JP2011141216A - Non-contact temperature sensor - Google Patents

Non-contact temperature sensor Download PDF

Info

Publication number
JP2011141216A
JP2011141216A JP2010002490A JP2010002490A JP2011141216A JP 2011141216 A JP2011141216 A JP 2011141216A JP 2010002490 A JP2010002490 A JP 2010002490A JP 2010002490 A JP2010002490 A JP 2010002490A JP 2011141216 A JP2011141216 A JP 2011141216A
Authority
JP
Japan
Prior art keywords
infrared
temperature
light guide
sensing element
temperature sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010002490A
Other languages
Japanese (ja)
Other versions
JP4567806B1 (en
Inventor
Michio Takeuchi
道雄 竹内
Masayuki Kinoshita
正之 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tateyama Kagaku Kogyo Co Ltd
Original Assignee
Tateyama Kagaku Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tateyama Kagaku Kogyo Co Ltd filed Critical Tateyama Kagaku Kogyo Co Ltd
Priority to JP2010002490A priority Critical patent/JP4567806B1/en
Priority to PCT/JP2010/063098 priority patent/WO2011083593A1/en
Priority to CN201080057068.3A priority patent/CN102667430B/en
Priority to KR1020127014213A priority patent/KR101709943B1/en
Application granted granted Critical
Publication of JP4567806B1 publication Critical patent/JP4567806B1/en
Publication of JP2011141216A publication Critical patent/JP2011141216A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/04Casings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/0265Handheld, portable
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/06Arrangements for eliminating effects of disturbing radiation; Arrangements for compensating changes in sensitivity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/06Arrangements for eliminating effects of disturbing radiation; Arrangements for compensating changes in sensitivity
    • G01J5/064Ambient temperature sensor; Housing temperature sensor; Constructional details thereof
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0831Masks; Aperture plates; Spatial light modulators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/084Adjustable or slidable
    • G01J5/0843Manually adjustable

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Radiation Pyrometers (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a non-contact temperature sensor that facilitates correcting a temperature detection error even after assembly, and keeps a constant detection angle of visibility. <P>SOLUTION: The non-contact temperature sensor includes a temperature-sensitive element 20a for infrared detection and a temperature-sensitive element 20b for temperature compensation. It also includes a top plate 34 for shielding infrared and a casing 14 provided with a light guide 40 for leading infrared inside. The temperature-sensitive elements 20a and 20b are respectively mounted to a flexible printed circuit board 12 to keep the temperature-sensitive elements 20a for infrared detection arranged in an opening region of the light guide 40 of the casing, and the temperature-sensitive element 20b for temperature compensation arranged at the position hidden from a shielding surface 34a. A temperature adjustment member 18 that is integrated with an infrared shield 18b is located slidable between the flexible printed circuit board 12 and the top plate 34 of the casing 14. The infrared shield 18b shields a certain optional area within the opening region of the light guide 40, so that it is possible to adjust the sensitivity of the temperature-sensitive element 20a for infrared detection. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

この発明は、赤外線を検知して温度を測定する非接触温度センサに関し、特に、赤外線検知用感温素子と温度補償用感温素子を備えた非接触温度センサに関する。   The present invention relates to a non-contact temperature sensor that detects temperature by detecting infrared rays, and particularly relates to a non-contact temperature sensor that includes a temperature sensing element for detecting infrared rays and a temperature sensing element for temperature compensation.

被測定物の温度を接触式で測定する温度センサは、一般に接触部分が摩耗しやすく、被測定物に接触する感熱素子自体の熱容量が測定誤差を生じさせ、さらに被測定物が回転動作などしている場合に温度センサを取り付けることが困難である、などの問題点があり、使い勝手のよい非接触式の温度センサの需要が高まっている。   A temperature sensor that measures the temperature of the object to be measured with a contact method generally wears the contact part, the heat capacity of the thermal element itself that contacts the object to be measured causes measurement errors, and the object to be measured rotates. However, there is a problem that it is difficult to attach the temperature sensor in the case where the temperature sensor is installed, and the demand for a non-contact type temperature sensor that is easy to use is increasing.

従来、非接触で温度を検出する方法として、被測定物が放射する赤外線を赤外線吸収体で吸収してエネルギーに変換し、赤外線吸収体自体の温度上昇を感温素子で検出し、電気信号に変換する方式が用いられている。そして、近年、赤外線検知用感温素子と温度補償用感温素子を組み合わせ、温度測定の精度を向上させた非接触温度センサが提案されている。   Conventionally, as a method of detecting temperature without contact, infrared rays emitted from the object to be measured are absorbed by an infrared absorber and converted into energy, and the temperature rise of the infrared absorber itself is detected by a temperature sensing element, which is converted into an electrical signal. A conversion method is used. In recent years, a non-contact temperature sensor has been proposed in which a temperature sensing element for infrared detection and a temperature sensing element for temperature compensation are combined to improve the accuracy of temperature measurement.

この種の非接触温度センサとして、例えば、特許文献1に開示されているように、赤外線検知用感温素子と温度補償用感熱素子が2枚の樹脂フィルムに個々に密着固定され、その樹脂フィルムが所定の熱伝導性を有した枠体に張り渡されて筺体内部に収容され、2つの感温素子のうち、赤外線検知用感温素子の方は筺体に設けられた導光部(赤外線の入射窓)の開口領域に配置され、温度補償用感温素子の方は筺体の遮蔽面(遮蔽部)によって赤外線が遮蔽される位置に配置された赤外線検出器がある。   As this type of non-contact temperature sensor, for example, as disclosed in Patent Document 1, an infrared detection temperature sensing element and a temperature compensation temperature sensing element are individually adhered and fixed to two resin films. Is stretched over a frame having a predetermined thermal conductivity and accommodated inside the housing, and of the two temperature sensing elements, the infrared sensing temperature sensing element is a light guide (infrared ray) provided on the housing. There is an infrared detector arranged in the opening area of the incident window, and the temperature compensation temperature sensing element is arranged at a position where infrared rays are shielded by the shielding surface (shielding portion) of the housing.

また、特許文献2に開示されているように、赤外線検知用感温素子と温度補償用感熱素子が樹脂フィルムに取り付けられ、その樹脂フィルムが筺体内部に収容され、2つの感温素子のうち、赤外線検知用感温素子の方は筺体に設けられた導光部の開口領域に配置され、温度補償用感温素子の方は筺体の壁面に囲まれて遮蔽された空間部に配置され、さらに、導光部から入射する赤外線量を調整する手段として、導光部の開口部面積を調整する遮蔽部が設けられた赤外線温度センサがある。そして、遮蔽部が、導光部の内壁面から内側に突出するネジのような可変突起部である構成が例示されている。   In addition, as disclosed in Patent Document 2, the infrared detecting temperature sensing element and the temperature compensating thermosensitive element are attached to the resin film, the resin film is accommodated inside the housing, and of the two temperature sensing elements, The infrared sensing temperature sensing element is disposed in the opening region of the light guide provided in the housing, the temperature compensating temperature sensing element is disposed in a shielded space surrounded by the housing wall, and As a means for adjusting the amount of infrared light incident from the light guide unit, there is an infrared temperature sensor provided with a shielding unit for adjusting the opening area of the light guide unit. And the structure whose shield part is a variable projection part like a screw which protrudes inward from the inner wall surface of a light guide part is illustrated.

