JP2011137187A - Vacuum vapor-deposition apparatus and thin-film-forming method - Google Patents

Vacuum vapor-deposition apparatus and thin-film-forming method Download PDF

Info

Publication number
JP2011137187A
JP2011137187A JP2009295956A JP2009295956A JP2011137187A JP 2011137187 A JP2011137187 A JP 2011137187A JP 2009295956 A JP2009295956 A JP 2009295956A JP 2009295956 A JP2009295956 A JP 2009295956A JP 2011137187 A JP2011137187 A JP 2011137187A
Authority
JP
Japan
Prior art keywords
film
film thickness
vapor deposition
substrate
substrate holder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009295956A
Other languages
Japanese (ja)
Inventor
Yukinobu Murao
幸信 村尾
Shuichi Yokoyama
周一 横山
Naoyuki Ishida
直之 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Anelva Corp
Original Assignee
Canon Anelva Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Anelva Corp filed Critical Canon Anelva Corp
Priority to JP2009295956A priority Critical patent/JP2011137187A/en
Publication of JP2011137187A publication Critical patent/JP2011137187A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vapor-deposition apparatus which can easily give the optimal uniformity to the thickness of a film formed from each film-forming material, by making the exponent dependency of a direction cosine in a physical vapor-deposition film formation reflected in the apparatus. <P>SOLUTION: The vacuum vapor-deposition apparatus includes: an evaporation source 400; a substrate holder 21; a first film-thickness monitor; a second film-thickness monitor; a computing means for modeling a film thickness distribution from measurement results of the film thicknesses by the first film-thickness monitor and the second film-thickness monitor; and a control means for controlling a spatial arrangement of the evaporation source and a substrate according to the results of the computing means. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、真空蒸着装置に係り、特には、蒸着速度の蒸着方向の角度依存性を測定するモニターを具備する物理蒸着装置に関する。   The present invention relates to a vacuum vapor deposition apparatus, and more particularly, to a physical vapor deposition apparatus including a monitor that measures the angle dependency of the vapor deposition rate in the vapor deposition direction.

物理蒸着では物理蒸着源から放射される蒸着物質は方向余弦の冪数、即ち放射角θ(鉛直軸と角度θをなす方向)においては、(cosθ)nに比例するとされている(例えば、非特許文献1など)。そして、方向余弦の巾指数nは、物理蒸着物質により異なっている。 In the physical vapor deposition, the vapor deposition material radiated from the physical vapor deposition source is proportional to (cos θ) n in the power of the direction cosine, that is, the radiation angle θ (the direction that forms the angle θ with the vertical axis) (for example, non Patent Document 1). The width index n of the direction cosine differs depending on the physical vapor deposition material.

しかしながら、従来、物理蒸着装置ではこの巾指数nを考慮して基板に蒸着を行う設計とはなっていない。例えば、従来、蒸着物質の測定には、蒸発源ひとつに対してひとつの水晶振動子を配置することにより、膜厚をモニターすることが行われている(特許文献1、2など)。特許文献1では、蒸着効率はcosAに比例するものとして、膜厚を測定している。
また、特許文献2では、粒子線の方向による密度は、鉛直軸と角度θをなす方向には、cosθのn乗に比例するとしているものの、予めnの値を設定している。
However, conventionally, the physical vapor deposition apparatus is not designed to perform vapor deposition on the substrate in consideration of the width index n. For example, conventionally, in the measurement of a vapor deposition substance, the film thickness is monitored by arranging one crystal resonator with respect to one evaporation source (Patent Documents 1 and 2, etc.). In Patent Document 1, the film thickness is measured on the assumption that the deposition efficiency is proportional to cosA.
In Patent Document 2, although the density according to the direction of the particle beam is proportional to the nth power of cos θ in the direction that forms an angle θ with the vertical axis, the value of n is set in advance.

