JP2011137197A - Desiliconizing and dephosphorizing method for molten iron - Google Patents

Desiliconizing and dephosphorizing method for molten iron Download PDF

Info

Publication number
JP2011137197A
JP2011137197A JP2009296861A JP2009296861A JP2011137197A JP 2011137197 A JP2011137197 A JP 2011137197A JP 2009296861 A JP2009296861 A JP 2009296861A JP 2009296861 A JP2009296861 A JP 2009296861A JP 2011137197 A JP2011137197 A JP 2011137197A
Authority
JP
Japan
Prior art keywords
hot metal
slag
treatment
mass
removal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009296861A
Other languages
Japanese (ja)
Other versions
JP5488972B2 (en
Inventor
Takeshi Nakajima
剛司 中嶋
Susumu Mukawa
進 務川
Kazunori Fukiage
和徳 吹上
Ko Sakai
航 阪井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2009296861A priority Critical patent/JP5488972B2/en
Publication of JP2011137197A publication Critical patent/JP2011137197A/en
Application granted granted Critical
Publication of JP5488972B2 publication Critical patent/JP5488972B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a desiliconizing and dephosphorizing method for molten iron which improves the dephosphorizing efficiency in a molten iron pre-treating process by a means applicable to the actual operation. <P>SOLUTION: When the desiliconizing and the dephosphorizing treatments are applied in the molten iron pre-treating process, (mass% FeO):(mass% SiO<SB>2</SB>) in slag at the desiliconizing period in the initial period of treatment, is controlled in the range of 90:10-60:40 to improve the liquid-phase ratio of the slag. By this method, the melting speed of sub-raw material and a material-shifting speed in the slag, are increased and thus, the dephosphorizing efficiency is improved. In order to control the (mass%FeO):(mass%SiO<SB>2</SB>) in the slag in the desiliconizing period into the range of 90:10-60:40, the oxygen supplying speed is controlled so that the ratio η of being contributed to the desiliconization by the oxygen supplied in the desiliconizing period becomes in the range of 21 to 62%. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、溶銑予備処理工程における溶銑の脱Si脱P処理方法の改良に関するものである。   The present invention relates to an improvement of a hot metal removal Si removal P treatment method in a hot metal preliminary treatment step.

転炉装入前の溶銑にCaO源を投入するとともに酸素を吹き込み、脱Siと脱Pとを行わせる溶銑予備処理は、従来から広く実施されている。鋼中に残存するPは鋼特性に大きな影響を与えるため、鉄鋼業界においては特に脱P効率を改善するための様々な努力が続けられてきた。   Conventionally, hot metal preliminary treatment in which a CaO source is introduced into the hot metal before charging the converter and oxygen is blown to remove Si and P is widely performed. Since P remaining in steel has a great influence on steel properties, various efforts have been made in the steel industry to improve the de-P efficiency.

例えば本出願人の出願に係る特許文献1には、溶銑中への酸素供給速度が脱Si脱P処理に影響するとの知見が開示されており、上吹ランスからの酸素供給速度を0.3Nm/min/t以下に維持することによって、Si含有率が0.3%以上の溶銑についても、脱Si脱P処理を同時に進行させることができる旨が記載されている。 For example, Patent Document 1 relating to the application of the present applicant discloses the knowledge that the oxygen supply rate into the hot metal affects the de-Si removal P treatment, and the oxygen supply rate from the top blowing lance is set to 0.3 Nm. It is described that by maintaining at 3 / min / t or less, hot metal having a Si content of 0.3% or more can simultaneously proceed with de-Si de-P process.

しかし吹錬の全期間にわたって上吹ランスからの酸素供給速度を0.3Nm/min/t以下に維持することは、実験炉では可能であるが、実操業においては溶銑の温度を維持する、好ましくは冷鉄源を溶解するための余剰熱を捻出する必要があるため、上吹ランスから0.3Nm/min/tより大きい速度で酸素を供給する必要がある。このため、特許文献1の発明を実操業に適用して脱P効率を改善することは容易ではなかった。 However, it is possible to maintain the oxygen supply rate from the top blowing lance at 0.3 Nm 3 / min / t or less during the entire blowing process in the experimental furnace, but in the actual operation, the hot metal temperature is maintained. Preferably, surplus heat for dissolving the cold iron source needs to be generated, so that oxygen needs to be supplied from the upper blowing lance at a rate higher than 0.3 Nm 3 / min / t. For this reason, it is not easy to improve the de-P efficiency by applying the invention of Patent Document 1 to actual operation.

特開平2−93011号公報JP-A-2-93011

本発明の目的は上記した従来の問題点を解決し、実操業に適用可能な手段によって、溶銑予備処理工程における脱P効率を改善することができる溶銑の脱Si脱P処理方法を提供することである。   An object of the present invention is to provide a hot metal de-Si de-P treatment method capable of solving the above-mentioned conventional problems and improving the de-P efficiency in the hot metal pretreatment process by means applicable to actual operation. It is.