特開平7−260579号公報JP 7-260579 A 特開2003−156284号公報JP 2003-156284 A

しかし、特許文献1の赤外線検出器は、筺体の外形寸法のばらつき等によって温度検出に誤差が生じ、センサ製造時の歩留まりが悪いという問題があった。この筺体は、金属材料を鋳造して大量生産されるので安価に効率よく製作できる半面、外形寸法にある程度のばらつきが生じる。このばらつきの影響は、同一ロット内の比較的小さなばらつきであっても無視できるものではなく、例えば、筺体の導光部の開口部面積や開口部高さ寸法がばらつくと、赤外線の入射量が変動して検出温度に大きな誤差が生じる。また、筺体の外形寸法のばらつき以外に、感温素子の外形寸法、樹脂フィルムの厚み、導体パターンの断面積などのばらつきも、検出温度に誤差を生じさせる要因になる。そして、この赤外線検出器は、誤差を補正する手段を備えていないので、誤差の大きい製品は不良品として廃棄せざるを得なかった。   However, the infrared detector disclosed in Patent Document 1 has a problem that an error occurs in temperature detection due to variations in the outer dimensions of the casing, and the yield during sensor manufacture is poor. Since this casing is mass-produced by casting a metal material, it can be manufactured inexpensively and efficiently, but some variation occurs in the external dimensions. The influence of this variation is not negligible even if it is a relatively small variation within the same lot.For example, if the opening area of the light guide part of the housing and the opening height dimension vary, the amount of incident infrared rays It fluctuates and a large error occurs in the detected temperature. In addition to variations in the outer dimensions of the casing, variations in the outer dimensions of the temperature sensitive element, the thickness of the resin film, the cross-sectional area of the conductor pattern, and the like cause errors in the detected temperature. And since this infrared detector is not provided with a means for correcting an error, a product with a large error has to be discarded as a defective product.

一方、特許文献2の赤外線温度センサは、ネジのような可変突起部の突出量を調節することによって、上記のような検出温度の誤差を製品個々に補正することができる。しかし、可変突起部の突出量を調節すると開口部面積が変化するので、赤外線を受光可能な検知視野角が変化し、製品によって赤外線の検出可能範囲が異なってしまう。例えば、特定の位置にある被測定物が赤外線を放射したとき、可変突起部の突出量が小さい製品を使用すると検知できるが、可変突出部の突出量が大きな製品を使用すると検知できないという現象が起こり、このような製品性能の不安定さは好ましくない。   On the other hand, the infrared temperature sensor of Patent Document 2 can correct the detected temperature error as described above by adjusting the amount of protrusion of a variable protrusion such as a screw. However, when the protrusion amount of the variable protrusion is adjusted, the opening area changes, so the detection viewing angle capable of receiving infrared light changes, and the infrared detectable range varies depending on the product. For example, when a measurement object at a specific position radiates infrared rays, it can be detected if a product with a small protrusion of the variable protrusion is used, but cannot be detected if a product with a large protrusion of the variable protrusion is used. Such an instability in product performance is undesirable.

この発明は、上記背景技術に鑑みて成されたもので、組み立てた後でも温度検出誤差を容易に補正することができ、検知視野角も一定に保つことができる非接触温度センサを提供することを目的とする。   The present invention has been made in view of the above-described background art, and provides a non-contact temperature sensor that can easily correct a temperature detection error even after assembly and can also maintain a constant detection viewing angle. With the goal.

この発明は赤外線検知用感温素子および温度補償用感温素子を備えた非接触温度センサであって、赤外線を遮蔽する遮蔽面を成す天板部と、前記天板部の一部を開口して内部に赤外線を導く導光部とが設けられた筐体と、裏面側の導体パターンに前記赤外線検知用感温素子および前記温度補償用感温素子が実装され、表面側を前記天板部に対向させて前記筺体内に収容されたフレキシブル回路基板と、赤外線遮蔽部と前記赤外線遮蔽部を保持する保持部とが設けられ、前記フレキシブルプリント回路基板と前記天板部及び前記導光部との間で、前記赤外線検知用感温素子に対する位置を調節可能に設けけられた感度調節部材とを備え、前記赤外線検知用感温素子は、前記筺体の前記導光部の開口領域に配置され、前記温度補償用感温素子は、前記遮蔽面に隠れた位置に配置され、前記感度調節部材の前記赤外線遮蔽部は、前記筺体の前記導光部の開口領域内で任意の一定面積部分を遮蔽するとともに前記赤外線検知用感温素子に対する位置を調節し、前記赤外線検知用感温素子の感度調整可能に設けられた非接触温度センサである。   The present invention is a non-contact temperature sensor provided with a temperature sensing element for detecting infrared rays and a temperature sensing element for temperature compensation, wherein a top plate portion forming a shielding surface for shielding infrared rays and a part of the top plate portion are opened. And the infrared detecting temperature sensing element and the temperature compensating temperature sensing element are mounted on a conductor pattern on the back side, and the top side is the top plate part. A flexible circuit board accommodated in the housing, an infrared shielding part, and a holding part for holding the infrared shielding part, the flexible printed circuit board, the top plate part, and the light guide part, A sensitivity adjusting member provided so that the position relative to the infrared sensing temperature sensing element can be adjusted, and the infrared sensing temperature sensing element is disposed in an opening region of the light guide portion of the housing. The temperature compensating temperature sensing element is: The infrared shielding portion of the sensitivity adjusting member is arranged at a position hidden behind the shielding surface, and shields an arbitrary constant area portion within the opening region of the light guide portion of the housing, and the infrared detecting temperature sensing element. It is a non-contact temperature sensor provided so that the sensitivity of the infrared sensing temperature sensing element can be adjusted by adjusting the position of the infrared sensing temperature sensor.

前記赤外線遮蔽部は、移動方向に対して垂直方向に前記導光部の開口領域を横切って赤外線を遮蔽するものである。   The infrared shielding unit shields infrared rays across the opening region of the light guide unit in a direction perpendicular to the moving direction.

また、前記赤外線遮蔽部の表面に、赤外線反射用の鏡面処理、又は、赤外線領域の電磁波反射用のコーティング剤等による表面処理が施されている。   Further, the surface of the infrared shielding part is subjected to a mirror surface treatment for infrared reflection or a surface treatment with a coating agent for electromagnetic wave reflection in the infrared region.

また、前記感度調節部材に、前記筺体の外部から操作可能な可動調整用つまみが設けられている。また、互いに対向する前記フレキシブルプリント回路基板と前記筺体の前記天板部との間にスペーサ手段が配置され、前記スペーサ手段は、前記フレキシブルプリント回路基板と前記天板部及び前記導光部との間に、前記感度調節部材がスライド可能な空間を確保する。   The sensitivity adjustment member is provided with a movable adjustment knob operable from the outside of the housing. In addition, spacer means is disposed between the flexible printed circuit board and the top plate portion of the casing facing each other, and the spacer means includes the flexible printed circuit board, the top plate portion, and the light guide portion. A space in which the sensitivity adjusting member can slide is secured.