ジークフリート・シラー、ウルリッヒ・ハイジッヒ著 、真空蒸着、1979年アグネ社出版、ISBN3057-04093−0030、第3章 P25〜29Siegfried Schiller, by Ulrich Heisig, vacuum deposition, 1979 Agne Publishing, ISBN3057-04093-0030, Chapter 3, P25-29

特開平5−09727号公報Japanese Patent Laid-Open No. 5-072727 特開平11−061384号公報JP 11-061384 A

特許文献1の蒸着装置では、水晶振動子などが使われる膜厚モニターは、蒸着源の上方にひとつ配置される。このような膜厚モニター配置の装置では、蒸着源の鉛直方向から例えばθ異なった方向へ飛び出す蒸着物質の蒸着速度は、その方向余弦cosθに依存すると仮定し、基板上への蒸着速度が計算される。しかしながら、蒸着物質は、前述の非特許文献1に記載のごとく方向余弦cosθのn乗に比例する。蒸着源によって、この巾指数nは1〜4の広範囲にわたる値をとることが報告されている。従って、巾指数nが1以外の値をとる蒸着材料に対応した基板ホルダ配置設計とはならない。一方、特許文献2の装置においては、モニター位置での成膜速度をモニターするだけで、蒸着速度の方向余弦巾指数を解析することが出来ないため、予めnの値を設定しておくことが必要があった。   In the vapor deposition apparatus of Patent Document 1, one film thickness monitor using a crystal resonator or the like is disposed above the vapor deposition source. In an apparatus having such a film thickness monitor arrangement, it is assumed that the deposition rate of the deposition material that jumps out from the vertical direction of the deposition source, for example, in a direction different from θ, depends on the direction cosine cos θ, and the deposition rate on the substrate is calculated. The However, the vapor deposition material is proportional to the nth power of the direction cosine cos θ as described in Non-Patent Document 1 described above. It has been reported that this width index n takes a wide range of values from 1 to 4 depending on the deposition source. Therefore, it is not a substrate holder arrangement design corresponding to the vapor deposition material in which the width index n takes a value other than 1. On the other hand, in the apparatus of Patent Document 2, since it is not possible to analyze the direction cosine width index of the deposition rate only by monitoring the film formation rate at the monitor position, the value of n may be set in advance. There was a need.

そこで、本発明は、物理蒸着成膜における方向余弦の冪指数依存性を真空蒸着装置に反映させ、成膜材料による成膜膜厚不均一性を改善することを目的とする。   Therefore, an object of the present invention is to improve the nonuniformity of the film thickness due to the film forming material by reflecting the dependence of the direction cosine in the physical vapor deposition film on the power exponent in the vacuum vapor deposition apparatus.

本発明の真空蒸着装置は、蒸発源と、基板を保持する基板ホルダと、第1の膜厚モニターと、第2の膜厚モニターと、第1の膜厚モニターと第2の膜厚モニターの膜厚測定結果から膜厚分布をモデル化するための演算手段と、演算手段の結果により蒸着源と基板との空間配置を制御する制御手段と、を有することを特徴とする。
また、本発明の成膜方法は、上記真空蒸着装置を用いて基板に薄膜を形成することを特徴とする。
The vacuum deposition apparatus of the present invention includes an evaporation source, a substrate holder for holding a substrate, a first film thickness monitor, a second film thickness monitor, a first film thickness monitor, and a second film thickness monitor. It has a calculation means for modeling the film thickness distribution from the film thickness measurement result, and a control means for controlling the spatial arrangement of the vapor deposition source and the substrate according to the result of the calculation means.
In addition, the film forming method of the present invention is characterized in that a thin film is formed on a substrate using the vacuum deposition apparatus.

本発明により、蒸着物質の蒸着減からの放射角方向余弦の巾指数値を、蒸着時にin−situで求めることが出来る。従って、基板上の物理蒸着膜厚から逆算して巾指数を求めるという煩雑な方法と異なり、本発明によれば極めて迅速な方法を提供可能である。また、このモニター結果を成膜装置に自動的に反映させる機能をもたせることで、従来装置に比べ成膜材料ごとに最適な成膜膜厚均一性を容易に実現できる装置の提供が可能になる。   According to the present invention, the width index value of the cosine of the radiation angle from the deposition loss of the deposition material can be obtained in-situ during deposition. Therefore, unlike the complicated method of calculating the width index by calculating back from the physical vapor deposition film thickness on the substrate, the present invention can provide a very quick method. In addition, by providing a function for automatically reflecting the monitoring result on the film forming apparatus, it is possible to provide an apparatus that can easily realize the optimum film thickness uniformity for each film forming material as compared with the conventional apparatus. .