上記の課題を解決するために本発明者は研究を重ねた結果、脱P改善のポイントは初期スラグ形成にあり、初期の脱Si期の酸素供給速度を適切に制御して液相率の高いスラグを形成すれば、副原料の溶解速度およびスラグ中の物質移動速度が向上し、脱P効率を確実に改善できることを究明した。本発明はこの知見に基づいて完成されたものであり、溶銑予備処理工程において溶銑の脱Si脱P処理を行うにあたり、処理初期の脱Si期におけるスラグ中の(質量%FeO):(質量%SiO)を90:10〜60:40の範囲に制御してスラグ液相率を高め、副原料の溶解速度およびスラグ中の物質移動速度を高めることにより、脱P効率を改善することを特徴とするものである。 As a result of repeated researches by the present inventors to solve the above problems, the point of de-P improvement is in the initial slag formation, and the liquid supply rate is high by appropriately controlling the oxygen supply rate in the initial de-Si phase. It has been found that if slag is formed, the dissolution rate of the auxiliary raw material and the mass transfer rate in the slag are improved, and the de-P efficiency can be reliably improved. The present invention has been completed based on this finding. In performing hot metal de-Si removal P treatment in the hot metal preliminary treatment step, (mass% FeO) in the slag in the de-Si stage in the early stage of treatment: (mass% The SiO 2 ) is controlled in the range of 90:10 to 60:40 to increase the slag liquid phase ratio, and the de-P efficiency is improved by increasing the dissolution rate of the auxiliary material and the mass transfer rate in the slag. It is what.

本発明においては、溶銑予備処理工程において溶銑の脱Si脱P処理を行うにあたり、処理初期の脱Si期において(a)式で定められるαが0.17〜0.49になるように、操業条件を制御することが好ましい。
α=VO÷[%Si] initial÷d0.6÷ε0.7×M×ln([%Si]initial÷0.001)・・・(a)
In the present invention, in performing the hot metal de-Si removal P treatment in the hot metal preliminary treatment step, the operation is performed so that α defined by the formula (a) is 0.17 to 0.49 in the de-Si period of the initial treatment. It is preferable to control the conditions.
α = VO 2 ÷ [% Si] initial ÷ d 0.6 ÷ ε 0.7 × M × ln ([% Si] initial ÷ 0.001) (a)

なお、脱Pのための塩基度調整用の副原料として、溶銑予備処理工程以降において発生するスラグとともに、生石灰または炭酸カルシウムを溶銑中に投入することが好ましく、また塩基度調整用の副原料の粒径を5mm以下とすることが好ましい。さらに塩基度調整用の副原料を、粒径の大きいものから順に溶銑中に投入することが好ましく、また塩基度調整用の副原料を、塩基度の低いものから順に溶銑中に投入することが好ましい。   In addition, it is preferable to add quick lime or calcium carbonate into the hot metal together with slag generated after the hot metal preliminary treatment step as an auxiliary raw material for adjusting the basicity for de-P. The particle size is preferably 5 mm or less. Furthermore, it is preferable to add the auxiliary raw materials for adjusting the basicity into the hot metal in order of increasing particle size, and the auxiliary raw materials for adjusting the basicity may be added to the hot metal in order of increasing basicity. preferable.

本発明においては、溶銑予備処理初期の脱Si期におけるスラグ中の(質量%FeO):(質量%SiO)を90:10〜60:40の範囲に制御することによって、1300℃前後の温度領域においてCaO−SiO−FeOの3元系状態図中でFayalite(2FeO・SiO)として表示される周辺の均一液相領域のスラグを形成することができる。このスラグは液相率が高く、脱Pのための副原料の溶解速度およびスラグ中の物質移動速度を高めることができるので、従来よりも脱P効率を改善し、最終的な脱P率を向上させることができる。また本発明においては、脱Si期において供給した酸素が脱Siに寄与する割合ηを21%≦η≦62%の範囲となるように酸素供給速度を制御することにより、脱Si期におけるスラグ中の(質量%FeO):(質量%SiO)を90:10〜60:40の範囲に制御することができるが、処理初期の脱Si期にのみ酸素供給速度を高めに制御すればよく、上吹き酸素に加えて鉄鉱石に代表される酸化鉄(Fe)を添加することで、実操業においても十分に実施可能である。 In the present invention, by controlling the (mass% FeO) :( mass% SiO 2 ) in the slag in the de-Si stage in the early stage of hot metal pretreatment to a range of 90:10 to 60:40, the temperature is around 1300 ° C. In the region, it is possible to form a slag of the surrounding uniform liquid phase region, which is displayed as Fayalite (2FeO · SiO 2 ) in the CaO—SiO 2 —FeO ternary phase diagram. This slag has a high liquid phase rate, and can increase the dissolution rate of the auxiliary raw material for de-P and the mass transfer rate in the slag. Can be improved. In the present invention, the oxygen supply rate is controlled so that the ratio η in which oxygen supplied in the Si removal period contributes to the Si removal is in a range of 21% ≦ η ≦ 62%, so that (Mass% FeO): (mass% SiO 2 ) can be controlled in the range of 90:10 to 60:40, but it is only necessary to control the oxygen supply rate to be higher only during the de-Si period in the initial stage of treatment By adding iron oxide (Fe 2 O 3 ) typified by iron ore in addition to top-blown oxygen, it can be sufficiently implemented even in actual operation.