この発明の非接触温度センサは、生産工程で各部材を組み立てた後、動作確認試験の中で感度調節部材を調節すれば、容易に感度の補正を行うことができ、製品個々の温度検出精度を一定の範囲内に調整することができる。また、導光部の開口部の輪郭形状及び開口面積を一定に保ったまま温度検出の感度を補正するため、検知の視野角を一定に保つことができる。   The non-contact temperature sensor according to the present invention can easily correct the sensitivity by adjusting the sensitivity adjustment member in the operation confirmation test after assembling each member in the production process. Can be adjusted within a certain range. Further, since the sensitivity of temperature detection is corrected while keeping the contour shape and opening area of the opening of the light guide portion constant, the viewing angle of detection can be kept constant.

また、感度調節部材の赤外線遮蔽部に赤外線反射の処理を施し、感度調節部材が赤外線を吸収するのを防止することにより、赤外線遮蔽部による感度補正の効果をより高めることができる。   Moreover, the effect of the sensitivity correction | amendment by an infrared shielding part can be further heightened by giving the infrared rays reflection process to the infrared shielding part of a sensitivity adjustment member, and preventing that a sensitivity adjustment member absorbs infrared rays.

また、この発明の非接触温度センサの構造は、従来の非接触温度センサの構造に、薄型の感度調節部材が追加されただけなので、外形が大きくなることはない。また、感度調節部材に可動調整用つまみ設け、筺体の外部に突出させるという構造についても、筺体の構造を複雑にすることなく容易に実現することができる。   Further, the structure of the non-contact temperature sensor according to the present invention does not increase the outer shape because only a thin sensitivity adjusting member is added to the structure of the conventional non-contact temperature sensor. In addition, a structure in which the sensitivity adjustment member is provided with a movable adjustment knob and protrudes to the outside of the housing can be easily realized without complicating the structure of the housing.

さらに、フレキシブルプリント回路基板と天板部との間にスペーサを設けることによって、感度調節部材が円滑にスライドするための適正な空間を容易に確保することができる。   Furthermore, by providing a spacer between the flexible printed circuit board and the top plate portion, it is possible to easily ensure an appropriate space for the sensitivity adjusting member to slide smoothly.

この発明の一実施形態である非接触温度センサを示す部分断面斜視図である。It is a partial section perspective view showing the non-contact temperature sensor which is one embodiment of this invention. 感度調節部材を示す斜視図である。It is a perspective view which shows a sensitivity adjustment member. この実施形態の長手方向の縦断面図である。It is a longitudinal cross-sectional view of the longitudinal direction of this embodiment. この実施形態の感度調節部材の動作を説明する平面図である。It is a top view explaining operation | movement of the sensitivity adjustment member of this embodiment. この実施形態を使用した温度検出システムの構成を示す回路ブロック図である。It is a circuit block diagram which shows the structure of the temperature detection system which uses this embodiment. この実施形態の赤外線遮蔽部の位置と検出温度の関係を表すグラフである。It is a graph showing the relationship between the position of the infrared shielding part of this embodiment, and detection temperature.

以下、この発明の一実施形態について、図面に基づいて説明する。この実施形態の非接触温度センサ10は、被測定物から放射された赤外線を受光し、その赤外線が有するエネルギーを、赤外線検知用感温素子20aと温度補償用感温素子20bを用いて電気信号に変換するセンサモジュールである。非接触温度センサ10は、図1に示すように、フレキシブルプリント回路基板12と、フレキシブルプリント回路基板12を収容する筺体14と、フレキシブルプリント回路基板12から筺体14の外部に電気信号を取り出すリード線16と、スライド式の感度調節部材18を備え、さらに、フレキシブルプリント回路基板12には、図示しない赤外線検知用感温素子20aと温度補償用感温素子20bが取り付けられている。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings. The non-contact temperature sensor 10 of this embodiment receives an infrared ray radiated from an object to be measured, and uses the infrared detection temperature sensing element 20a and the temperature compensation temperature sensing element 20b to convert the energy of the infrared signal into an electrical signal. It is a sensor module that converts to As shown in FIG. 1, the non-contact temperature sensor 10 includes a flexible printed circuit board 12, a housing 14 that houses the flexible printed circuit board 12, and lead wires that take out electrical signals from the flexible printed circuit board 12 to the outside of the housing 14. 16 and a slide type sensitivity adjusting member 18, and an infrared detection temperature sensing element 20 a and a temperature compensation temperature sensing element 20 b (not shown) are attached to the flexible printed circuit board 12.

フレキシブルプリント回路基板12は、被測定物が放射した赤外線を吸収する赤外線吸収体の働きをする樹脂フィルムである。樹脂フィルムの外形は略長方形で、表面には図示しない電気配線用の導体パターンが形成されている。樹脂フィルムの厚みは、赤外線の吸収量の変化に対する熱応答性を良好にするため熱容量の小さい薄いものが好ましく、ここでは、組み立て工程における取り扱いの容易性等も考慮して、20μm程度のものが選択されている。また、樹脂フィルムの素材は、ポリイミドの様な耐熱材料が用いられており、後述する面実装型の赤外線検知用感温素子20aと温度補償用感温素子20bをハンダ付け実装するのに好適である。また、赤外線の吸収能力を向上させるため、カーボンブラックまたは無機顔料を分散させた高分子材料を用いてもよい。   The flexible printed circuit board 12 is a resin film that functions as an infrared absorber that absorbs infrared rays emitted from the object to be measured. The outer shape of the resin film is substantially rectangular, and a conductor pattern for electric wiring (not shown) is formed on the surface. The thickness of the resin film is preferably a thin one having a small heat capacity in order to improve the thermal responsiveness to changes in the amount of absorbed infrared rays. Here, in consideration of the ease of handling in the assembly process, the thickness is about 20 μm. Is selected. The resin film is made of a heat-resistant material such as polyimide, which is suitable for soldering and mounting a surface-mounted infrared detecting temperature sensing element 20a and a temperature compensating temperature sensing element 20b described later. is there. Further, a polymer material in which carbon black or an inorganic pigment is dispersed may be used in order to improve infrared absorption ability.

赤外線検知用感温素子20a及び温度補償用感温素子20bは、環境温度に応じて自己の回路インピーダンスが変化する素子であって、同一の特性のものを一対にして使用する。ここでは、自身の温度の変化に応じて電気抵抗値が変化するサーミスタであって、負の温度特性を備えたNTCサーミスタが使用されている。また、各感温素子20a,20bは、端子長さの短い面実装型の素子が使用され、フレキシブルプリント回路基板12に実装したときに、感温素子20a,20bの感温部分とフレキシブルプリント回路基板12との熱結合が密になるように考慮されている。   The infrared detecting temperature sensing element 20a and the temperature compensating temperature sensing element 20b are elements whose own circuit impedance changes according to the environmental temperature, and use a pair having the same characteristics. Here, an NTC thermistor having a negative temperature characteristic, which is a thermistor whose electric resistance value changes in accordance with a change in its own temperature, is used. Each of the temperature sensitive elements 20a and 20b is a surface mount type element having a short terminal length. When the temperature sensitive elements 20a and 20b are mounted on the flexible printed circuit board 12, the temperature sensitive parts of the temperature sensitive elements 20a and 20b and the flexible printed circuit are used. It is considered that the thermal coupling with the substrate 12 is close.