本発明に係わる膜厚モニターの原理を説明する図である。It is a figure explaining the principle of the film thickness monitor concerning this invention. 本発明の蒸着装置の概略構成図の断面図である。It is sectional drawing of the schematic block diagram of the vapor deposition apparatus of this invention. 図2の蒸着装置を上面から見た平面図である。It is the top view which looked at the vapor deposition apparatus of FIG. 2 from the upper surface. 基板ホルダ角θhの定義を示すための図である。It is a figure for showing the definition of substrate holder angle thetah. 基板ホルダの自転回転を止めた場合の基板上の膜厚分布と基板ホルダ角の関係を等高線で示したものである。The relationship between the film thickness distribution on the substrate and the substrate holder angle when the rotation of the substrate holder is stopped is indicated by contour lines. 方向余弦判定モニター結果から、基板上の成膜分布を自動的に制御する方法を説明するフローチャートである。It is a flowchart explaining the method of controlling automatically the film-forming distribution on a board | substrate from a direction cosine determination monitor result. 図6のフローチャートを適用する本発明の蒸着装置の一態様を示す図である。It is a figure which shows the one aspect | mode of the vapor deposition apparatus of this invention to which the flowchart of FIG. 6 is applied.

以下、図面に基づいて本発明を説明する。   The present invention will be described below with reference to the drawings.

まず、図1を参照して本発明の蒸着装置に用いる膜厚モニターの原理を説明する。図1は、二つの所定位置に夫々自動計測可能な膜厚モニターを配置した場合、二つの膜厚モニターで測定された膜厚比から求めるべき方向余弦の冪指数を算出する原理を説明する図である。   First, the principle of the film thickness monitor used in the vapor deposition apparatus of the present invention will be described with reference to FIG. FIG. 1 is a diagram for explaining the principle of calculating the power cosine of the direction cosine to be obtained from the film thickness ratio measured by the two film thickness monitors when the film thickness monitors that can be automatically measured are arranged at two predetermined positions, respectively. It is.

図1で、膜厚モニター1は、蒸着源3からd1の距離に配置されており、膜厚モニター2は、蒸着源3からd2の距離に配置されている。蒸着源中心上の鉛直線cとモニター1のなす角をθ1、線直線cとモニター2となす角をθ2とする。膜厚モニター1、2としては、例えば水晶振動子膜厚モニターを使用する。蒸着源の蒸着には抵抗加熱、あるいは電子ビーム蒸着などが使われる。蒸着源のサイズが数センチメートル以内で、それに対し蒸着源とモニターとの距離が1メートル程度であれば、蒸着源は実質、点源とみなして良い。   In FIG. 1, the film thickness monitor 1 is disposed at a distance d1 from the vapor deposition source 3, and the film thickness monitor 2 is disposed at a distance d2 from the vapor deposition source 3. The angle between the vertical line c on the center of the vapor deposition source and the monitor 1 is θ1, and the angle between the line straight line c and the monitor 2 is θ2. As the film thickness monitors 1 and 2, for example, crystal oscillator film thickness monitors are used. Resistance heating or electron beam evaporation is used for the evaporation of the evaporation source. If the size of the vapor deposition source is within a few centimeters and the distance between the vapor deposition source and the monitor is about 1 meter, the vapor deposition source may be regarded as a point source.

このとき、蒸着源表面から鉛直方向に飛び出す粒子の速度(蒸着速度)をA(m/秒)
とすると、膜厚モニター1に堆積する蒸着膜厚T1(m)と膜厚モニター2に堆積する蒸着膜厚T2(m)は、各々次の式(1)、(2)のようになる。
T1=t・A・(cosθ1/(d1) (1)
T2=t・A・(cosθ2/(d2) (2)
式(1)と式(2)の比をとる冪指数nは、式(3)から求められる。
n=〔log(d1 2×T1/d1 2×T2)〕/〔log(cosθ1/cosθ2)〕 (3)
この計算は、水晶振動子からの自動膜測定結果と連動させるパーソナル・コンピュータなどにより瞬時に計算可能である。
At this time, the velocity (deposition rate) of the particles jumping out from the deposition source surface in the vertical direction is A (m / sec).
Then, the vapor deposition film thickness T1 (m) deposited on the film thickness monitor 1 and the vapor deposition film thickness T2 (m) deposited on the film thickness monitor 2 are respectively expressed by the following equations (1) and (2).
T1 = t · A · (cos θ 1 ) n / (d1) 2 (1)
T2 = t · A · (cos θ 2 ) n / (d2) 2 (2)
The power index n which takes the ratio of the formula (1) and the formula (2) is obtained from the formula (3).
n = [log (d 1 2 × T1 / d 1 2 × T2)] / [log (cos θ1 / cos θ2)] (3)
This calculation can be instantaneously performed by a personal computer or the like linked with an automatic film measurement result from a crystal resonator.