CaO−SiO−FeO3元系状態図の1300℃等温断面図である。It is 1300 ° C. isothermal sectional view of CaO-SiO 2 -FeO3 ternary phase diagram. 装入Si濃度と、脱Si期の酸素供給速度VOが脱P率に与える影響を示したグラフである。And loading the Si concentration is a graph of oxygen supply rate VO 2 showed the effects de P ratio of the de Si phase. 装入Si濃度と、目標の脱P率を達成するために必要な脱Si期の酸素供給速度VOとの関係を示すグラフである。And loading the Si concentration is a graph showing the relationship between the oxygen supply rate VO 2 of de Si phase required to achieve the de-P rate goal. 本発明者が試験を行った設備においてηが21%≦η≦62%の範囲となる酸素供給速度VOの範囲を示すグラフである。The present inventor is a graph showing the range eta is oxygen supply rate VO 2 comprising in the range of 21% ≦ η ≦ 62% in equipment tested.

以下に本発明をさらに詳細に説明する。
本発明においては、溶銑予備処理初期の脱Si期におけるスラグ中の(質量%FeO):(質量%SiO)を90:10〜60:40の範囲に制御する。図1のCaO−SiO−FeO3元系状態図の1300℃等温断面図に示されるように、この範囲においてはCaOが0%近傍であっても、均一液相が形成される。これにより処理初期に形成される初期スラグの液相率を高めることができ、脱Pのための副原料の溶解速度およびスラグ中の物質移動速度も高くなるために脱P率も高まり、最終的な脱P率を向上させることが可能となる。
The present invention is described in further detail below.
In the present invention, the (mass% FeO) :( mass% SiO 2 ) in the slag in the de-Si stage in the early stage of hot metal pretreatment is controlled in the range of 90:10 to 60:40. As shown in the 1300 ° C. isothermal sectional view of the CaO—SiO 2 —FeO ternary phase diagram of FIG. 1, a uniform liquid phase is formed in this range even when CaO is near 0%. As a result, the liquid phase rate of the initial slag formed in the initial stage of the treatment can be increased, and the dissolution rate of the auxiliary raw material for de-P and the mass transfer rate in the slag are also increased. It is possible to improve the P-free rate.

ここで脱Si期とは、処理開始から脱Si反応終了までの時間帯を意味する。脱Si反応が終了するまでの時間t(min)は、t=[%Si] initial÷η÷VO÷0.125で表される。ただしηは供給した酸素が脱Siに寄与する割合(脱Si酸素効率)、VOは系への酸素供給速度であり、上吹きランスからの酸素吹き込みのほか、酸化物として固体状態で投入された酸素も気体酸素に換算して加えた値である。 Here, the de-Si period means a time period from the start of the treatment to the end of the de-Si reaction. A time t (min) until the de-Si reaction is completed is represented by t = [% Si] initial ÷ η ÷ VO 2 ÷ 0.125. However, η is the ratio of the supplied oxygen to de-Si (de-Si oxygen efficiency), VO 2 is the oxygen supply rate to the system, and in addition to oxygen blowing from the top blowing lance, it is charged in the solid state as oxide The oxygen is also a value added in terms of gaseous oxygen.

Fe+1/2O=FeOという反応とSi+O=SiOという反応を考えて原子量から計算すると、O1kgあたりFeOは4.5kg、SiOは1.9kg生成するので、(質量%FeO):(質量%SiO)が90:10〜60:40の範囲というのは、21%≦η≦62%の範囲に相当する(供給した酸素はSiもしくはFeのみと反応するものと仮定)。よって、上記のように脱Si期におけるスラグ中の(質量%FeO):(質量%SiO)を90:10〜60:40の範囲に制御するために、上吹きランスからの酸素吹き込みとともに酸化鉄投入などの手段を用いてηが21%≦η≦62%の範囲を満たすように制御すればよい。ηが21%未満であると(質量%FeO):(質量%SiO)が90:10よりもFeO過剰側にシフトし、逆にηが62%を超えるとSiO過剰側にシフトし、好ましい範囲を外れることとなる。実操業においてはηが21%未満となる可能性は小さいので、如何にしてηを62%以下に抑制するかが重要となる。 Considering the reaction of Fe + 1/2 O 2 = FeO and the reaction of Si + O 2 = SiO 2 and calculating from atomic weight, 4.5 kg of FeO and 1.9 kg of SiO 2 are generated per 1 kg of O 2 (mass % FeO): (mass% SiO 2 ) in the range of 90:10 to 60:40 corresponds to a range of 21% ≦ η ≦ 62% (supplied oxygen reacts only with Si or Fe). Assumption). Therefore, as described above, in order to control the (mass% FeO) :( mass% SiO 2 ) in the slag in the de-Si phase to the range of 90:10 to 60:40, oxidation is performed together with oxygen blowing from the top blowing lance. What is necessary is just to control so that (eta) may satisfy | fill the range of 21% <= (eta) <= 62% using means, such as iron insertion. When η is less than 21%, (mass% FeO): (mass% SiO 2 ) shifts to the FeO excess side than 90:10, conversely, when η exceeds 62%, it shifts to the SiO 2 excess side, This is outside the preferred range. In actual operation, it is unlikely that η will be less than 21%, so it is important how to suppress η to 62% or less.