筺体14は、ケース部分22と蓋部分24で構成されている。ケース部分22は、図1に示すように、略長方形の底板部26と、底板部26の一方の短辺から上向きに立設された後壁部30と、底板部26の左右一対の長辺から上向きに立設された一対の側壁部32とを有している。底板部26は、フレキシブルプリント回路基板12の外形に対して、長さ寸法が十分に長く、幅寸法はほぼ等しい。後壁部30の上部には、水平な上端面30aが形成されている。一対の側壁32の上部にも、僅かに段差が設けられた水平な上端面32a,32bが形成されており、後壁部30から離れた側の上端面32aの高さは、後壁部30の上端面30aよりも、フレキシブルプリント回路基板12及び後述するスペーサ44の厚みの分だけ低く設定されている。また、後壁部30側の上端面32bの高さは、後壁部30の上端面30aと同じ高さに設定されている。   The housing 14 includes a case portion 22 and a lid portion 24. As shown in FIG. 1, the case portion 22 includes a substantially rectangular bottom plate portion 26, a rear wall portion 30 erected upward from one short side of the bottom plate portion 26, and a pair of left and right long sides of the bottom plate portion 26. And a pair of side wall portions 32 erected upward. The bottom plate portion 26 is sufficiently long in length and substantially equal in width to the outer shape of the flexible printed circuit board 12. A horizontal upper end surface 30 a is formed on the upper portion of the rear wall portion 30. Horizontal upper end surfaces 32 a and 32 b having slight steps are also formed on the upper portions of the pair of side walls 32, and the height of the upper end surface 32 a on the side away from the rear wall portion 30 is the height of the rear wall portion 30. Is set lower than the upper end face 30a by the thickness of the flexible printed circuit board 12 and a spacer 44 described later. Further, the height of the upper end surface 32 b on the rear wall portion 30 side is set to the same height as the upper end surface 30 a of the rear wall portion 30.

一方、蓋部分24は、図1に示すように、平坦な略長方形の天板部34と、天板部34の一方の短辺から下向きに立設された前壁部36と、天板部26の左右一対の長辺から下向きに立設された側壁部38と、天板部34の中央部分から上向きに立設された導光部40を有している。天板部34は、上側の面が被測定物が放射した赤外線を遮蔽する遮蔽面34aであり、また、導光部40の根元付近に、後述する感度調節部材18の可動調整用つまみ18cが突出する矩形のスライド孔34bが設けられている。天板部34、前壁部36及び側壁部38で囲まれる内側の空間は、ケース部分22全体を上方から覆うように収めることができる広さになっている。また、導光部40は、天板34の中央付近に長穴状に開口された開口部42の周縁から立設された筒状の壁である。また、導光部40の内壁面には、赤外線領域の電磁波を吸収するコーティングが施されている。さらに、天板部34の外表面である遮蔽面34aには、赤外線領域の電磁波反射用のコーティング処理が施されていてもよい。   On the other hand, as shown in FIG. 1, the lid portion 24 includes a flat, substantially rectangular top plate portion 34, a front wall portion 36 erected downward from one short side of the top plate portion 34, and a top plate portion. 26, a side wall portion 38 erected downward from a pair of left and right long sides, and a light guide portion 40 erected upward from a central portion of the top plate portion 34. The top plate portion 34 is a shielding surface 34 a that shields infrared rays emitted from the object to be measured on the upper surface, and a movable adjustment knob 18 c of the sensitivity adjustment member 18 described later is provided near the root of the light guide portion 40. A protruding rectangular slide hole 34b is provided. The inner space surrounded by the top plate portion 34, the front wall portion 36, and the side wall portion 38 is wide enough to accommodate the entire case portion 22 from above. The light guide 40 is a cylindrical wall erected from the periphery of the opening 42 opened in the shape of a long hole near the center of the top plate 34. Further, the inner wall surface of the light guide 40 is provided with a coating that absorbs electromagnetic waves in the infrared region. Further, the shielding surface 34a, which is the outer surface of the top plate portion 34, may be subjected to a coating process for reflecting electromagnetic waves in the infrared region.

また、蓋部分24には、天板部14の内側の面に、後述する感度調節部材18の厚みとほぼ等しい厚みのスペーサ44が4箇所に貼り付けられている。スペーサ44が貼り付けられている位置は、蓋部分24にケース部分22を収めたとき、ケース部分22の左右一対の上端面32aに当接する位置である。   In the lid portion 24, spacers 44 having a thickness substantially equal to the thickness of the sensitivity adjusting member 18 described later are attached to four positions on the inner surface of the top plate portion 14. The position where the spacer 44 is affixed is a position where the spacer part 44 comes into contact with the pair of left and right upper end surfaces 32 a of the case part 22 when the case part 22 is stored in the lid part 24.

感度調節部材18は、コの字形の薄板である保持部18aと、保持部18aの2つの先端部の間に設けられた薄板状の赤外線遮蔽部18bと、赤外線遮蔽部18bと対向する保持部18aの中央部分から延設され、途中で上向きに屈曲したL字形の可動調整用つまみ18cとで構成されている。赤外線遮蔽部18bの表面は、赤外線反射用の鏡面処理、又は、赤外線領域の電磁波反射用のコーティング処理が施されている。   The sensitivity adjusting member 18 includes a holding portion 18a that is a U-shaped thin plate, a thin plate-like infrared shielding portion 18b provided between two tip portions of the holding portion 18a, and a holding portion that faces the infrared shielding portion 18b. An L-shaped movable adjustment knob 18c that extends from the center of 18a and bends upward in the middle. The surface of the infrared shielding part 18b is subjected to mirror treatment for infrared reflection or coating treatment for electromagnetic wave reflection in the infrared region.

リード線16は、フレキシブルプリント回路基板12の導体パターンであって各感温素子20a,20bが実装された面の導体パターンに、はんだ付け等によって一端が接続され、筺体14の外部に引き出すための十分な長さを有している。ここでは、リード線16は3本で、赤外線検知用感温素子20aの一端の電位、温度補償用感温素子20の一端の電位、そして、赤外線検知用感温素子20a及び温度補償用感温素子20bの他の一端が接続されたグランド電位を出力する。   One end of the lead wire 16 is connected to the conductor pattern of the flexible printed circuit board 12 on which the temperature sensitive elements 20a and 20b are mounted by soldering or the like, and is drawn out of the housing 14. It has a sufficient length. Here, the number of lead wires 16 is three, the potential at one end of the infrared sensing temperature sensing element 20a, the potential at one end of the temperature compensation temperature sensing element 20, and the infrared sensing temperature sensing element 20a and the temperature compensation temperature sensing. The ground potential to which the other end of the element 20b is connected is output.

次に、組み立てられた状態の非接触温度センサ10の内部構造について、図1、図3及び図4に基づいて説明する。フレキシブルプリント回路基板12は、図1、図3に示すように、実装された2つの感温素子20a,20bを下方に向け、リード線16がケース部分22の後壁部30の側に向けて配置され、一対の長辺側の端部が、ケース部分22の上端面32aと天板部34に貼り付けられたスペーサ44の間に挟持されて張り渡されている。従って、フレキシブルプリント回路基板12の内側の部分(筺体14で挟持されていない部分)は、図3に示すように、天板部34の内側の面からスペーサ44の厚み分だけ下方に配置され、隙間の空間に感度調節部材18が収容されている。   Next, the internal structure of the non-contact temperature sensor 10 in the assembled state will be described with reference to FIGS. 1, 3, and 4. As shown in FIGS. 1 and 3, the flexible printed circuit board 12 has the two mounted temperature sensing elements 20 a and 20 b facing downward, and the lead wire 16 faces the rear wall 30 of the case portion 22. The end portions of the pair of long sides are sandwiched and stretched between the upper end surface 32 a of the case portion 22 and the spacer 44 attached to the top plate portion 34. Therefore, the inner portion of the flexible printed circuit board 12 (the portion not sandwiched between the casings 14) is disposed below the inner surface of the top plate 34 by the thickness of the spacer 44, as shown in FIG. A sensitivity adjusting member 18 is accommodated in the space of the gap.