図2と図3を用いて、本発明の真空蒸着装置を説明する。図2は、本発明の一例の真空蒸着装置101の概略断面図であり、図3は図2の真空蒸着装置101を上面から見た平面図である。   The vacuum deposition apparatus of the present invention will be described with reference to FIGS. FIG. 2 is a schematic cross-sectional view of an example of the vacuum deposition apparatus 101 of the present invention, and FIG. 3 is a plan view of the vacuum deposition apparatus 101 of FIG.

蒸着装置101としては、坩堝40と坩堝加熱ユニット30を持つヒーター加熱方式の蒸着装置を例示した。真空容器10内に坩堝40が配置されている。坩堝40には蒸着源400が入れられている。基板回転ユニット20は基板ホルダ21、基板ホルダ自転用モーター22、基板ホルダ公転用モーター23などからなる。シリコン基板などの基板200が基板ホルダ21にセットされている。基板ホルダ駆動ユニット20は、基板ホルダを公転回転させるモーター23、自転回転させるモーター22の他、基板ホルダ角を変更するモーター24を有する。基板ホルダ角は、図4で説明するが基板ホルダの垂直方向と基板ホルダ中心と蒸着源を結ぶ角の差として定義される。図2には、基板ホルダ角がO°の場合が示されている。   As the vapor deposition apparatus 101, a heater heating type vapor deposition apparatus having the crucible 40 and the crucible heating unit 30 is illustrated. A crucible 40 is disposed in the vacuum vessel 10. A vapor deposition source 400 is placed in the crucible 40. The substrate rotation unit 20 includes a substrate holder 21, a substrate holder rotation motor 22, a substrate holder revolution motor 23, and the like. A substrate 200 such as a silicon substrate is set on the substrate holder 21. The substrate holder drive unit 20 has a motor 24 for changing the substrate holder angle in addition to a motor 23 for revolving and rotating the substrate holder and a motor 22 for rotating and rotating the substrate holder. The substrate holder angle is defined as the difference between the vertical direction of the substrate holder, the center of the substrate holder, and the vapor deposition source, as will be described with reference to FIG. FIG. 2 shows a case where the substrate holder angle is O °.

真空容器10内に、膜厚モニター1と膜厚モニター2が配置されている。図3に示すように、膜厚モニター1と膜厚モニター2のいずれも、基板ホルダ駆動ユニット20が
膜厚測定を邪魔しない位置に配置されている。なお、膜厚モニターは測定に使用されない場合に膜付着を防止するためのシャッター機構(不図示)をもつ。
A film thickness monitor 1 and a film thickness monitor 2 are arranged in the vacuum vessel 10. As shown in FIG. 3, both the film thickness monitor 1 and the film thickness monitor 2 are arranged at positions where the substrate holder driving unit 20 does not interfere with the film thickness measurement. The film thickness monitor has a shutter mechanism (not shown) for preventing film adhesion when not used for measurement.

次に、膜厚モニター1、2で測定した膜厚の結果からnを求める例を説明する。本例において、膜厚モニター1の蒸着源400からの距離d1と,膜厚モニター2の蒸着源400からの距離d2は同一で、約1.3mである。また、蒸着源400上の鉛直線方向cと膜厚モニター1がなす角度θ1は5°で、鉛直線方向cと膜厚モニター2がなす角度θ2は45°である。 Next, an example in which n is obtained from the film thickness results measured by the film thickness monitors 1 and 2 will be described. In this example, the distance d1 from the deposition source 400 of the film thickness monitor 1 and the distance d2 from the deposition source 400 of the film thickness monitor 2 are the same, and are about 1.3 m. The angle θ 1 formed by the vertical line direction c on the vapor deposition source 400 and the film thickness monitor 1 is 5 °, and the angle θ 2 formed by the vertical line direction c and the film thickness monitor 2 is 45 °.