ここでηを増加させる因子としては、溶銑による装入Siの増加、炉内撹拌動力増加(上吹酸素流量増加)があり、ηを減少させる因子としては酸素供給速度増大がある。図2は装入Siと、脱Si期の酸素供給速度VOが脱P率に与える影響を示したグラフであり、装入[Si]上昇によりηが増加し脱P率が悪化すること、酸素供給速度VOを上昇させることによりηが低下し脱P率が改善することを読み取ることができる。 Here, factors that increase η include an increase in charged Si due to hot metal and an increase in the stirring power in the furnace (an increase in the flow rate of top blowing oxygen), and factors that decrease η include an increase in oxygen supply rate. FIG. 2 is a graph showing the influence of the charged Si and the oxygen supply rate VO 2 in the de-Si period on the de-P rate. Η increases due to the increase in the charge [Si], and the de-P rate deteriorates. It can be read that by increasing the oxygen supply rate VO 2 , η decreases and the P removal rate improves.

また図3は装入Siと、目標の脱P率を達成するために必要な脱Si期の酸素供給速度VOとの関係を示すグラフである。装入Siが多いとSiOが生成され易くなるため、装入Siが高いほど酸素供給速度VOを高めなければ、目標の脱P率を達成することができないことを読み取ることができる。 FIG. 3 is a graph showing the relationship between the charged Si and the oxygen supply rate VO 2 in the de-Si period necessary to achieve the target de-P rate. Since SiO 2 tends to be generated when the amount of charged Si is large, it can be read that the target de-P rate cannot be achieved unless the oxygen supply rate VO 2 is increased as the charged Si is higher.

以下に、装入Si%に応じて酸素供給速度VOをどの範囲に設定すればよいかを、説明する。
上記の組成のスラグを生成させるためには、脱Si期に供給した酸素が元素Xと反応する割合をηXとすると、前述したようにηSi:ηFe=21:79〜62:38の範囲であればよいので、脱Si期の酸素供給速度VOを以下の範囲に制御することで目標を達成する。
VOmax=0.49×[%Si] initial×d0.6×ε0.7÷M÷ln([%Si] initial÷0.001)
VOmin=0.17×[%Si] initial×d0.6×ε0.7÷M÷ln( [%Si] initial÷0.001)
以下にその算出根拠を説明するが、各数式中の記号の意味と単位は次の表1に示す通りである。
In the following, the range in which the oxygen supply rate VO 2 should be set according to the charged Si% will be described.
In order to generate the slag having the above composition, when the ratio of oxygen supplied in the de-Si period to react with the element X is η X , as described above, η Si : η Fe = 21: 79 to 62:38 Since the range is sufficient, the target is achieved by controlling the oxygen supply rate VO 2 in the de-Si period to the following range.
VO 2 max = 0.49 × [% Si] initial × d 0.6 × ε 0.7 ÷ M ÷ ln ([% Si] initial ÷ 0.001)
VO 2 min = 0.17 × [% Si] initial × d 0.6 × ε 0.7 ÷ M ÷ ln ([% Si] initial ÷ 0.001)
The calculation basis will be described below. The meanings and units of symbols in each mathematical formula are as shown in Table 1 below.

まず溶銑処理条件においてスラグ中FeO濃度が40%以上であれば、反応は溶銑中Siの移動律速となるので、以下の(1)式の関係が成立する。
−ln([%Si]initial÷[%Si])=kSi×A÷V×t=kSi×(π÷4×d)÷(M÷7.0)×t=5.5×kSi×d÷M×t・・・(1)式
First, if the FeO concentration in the slag is 40% or more under the hot metal treatment conditions, the reaction is rate-controlled by the movement of Si in the hot metal, so the relationship of the following equation (1) is established.
−ln ([% Si] initial ÷ [% Si]) = k Si × A ÷ V × t = k Si × (π ÷ 4 × d 2 ) ÷ (M ÷ 7.0) × t = 5.5 × k Si × d 2 ÷ M × t (1)

溶銑中の物質移動係数は、撹拌動力と炉体内径の関数として、(2)式で表される。
Si=3.9×10−5×(ε÷d0.7・・・(2)式
The mass transfer coefficient in the hot metal is expressed by equation (2) as a function of the stirring power and the inner diameter of the furnace body.
k Si = 3.9 × 10 −5 × (ε ÷ d 2 ) 0.7 Equation (2)

酸素の1Nm/tはSiの0.125%と反応するので、供給された酸素が全てSiもしくはFeと反応すると仮定すると、脱Siが終了するまでの時間tは、(3)式で表される。
t=[%Si] initial÷ηSi÷(VO÷60)÷0.125・・・(3)式
Since 1 Nm 3 / t of oxygen reacts with 0.125% of Si, assuming that all of the supplied oxygen reacts with Si or Fe, the time t until the de-Si is completed is expressed by equation (3). Is done.
t = [% Si] initial ÷ η Si ÷ (VO 2 ÷ 60) ÷ 0.125 (3)