また、フレキシブルプリント回路基板12及び感度調節部材18が筺体14内に収容された状態で、赤外線検知用感熱素子20aは、導光部40を通って赤外線が入射する開口部42の中央に配置され、温度補償用感温素子20bは、赤外線が遮光される天板部34の下方に配置される。また、感度調節部材18の可動調整用つまみ18cは、上板部34のスライド孔34bから上方に突出している。   In addition, with the flexible printed circuit board 12 and the sensitivity adjustment member 18 housed in the housing 14, the infrared detecting thermal element 20 a is disposed at the center of the opening 42 through which the infrared light enters through the light guide 40. The temperature-compensating temperature sensing element 20b is disposed below the top plate portion 34 where infrared rays are shielded. Further, the movable adjustment knob 18 c of the sensitivity adjustment member 18 protrudes upward from the slide hole 34 b of the upper plate portion 34.

さらに、筺体14のケース部分22と蓋部分24は、上板部34の内側の面に、後壁部30の上端面30a及び側壁部32の上端面32bが当接し、図示しないネジ等によって固定される。また、後壁部30の上端面30aには透孔30bが3つ設けられており、フレキシブルプリント回路基板12に接続されたリード線16は、この透孔30bを通って筺体14の外側に引き出されている。   Further, the case portion 22 and the lid portion 24 of the housing 14 are fixed to the inner surface of the upper plate portion 34 by the upper end surface 30a of the rear wall portion 30 and the upper end surface 32b of the side wall portion 32 with screws or the like (not shown). Is done. In addition, three through holes 30b are provided in the upper end surface 30a of the rear wall portion 30, and the lead wires 16 connected to the flexible printed circuit board 12 are drawn out to the outside of the housing 14 through the through holes 30b. It is.

組み立てられた非接触温度センサ10を上方から見ると、図4に示すように、導光部40内の開口部42から、感度調節用部材18の赤外線遮蔽部18bが露出する。そして、可変調整つまみ18cをスライド孔34b内で左右にスライドさせることによって、赤外線遮蔽部18bの位置をX1〜X2の範囲で可変することができる。感度調節部材18をスライドさせるとき、スペーサ44の存在によってフレキシブルプリント回路基板12と天板部34の間に適正な空間が確保されているので、感度調節部材18がフレキシブルプリント回路基板12を傷つけることなく円滑に移動することができる。スペーサ44は、感度調節部材18の保持部18aと赤外線遮蔽部18bの厚みが厚い場合に有効であるが、当該各部の厚みが薄く、スライドに支障がなければ、スペーサ44を設けなくてもよい。   When the assembled non-contact temperature sensor 10 is viewed from above, the infrared shielding portion 18b of the sensitivity adjusting member 18 is exposed from the opening 42 in the light guide 40 as shown in FIG. And the position of the infrared shielding part 18b can be varied in the range of X1-X2 by sliding the variable adjustment knob 18c to the left and right within the slide hole 34b. When the sensitivity adjustment member 18 is slid, an appropriate space is secured between the flexible printed circuit board 12 and the top plate portion 34 due to the presence of the spacer 44, and therefore the sensitivity adjustment member 18 damages the flexible printed circuit board 12. It can move smoothly. The spacer 44 is effective when the holding portion 18a and the infrared shielding portion 18b of the sensitivity adjusting member 18 are thick, but the spacer 44 may not be provided if the thickness of each portion is thin and there is no problem with sliding. .

次に、非接触温度センサ10の動作回路である温度検出回路46について、図5に基づいて説明する。非接触温度検出回路46は、直流電源48の両端に非接触温度センサ10の赤外線検知感温素子20a及び基準抵抗49の直列回路を接続し、赤外線検知感温素子20aの両端電圧を電圧信号Vaとして取り出す。同様に、直流電源48の両端に、非接触温度センサ10の温度補償用感温素子20b及び基準抵抗50の直列回路を接続し、温度補償用感温素子20bの両端電圧を電圧信号Vbとして取り出す。この基準抵抗49,50は互いに抵抗値が等しく、温度依存性が小さく高精度の抵抗が用いられる。   Next, the temperature detection circuit 46 that is an operation circuit of the non-contact temperature sensor 10 will be described with reference to FIG. The non-contact temperature detection circuit 46 connects a series circuit of the infrared detection temperature sensing element 20a and the reference resistor 49 of the non-contact temperature sensor 10 to both ends of the DC power supply 48, and the voltage across the infrared detection temperature detection element 20a is applied to the voltage signal Va. Take out as. Similarly, the series circuit of the temperature compensation temperature sensing element 20b of the non-contact temperature sensor 10 and the reference resistor 50 is connected to both ends of the DC power supply 48, and the voltage across the temperature compensation temperature sensing element 20b is taken out as a voltage signal Vb. . The reference resistors 49 and 50 have the same resistance value, have a small temperature dependency, and use highly accurate resistors.

アナログの電圧信号Va,Vbは、アナログ・デジタル変換器52によってデジタルの電圧信号Va(d),Vb(d)に変換され、マイクロコンピュータ54に送られる。そして、マイクロコンピュータ54は、記憶装置56に格納されている電圧信号と温度との関係を示す特性テーブルデータと,電圧信号Va(d),Vb(d)を用いて所定の演算処理行い、2つの電圧信号の差分に基づいて被測定物の温度情報を得る。   The analog voltage signals Va and Vb are converted into digital voltage signals Va (d) and Vb (d) by the analog / digital converter 52 and sent to the microcomputer 54. The microcomputer 54 performs predetermined calculation processing using the characteristic table data indicating the relationship between the voltage signal and temperature stored in the storage device 56 and the voltage signals Va (d) and Vb (d). Temperature information of the object to be measured is obtained based on the difference between the two voltage signals.

次に、非接触温度センサ10と温度検出システム46の実際の動作について説明する。導光部40から赤外線が入射しないときは、フレキシブルプリント回路基板12の温度が一様なので、2つの感温素子20a,20bの抵抗値が等しく、回路が平衡するので電圧信号Va,Vbが等しくなり、差分(Vb−Va)はゼロになる。   Next, actual operations of the non-contact temperature sensor 10 and the temperature detection system 46 will be described. When infrared light is not incident from the light guide 40, the temperature of the flexible printed circuit board 12 is uniform, so that the resistance values of the two temperature sensitive elements 20a and 20b are equal and the circuit is balanced, so the voltage signals Va and Vb are equal. Thus, the difference (Vb−Va) becomes zero.

また、2つの感温素子20a,20bは、使用環境や周辺雰囲気の温度が変化すると、非接触温度センサ10に赤外線が入射しなくとも、抵抗値が互いに等しく変化する。しかし、2つの感温素子20a,20bの抵抗値が等しく増減するので、平衡状態は維持され差分(Vb−Va)はゼロを維持し、温度補償が適正に行われる。   In addition, the resistance values of the two temperature sensitive elements 20a and 20b change equally even when the infrared rays are not incident on the non-contact temperature sensor 10 when the temperature of the usage environment or the surrounding atmosphere changes. However, since the resistance values of the two temperature sensitive elements 20a and 20b increase or decrease equally, the equilibrium state is maintained, the difference (Vb−Va) is maintained at zero, and temperature compensation is performed appropriately.