膜厚モニター1、2と蒸着源の距離は2つのモニターで同一なので、上述した方向余弦巾指数を算出する式(3)から、
n≒6.85×〔log(T1/T2)〕 (4)
として求められる。即ち、膜厚モニター1と膜厚モニター2で測定した膜厚T1とT2から、方向余弦巾指数nを求めることができる。
Since the distance between the film thickness monitors 1 and 2 and the evaporation source is the same for the two monitors, from the above formula (3) for calculating the direction cosine width index,
n ≒ 6.85 × [log (T1 / T2)] (4)
As required. That is, the direction cosine width index n can be obtained from the film thicknesses T1 and T2 measured by the film thickness monitor 1 and the film thickness monitor 2.

次に、図4と図5を用いて、基板ホルダ角θhを変化させた場合に基板に堆積する蒸着膜厚分布がどのように変化するかを説明する。   Next, using FIG. 4 and FIG. 5, how the vapor deposition film thickness distribution deposited on the substrate changes when the substrate holder angle θh is changed will be described.

図4は基板ホルダ角θhの定義を示すための図である。基板ホルダ角θhは基板ホルダ中心と蒸着源中心を結ぶ直線scと、基板ホルダに垂直な方向に伸ばした直線hcが作る角として定義される。なお、θhは反時計方向を回転の正方向とする。   FIG. 4 is a diagram for illustrating the definition of the substrate holder angle θh. The substrate holder angle θh is defined as an angle formed by a straight line sc connecting the substrate holder center and the deposition source center and a straight line hc extending in a direction perpendicular to the substrate holder. For θh, the counterclockwise direction is the positive direction of rotation.

図5は、基板ホルダ21の自転回転を止めた場合の基板上の膜厚分布と基板ホルダ角の関係を等高線で示したものである。図5(a)は、D(θh=0°)はホルダ角が0°の場合で、等高線は基板中心CSを中心とした同心円状の分布となる。図5(b)は、D(θh=+α)は、α>0で基板ホルダ角が正値の場合の基板上膜厚分布である。基板上の膜厚分布は基板中心CSより上側では上にいくほど等高線間隔は広くなり、下側では下に行くほど等高線間隔は狭くなる。図5(c)は、D(θh=−α)は基板ホルダ角が負値の場合で、D(θh=+α)の膜厚分布の上下を反対にした分布となる。   FIG. 5 shows the relationship between the film thickness distribution on the substrate and the substrate holder angle when the rotation of the substrate holder 21 is stopped by contour lines. In FIG. 5A, D (θh = 0 °) is a case where the holder angle is 0 °, and the contour lines have a concentric distribution centered on the substrate center CS. In FIG. 5B, D (θh = + α) is a film thickness distribution on the substrate when α> 0 and the substrate holder angle is a positive value. In the film thickness distribution on the substrate, the contour line interval becomes wider as it goes up above the substrate center CS, and the contour line interval becomes narrower as it goes down below. In FIG. 5C, D (θh = −α) is a distribution in which the substrate holder angle is a negative value and the film thickness distribution of D (θh = + α) is reversed upside down.

膜厚分布の等高線間隔が広いほど膜厚均一性は良好であることを示す。
真空蒸着装置101には基板中心を中心に自転する機構が設けられているので、θがαの場合、得られる膜厚分布は、図5(b)のD=(θh=+α)と、図5(c)のD=(θh=―α)を平均したような分布となる。実際の成膜では通常基板中心付近の分布が基板周辺付近の分布より均一性が良いので、基板ホルダ角を変化させることでD(θh=0°)の場合の分布より基板周辺の均一性が改善された分布が得られる。
The wider the contour line interval of the film thickness distribution, the better the film thickness uniformity.
Since the vacuum evaporation apparatus 101 is provided with a mechanism that rotates around the center of the substrate, when θ is α, the obtained film thickness distribution is D = (θh = + α) in FIG. The distribution is obtained by averaging D = (θh = −α) in 5 (c). In actual film formation, the distribution near the center of the substrate is usually more uniform than the distribution near the periphery of the substrate. Therefore, by changing the substrate holder angle, the uniformity around the substrate is more than the distribution in the case of D (θh = 0 °). An improved distribution is obtained.