脱Si反応終点のSi濃度を0.001%と仮定し、(1)(2)(3)式を整理すると、次の(4)式の関係が導かれる。
VO=0.103÷ηSi×[%Si] initial×d0.6×ε0.7÷M÷ln([%Si]initial÷0.001)・・・(4)式
Assuming that the Si concentration at the end of the de-Si reaction is 0.001% and rearranging the equations (1), (2), and (3), the relationship of the following equation (4) is derived.
VO 2 = 0.103 ÷ η Si × [% Si] initial × d 0.6 × ε 0.7 ÷ M ÷ ln ([% Si] initial ÷ 0.001) (4)

ηSiの適正範囲は21〜62%であるので、(4)式に代入するとVOの上下限値が前記の通り算出される。 Since the appropriate range of η Si is 21 to 62%, the upper and lower limit values of VO 2 are calculated as described above when substituted into the equation (4).

なお、εは以下の関係式を用いて算出することができる。
ε=εbottom+εtop
εbottom=371×K×Qbottom×T×{ln(1+9.8×6800×h÷P)+(1−Tn÷T)}
εtop=0.137×cosθ×Qtop×m÷n÷D÷x
Note that ε can be calculated using the following relational expression.
ε = εbottom + εtop
εbottom = 371 × K × Qbottom × T × {ln (1 + 9.8 × 6800 × h ÷ P) + (1−Tn ÷ T)}
εtop = 0.137 × cos θ × Qtop 3 × m ÷ n 2 ÷ D 3 ÷ x

上記した算出根拠に基づいて算出されたVOmaxとVOminのグラフを図4に示した。ただし、ε、d、Mなどの条件は本発明者が試験を行った設備の数値に基づいている。装入Siに応じて酸素供給速度VOをこの範囲に制御すればよい。 A graph of VO 2 max and VO 2 min calculated based on the above calculation basis is shown in FIG. However, conditions such as ε, d, and M are based on the numerical values of the equipment tested by the inventor. The oxygen supply rate VO 2 may be controlled within this range in accordance with the charged Si.

以下に、請求項3〜請求項6に記載した脱Pのための塩基度調整用の副原料について述べる。本発明においても脱Pのために塩基度調整用の副原料が必要であり、溶銑予備処理工程以降において発生するスラグとともに、生石灰または炭酸カルシウムを用いることが好ましい。溶銑予備処理工程以降において発生するスラグの代表的なものは転炉スラグであり、これを溶銑予備処理工程に返送して脱Pのために用いることによって、生石灰や炭酸カルシウムの使用量を削減することができる。   The auxiliary materials for adjusting basicity for de-P described in claims 3 to 6 will be described below. Also in the present invention, an auxiliary raw material for adjusting the basicity is required for removing P, and it is preferable to use quick lime or calcium carbonate together with slag generated after the hot metal preliminary treatment step. A typical slag generated after the hot metal pretreatment process is the converter slag, which is returned to the hot metal pretreatment process and used for de-P to reduce the amount of quicklime and calcium carbonate used. be able to.

このような塩基度調整用の副原料の粒径は5mm以下とすることが好ましい。これは粒径が5mmを超えると溶解に時間がかかり、脱Siと同時に脱Pを進行させにくくなるからである。   The particle size of such a basic material for adjusting the basicity is preferably 5 mm or less. This is because if the particle size exceeds 5 mm, it takes time to dissolve, and it becomes difficult to proceed with de-P simultaneously with de-Si.

また、塩基度調整用の副原料が同一粒径でない場合には、粒径の大きいものから順に投入することが好ましい。粒径の大きいものは溶解に時間がかかるためである。また塩基度調整用の副原料は、塩基度の低いものから順に投入することが好ましい。塩基度の低いものほど溶けやすく、初期スラグ形成が安定するためである。   In addition, when the auxiliary raw materials for adjusting the basicity are not the same particle size, it is preferable to add them in order from the larger particle size. This is because a large particle size takes time to dissolve. Moreover, it is preferable to add the auxiliary raw materials for adjusting the basicity in order from the lowest basicity. This is because the lower the basicity, the easier it is to dissolve and the initial slag formation is stable.

表2に示される組成の溶銑を転炉型の精錬炉(d=5.3m、ε=5.1×10W、M=290〜305ton)に装入し、脱Si脱P処理を行った。溶銑はCの含有率が3.9〜4.5%、Pの含有率が0.064〜0.084%であるが、Siの含有率は0.21〜0.83%と大きく異なるものとした。脱Si期における上吹きランスからの酸素供給速度を1.2〜2.2Nm/min/tの範囲で変化させることで、請求項2の(a)式で表わされるαを表中に示すように変化させた。表中のスラグ組成の値は、操業条件から計算した脱Si時のスラグ組成をFeO-SiO2二元系に換算した値である。 The hot metal having the composition shown in Table 2 was charged into a converter-type refining furnace (d = 5.3 m, ε = 5.1 × 10 6 W, M = 290 to 305 ton), and subjected to de-Si de-P treatment. It was. The hot metal has a C content of 3.9 to 4.5% and a P content of 0.064 to 0.084%, but the Si content is significantly different from 0.21 to 0.83%. It was. The α represented by the formula (a) of claim 2 is shown in the table by changing the oxygen supply rate from the top blowing lance in the de-Si period in the range of 1.2 to 2.2 Nm 3 / min / t. It was changed as follows. The value of the slag composition in the table is a value obtained by converting the slag composition at the time of de-Si calculated from the operating conditions into a FeO-SiO 2 binary system.

No.1〜No.10はαが本発明範囲に入る実施例であり、No.11〜No.20はこの範囲を下方に外れた比較例(1)、No.21〜22はこの範囲を上方に外れた比較例(2)である。何れの場合にも処理後の溶銑中Siの含有率はほぼゼロとなったが、Pの含有率は表中に示すとおりであり、(処理前P−処理後P)÷処理前Pとして算出される脱P率は比較例(1)および(2)では25〜57%であったが、実施例では61〜79%と大幅に向上したことが確認された。また、比較例(2)については、処理初期に炉の上部からスラグが流出して処理継続が困難となった。これは酸素供給速度が大きすぎたために、ガス抜け性の良いスラグが形成される前に脱Cが開始してCOガスが発生し、スラグを持ち上げてしまったためと考えられる。   No. 1-No. No. 10 is an example in which α falls within the scope of the present invention. 11-No. No. 20 is Comparative Example (1), No. 21-22 is a comparative example (2) which deviated upwards from this range. In any case, the Si content in the hot metal after the treatment was almost zero, but the P content is as shown in the table, calculated as (P before treatment-P after treatment) ÷ P before treatment. It was confirmed that the P removal rate was 25 to 57% in the comparative examples (1) and (2), but significantly improved to 61 to 79% in the examples. Moreover, about the comparative example (2), the slag flowed out from the upper part of the furnace at the initial stage of the process, and it was difficult to continue the process. This is presumably because the oxygen supply rate was too high, so that de-C started and CO gas was generated before the slag with good gas releasing properties was formed, and the slag was lifted.

表3に示される組成の溶銑を転炉型の精錬炉に装入し、脱Si脱P処理を行った。溶銑はCの含有率が3.8〜4.8%、Pの含有率が0.064〜0.091%であるが、Siの含有率は0.17〜0.67%と大きく異なるものとした。脱P時の副原料として生石灰・炭酸カルシウムおよび予備処理工程以降で発生したスラグを用いた。No.1〜No.10は生石灰・炭酸カルシウムと予備処理工程以降で発生したスラグを併用した本発明実施例であり、No.11〜No.20は生石灰・炭酸カルシウムのみを用いた比較例である。脱P率は比較例では27〜73%であったが、実施例では67〜85%と大幅に向上したことが確認された。   The hot metal having the composition shown in Table 3 was charged into a converter-type refining furnace and subjected to de-Si removal P treatment. The hot metal has a C content of 3.8 to 4.8% and a P content of 0.064 to 0.091%, but the Si content is significantly different from 0.17 to 0.67%. It was. Quick lime / calcium carbonate and slag generated after the pretreatment step were used as auxiliary materials at the time of de-P. No. No. 1 to No. 10 are examples of the present invention in which quick lime / calcium carbonate and slag generated after the pretreatment step are used in combination. 11 to No. 20 are comparative examples using only quicklime and calcium carbonate. The P removal rate was 27 to 73% in the comparative example, but it was confirmed that the removal rate was significantly improved to 67 to 85% in the example.

表4に示される組成の溶銑を転炉型の精錬炉に装入し、脱Si脱P処理を行った。溶銑はCの含有率が3.7〜4.3%、Pの含有率が0.065〜0.105%であるが、Siの含有率は0.23〜0.68%と大きく異なるものとした。脱P時の副原料について、篩で篩って粒度を調整し、試験を行った。No.1〜No.10は5mmのメッシュの篩で篩った篩下のみを用いて処理を行った本発明実施例であり、No.11〜No.20は50mmのメッシュの篩で篩った篩下のみを用いた比較例である。脱P率は比較例では37〜66%であったが、実施例では47〜79%と大幅に向上したことが確認された。   The hot metal having the composition shown in Table 4 was charged into a converter-type refining furnace and subjected to de-Si de-P treatment. The hot metal has a C content of 3.7 to 4.3% and a P content of 0.065 to 0.105%, but the Si content is significantly different from 0.23 to 0.68%. It was. The auxiliary material at the time of removing P was screened with a sieve to adjust the particle size and tested. No. No. 1 to No. 10 are examples of the present invention in which treatment was performed using only a sieve under a 5 mm mesh sieve. Nos. 11 to 20 are comparative examples using only a sieve under a 50 mm mesh sieve. The P removal rate was 37 to 66% in the comparative example, but it was confirmed that the removal rate was significantly improved to 47 to 79% in the example.

