを特徴とする蓄電システム1。
また、上記構成の蓄電システム1において、
前記配電用変電所20のフィーダ群24に流れるフィーダ群電力Pdを計測するとともに、
フィーダ群電力Pdの計測値Pd*から目標フィーダ群電力Pd0を差し引いた値(Pd*−Pd0)の移動平均値を算出し、これをチョッパ3の電力指令値P1refとし、更に、前記(Pd*−Pd0)をインバータ5の電力指令値Pirefとすることを特徴とする蓄電システム1、を発明した。
本発明により、PV等が導入された結果、電力系統(配電系統)に電力変動が発生しても、その電力変動の短周期分の補償は主にLiI電池にて、長周期分の補償は主にNaS電池にて、それぞれ行うことにより、どちらかの電池のみ利用するシステムに比較して電力(kW)と電力量(kWh)のバランスがとれた、低コストの電力系統安定化のための蓄電システムを実現できる。
蓄電システムの物的な構成を示す図面である。 蓄電システムによる電力変動補償の方法を説明する図面である。 蓄電システムによる電力変動補償の制御ブロックを説明する図面である。 電力系統でのPVによる電力変動の発生を説明する図面である。
以下、図面を用いて、本発明の実施形態について説明する。
なお、以下の実施形態は、本発明の具体例であり、本発明の技術的範囲を限定するものではない。
(実施例の説明)
図1は、蓄電システム1の物的な構成を示すものであり、NaS電池2、チョッパ(DC/DCコンバータ)3、LiI電池4、インバータ5を主たる要素として構成される。チョッパ3とインバータ5は、共にトランジスタ(IGBT)を基本素子としてなり、インバータ5は三相ブリッジ回路で構成される。リアクトル6は、連系変圧器7で代替されることもある。
NaS電池2は、複数の単電池を直並列に組み合わせて、それを昇温・保温用ヒータと共に断熱容器に収納してモジュール電池(市販品は50kW)とし、更に、複数のモジュール電池を直並列に組み合わせて使用する。
また、LiI電池4は、全直列として構成する(並列化はしない)。これは、リチウムイオン電池の単電池は、故障時に短絡モードとなることから、並列化による横流発生を回避するためである(ナトリウム−硫黄電池の単電池は、故障時に開放モードとなることから、横流の問題は発生しない)。
NaS電池2はチョッパ3に接続され、また、そのチョッパ3とLiI電池4はインバータ5に対して並列回路を構成する。この並列回路は、直流母線8を介してインバータ5の直流側に接続される。そして、この二つの蓄電池から放電される直流出力を交流に変換して、交流系統に交流出力することができる(逆に、交流系統の交流入力を直流に変換して、この二つの蓄電池に直流入力として充電させることもできる)。
また、上記構成の蓄電システム1において、帰還制御を行うために、チョッパ3の出力電力P1を計測するために計測装置10を、更に、蓄電システム1の出力電力Pinvを計測するために計測装置11を設置する。
この二つの蓄電池の放電及び充電は、例えば、NaS電池2は、チョッパ3をNaS電池2からみて昇圧チョッパ動作させることにより放電し、降圧チョッパ動作させることにより充電される。インバータ5の交流出力に比較し、NaS電池2の放電電力の方が大きい場合には、LiI電池4は充電され、NaS電池2の放電電力の方が小さい場合にはLiI電池4は放電する。また、インバータ5の交流入力に比較し、NaS電池2の充電電力が大きい場合には、LiI電池4は放電し、NaS電池2の充電電力の方が小さい場合にはLiI電池4は充電される。
また、この蓄電システム1は、配電用変電所20の二次母線23に連系される。そして、配電用変電所20のフィーダ群24a、24b、24cに流れる各フィーダ群電力Pda、Pdb、Pdcを計測する計測装置40a、40b、40cを設ける。
なお、フィーダ群電力の和をPd(=Pda+Pdb+Pdc)とし、加算機41により加算する。
この蓄電システム1による電力変動の補償の考え方を、図2にて説明する。
太線にて示しているフィーダ群電力の和Pdは、何らの電力変動補償もしない場合の配電用変電所20から全配電線に流れる電力である。これに対して、点線で示している目標フィーダ群電力和Pd0は、蓄電システム1が電力変動補償を行った結果として、配電用変電所20から全配電線に実際に流れる電力を示す。そして、Pd0を殆ど変動しないように蓄電システム1を充放電することで、電力系統の安定を図るものである。
このPd0の設定の仕方は、例えば、過去の配電用変電所20の実績を基に、予め、30分刻みで階段状に数値を決めておくか、又は、滑らかな曲線として蓄電システム1に入力できるようにする。また、計測装置40等で計測するPdの値を用いて、Pdの移動平均値を算定し、この値をPd0としてもよい(Pd0をそのままPdの移動平均値とすると、後に述べる蓄電システム1の動作ロジックから、電力変動の補償の大部分をLiI電池4の充放電で行う虞が出てくる。そのため、NaS電池2の放電も合わせて電力変動補償を行うには、配電線に連系しているPV31の容量やLiI電池4とNaS電池2の容量比等に依存するが、Pd0をPdの移動平均値の50〜95%程度にするのがよい)。
また、図2において、一点鎖線にて示しているものは、(Pd−Pd0)の移動平均値にPd0を加えたもの、つまり、一点鎖線とPd0曲線(点線)の間の出力P1は、(Pd−Pd0)の移動平均値を示している。そして、この出力P1は、チョッパ3(つまり、NaS電池2)からの放電にて担うことになる(この場合の電力変動補償を行うに当たっては、NaS電池2が長時間における充放電に適していることから、NaS電池2の運転は放電を基調として行うのがよいが、Pdの変動が大きい場合には、充電を行わせる場面もあり得る)。
更に、図2において、Pd曲線(太線)からPd0曲線(点線)の間の出力は、インバータ5の出力Pinvにより担うことになる。つまり、結果として、Pd曲線(太線)と一点鎖線の間の出力P2は、LiI電池4からの充放電により担うことになる(図2においては、LiI電池4は放電しているが、Pdが一点鎖線を下回っている場合はLiI電池4は充電することになる)。
そして、(Pd−Pd0)の移動平均値は、10分程度以上の平均値として算出することから、電力変動の長周期分についてはNaS電池2の出力P1にて補償し、また、電力変動の短周期分(秒単位での変動分)についてはLiI電池4の出力P2にて補償しようというものである。
以上の電力変動の補償の考え方を実現すべく、図3にて制御の概要を説明する。
まず、計測装置40等によるPdの計測値Pd*(計測値には、後ろに又は右肩に「*」を付けることにする)から、上記のとおり予め決めた値又はPd*の移動平均値に基づく値であるPd0を差し引き、(Pd*−Pd0)の値を求める。
そして、この(Pd*−Pd0)の値を移動平均算出部13に伝送する。移動平均算出部13は演算部14と記憶部15を備え、記憶部15では、定められたサンプリング間隔で伝送された(Pd*−Pd0)の値を記憶する。そして、蓄積された(Pd*−Pd0)の値を基にして、移動平均値P1refを算出する。
また、P1refを出力するのはチョッパ3であるが、チョッパ3の出力は直流であり、この直流出力をインバータ5にて交流に変換して配電用変電所20の二次母線23に送出することから、インバータ5の交直変換効率による損失分を控除した移動平均値としてもよい。
そして、このP1refとP1*との偏差を、チョッパ3のAPR(自動電力調整装置)16bの指令値としてチョッパ3の制御部(図示せず)に伝送する。なお、計測装置10でP1を計測し、この計測値P1*を用いて帰還制御を行っている。
また、この(Pd*−Pd0)の値とPinv*との偏差を、インバータ5のAPR16aの指令値としてインバータ5の制御部(図示せず)に伝送する。なお、ここでも計測装置11でPinvを計測し、この計測値Pinv*を用いて帰還制御を行っている。
1 蓄電システム、2 ナトリウム−硫黄電池(NaS電池)、
3 チョッパ(DC/DCコンバータ)、4 リチウムイオン電池(LiI電池)、
5 インバータ、6 リアクトル、7 連系変圧器、8 直流母線、
10 P1の計測装置、11 Pinvの計測装置、13 移動平均算出部、
14 演算部、15 記憶部、16 APR、20 配電用変電所、
21 一次母線、22 主変圧器、23 二次母線、24 フィーダ群、
25 配電線、30 需要家の負荷、31 太陽電池(PV)、
40 Pdの計測装置、41 加算機、
P1 チョッパの出力電力、P1ref チョッパへの電力指令値、
Pinv インバータの出力電力、Piref インバータへの電力指令値、
Pd フィーダ群を流れる電力

Claims (3)

  1. ナトリウム−硫黄電池(2)を接続したチョッパ(3)、リチウムイオン電池(4)及びインバータ(5)からなる蓄電システム(1)であり、
    前記インバータ(5)の交流側を配電用変電所(20)の二次母線(23)に連系し、直流側に前記チョッパ(3)及び前記リチウムイオン電池(4)を並列に接続して構成されること、
    を特徴とする蓄電システム(1)。
  2. 請求項1に記載の蓄電システム(1)であって、
    前記配電用変電所(20)のフィーダ群(24)に流れるフィーダ群電力(Pd)を計測するとともに、
    前記フィーダ群電力(Pd)の計測値(Pd*)から目標フィーダ群電力(Pd0)を差し引いた差分値(Pd*−Pd0)の移動平均値を算出し、これを前記チョッパ(3)の出力電力(P1)とし、更に、前記差分値(Pd*−Pd0)を前記インバータ(5)の出力電力(Piref)とすること、
    を特徴とする蓄電システム(1)。
  3. 請求項1又は請求項2に記載の蓄電システム(1)であって、
    前記リチウムイオン電池(4)の代わりにキャパシタを用いたこと、
    を特徴とする蓄電システム。
JP2010072083A 2010-03-26 2010-03-26 蓄電システム Pending JP2011205824A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010072083A JP2011205824A (ja) 2010-03-26 2010-03-26 蓄電システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010072083A JP2011205824A (ja) 2010-03-26 2010-03-26 蓄電システム

Publications (1)

Publication Number Publication Date
JP2011205824A true JP2011205824A (ja) 2011-10-13

Family

ID=44881845

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010072083A Pending JP2011205824A (ja) 2010-03-26 2010-03-26 蓄電システム

Country Status (1)

Country Link
JP (1) JP2011205824A (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011234563A (ja) * 2010-04-28 2011-11-17 Toshiba Corp 蓄電池制御システム及び蓄電池制御方法
JP2012010453A (ja) * 2010-06-23 2012-01-12 Tokyo Electric Power Co Inc:The 蓄電池システム
JP2014042403A (ja) * 2012-08-22 2014-03-06 Sharp Corp 充電装置、ソーラーシステム、電気システム、および車両
JP2016135041A (ja) * 2015-01-21 2016-07-25 株式会社明電舎 電力系統の安定化装置と制御方法
JPWO2016136260A1 (ja) * 2015-02-25 2017-08-31 京セラ株式会社 電力管理装置、電力管理システム、および電力管理方法
JP2017169313A (ja) * 2016-03-15 2017-09-21 本田技研工業株式会社 蓄電装置、機器及び制御方法
WO2024062754A1 (ja) * 2022-09-22 2024-03-28 三菱重工エンジン&ターボチャージャ株式会社 制御システム、複合発電システム及び制御方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011234563A (ja) * 2010-04-28 2011-11-17 Toshiba Corp 蓄電池制御システム及び蓄電池制御方法
JP2012010453A (ja) * 2010-06-23 2012-01-12 Tokyo Electric Power Co Inc:The 蓄電池システム
JP2014042403A (ja) * 2012-08-22 2014-03-06 Sharp Corp 充電装置、ソーラーシステム、電気システム、および車両
JP2016135041A (ja) * 2015-01-21 2016-07-25 株式会社明電舎 電力系統の安定化装置と制御方法
JPWO2016136260A1 (ja) * 2015-02-25 2017-08-31 京セラ株式会社 電力管理装置、電力管理システム、および電力管理方法
US10630077B2 (en) 2015-02-25 2020-04-21 Kyocera Corporation Power management apparatus, power management system, and power management method
JP2017169313A (ja) * 2016-03-15 2017-09-21 本田技研工業株式会社 蓄電装置、機器及び制御方法
WO2024062754A1 (ja) * 2022-09-22 2024-03-28 三菱重工エンジン&ターボチャージャ株式会社 制御システム、複合発電システム及び制御方法

Similar Documents

Publication Publication Date Title
Benlahbib et al. Experimental investigation of power management and control of a PV/wind/fuel cell/battery hybrid energy system microgrid
Zhou et al. Optimal energy management strategy and system sizing method for stand-alone photovoltaic-hydrogen systems
Singh et al. Optimal power scheduling of renewable energy systems in microgrids using distributed energy storage system
JP2011205824A (ja) 蓄電システム
Hassoune et al. Power management strategies of electric vehicle charging station based grid tied PV-battery system
US20130241495A1 (en) Energy storage system and method of controlling the same
Shibata et al. Redox flow batteries for the stable supply of renewable energy
JP2015159726A (ja) 蓄電池システム、蓄電池制御装置及び蓄電池システムの制御方法
Bao et al. Battery charge and discharge control for energy management in EV and utility integration
JP5452422B2 (ja) パワーコンディショナ
KR101863141B1 (ko) 리튬이온배터리와 슈퍼캐패시터를 이용한 전력제어형 에너지관리시스템
JP2017169253A (ja) 力率改善装置、及びそれを備えた蓄電装置
JP5877747B2 (ja) 制御装置、電力供給システム、及び制御方法
US20220263311A1 (en) System and Method for Managing Power
JP2017051083A (ja) 発電システム、発電方法およびプログラム
Inci Technoeconomic analysis of fuel cell vehicle‐to‐grid (FCV2G) system supported by photovoltaic energy
US8574741B2 (en) Method for controlling sodium-sulfur battery
JP2014054072A (ja) 蓄電装置
Heidary et al. Stability enhancement and energy management of AC-DC microgrid based on active disturbance rejection control
Kallel et al. An energy cooperative system concept of DC grid distribution and PV system for supplying multiple regional AC smart grid connected houses
JP5980575B2 (ja) 電力システム、制御装置、及び制御方法
Chandra et al. A Rule-based Energy Management Scheme for Grid-Integrated PV-Battery-powered EV Charging Station
Jha et al. Development of control schemes for a cluster of PV‐integrated houses in islanded mode
Kagadi et al. Impacts of High rooftop PV Penetration in distribution network and its mitigation using DSTATCOM
Liu et al. Energy management of connected co-phase traction power system considering HESS and PV