次に、二つの膜厚モニターを使って求めた方向余弦の巾指数を成膜に反映させる一例について、図6および図7を用いて説明する。   Next, an example in which the width index of the direction cosine obtained using two film thickness monitors is reflected in film formation will be described with reference to FIGS.

図6は図1で説明した方向余弦巾指数を成膜分布均一性改善に用いる方法を説明する図である。図7は、図6のフローチャートで示した本発明の蒸着装置の一例を示したものである。図7の蒸着装置の構成は、基本的には図1の蒸着装置100と同じであるが、方向余弦算出ならびに基板ホルダ角変更機構24への制御命令は図7のパーソナル・コンピュータ(PC)60により行なわれる。なお、このパーソナル・コンピュータ60は蒸着源ユニット50の坩堝加熱ユニット30のヒーター設定制御などにも使用される。   FIG. 6 is a diagram for explaining a method of using the direction cosine width index described in FIG. 1 for improving the film-formation distribution uniformity. FIG. 7 shows an example of the vapor deposition apparatus of the present invention shown in the flowchart of FIG. The configuration of the vapor deposition apparatus of FIG. 7 is basically the same as that of the vapor deposition apparatus 100 of FIG. 1, but the control instruction to the direction cosine calculation and substrate holder angle changing mechanism 24 is personal computer (PC) 60 of FIG. It is done by. The personal computer 60 is also used for heater setting control of the crucible heating unit 30 of the vapor deposition source unit 50.

膜厚モニター1と膜厚モニター2で得られた膜厚測定結果は、パーソナル・コンピュータ(PC)60に送信される。膜厚測定結果から、パーソナル・コンピュータ60にあらかじめ準備されたプログラムソフトにより方向余弦巾指数nが算出される。方向余弦巾指数nの算出は、式(3)に基づいて行われる。   The film thickness measurement results obtained by the film thickness monitor 1 and the film thickness monitor 2 are transmitted to a personal computer (PC) 60. From the film thickness measurement result, the direction cosine width index n is calculated by program software prepared in advance in the personal computer 60. The calculation of the direction cosine width index n is performed based on Equation (3).

パーソナル・コンピュータ60は蒸着源材料のn値に関するデーターベースから良好な膜厚均一性の得られる基板ホルダ角を選択し、図1あるいは図7の基板ホルダ角変更機構24に基板ホルダ角設定の制御命令をだす。パーソナル・コンピュータ60は、パイロット基板上の膜厚均一性測定結果がOKであれば本番成膜を実行し、NGであれば許容される膜厚均一性になるよう基板ホルダ角を微調整する制御命令を出す。   The personal computer 60 selects a substrate holder angle at which good film thickness uniformity can be obtained from the database regarding the n value of the vapor deposition source material, and controls the substrate holder angle setting to the substrate holder angle changing mechanism 24 of FIG. 1 or FIG. I give an order. The personal computer 60 performs the actual film formation if the film thickness uniformity measurement result on the pilot substrate is OK, and finely adjusts the substrate holder angle so as to obtain an acceptable film thickness uniformity if it is NG. Give an order.

蒸着源を2個以上持つ蒸着装置では、蒸着材料毎に基板ホルダ角を変更させればよい。従って異なる方向余弦巾指数をもつ蒸着材料を積層させる場合でも、良好な膜厚均一性をもつ積層膜成膜が可能となる。   In a vapor deposition apparatus having two or more vapor deposition sources, the substrate holder angle may be changed for each vapor deposition material. Therefore, even when vapor deposition materials having different direction cosine width indexes are laminated, it is possible to form a laminated film having good film thickness uniformity.

上記においては、真空蒸着装置を例として説明したが、本発明は、PVD成膜装置であるスパッタ装置への応用も可能なことはいうまでもない。   In the above description, the vacuum vapor deposition apparatus has been described as an example, but it goes without saying that the present invention can be applied to a sputtering apparatus which is a PVD film forming apparatus.