表5に示される組成の溶銑を転炉型の精錬炉に装入し、脱Si脱P処理を行った。溶銑はCの含有率が3.7〜4.5%、Pの含有率が0.064〜0.087%であるが、Siの含有率は0.16〜0.86%と大きく異なるものとした。脱P時の副原料について、篩で篩って粒度を調整した0〜5mmのものと0〜50mmのものをほぼ同量準備して、試験を行った。No.1〜No.10は0〜50mmの副原料を投入した後に0〜5mmの副原料を投入するという順序で処理を行った本発明実施例であり、No.11〜No.20は0〜5mmの副原料を投入した後に0〜50mmの副原料を投入するという順序で処理を行った比較例である。脱P率は比較例では16〜64%であったが、実施例では52〜84%と大幅に向上したことが確認された。   The hot metal having the composition shown in Table 5 was charged into a converter-type refining furnace and subjected to de-Si de-P treatment. The hot metal has a C content of 3.7 to 4.5% and a P content of 0.064 to 0.087%, but the Si content is significantly different from 0.16 to 0.86%. It was. About the auxiliary material at the time of de-P, the test was conducted by preparing almost the same amount of 0 to 5 mm and 0 to 50 mm, which were adjusted by sieving with a sieve. No. No. 1 to No. 10 are examples of the present invention in which processing was performed in the order of adding an auxiliary material of 0 to 5 mm after adding an auxiliary material of 0 to 50 mm. Nos. 11 to 20 are comparative examples in which processing was performed in the order of adding auxiliary materials of 0 to 50 mm after adding auxiliary materials of 0 to 5 mm. Although the P removal rate was 16 to 64% in the comparative example, it was confirmed that the removal rate was greatly improved to 52 to 84% in the examples.

表6に示される組成の溶銑を転炉型の精錬炉に装入し、脱Si脱P処理を行った。溶銑はCの含有率が3.9〜4.5%、Pの含有率が0.064〜0.082%であるが、Siの含有率は0.19〜0.88%と大きく異なるものとした。脱P時の副原料について、生石灰および炭酸カルシウム(CaO:SiO2=1:0)と転炉スラグ(CaO:SiO2≒3:1)をほぼ同量準備して、試験を行った。No.1〜No.10は転炉スラグ(低塩基度)を投入した後に生石灰および炭酸カルシウム(高塩基度)を投入するという順序で処理を行った本発明実施例であり、No.11〜No.20は生石灰および炭酸カルシウム(高塩基度)を投入した後に転炉スラグ(低塩基度)を投入するという順序で処理を行った比較例である。脱P率は比較例では9〜62%であったが、実施例では56〜79%と大幅に向上したことが確認された。 The hot metal having the composition shown in Table 6 was charged into a converter-type refining furnace and subjected to de-Si removal P treatment. The hot metal has a C content of 3.9 to 4.5% and a P content of 0.064 to 0.082%, but the Si content is significantly different from 0.19 to 0.88%. It was. About the auxiliary materials at the time of de-P, quick lime and calcium carbonate (CaO: SiO 2 = 1: 0) and converter slag (CaO: SiO 2 ≈3: 1) were prepared in substantially the same amount and tested. No. Nos. 1 to 10 are examples of the present invention in which processing was performed in the order of charging quick lime and calcium carbonate (high basicity) after charging converter slag (low basicity). Nos. 11 to 20 are comparative examples in which processing was performed in the order of charging converter slag (low basicity) after charging quick lime and calcium carbonate (high basicity). The P removal rate was 9 to 62% in the comparative example, but it was confirmed that the removal rate was significantly improved to 56 to 79% in the examples.

Claims (6)

溶銑予備処理工程において溶銑の脱Si脱P処理を行うにあたり、処理初期の脱Si期におけるスラグ中の(質量%FeO):(質量%SiO)を90:10〜60:40の範囲に制御してスラグ液相率を高め、副原料の溶解速度およびスラグ中の物質移動速度を高めることにより、脱P効率を改善することを特徴とする溶銑の脱Si脱P処理方法。 In performing hot metal de-Si removal P treatment in the hot metal preliminary treatment step, (mass% FeO) :( mass% SiO 2 ) in the slag in the de-Si stage in the initial stage of the treatment is controlled in the range of 90:10 to 60:40. And improving the de-P efficiency by increasing the slag liquid phase ratio and increasing the dissolution rate of the auxiliary raw material and the mass transfer rate in the slag. 溶銑予備処理工程において溶銑の脱Si脱P処理を行うにあたり、処理初期の脱Si期において(a)式で定められるαが0.17〜0.49になるように、操業条件を制御することを特徴とする請求項1記載の溶銑の脱Si脱P処理方法。
α=VO÷[%Si] initial÷d0.6÷ε0.7×M×ln([%Si]initial÷0.001)・・・(a)
In performing hot metal de-Si removal P treatment in the hot metal preliminary treatment step, the operating conditions are controlled so that α defined by the formula (a) is 0.17 to 0.49 in the de-Si period of the initial treatment. The hot metal removal Si removal P treatment method according to claim 1.
α = VO 2 ÷ [% Si] initial ÷ d 0.6 ÷ ε 0.7 × M × ln ([% Si] initial ÷ 0.001) (a)
脱Pのための塩基度調整用の副原料として、溶銑予備処理工程以降において発生するスラグとともに、生石灰または炭酸カルシウムを用いることを特徴とする請求項1記載の溶銑の脱Si脱P処理方法。   2. The hot metal de-Si de-P treatment method according to claim 1, wherein quick lime or calcium carbonate is used as a secondary material for adjusting the basicity for de-P, together with slag generated after the hot metal pretreatment step. 塩基度調整用の副原料の粒径を5mm以下とすることを特徴とする請求項3記載の溶銑の脱Si脱P処理方法。   4. The hot metal de-Si removal P treatment method according to claim 3, wherein the particle size of the auxiliary raw material for adjusting the basicity is 5 mm or less. 塩基度調整用の副原料を、粒径の大きいものから順に投入することを特徴とする請求項3記載の溶銑の脱Si脱P処理方法。   4. The hot metal de-Si removal P treatment method according to claim 3, wherein the auxiliary materials for adjusting the basicity are introduced in the order of increasing particle size. 塩基度調整用の副原料を、塩基度の低いものから順に投入することを特徴とする請求項3記載の溶銑の脱Si脱P処理方法。   4. The hot metal de-Si de-P treatment method according to claim 3, wherein the auxiliary materials for adjusting the basicity are introduced in order from the lowest basicity.
JP2009296861A 2009-12-28 2009-12-28 Hot metal removal Si removal P treatment method Active JP5488972B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009296861A JP5488972B2 (en) 2009-12-28 2009-12-28 Hot metal removal Si removal P treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009296861A JP5488972B2 (en) 2009-12-28 2009-12-28 Hot metal removal Si removal P treatment method

Publications (2)

Publication Number Publication Date
JP2011137197A true JP2011137197A (en) 2011-07-14
JP5488972B2 JP5488972B2 (en) 2014-05-14

Family

ID=44348890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009296861A Active JP5488972B2 (en) 2009-12-28 2009-12-28 Hot metal removal Si removal P treatment method

Country Status (1)

Country Link
JP (1) JP5488972B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6734321B2 (en) 2018-04-25 2020-08-05 ファナック株式会社 Wire electric discharge machine and electric discharge method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0293011A (en) * 1988-09-28 1990-04-03 Nippon Steel Corp Method for desiliconizing and dephosphorizing molten iron simultaneously
JPH06287616A (en) * 1993-04-01 1994-10-11 Nippon Steel Corp Simultaneous desiliconization and dephosphorization method of molten iron
JP2002309310A (en) * 1998-06-18 2002-10-23 Nkk Corp Method for producing low-phosphorous molten iron
JP2003105419A (en) * 2001-09-27 2003-04-09 Nippon Steel Corp Method for pretreating molten iron
JP2009249666A (en) * 2008-04-03 2009-10-29 Nippon Steel Corp Dephosphorization refining method for molten iron

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0293011A (en) * 1988-09-28 1990-04-03 Nippon Steel Corp Method for desiliconizing and dephosphorizing molten iron simultaneously
JPH06287616A (en) * 1993-04-01 1994-10-11 Nippon Steel Corp Simultaneous desiliconization and dephosphorization method of molten iron
JP2002309310A (en) * 1998-06-18 2002-10-23 Nkk Corp Method for producing low-phosphorous molten iron
JP2003105419A (en) * 2001-09-27 2003-04-09 Nippon Steel Corp Method for pretreating molten iron
JP2009249666A (en) * 2008-04-03 2009-10-29 Nippon Steel Corp Dephosphorization refining method for molten iron

Also Published As

Publication number Publication date
JP5488972B2 (en) 2014-05-14

Similar Documents

Publication Publication Date Title
JP5408369B2 (en) Hot metal pretreatment method
JP5954551B2 (en) Converter steelmaking
JP5418733B2 (en) Hot metal refining method
JP6631265B2 (en) Method for producing derinsed slag
JP6164151B2 (en) Method for refining molten iron using a converter-type refining furnace
JP5343506B2 (en) Hot phosphorus dephosphorization method
JP6693536B2 (en) Converter steelmaking method
JP5408379B2 (en) Hot metal pretreatment method
JP5983492B2 (en) Hot metal pretreatment method
JP6897274B2 (en) Pretreatment method of hot metal
JP5233378B2 (en) Hot phosphorus dephosphorization method
JP2006009146A (en) Method for refining molten iron
JP6773131B2 (en) Pretreatment method for hot metal and manufacturing method for ultra-low phosphorus steel
CN104531948B (en) Method of dephosphorization of molten iron
JP5488972B2 (en) Hot metal removal Si removal P treatment method
JP6992604B2 (en) Phosphate slag fertilizer manufacturing method
WO2020116643A1 (en) Carburizer and carburization method using same
JP5447554B2 (en) Dephosphorization method for hot metal
JP5803837B2 (en) Method of desiliconization and dephosphorization of hot metal
JP2001049320A (en) Production of iron and steel using high phosphorus ore as raw material
JP2011149083A (en) Method for dephosphorizing molten pig iron
JP2009249666A (en) Dephosphorization refining method for molten iron
JP2004107735A (en) Method for efficiently dephosphorizing molten iron
JPS6152208B2 (en)
JP2010255054A (en) Method for dephosphorizing molten iron

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131018

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140213

R151 Written notification of patent or utility model registration

Ref document number: 5488972

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350