一方、被測定物が放射した赤外線が導光部40から入射し、フレキシブルプリント回路基板12の開口部42の位置にある部分に吸収されると、その部分の熱エネルギーにより赤外線検知用感温素子20aの温度が変化し、自身の抵抗値が変化する。すると、上記の平衡状態が崩れ、2つの電圧信号の差分(Vb−Va)が生じる。そして、マイクロコンピュータは、電圧信号Va(d),Vb(d)の差分と、温度補償情報である電圧信号Vb(d)に基づき、記憶装置56にあらかじめ記録されている特性テーブルデーダによって温度換算し、被測定物の表面温度を算出する。   On the other hand, when infrared light emitted from the object to be measured enters from the light guide 40 and is absorbed by the portion at the position of the opening 42 of the flexible printed circuit board 12, a thermal sensor for detecting infrared rays by the thermal energy of the portion. The temperature of 20a changes, and its own resistance value changes. Then, the above-described equilibrium state is broken and a difference (Vb−Va) between the two voltage signals is generated. The microcomputer converts the temperature based on the difference between the voltage signals Va (d) and Vb (d) and the voltage signal Vb (d) which is temperature compensation information, using the characteristic table data recorded in the storage device 56 in advance. Then, the surface temperature of the object to be measured is calculated.

次に、この非接触温度センサ10の生産工程または出荷試験工程での感度のばらつき補正について説明する。例えば、黒体炉など一定の放射率を持つ被測定物の既知の温度を非接触温度センサ10を用いて検出し、温度検出回路46で処理して得られた温度検出結果が、所定の規格を満たしているか否かを判定する。そして、規格を満たしていないときは、可動調節用つまみ18cを操作して赤外線遮蔽部18bの位置を可変し、赤外線検知用感温素子20aの出力である電圧信号Vaを変化させて調整する。   Next, sensitivity variation correction in the production process or the shipping test process of the non-contact temperature sensor 10 will be described. For example, a temperature detection result obtained by detecting a known temperature of an object to be measured having a constant emissivity, such as a black body furnace, using the non-contact temperature sensor 10 and processing the temperature detection circuit 46 is a predetermined standard. It is determined whether or not When the standard is not satisfied, the movable adjustment knob 18c is operated to change the position of the infrared shielding portion 18b, and the voltage signal Va that is the output of the infrared detecting temperature sensing element 20a is changed and adjusted.

この実施形態では、赤外線遮蔽部18bは、図4に示すように、X1〜X2の範囲で位置を可変することができ、フレキシブルプリント回路基板12の赤外線遮蔽部18bが位置する部分は、赤外線を吸収することができないので、赤外線遮蔽部18bの位置と検出温度の関係は、例えば、図6のグラフのように表される。すなわち、赤外線遮蔽部18bの位置を赤外線検知用感温素子20aに近くすると、フレキシブルプリント回路基板12から赤外線検知用感温素子20aに伝わる熱量が抑えられてその抵抗値の変化が小さくなり、赤外線検知用感温素子20aの感度を等価的に低くすることができる。同様に、赤外線遮蔽部18bの位置を赤外線検知用感温素子20aから離すと、赤外線検知用感温素子20aの感度を等価的に高くすることができる。感度の調整方法は、赤外線遮蔽部18bの位置を少しずつ移動させ、温度検出システム46で算出した温度検出結果が所定の規格を満たしたところで停止させ、スライド孔34b部分に接着剤を塗布する等して赤外線遮蔽部18bを固定する。このような方法で、非接触温度センサ10の製品個々の感度を一律に調整することができる。   In this embodiment, as shown in FIG. 4, the position of the infrared shielding part 18b can be varied in the range of X1 to X2, and the part where the infrared shielding part 18b of the flexible printed circuit board 12 is located is infrared rays. Since it cannot be absorbed, the relationship between the position of the infrared shielding part 18b and the detected temperature is expressed as a graph in FIG. 6, for example. That is, when the position of the infrared shielding portion 18b is close to the infrared detecting temperature sensitive element 20a, the amount of heat transmitted from the flexible printed circuit board 12 to the infrared detecting temperature sensitive element 20a is suppressed, and the change in the resistance value is reduced. The sensitivity of the temperature sensing element 20a for detection can be equivalently lowered. Similarly, if the position of the infrared shielding part 18b is separated from the infrared detecting temperature sensitive element 20a, the sensitivity of the infrared detecting temperature sensitive element 20a can be increased equivalently. The sensitivity is adjusted by moving the position of the infrared shielding portion 18b little by little, stopping when the temperature detection result calculated by the temperature detection system 46 satisfies a predetermined standard, and applying an adhesive to the slide hole 34b portion, etc. Then, the infrared shielding part 18b is fixed. In this way, the sensitivity of each product of the non-contact temperature sensor 10 can be adjusted uniformly.

以上説明したように、非接触温度センサ10は、生産工程で各部材を組み立てた後、動作確認試験の中に感度調節部材18の赤外線遮蔽部18bの位置を調節することによって、温度検出の感度を容易に補正することができ、各部材の外形寸法等のばらつきの影響をキャンセルし、製品個々の温度検出精度を一律に設定することができる。さらに、この補正方法は、導光部40内の開口部42の輪郭形状と開口面積が変化しないので、検出の視野角を一定に保つことができる。また、赤外線遮蔽部18bは、その移動方向に対してほぼ垂直方向に前記導光部内の開口部を横切って赤外線を遮蔽する構造のため、位置をX1〜X2の範囲で変化させたとき、電圧信号Vaがなだらかに変化し、赤外線遮蔽部18bの位置調整が容易である。   As described above, the non-contact temperature sensor 10 adjusts the position of the infrared shielding part 18b of the sensitivity adjusting member 18 during the operation check test after assembling the members in the production process, thereby detecting the temperature detection sensitivity. Can be easily corrected, the influence of variations in the external dimensions of each member can be canceled, and the temperature detection accuracy of each product can be set uniformly. Furthermore, since this correction method does not change the contour shape and opening area of the opening 42 in the light guide 40, the detection viewing angle can be kept constant. Further, since the infrared shielding portion 18b is configured to shield infrared rays across the opening in the light guide portion in a direction substantially perpendicular to the moving direction, the voltage is changed when the position is changed in the range of X1 to X2. The signal Va changes gently, and the position adjustment of the infrared shielding part 18b is easy.

また、感度調節部材18の赤外線遮蔽部18bに赤外線反射の表面処理を施すことによって、赤外線遮蔽部18bによる感度補正の効果をより高めることができる。   Moreover, the effect of the sensitivity correction | amendment by the infrared shielding part 18b can be heightened by performing the surface treatment of infrared reflection on the infrared shielding part 18b of the sensitivity adjustment member 18.