1 膜厚モニター1
2 膜厚モニター2
10 真空容器
20 基板ホルダ駆動ユニット
21 基板ホルダ
22 基板ホルダ自転モーター
23 基板ホルダ公転モーター
24 基板ホルダ角変更機構
30 坩堝加熱ユニット
40 坩堝
60 パーソナル・コンピュータ(PC)
101 真空蒸着装置
400 蒸着源
d1 蒸着源と膜厚モニター1との距離
D2 蒸着源と膜厚モニター2との距離
C 鉛直方向
Sc 基板中心と蒸着源中心を結ぶ直線
hc 基板ホルダに垂直な方向
CS 基板中心
1 Film thickness monitor 1
2 Film thickness monitor 2
DESCRIPTION OF SYMBOLS 10 Vacuum container 20 Substrate holder drive unit 21 Substrate holder 22 Substrate holder rotation motor 23 Substrate holder revolving motor 24 Substrate holder angle change mechanism 30 Crucible heating unit 40 Crucible 60 Personal computer (PC)
101 Vacuum deposition apparatus 400 Deposition source d1 Distance D2 between deposition source and film thickness monitor 1 Distance C between deposition source and film thickness monitor 2 Vertical direction Sc Straight line hc connecting substrate center and deposition source center Direction CS perpendicular to substrate holder Board center

Claims (3)

蒸発源と、基板を保持する基板ホルダと、第1の膜厚モニターと、第2の膜厚モニターと、前記第1の膜厚モニターと前記第2の膜厚モニターの膜厚測定結果から膜厚分布をモデル化するための演算手段と、前記演算手段の結果により前記蒸着源と基板との空間配置を制御する制御手段と、を有することを特徴とする真空蒸着装置。   The film is obtained from the evaporation source, the substrate holder for holding the substrate, the first film thickness monitor, the second film thickness monitor, and the film thickness measurement results of the first film thickness monitor and the second film thickness monitor. A vacuum vapor deposition apparatus comprising: a calculation means for modeling a thickness distribution; and a control means for controlling a spatial arrangement of the vapor deposition source and the substrate according to a result of the calculation means. 前記膜厚測定結果から得られた膜厚分布モデルに基づき、前記蒸着源と基板ホルダの空間配置相対角度、ならびに蒸着源と基板ホルダ間距離を、基板上の成膜分布が最適化されるように自動的に制御することを特徴とする請求項1に記載の真空蒸着装置。   Based on the film thickness distribution model obtained from the film thickness measurement result, the spatial distribution relative angle between the vapor deposition source and the substrate holder and the distance between the vapor deposition source and the substrate holder are optimized for the film deposition distribution on the substrate. The vacuum deposition apparatus according to claim 1, wherein the vacuum deposition apparatus is automatically controlled. 基板に薄膜を形成する方法において、請求項1に記載の真空蒸着装置を用いて基板に薄膜を形成することを特徴とする薄膜形成方法。

A method for forming a thin film on a substrate, comprising: forming a thin film on a substrate using the vacuum deposition apparatus according to claim 1.

JP2009295956A 2009-12-25 2009-12-25 Vacuum vapor-deposition apparatus and thin-film-forming method Pending JP2011137187A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009295956A JP2011137187A (en) 2009-12-25 2009-12-25 Vacuum vapor-deposition apparatus and thin-film-forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009295956A JP2011137187A (en) 2009-12-25 2009-12-25 Vacuum vapor-deposition apparatus and thin-film-forming method

Publications (1)

Publication Number Publication Date
JP2011137187A true JP2011137187A (en) 2011-07-14

Family

ID=44348880

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009295956A Pending JP2011137187A (en) 2009-12-25 2009-12-25 Vacuum vapor-deposition apparatus and thin-film-forming method

Country Status (1)

Country Link
JP (1) JP2011137187A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015127908A1 (en) * 2014-02-26 2015-09-03 Hvm Plasma, Spol.S R.O. Method of carrying substrates during the deposition of a thin film on the surface of substrates and a rotary table for carrying the substrates according to the method
WO2017114659A1 (en) * 2015-12-30 2017-07-06 Asml Netherlands B.V. Method and apparatus for direct write maskless lithography
WO2020013431A1 (en) * 2018-07-13 2020-01-16 주식회사 넵시스 Apparatus for multi-substrate vacuum deposition through revolving, rotating, and tilting
US10712669B2 (en) 2015-12-30 2020-07-14 Asml Netherlands B.V. Method and apparatus for direct write maskless lithography
US10928736B2 (en) 2015-12-30 2021-02-23 Asml Netherlands B.V. Method and apparatus for direct write maskless lithography
KR102453442B1 (en) * 2021-12-29 2022-10-12 주식회사 메이 Apparatus for depositing inorganic alignment film uniformly and deposition method using the same

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015127908A1 (en) * 2014-02-26 2015-09-03 Hvm Plasma, Spol.S R.O. Method of carrying substrates during the deposition of a thin film on the surface of substrates and a rotary table for carrying the substrates according to the method
WO2017114659A1 (en) * 2015-12-30 2017-07-06 Asml Netherlands B.V. Method and apparatus for direct write maskless lithography
KR20180099834A (en) * 2015-12-30 2018-09-05 에이에스엠엘 네델란즈 비.브이. Method and apparatus for direct write maskless lithography
US10527946B2 (en) 2015-12-30 2020-01-07 Asml Netherlands B.V. Method and apparatus for direct write maskless lithography
US10712669B2 (en) 2015-12-30 2020-07-14 Asml Netherlands B.V. Method and apparatus for direct write maskless lithography
KR102135316B1 (en) 2015-12-30 2020-09-17 에이에스엠엘 네델란즈 비.브이. Method and apparatus for direct write maskless lithography
US10928736B2 (en) 2015-12-30 2021-02-23 Asml Netherlands B.V. Method and apparatus for direct write maskless lithography
WO2020013431A1 (en) * 2018-07-13 2020-01-16 주식회사 넵시스 Apparatus for multi-substrate vacuum deposition through revolving, rotating, and tilting
KR20200007395A (en) * 2018-07-13 2020-01-22 주식회사 넵시스 Vacuum Evaporation Coating Apparatus for Coating Multiple Substrates using Revolution, Rotation and Tilting
KR102132323B1 (en) * 2018-07-13 2020-07-09 주식회사 넵시스 Vacuum Evaporation Coating Apparatus for Coating Multiple Substrates using Revolution, Rotation and Tilting
KR102453442B1 (en) * 2021-12-29 2022-10-12 주식회사 메이 Apparatus for depositing inorganic alignment film uniformly and deposition method using the same

Similar Documents

Publication Publication Date Title
JP2011137187A (en) Vacuum vapor-deposition apparatus and thin-film-forming method
EP3144411B1 (en) Measurement apparatus and coating device
JP6411975B2 (en) Film forming apparatus and film forming substrate manufacturing method
KR20130059384A (en) Sputtering device, deposition method, and control device
WO2012120941A1 (en) Vapor deposition apparatus
Suram et al. Combinatorial thin film composition mapping using three dimensional deposition profiles
CN109136856B (en) Film thickness monitoring device and film forming equipment
JP5837290B2 (en) Epitaxial wafer manufacturing method and epitaxial growth apparatus
Chen et al. Effects of sputtering power and annealing temperature on surface roughness of gold films for high-reflectivity synchrotron radiation mirrors
Mohamed et al. Structural and optical properties of direct current sputtered zinc aluminum oxides with a high Al concentration
Tarre et al. New routes to SnO2 heteroepitaxy
TWI546403B (en) Apparatus and method for forming a solar cell
CN113355646A (en) Film monitoring preparation device and method based on multi-source co-evaporation technology
CN107794509A (en) Film thickness sensor
JPH11222670A (en) Film thickness monitor and film forming device using this
JP2004003016A (en) Coating device and coating method
CN106104251A (en) Thickness monitoring arrangement sensor, the thickness monitoring arrangement possessing this thickness monitoring arrangement sensor and the manufacture method of thickness monitoring arrangement sensor
Broadway et al. Achieving desired thickness gradients on flat and curved substrates
Vickery et al. Collimated magnetron sputter deposition for mirror coatings
JP2014133907A (en) Film deposition device
JP2006328485A (en) Method for estimating film thickness and deposition method
US20150203954A1 (en) Coating system and process
Du et al. Quantitative evaluation of film thickness uniformity: Application to off-axis magnetron source onto a rotating substrate
CN1261615C (en) Covering plate in film plating apparatus
JP4810602B2 (en) Vapor growth apparatus and vapor growth method