また、非接触温度センサ10の構造は、従来の非接触温度センサの構造に、薄型の感度調節部材18が追加されただけなので、さほど外形が大きくなることはない。また、感度調節部材18に可動調整用つまみ18cを設けスライド孔34bから筺体14の外部に突出させる、という構造についても、筺体14の構造を複雑にすることなく容易に実現することができる。   Further, the structure of the non-contact temperature sensor 10 is obtained by adding the thin sensitivity adjusting member 18 to the structure of the conventional non-contact temperature sensor, so that the outer shape does not increase so much. Further, the structure in which the sensitivity adjusting member 18 is provided with the movable adjustment knob 18c and protrudes from the slide hole 34b to the outside of the housing 14 can be easily realized without complicating the structure of the housing 14.

さらに、フレキシブルプリント回路基板12と蓋部分24の天板部34との間にスペーサ44を設けることによって、感度調節部材18が円滑にスライドするための適正な空間を容易に確保することができる。   Furthermore, by providing the spacer 44 between the flexible printed circuit board 12 and the top plate portion 34 of the lid portion 24, it is possible to easily ensure an appropriate space for the sensitivity adjusting member 18 to slide smoothly.

なお、この発明の非接触温度センサは、上記実施形態に限定されるものではなく、導光部内の開口部の形状は、両端が半円状の長穴、長方形、正方形などであってもよい。また、感度調節用部材の赤外線遮蔽部の形状についても、開口部の任意の一定面積部分を遮蔽し、その位置を変化させたときの電圧信号Vaの変化の具合が適正であれば、センサの用途や被測定物の形態に応じて、自由に設定することができる。また、スペーサは、蓋部分の内側の面に一体に形成された突起や、フレキシブル回路基板の表面に設けた突起等によるスペーサ手段で代用してもよい。また、2つの感温素子と接続されてブリッジ回路を構成する基準抵抗などの回路素子は、非接触温度センサのフレキシブルプリント回路基板上に実装してもよい。   In addition, the non-contact temperature sensor of this invention is not limited to the said embodiment, The shape of the opening part in a light guide part may be an oblong hole, a rectangle, a square, etc. whose both ends are semicircular. . Further, regarding the shape of the infrared shielding portion of the sensitivity adjusting member, if an arbitrary constant area portion of the opening is shielded and the change of the voltage signal Va when the position is changed is appropriate, the sensor It can be set freely according to the application and the form of the object to be measured. The spacer may be replaced by a spacer means such as a protrusion integrally formed on the inner surface of the lid portion or a protrusion provided on the surface of the flexible circuit board. Further, a circuit element such as a reference resistor connected to the two temperature sensitive elements to form a bridge circuit may be mounted on the flexible printed circuit board of the non-contact temperature sensor.

10 非接触温度センサ
12 フレキシブルプリント回路基板
14 筺体
16 リード線
18 感度調節部材
18a 保持部材
18b 赤外線遮蔽部
18c 可変調整用つまみ
20a 赤外線検知用感温素子
20b 温度補償用感温素子
22 ケース部分
24 蓋部分
34 天板部
34a 遮蔽面
40 導光部
42 開口部
44 スペーサ
46 温度検出システム
49,50 基準抵抗
DESCRIPTION OF SYMBOLS 10 Non-contact temperature sensor 12 Flexible printed circuit board 14 Housing 16 Lead wire 18 Sensitivity adjustment member 18a Holding member 18b Infrared shielding part 18c Variable adjustment knob 20a Infrared detection temperature sensing element 20b Temperature compensation temperature sensing element 22 Case part 24 Lid Part 34 Top plate part 34a Shielding surface 40 Light guide part 42 Opening part 44 Spacer 46 Temperature detection system 49, 50 Reference resistance

Claims (5)

赤外線検知用感温素子および温度補償用感温素子を備えた非接触温度センサにおいて、
赤外線を遮蔽する遮蔽面を成す天板部と、前記天板部の一部を開口して内部に赤外線を導く導光部とが設けられた筐体と、
裏面側の導体パターンに前記赤外線検知用感温素子および前記温度補償用感温素子が実装され、表面側を前記天板部に対向させて前記筺体内に収容されたフレキシブル回路基板と、
赤外線遮蔽部と前記赤外線遮蔽部を保持する保持部とが設けられ、前記フレキシブルプリント回路基板と前記天板部及び前記導光部との間で、前記赤外線検知用感温素子に対する位置を調節可能に設けけられた感度調節部材とを備え、
前記赤外線検知用感温素子は、前記筺体の前記導光部の開口領域に配置され、前記温度補償用感温素子は、前記遮蔽面に隠れた位置に配置され、
前記感度調節部材の前記赤外線遮蔽部は、前記筺体の前記導光部の開口領域内で任意の一定面積部分を遮蔽するとともに前記赤外線検知用感温素子に対する位置を調節し、前記赤外線検知用感温素子の感度調整可能に設けられたことを特徴とする非接触温度センサ。
In a non-contact temperature sensor equipped with a temperature sensing element for infrared detection and a temperature sensing element for temperature compensation,
A casing provided with a top plate portion that forms a shielding surface that shields infrared rays, and a light guide portion that opens a part of the top plate portion and guides infrared rays therein;
A flexible circuit board that is mounted on the conductor pattern on the back side, the temperature sensing element for infrared detection and the temperature sensing element for temperature compensation are housed in the housing with the front side facing the top plate part, and
An infrared shielding part and a holding part for holding the infrared shielding part are provided, and the position relative to the infrared sensing temperature sensitive element can be adjusted between the flexible printed circuit board, the top plate part, and the light guide part. And a sensitivity adjustment member provided in the
The infrared sensing temperature sensing element is disposed in an opening region of the light guide portion of the casing, and the temperature compensation temperature sensing element is disposed in a position hidden behind the shielding surface,
The infrared shielding portion of the sensitivity adjusting member shields an arbitrary constant area portion within the opening region of the light guide portion of the housing and adjusts the position with respect to the temperature sensing element for infrared detection, thereby A non-contact temperature sensor provided so that the sensitivity of the temperature element can be adjusted.
前記赤外線遮蔽部は、移動方向に対して垂直方向に前記導光部の開口領域を横切って赤外線を遮蔽する請求項1記載の非接触温度センサ。   The non-contact temperature sensor according to claim 1, wherein the infrared shielding unit shields infrared rays across the opening region of the light guide unit in a direction perpendicular to a moving direction. 前記赤外線遮蔽部の表面に、赤外線領域の電磁波を反射する表面処理が施された請求項1記載の非接触温度センサ。   The non-contact temperature sensor according to claim 1, wherein a surface treatment for reflecting electromagnetic waves in an infrared region is performed on a surface of the infrared shielding part. 前記感度調節部材に、前記筺体の外部から操作可能な可動調整用つまみが設けられた請求項1乃至3のいずれか記載の非接触温度センサ。   The non-contact temperature sensor according to any one of claims 1 to 3, wherein the sensitivity adjustment member is provided with a movable adjustment knob operable from the outside of the housing. 互いに対向する前記フレキシブルプリント回路基板と前記筺体の前記天板部との間にスペーサ手段が配置され、前記スペーサ手段は、前記フレキシブルプリント回路基板と前記天板部及び前記導光部との間に、前記感度調節部材がスライド可能な空間を確保する請求項1乃至3のいずれか記載の非接触温度センサ。
Spacer means is disposed between the flexible printed circuit board and the top plate part of the casing facing each other, and the spacer means is provided between the flexible printed circuit board, the top plate part, and the light guide part. The non-contact temperature sensor according to claim 1, wherein a space in which the sensitivity adjusting member can slide is secured.
JP2010002490A 2010-01-08 2010-01-08 Non-contact temperature sensor Expired - Fee Related JP4567806B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2010002490A JP4567806B1 (en) 2010-01-08 2010-01-08 Non-contact temperature sensor
PCT/JP2010/063098 WO2011083593A1 (en) 2010-01-08 2010-08-03 Non-contact temperature sensor
CN201080057068.3A CN102667430B (en) 2010-01-08 2010-08-03 Non-contact temperature sensor
KR1020127014213A KR101709943B1 (en) 2010-01-08 2010-08-03 Non-contact temperature sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010002490A JP4567806B1 (en) 2010-01-08 2010-01-08 Non-contact temperature sensor

Publications (2)

Publication Number Publication Date
JP4567806B1 JP4567806B1 (en) 2010-10-20
JP2011141216A true JP2011141216A (en) 2011-07-21

Family

ID=43098834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010002490A Expired - Fee Related JP4567806B1 (en) 2010-01-08 2010-01-08 Non-contact temperature sensor

Country Status (4)

Country Link
JP (1) JP4567806B1 (en)
KR (1) KR101709943B1 (en)
CN (1) CN102667430B (en)
WO (1) WO2011083593A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016050871A (en) * 2014-09-01 2016-04-11 三菱マテリアル株式会社 Infrared sensor and method for adjusting sensitivity of infrared sensor
CN109073468A (en) * 2016-12-20 2018-12-21 株式会社芝浦电子 Infrared temperature sensor
US10353338B2 (en) 2017-01-20 2019-07-16 Canon Kabushiki Kaisha Sensor unit and image forming apparatus

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5514071B2 (en) * 2010-10-29 2014-06-04 Tdk株式会社 Temperature sensor
WO2013065091A1 (en) * 2011-11-04 2013-05-10 株式会社芝浦電子 Infrared temperature sensor and fuser using same
US11439143B2 (en) * 2012-07-10 2022-09-13 Lifeline Scientific, Inc. Temperature sensing in organ preservation apparatus
US20140264023A1 (en) * 2013-03-13 2014-09-18 Kelsey-Hayes Company Lobed aperture radiant sensor
KR20150103944A (en) * 2014-03-04 2015-09-14 (주)파트론 Electronic device having contactless temperature sensor and contactless temperature sensor module
KR101650344B1 (en) * 2014-04-29 2016-08-24 세일리코 주식회사 Non-contact temperature profiler, monitoring system for temperature and vibration using the same and method thereof
JP2016223809A (en) * 2015-05-27 2016-12-28 浜松ホトニクス株式会社 Shield plate and measurement device
JP2016223811A (en) * 2015-05-27 2016-12-28 浜松ホトニクス株式会社 Shield plate and measurement device
WO2017217272A1 (en) * 2016-06-13 2017-12-21 株式会社芝浦電子 Infrared temperature sensor
CN109416283B (en) * 2017-06-06 2019-12-24 株式会社芝浦电子 Infrared temperature sensor and method for manufacturing same
CN113507082B (en) * 2021-07-14 2022-05-13 四川大学 Single-phase passive anti-icing and de-icing resistance type control equipment for strain tower

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08327447A (en) * 1995-05-30 1996-12-13 Matsushita Electric Works Ltd Current collecting element sensor
JPH0915044A (en) * 1995-06-27 1997-01-17 Matsushita Electric Works Ltd Illuminance sensor
JPH10318829A (en) * 1997-05-20 1998-12-04 Ishizuka Denshi Kk Infrared sensor
JP2001243828A (en) * 2000-02-29 2001-09-07 Matsushita Electric Works Ltd Illumination fixture
JP2002156284A (en) * 2000-11-20 2002-05-31 Ishizuka Electronics Corp Infrared temperature sensor
JP2006118993A (en) * 2004-10-21 2006-05-11 Tdk Corp Noncontact temperature sensor, and output regulation method therefor
JP2006118992A (en) * 2004-10-21 2006-05-11 Tdk Corp Noncontact temperature sensor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3327668B2 (en) 1994-03-24 2002-09-24 石塚電子株式会社 Infrared detector
US5962854A (en) * 1996-06-12 1999-10-05 Ishizuka Electronics Corporation Infrared sensor and infrared detector
JP2008145133A (en) 2006-12-06 2008-06-26 Horiba Ltd Radiation thermometer

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08327447A (en) * 1995-05-30 1996-12-13 Matsushita Electric Works Ltd Current collecting element sensor
JPH0915044A (en) * 1995-06-27 1997-01-17 Matsushita Electric Works Ltd Illuminance sensor
JPH10318829A (en) * 1997-05-20 1998-12-04 Ishizuka Denshi Kk Infrared sensor
JP2001243828A (en) * 2000-02-29 2001-09-07 Matsushita Electric Works Ltd Illumination fixture
JP2002156284A (en) * 2000-11-20 2002-05-31 Ishizuka Electronics Corp Infrared temperature sensor
JP2006118993A (en) * 2004-10-21 2006-05-11 Tdk Corp Noncontact temperature sensor, and output regulation method therefor
JP2006118992A (en) * 2004-10-21 2006-05-11 Tdk Corp Noncontact temperature sensor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016050871A (en) * 2014-09-01 2016-04-11 三菱マテリアル株式会社 Infrared sensor and method for adjusting sensitivity of infrared sensor
CN109073468A (en) * 2016-12-20 2018-12-21 株式会社芝浦电子 Infrared temperature sensor
US10533898B2 (en) 2016-12-20 2020-01-14 Shibaura Electronics Co., Ltd. Infrared temperature sensor
CN109073468B (en) * 2016-12-20 2020-04-28 株式会社芝浦电子 Infrared temperature sensor and method for manufacturing same
US10353338B2 (en) 2017-01-20 2019-07-16 Canon Kabushiki Kaisha Sensor unit and image forming apparatus

Also Published As

Publication number Publication date
CN102667430A (en) 2012-09-12
JP4567806B1 (en) 2010-10-20
WO2011083593A1 (en) 2011-07-14
CN102667430B (en) 2014-11-26
KR101709943B1 (en) 2017-02-24
KR20120120152A (en) 2012-11-01

Similar Documents

Publication Publication Date Title
JP4567806B1 (en) Non-contact temperature sensor
JP5640529B2 (en) Infrared sensor and circuit board having the same
JP5832007B2 (en) Infrared sensor and manufacturing method thereof
RU2567095C2 (en) Infrared measurement of temperature, and its stabilisation
US7005642B2 (en) Infrared sensor and electronic device using the same
JP2011013213A (en) Infrared sensor
EP1605252B1 (en) Method and apparatus for eliminating and compensating thermal transients in gas analyzer
JP5736906B2 (en) Infrared sensor
JP5207329B1 (en) Infrared temperature sensor and fixing device using the same
CN107966211B (en) Infrared sensor for measuring ambient air temperature
EP2693177B1 (en) Infrared sensor
JP5741830B2 (en) Infrared sensor device
EP3421952A1 (en) Infrared sensor device
US20170122811A1 (en) Infrared temperature measurement and stabilization thereof
CN111504479A (en) Infrared radiation measuring device
CN107664534B (en) Temperature sensor packaging structure
JP7223911B1 (en) electronic balance
JP5747628B2 (en) Induction heating cooker
EP3803300A1 (en) Infrared temperature measurement and stabilization thereof

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100714

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100805

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4567806

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees