JP5837290B2 - Epitaxial wafer manufacturing method and epitaxial growth apparatus - Google Patents

Epitaxial wafer manufacturing method and epitaxial growth apparatus Download PDF

Info

Publication number
JP5837290B2
JP5837290B2 JP2010193994A JP2010193994A JP5837290B2 JP 5837290 B2 JP5837290 B2 JP 5837290B2 JP 2010193994 A JP2010193994 A JP 2010193994A JP 2010193994 A JP2010193994 A JP 2010193994A JP 5837290 B2 JP5837290 B2 JP 5837290B2
Authority
JP
Japan
Prior art keywords
substrate
mounting table
substrate mounting
epitaxial
film thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010193994A
Other languages
Japanese (ja)
Other versions
JP2012054310A (en
Inventor
透 山田
透 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP2010193994A priority Critical patent/JP5837290B2/en
Publication of JP2012054310A publication Critical patent/JP2012054310A/en
Application granted granted Critical
Publication of JP5837290B2 publication Critical patent/JP5837290B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、エピタキシャルウェーハの製造方法及びエピタキシャル成長装置に関する。   The present invention relates to an epitaxial wafer manufacturing method and an epitaxial growth apparatus.

半導体製造分野においては、半導体基板の上に単結晶薄膜や多結晶薄膜を精度良く気相成長させる薄膜成長工程は極めて重要なプロセスである。
従来用いられているエピタキシャル成長装置の一例を図5に示す。基板Wの主面にほぼ平行に原料ガスを流通させるエピタキシャル成長装置11の場合、通常基板載置台12は水平に設けられ、基板Wはその基板載置台12の中央部に置かれる。また、該基板載置台12の周囲には原料ガスが基板Wに触れるまでにエピタキシャル反応に適した温度に達するよう、基板載置台12の主面と面を一にするような予熱部材16が置かれることが多い。
In the semiconductor manufacturing field, a thin film growth process for accurately vapor-depositing a single crystal thin film or a polycrystalline thin film on a semiconductor substrate is an extremely important process.
An example of a conventionally used epitaxial growth apparatus is shown in FIG. In the case of the epitaxial growth apparatus 11 that circulates the source gas substantially parallel to the main surface of the substrate W, the substrate mounting table 12 is usually provided horizontally, and the substrate W is placed at the center of the substrate mounting table 12. In addition, a preheating member 16 is disposed around the substrate mounting table 12 so that the main surface of the substrate mounting table 12 is flush with the surface of the substrate mounting table 12 so as to reach a temperature suitable for the epitaxial reaction before the source gas touches the substrate W. It is often written.

原料ガスは、エピタキシャル成長装置11の主制御システムM’から指令された流量で基板W、基板載置台12、予熱部材16が形成する面の一端から原料ガス導入手段13により導入され、他端に向かって流れる。このとき原料ガスの上流部には原料ガス導入手段13より供給された原料ガスのほぼそのままの濃度の原料ガスが届くので、原料ガス濃度が高くエピタキシャル成長速度が速い。一方、下流部には上流部でエピタキシャル成長に必要な成分が一部消費された後のガスが届くので、濃度が低く成長速度が遅い。   The source gas is introduced by the source gas introduction means 13 from one end of the surface formed by the substrate W, the substrate mounting table 12 and the preheating member 16 at a flow rate commanded from the main control system M ′ of the epitaxial growth apparatus 11, toward the other end. Flowing. At this time, since the source gas having almost the same concentration of the source gas supplied from the source gas introduction means 13 reaches the upstream portion of the source gas, the source gas concentration is high and the epitaxial growth rate is high. On the other hand, since the gas after the components necessary for epitaxial growth are consumed in the upstream portion reaches the downstream portion, the concentration is low and the growth rate is slow.

基板Wの主面にほぼ平行に原料ガスを流通させるエピタキシャル成長装置では、この現象は避けられないので、一般的に、図5のように、主制御システムM’から指令される回転速度でモータ15により基板載置台12を回転させてエピタキシャル膜の成長速度を平均化させる方式が採用されている。   This phenomenon is unavoidable in an epitaxial growth apparatus that circulates a source gas substantially parallel to the main surface of the substrate W. Therefore, generally, as shown in FIG. 5, the motor 15 is rotated at a rotational speed commanded from the main control system M ′. Thus, a method is adopted in which the substrate mounting table 12 is rotated to average the growth rate of the epitaxial film.

また、基板載置台12の回転により軸対称となった膜厚分布に対して、中心部と周辺部の膜厚の差を解消させるために、基板Wの中心付近を流れるガス流量と周辺部を流れるガス流量に分布を持たせる方法も知られている(特許文献1)。   Further, in order to eliminate the difference in film thickness between the central portion and the peripheral portion with respect to the film thickness distribution that is axially symmetric by the rotation of the substrate mounting table 12, the flow rate of gas flowing near the center of the substrate W and the peripheral portion are set. A method of giving a distribution to the flowing gas flow rate is also known (Patent Document 1).

このように膜厚分布の均一化に著しい効果のある基板載置台12の回転だが、あらゆる膜厚制御パラメータ(膜厚を変動させる因子)の効果も軸対称にしてしまうという問題があった。例えば実際のエピタキシャル成長でしばしば生じる図2(b)のような、基板の一方の膜厚が薄く他方が厚いといった傾きのある分布の場合、どの様な膜厚制御パラメータをもってしても解消することができなかった。   As described above, the rotation of the substrate mounting table 12 has a significant effect on uniforming the film thickness distribution. However, there is a problem that the effects of all film thickness control parameters (factors for varying the film thickness) are also axisymmetric. For example, as shown in FIG. 2B, which often occurs in actual epitaxial growth, in the case of a distribution with an inclination such that one of the substrates is thin and the other is thick, it can be solved by any film thickness control parameter. could not.

図2(b)のような傾きのある分布が生じる原因は、基板載置台12の幾何学的中心と回転の中心のズレである場合がある。基板載置台12の幾何学的中心と回転の中心が一致していないと、基板載置台12は偏心して回転し、基板載置台12を取り囲む部材との隙間に大小の差を生じる。   The cause of the distribution having an inclination as shown in FIG. 2B may be a shift between the geometric center of the substrate platform 12 and the center of rotation. If the geometric center of the substrate platform 12 and the center of rotation do not coincide with each other, the substrate platform 12 rotates eccentrically, and a large or small difference is generated in a gap with a member surrounding the substrate platform 12.

基板載置台12とそれを取り囲む部材との隙間は、エピタキシャル成長反応で生じた濃度境界層のガスの一部を基板載置台12の裏面側に逃がす働きがあり、エピタキシャル層の成長速度に影響があるが、隙間の大小は基板載置台12と共に回転するため、基板載置台12の回転によって平均化されず、図2(b)の様な膜厚分布を生じることとなる。   The gap between the substrate mounting table 12 and the member surrounding the substrate mounting table 12 has a function of escaping a part of the gas in the concentration boundary layer generated by the epitaxial growth reaction to the back side of the substrate mounting table 12, and affects the growth rate of the epitaxial layer. However, since the size of the gap rotates together with the substrate mounting table 12, it is not averaged by the rotation of the substrate mounting table 12, and a film thickness distribution as shown in FIG.

従来、この様な膜厚分布を解消するためには、基板載置台12を回転させる部品を寸法精度の良い部品に交換するより他に方法がなく、部品交換の時間はもとより、部品交換にともなって生じた反応室の汚染を清浄化するのに多くの時間がかかっていた。
また、基板載置台12の幾何学的中心と回転の中心が一致しているにも関わらず、膜厚分布に傾きが生じることもあり、その原因が不明で従来の方法ではこの様な膜厚分布の解消方法がなかった。
Conventionally, in order to eliminate such a film thickness distribution, there is no other method than replacing the component that rotates the substrate mounting table 12 with a component having good dimensional accuracy. It took a lot of time to clean up the reaction chamber contamination.
In addition, although the geometric center of the substrate mounting table 12 and the center of rotation coincide with each other, the film thickness distribution may be inclined, and the cause is unknown and the conventional method has such a film thickness. There was no way to eliminate the distribution.

特開2000−68215号公報JP 2000-68215 A

本発明は、上記問題に鑑みてなされたものであって、膜厚分布の傾きを解消したエピタキシャル膜を形成させることができるエピタキシャルウェーハの製造方法及びエピタキシャル成長装置を提供する。   The present invention has been made in view of the above problems, and provides an epitaxial wafer manufacturing method and an epitaxial growth apparatus capable of forming an epitaxial film in which the inclination of the film thickness distribution is eliminated.

上記課題を解決するため、本発明では、基板載置台と該基板載置台に載置された基板とを回転させ、前記基板の主面上に原料ガスを流通させることにより、前記基板主面上にエピタキシャル膜を形成させるエピタキシャルウェーハの製造方法において、前記基板載置台の回転方向の位置に応じて、膜厚制御パラメータを変化させて前記エピタキシャル膜を形成させることを特徴とするエピタキシャルウェーハの製造方法を提供する。   In order to solve the above-described problem, in the present invention, the substrate mounting table and the substrate mounted on the substrate mounting table are rotated, and the source gas is circulated on the main surface of the substrate, whereby the main surface of the substrate is An epitaxial wafer manufacturing method for forming an epitaxial film on the substrate, wherein the epitaxial film is formed by changing a film thickness control parameter in accordance with a position in a rotation direction of the substrate mounting table. I will provide a.

このように、基板載置台の回転方向の位置(θ)に応じて、膜厚制御パラメータ(膜厚を変動させる因子)を変化させて、エピタキシャル膜を形成させることによって、例えば、従来のエピタキシャル成長装置を用いた場合に膜厚が薄くなってしまう部分(膜厚を厚くしたい部分)の膜厚を厚くすることができる。即ち、成長速度を基板の部分毎(回転位置毎)に調整することができ、従って、膜厚分布の偏り(傾き)が解消されたエピタキシャル膜を形成することができる。なお、回転方向の位置(θ)はどこを基準位置にしてもよいが、基板のノッチの位置を基準位置にするのが好適である。   In this way, by changing the film thickness control parameter (a factor for changing the film thickness) according to the position (θ) in the rotation direction of the substrate mounting table, an epitaxial film is formed, for example, a conventional epitaxial growth apparatus. The thickness of the portion where the film thickness is reduced (the portion where the film thickness is desired to be increased) can be increased. That is, the growth rate can be adjusted for each portion of the substrate (for each rotation position), and therefore, an epitaxial film in which the deviation (tilt) of the film thickness distribution is eliminated can be formed. Note that the position (θ) in the rotation direction may be any reference position, but the position of the notch on the substrate is preferably the reference position.

またこのとき、前記膜厚制御パラメータとして前記基板載置台の回転速度を、前記基板載置台の回転方向の位置に応じて変化させて前記エピタキシャル膜を形成させることが好ましい。   At this time, it is preferable that the epitaxial film is formed by changing a rotation speed of the substrate mounting table as the film thickness control parameter in accordance with a position in a rotation direction of the substrate mounting table.

このように、膜厚制御パラメータとして、基板載置台の回転速度を選ぶことが好ましい。基板載置台の回転方向の位置に応じて基板載置台の回転速度を変化させる、例えば、エピタキシャル膜の膜厚が薄くなり易い部分(膜厚を厚くしたい部分)が、原料ガスの上流付近にある場合には基板載置台の回転速度を遅く、反対に原料ガスの下流付近にある場合には基板載置台の回転速度を速くすることで、膜厚を厚くしたい部分の平均成長速度を速くすることができ、膜厚を厚くすることができる。従って、結果として膜厚分布の偏り(傾き)が解消されたエピタキシャル膜を形成することができる。   Thus, it is preferable to select the rotation speed of the substrate mounting table as the film thickness control parameter. The rotation speed of the substrate mounting table is changed in accordance with the position of the substrate mounting table in the rotation direction. For example, the portion where the film thickness of the epitaxial film tends to be thin (the portion where the film thickness is to be increased) is near the upstream of the source gas. In some cases, the rotation speed of the substrate mounting table is slow, and conversely if it is near the downstream of the source gas, the rotation speed of the substrate mounting table is increased to increase the average growth rate of the part where the film thickness is to be increased. The film thickness can be increased. Therefore, as a result, an epitaxial film in which the unevenness (tilt) of the film thickness distribution is eliminated can be formed.

またこのとき、前記膜厚制御パラメータとして前記原料ガスの流量を、前記基板載置台の回転方向の位置に応じて増減させて前記エピタキシャル膜を形成させることが好ましい。   At this time, it is preferable that the epitaxial film is formed by increasing or decreasing the flow rate of the source gas as the film thickness control parameter in accordance with the position of the substrate mounting table in the rotation direction.

このように、膜厚制御パラメータとして、原料ガスの流量を選ぶことも好ましい。基板載置台の回転方向の位置に応じて原料ガスの流量を増減させる、例えば、エピタキシャル膜の厚さが薄くなり易い部分(膜厚を厚くしたい部分)が上流付近にある場合にはガス流量の流量を少なくし、反対に下流付近にある場合には原料ガスの流量を増やすことで、膜厚を厚くしたい部分の膜厚を厚くすることができる。従って、結果として膜厚分布の偏り(傾き)が解消されたエピタキシャル膜を形成することができる。   Thus, it is also preferable to select the flow rate of the source gas as the film thickness control parameter. Increase or decrease the flow rate of the source gas according to the position of the substrate mounting table in the rotational direction. For example, if the portion where the thickness of the epitaxial film tends to be thin (the portion where the film thickness is to be increased) is near the upstream, If the flow rate is reduced and, conversely, in the vicinity of the downstream, the flow rate of the source gas can be increased to increase the thickness of the portion where the film thickness is desired to be increased. Therefore, as a result, an epitaxial film in which the unevenness (tilt) of the film thickness distribution is eliminated can be formed.

また、本発明では、基板を載置するための基板載置台と、前記基板の主面上に原料ガスを流通させる原料ガス導入手段とを有するエピタキシャル成長装置であって、該エピタキシャル成長装置は、更に、前記基板載置台の回転方向の位置情報を得て該基板載置台の回転方向の位置に応じて膜厚制御パラメータを変化させる手段を有するものであることを特徴とするエピタキシャル成長装置を提供する。   Further, in the present invention, there is provided an epitaxial growth apparatus having a substrate mounting table for mounting a substrate and a source gas introducing means for circulating a source gas on the main surface of the substrate, the epitaxial growth apparatus further comprising: There is provided an epitaxial growth apparatus comprising means for obtaining positional information in the rotation direction of the substrate mounting table and changing a film thickness control parameter in accordance with the position in the rotation direction of the substrate mounting table.

このように、基板載置台の回転方向の位置情報を得て該基板載置台の回転方向の位置に応じて膜厚制御パラメータを変化させる手段を有するエピタキシャル成長装置であれば、基板載置台の回転方向の位置に応じて、膜厚を変動させることができる膜厚制御パラメータを変化させることができ、例えば、従来のエピタキシャル成長装置を用いた場合に膜厚が薄くなってしまう部分(膜厚を厚くしたい部分)の膜厚を厚くすることができる。即ち、基板の部分毎(回転位置毎)に成長速度を調整することができ、従って、膜厚分布の偏り(傾き)が解消されたエピタキシャル膜を形成することができる装置となる。   Thus, if the epitaxial growth apparatus has means for obtaining positional information in the rotation direction of the substrate mounting table and changing the film thickness control parameter in accordance with the position in the rotation direction of the substrate mounting table, the rotation direction of the substrate mounting table. Depending on the position of the film thickness, the film thickness control parameter that can change the film thickness can be changed. For example, when a conventional epitaxial growth apparatus is used, the portion where the film thickness becomes thin (would like to increase the film thickness) The thickness of the portion) can be increased. That is, the growth rate can be adjusted for each portion (rotation position) of the substrate, and therefore, an apparatus capable of forming an epitaxial film in which the deviation (tilt) of the film thickness distribution is eliminated.

またこのとき、前記膜厚制御パラメータを変化させる手段は、前記基板載置台の回転方向の位置に応じて前記基板載置台の回転速度を変化させるものであることが好ましい。   At this time, it is preferable that the means for changing the film thickness control parameter is for changing the rotation speed of the substrate mounting table in accordance with the position of the substrate mounting table in the rotation direction.

このように、膜厚制御パラメータとしての基板載置台の回転速度を基板載置台の回転方向の位置に応じて変化させる手段を有するエピタキシャル成長装置であれば、膜厚を厚くしたい部分の成長速度を速くすることができ、膜厚を厚くすることができる。   Thus, if the epitaxial growth apparatus has means for changing the rotation speed of the substrate mounting table as a film thickness control parameter in accordance with the position in the rotation direction of the substrate mounting table, the growth speed of the portion where the film thickness is to be increased is increased. The film thickness can be increased.

またこのとき、前記膜厚制御パラメータを変化させる手段は、前記基板載置台の回転方向の位置に応じて前記原料ガスの流量を増減させるものであることが好ましい。   At this time, it is preferable that the means for changing the film thickness control parameter increases or decreases the flow rate of the source gas in accordance with the position of the substrate mounting table in the rotation direction.

このように、膜厚制御パラメータとして原料ガスの流量を基板載置台の回転方向の位置に応じて増減させる手段を有するエピタキシャル成長装置であれば、膜厚を厚くしたい部分の膜厚を厚くすることができる。   As described above, if the epitaxial growth apparatus has a means for increasing / decreasing the flow rate of the source gas according to the position in the rotation direction of the substrate mounting table as the film thickness control parameter, it is possible to increase the film thickness of the portion where the film thickness is to be increased. it can.

以上説明したように、本発明によれば、エピタキシャル膜を成長させる際に膜厚が薄くなり易い部分(膜厚を厚くしたい部分)を厚く成長させることができ、結果的に膜厚分布の傾きが解消されたエピタキシャル膜を形成することができる。   As described above, according to the present invention, when an epitaxial film is grown, a portion where the film thickness is likely to be thin (a portion where the film thickness is desired to be increased) can be grown thick, and as a result, the slope of the film thickness distribution is increased. It is possible to form an epitaxial film in which the above is eliminated.

本発明のエピタキシャル成長装置の概略図である。It is the schematic of the epitaxial growth apparatus of this invention. 本発明のエピタキシャルウェーハの製造方法を用いて製造したエピタキシャルウェーハの膜厚分布図(a)及び従来のエピタキシャルウェーハの製造方法(回転速度一定)を用いて製造したエピタキシャルウェーハの膜厚分布図(b)である。Film thickness distribution diagram (a) of an epitaxial wafer manufactured using the epitaxial wafer manufacturing method of the present invention and film thickness distribution diagram (b) of an epitaxial wafer manufactured using a conventional epitaxial wafer manufacturing method (constant rotation speed) ). 本発明のエピタキシャル成長装置の別の一例を示す概略図である。It is the schematic which shows another example of the epitaxial growth apparatus of this invention. 本発明のエピタキシャルウェーハの製造方法を用いて製造したエピタキシャルウェーハの膜厚分布図(a)及び従来のエピタキシャルウェーハの製造方法(原料ガス流量一定)を用いて製造したエピタキシャルウェーハの膜厚分布図(b)である。Film thickness distribution chart (a) of an epitaxial wafer manufactured using the epitaxial wafer manufacturing method of the present invention and film thickness distribution chart of an epitaxial wafer manufactured using a conventional epitaxial wafer manufacturing method (constant raw material gas flow rate) b). 従来のエピタキシャル成長装置の概略図である。It is the schematic of the conventional epitaxial growth apparatus.

以下、本発明についてより具体的に説明する。
前述のように、従来、エピタキシャル膜の膜厚分布の傾きを生じている場合にも、膜厚分布の傾きを解消し、均一な膜厚のエピタキシャル膜を形成させることができるエピタキシャルウェーハの製造方法及びエピタキシャル成長装置が求められていた。
Hereinafter, the present invention will be described more specifically.
As described above, a method of manufacturing an epitaxial wafer that can eliminate the inclination of the film thickness distribution and form an epitaxial film with a uniform film thickness even when the inclination of the film thickness distribution of the epitaxial film has conventionally occurred. There is also a need for an epitaxial growth apparatus.

そこで、本発明者が種々検討した結果、基板載置台と該基板載置台に載置された基板とを回転させ、前記基板の主面上に原料ガスを流通させることにより、前記基板主面上にエピタキシャル膜を形成させるエピタキシャルウェーハの製造方法において、前記基板載置台の回転方向の位置に応じて、膜厚制御パラメータを変化させて前記エピタキシャル膜を形成させることを特徴とするエピタキシャルウェーハの製造方法であれば、膜厚分布の傾き等が解消された、均一な膜厚を有するエピタキシャル膜を形成させることができることを見出した。   Therefore, as a result of various studies by the present inventors, the substrate mounting table and the substrate mounted on the substrate mounting table are rotated, and the raw material gas is circulated on the main surface of the substrate, whereby the main surface of the substrate is An epitaxial wafer manufacturing method for forming an epitaxial film on the substrate, wherein the epitaxial film is formed by changing a film thickness control parameter in accordance with a position in a rotation direction of the substrate mounting table. Then, it has been found that an epitaxial film having a uniform film thickness in which the inclination of the film thickness distribution is eliminated can be formed.

なお、本発明において膜厚制御パラメータとは、エピタキシャル成長反応の際に膜厚に影響を与える因子であって、後述するような基板載置台の回転速度や原料ガスの流量、あるいは温度、基板載置台の高さ、基板載置台裏面側のパージガスの流量等が挙げられる。   In the present invention, the film thickness control parameter is a factor that affects the film thickness during the epitaxial growth reaction, and the rotation speed of the substrate mounting table, the flow rate of the source gas, the temperature, the substrate mounting table as described later And the flow rate of the purge gas on the back side of the substrate mounting table.

膜厚制御パラメータとして最も好適なパラメータは基板載置台の回転速度である。具体的には、基板載置台を一定速度で回転させた場合にはエピタキシャル膜の厚さが薄くなってしまう部分が、成長速度の速い上流付近にある場合には回転速度を遅くして滞在時間を長くし、反対に成長速度の遅い下流付近にある場合には回転速度を速くして滞在時間を短くする。これにより膜厚を厚くしたい部分の平均成長速度は速くなり、膜厚を厚くすることができる。   The most suitable parameter as the film thickness control parameter is the rotation speed of the substrate mounting table. Specifically, when the substrate mounting table is rotated at a constant speed, when the portion where the thickness of the epitaxial film becomes thin is near the upstream where the growth rate is high, the rotation time is reduced and the residence time is reduced. On the other hand, if it is near the downstream where the growth rate is slow, the rotation speed is increased to shorten the staying time. As a result, the average growth rate of the portion where the film thickness is to be increased is increased, and the film thickness can be increased.

本発明のエピタキシャル成長装置について図1を参照して以下に詳述する。
図1に示すように、本発明のエピタキシャル成長装置1は、基板Wを載置するための基板載置台2と、基板Wの主面上にトリクロロシラン等の原料ガスを流通させる原料ガス導入手段3とを有する。
そして、更に、基板載置台2の回転方向の位置情報を得て該基板載置台2の回転方向の位置に応じて膜厚制御パラメータを変化させる手段4を有する。
基板載置台の回転方向の位置情報を得て該基板載置台の回転方向の位置に応じて膜厚制御パラメータを変化させる手段4は、新規のエピタキシャル成長装置の開発の際には図1(a)のように装置全体の制御システム(主制御装置)Mに組み込めばよい。
The epitaxial growth apparatus of the present invention will be described in detail below with reference to FIG.
As shown in FIG. 1, an epitaxial growth apparatus 1 of the present invention includes a substrate mounting table 2 for mounting a substrate W, and a source gas introducing means 3 for circulating a source gas such as trichlorosilane on the main surface of the substrate W. And have.
Further, there is provided means 4 for obtaining position information in the rotation direction of the substrate mounting table 2 and changing the film thickness control parameter in accordance with the position of the substrate mounting table 2 in the rotation direction.
Means 4 for obtaining position information in the rotation direction of the substrate mounting table and changing the film thickness control parameter in accordance with the position in the rotation direction of the substrate mounting table is shown in FIG. 1 (a) when developing a new epitaxial growth apparatus. In this way, the control system (main control device) M for the entire apparatus may be incorporated.

ここで、膜厚制御パラメータを変化させる手段4としては、基板載置台2の回転方向の位置に応じて基板載置台2の回転速度を変化させるものであることが好ましい。この場合、膜厚制御パラメータを変化させる手段4は、例えば、基板載置台2の回転方向の位置を調べるセンサ(不図示)から基板載置台2の回転方向の位置情報を得て、得られた基板載置台2の回転方向の位置に応じた回転速度の指令を回転速度を細かく制御できるモータ5等に送信し、基板載置台2の回転速度を変化させるものであることが好ましい。
尚、市販のサーボモータはこの条件に好適である。サーボモータは回転速度を任意に指定することができる上に回転位置センサを内蔵しているので、基板載置台に取り付けた基準位置センサと組み合わせることで容易に基板載置台の回転方向の位置を把握することができる。
Here, as the means 4 for changing the film thickness control parameter, it is preferable to change the rotation speed of the substrate mounting table 2 in accordance with the position of the substrate mounting table 2 in the rotation direction. In this case, the means 4 for changing the film thickness control parameter is obtained, for example, by obtaining positional information in the rotational direction of the substrate mounting table 2 from a sensor (not shown) for examining the rotational position of the substrate mounting table 2. It is preferable that a rotation speed command corresponding to the position of the substrate mounting table 2 in the rotation direction is transmitted to the motor 5 or the like that can finely control the rotation speed to change the rotation speed of the substrate mounting table 2.
A commercially available servo motor is suitable for this condition. The servo motor can specify the rotation speed arbitrarily and has a built-in rotation position sensor, so it can easily grasp the position of the substrate mounting table in the rotation direction by combining with the reference position sensor attached to the substrate mounting table. can do.

また、既存のエピタキシャル成長装置に組み込む場合には、図1(b)のようにエピタキシャル成長装置1の主制御装置Mがモータ5に回転速度(回転数)を指示する信号をPLC(Power Line Communications)等の副制御装置Sで一旦受け取り、基板載置台2の回転方向の位置に応じて増減を加えてからモータ5に送信する。この場合には、副制御装置Sが膜厚制御パラメータを変化させる手段4(基板載置台2の回転速度を変化させるもの)となる。   Further, when incorporated in an existing epitaxial growth apparatus, as shown in FIG. 1B, the main control device M of the epitaxial growth apparatus 1 sends a signal for instructing the motor 5 to the rotational speed (number of rotations) as PLC (Power Line Communications) or the like. Is transmitted once to the motor 5 after being increased or decreased according to the position of the substrate mounting table 2 in the rotational direction. In this case, the sub-control device S serves as means 4 for changing the film thickness control parameter (that changes the rotation speed of the substrate mounting table 2).

また、本発明のエピタキシャル成長装置1は、基板載置台2の周囲に原料ガスが基板Wに触れるまでにエピタキシャル成長反応に適した温度に達するように予熱部材6を有しても良い。
エピタキシャル成長装置において、基板載置台の幾何学的中心と回転の中心が一致していない時、基板載置台は偏心して回転し、基板載置台を取り囲む部材との隙間に大小の偏りを生じ、このような場合、基板の中心に対して一方が厚く、他方が薄いといった傾いた膜厚分布が生じやすい。このような偏った膜厚分布が生じる場合であっても、本発明によれば、薄くなりやすい部分の膜厚を厚くすることができ、膜厚分布の傾きが解消された均一な膜厚を有するエピタキシャル膜を形成することができる。
In addition, the epitaxial growth apparatus 1 of the present invention may have the preheating member 6 around the substrate mounting table 2 so that the source gas reaches a temperature suitable for the epitaxial growth reaction before it touches the substrate W.
In the epitaxial growth apparatus, when the geometric center of the substrate mounting table and the center of rotation do not coincide with each other, the substrate mounting table rotates eccentrically, resulting in a large or small deviation in the gap with the member surrounding the substrate mounting table. In such a case, an inclined film thickness distribution is likely to occur where one is thick and the other is thin with respect to the center of the substrate. Even in the case where such an uneven film thickness distribution occurs, according to the present invention, it is possible to increase the film thickness of the portion that tends to be thin, and to achieve a uniform film thickness with the inclination of the film thickness distribution eliminated. An epitaxial film having the same can be formed.

具体的に、回転速度の増減の幅は次のように計算して決定する。
まず、あらかじめ基準位置で停止した基板載置台に基板を載置し、ノッチに対する原料ガス流入方向、すなわち上流側の位置θ1を調べておく。この値は装置に固定なので、1度だけ測定すればよい。次に、基板載置台の回転を止めた状態でエピタキシャル成長を行い、上流側の成長速度G1と下流側の成長速度G2を調べる。この値は成長温度や原料ガス流速などの成長条件毎に調べておく。
Specifically, the range of increase / decrease in the rotational speed is determined by calculating as follows.
First, a substrate is placed on a substrate placing table previously stopped at a reference position, and the inflow direction of the source gas with respect to the notch, that is, the upstream position θ1 is examined. Since this value is fixed to the apparatus, it only needs to be measured once. Next, epitaxial growth is performed with the substrate mounting table stopped rotating, and the upstream growth rate G1 and the downstream growth rate G2 are examined. This value is checked for each growth condition such as the growth temperature and the raw material gas flow rate.

次に、一定の回転速度ω1でエピタキシャル成長を行い、本発明の技術で修正可能な傾きのある膜厚分布が生じたときは、膜厚の厚い部分の厚さT1、膜厚の薄い部分の厚さT2、ノッチを基準にした膜厚の薄い部分の位置θ2とを調べる。これらを正確に求めるにはエピタキシャル膜の膜厚を基板全体にわたって測定し、これらの膜厚と測定位置からなる3次元グラフを平面でフィッティングし、その平面の傾きの大きさと方向から求めるのがよい。   Next, when epitaxial growth is performed at a constant rotational speed ω1 and a film thickness distribution having an inclination that can be corrected by the technique of the present invention is generated, the thickness T1 of the thick part and the thickness of the thin part are obtained. The thickness T2 and the position θ2 of the thin portion with reference to the notch are examined. In order to obtain these accurately, it is preferable to measure the film thickness of the epitaxial film over the entire substrate, fit a three-dimensional graph consisting of these film thicknesses and measurement positions on a plane, and calculate the thickness from the magnitude and direction of the inclination of the plane. .

上記のような条件の時、回転速度ω(θ)は基板載置台の回転方向の位置θに応じて
ω(θ)=ω1/(1+k×sin(θ−θ1+θ2)) (A)
とするとよい。ここで、kは回転速度増減の程度を表す係数であって
k=(T1−T2)/(T1+T2)×(G1+G2)/(G1−G2) (B)
で定められる。
Under the above conditions, the rotational speed ω (θ) is ω (θ) = ω1 / (1 + k × sin (θ−θ1 + θ2)) according to the position θ in the rotation direction of the substrate mounting table.
It is good to do. Here, k is a coefficient representing the degree of increase / decrease in the rotational speed, and k = (T1−T2) / (T1 + T2) × (G1 + G2) / (G1−G2) (B)
Determined by

図2(b)は一定回転速度でエピタキシャル成長を行った場合に生じた、傾いた膜厚分布である。ノッチ位置から反時計回りに235度の位置に膜厚が薄く、その反対の部分の膜厚が厚いことが分かる。これに対し、図2(a)の本発明により回転速度を増減した場合の膜厚分布は膜厚分布の傾きが解消していることがわかる。   FIG. 2B shows a tilted film thickness distribution generated when epitaxial growth is performed at a constant rotational speed. It can be seen that the film thickness is thin at a position of 235 degrees counterclockwise from the notch position, and the film thickness of the opposite part is thick. In contrast, it can be seen that the slope of the film thickness distribution is eliminated in the film thickness distribution when the rotational speed is increased or decreased according to the present invention of FIG.

また、膜厚制御パラメータとしては原料ガスの流量も好適である。原料ガス下流付近は、上流付近に比べて原料ガスの流量の変化による成長速度の変化が大きい。従って、具体的には、エピタキシャル膜の厚さが薄くなってしまう部分が上流付近にある場合には原料ガスの流量を少なくし、反対に下流付近にある場合には原料ガスの流量を増やすことで、膜厚を厚くしたい部分の膜厚を厚くすることができ、膜厚の傾きが解消されたエピタキシャルウェーハを得ることができる。   Further, the flow rate of the source gas is also suitable as the film thickness control parameter. In the vicinity of the downstream of the source gas, the change in the growth rate due to the change in the flow rate of the source gas is larger than in the vicinity of the upstream. Therefore, specifically, when the portion where the thickness of the epitaxial film becomes thin is near the upstream, the flow rate of the source gas is decreased, and conversely, when the portion near the downstream is increased, the flow rate of the source gas is increased. Thus, it is possible to increase the film thickness of the portion where the film thickness is desired to be increased, and it is possible to obtain an epitaxial wafer in which the inclination of the film thickness is eliminated.

膜厚制御パラメータとして原料ガスの流量を増減させる場合の、本発明のエピタキシャル成長装置1について図3を参照にして以下に詳述する。
新規のエピタキシャル成長装置の開発の際には、基板載置台2の回転方向の位置情報を得て該基板載置台の回転方向の位置に応じて膜厚制御パラメータを変化させる手段4、すなわち基板載置台の回転方向の位置に応じて原料ガスの流量を増減させるものは、図3(a)のように装置全体の制御システム(主制御装置)Mに組み込めばよい。
The epitaxial growth apparatus 1 of the present invention when the flow rate of the source gas is increased or decreased as the film thickness control parameter will be described in detail below with reference to FIG.
In developing a new epitaxial growth apparatus, means 4 for obtaining positional information in the rotational direction of the substrate mounting table 2 and changing the film thickness control parameter in accordance with the rotational position of the substrate mounting table, that is, the substrate mounting table. What increases or decreases the flow rate of the raw material gas in accordance with the position in the rotation direction may be incorporated into the control system (main controller) M of the entire apparatus as shown in FIG.

そして、具体的には、膜厚制御パラメータを変化させる手段4(基板載置台の回転方向の位置に応じて原料ガスの流量を増減させるもの)は、基板載置台2の回転方向の位置を調べるセンサ(不図示)から基板載置台2の回転方向の位置情報を得て、得られた基板載置台2の回転方向の位置に応じた原料ガスの流量をマスフローコントローラ7に指示し、原料ガスの流量を増減させるものであることが好ましい。
基板載置台2の回転方向の位置情報を得るためには、簡易的には、フォトインタラプタなどで検出した基準位置通過時刻と現在時刻と回転速度とから現在位置を算出してもよいし、より正確な位置を検出するために、基準位置センサの他に基板載置台2を支える回転軸もしくはモータ5にロータリーエンコーダを取り付けても良い。
Specifically, the means 4 for changing the film thickness control parameter (which increases or decreases the flow rate of the source gas according to the position of the substrate mounting table in the rotation direction) examines the position of the substrate mounting table 2 in the rotation direction. The position information of the rotation direction of the substrate mounting table 2 is obtained from a sensor (not shown), the flow rate of the source gas corresponding to the obtained position of the substrate mounting table 2 in the rotation direction is instructed to the mass flow controller 7, It is preferable to increase or decrease the flow rate.
In order to obtain position information in the rotation direction of the substrate mounting table 2, the current position may be calculated simply from the reference position passing time detected by a photo interrupter or the like, the current time, and the rotation speed. In order to detect an accurate position, a rotary encoder may be attached to the rotating shaft or the motor 5 that supports the substrate mounting table 2 in addition to the reference position sensor.

また、既存のエピタキシャル成長装置に組み込む場合には、図3(b)のようにエピタキシャル成長装置の主制御装置Mが原料ガス流量をマスフローコントローラ7に指示する信号をPLC等の副制御装置Sで一旦受け取り、基板載置台の回転方向の位置に応じて増減を加えてからマスフローコントローラ7に送信する。この場合には、副制御装置Sが膜厚制御パラメータを変化させる手段4(原料ガスの流量を増減させるもの)となる。
ここで、図3(a)(b)にあるように、本発明の装置及び方法では、基板載置台の回転方向の位置に応じて原料ガスの流量を増減するとともに、基板載置台の回転速度も変化させるようにしても良い。これにより、より高精度に膜厚分布を均一化することができる。
Further, when incorporated in an existing epitaxial growth apparatus, as shown in FIG. 3B, the main controller M of the epitaxial growth apparatus once receives a signal for instructing the material gas flow rate to the mass flow controller 7 by the sub-control apparatus S such as PLC. Then, after increasing / decreasing according to the position of the substrate mounting table in the rotation direction, it is transmitted to the mass flow controller 7. In this case, the sub-control device S serves as means 4 for changing the film thickness control parameter (that increases or decreases the flow rate of the source gas).
Here, as shown in FIGS. 3A and 3B, in the apparatus and method of the present invention, the flow rate of the source gas is increased or decreased according to the position of the substrate mounting table in the rotation direction, and the rotation speed of the substrate mounting table is increased. May also be changed. Thereby, the film thickness distribution can be made uniform with higher accuracy.

原料ガス流量の増減の幅は次のように計算して決定する。
まず、あらかじめ基板載置台の回転を止めた状態で通常の原料ガス流量F1でエピタキシャル成長を行い、上流側の成長速度G1と下流側の成長速度G2を調べる。次に、同じく基板載置台の回転を止めた状態で原料ガス流量F1より少し異なる原料ガス流量F2でエピタキシャル成長を行い、上流側の成長速度G3と下流側の成長速度G4を調べる。次に、基板載置台を回転し、基板載置台が基準位置にあるときに原料ガス流量が最大で基板載置台が基準位置と180度回転した状態にあるときに原料ガス流量が最小となるように原料ガス流量を増減させながらエピタキシャル成長を行い、基板のノッチに対する膜厚が最も厚くなった方向θ1を調べておく。
The range of increase / decrease in the raw material gas flow is determined by calculating as follows.
First, epitaxial growth is performed at a normal source gas flow rate F1 in a state where the rotation of the substrate mounting table is stopped in advance, and the upstream growth rate G1 and the downstream growth rate G2 are examined. Next, epitaxial growth is performed at a raw material gas flow rate F2 slightly different from the raw material gas flow rate F1 while the rotation of the substrate mounting table is stopped, and the upstream growth rate G3 and the downstream growth rate G4 are examined. Next, the substrate mounting table is rotated so that the source gas flow rate is maximum when the substrate mounting table is at the reference position and the source gas flow rate is minimized when the substrate mounting table is rotated 180 degrees from the reference position. Epitaxial growth is performed while increasing or decreasing the source gas flow rate, and the direction θ1 in which the film thickness with respect to the notch of the substrate becomes the largest is examined.

次に、原料ガス流量F1でエピタキシャル成長を行い、本発明の技術で修正可能な傾きのある膜厚分布が生じたときは、膜厚の厚い部分の厚さT1、膜厚の薄い部分の厚さT2、ノッチを基準にした膜厚の薄い部分の位置θ2とを調べる。これらを正確に求めるにはエピタキシャル膜の膜厚を基板全体にわたって測定し、これらの膜厚と測定位置からなる3次元グラフを平面でフィッティングし、その平面の傾きの大きさと方向から求めるのがよい。   Next, when epitaxial growth is performed at the raw material gas flow rate F1 and a sloped film thickness distribution that can be corrected by the technique of the present invention is generated, the thickness T1 of the thick part and the thickness of the thin part are obtained. T2 and the position θ2 of the thin portion with reference to the notch are examined. In order to obtain these accurately, it is preferable to measure the film thickness of the epitaxial film over the entire substrate, fit a three-dimensional graph consisting of these film thicknesses and measurement positions on a plane, and calculate the thickness from the magnitude and direction of the inclination of the plane. .

上記のような条件の時、原料ガス流量F(θ)は基板載置台の回転方向の位置θに応じて
F(θ)=F1×(1+k×sin(θ−θ1+θ2)) (C)
とするとよい。ここでkは原料ガス流量増減の程度を表す係数であって
k=(T1−T2)/(T1+T2)×(G1+G2)/(G4−G3−G2+G1)/2×(F2−F1)/F1 (D)
で定められる。
Under the above conditions, the source gas flow rate F (θ) is F (θ) = F1 × (1 + k × sin (θ−θ1 + θ2)) (C) according to the position θ in the rotation direction of the substrate mounting table.
It is good to do. Here, k is a coefficient representing the degree of increase / decrease in the raw material gas flow rate, and k = (T1-T2) / (T1 + T2) × (G1 + G2) / (G4-G3-G2 + G1) / 2 × (F2-F1) / F1 ( D)
Determined by

図4(b)は一定の原料ガス流量でエピタキシャル成長を行った場合に生じた、傾いた膜厚分布である。ノッチ位置から反時計回りに235度の位置に膜厚が薄く、その反対の部分の膜厚が厚いことが分かる。これに対し、図4(a)の本発明により原料ガスの流量を増減した場合の膜厚分布は膜厚分布の傾きが解消していることがわかる。   FIG. 4B shows an inclined film thickness distribution generated when epitaxial growth is performed at a constant raw material gas flow rate. It can be seen that the film thickness is thin at a position of 235 degrees counterclockwise from the notch position, and the film thickness of the opposite part is thick. On the other hand, it can be seen that the slope of the film thickness distribution is eliminated in the film thickness distribution when the flow rate of the source gas is increased or decreased according to the present invention of FIG.

以下、実施例、比較例を示して本発明をより具体的に説明するが、本発明はこれに限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated more concretely, this invention is not limited to this.

(実施例・比較例)
エピタキシャル用基板Wとして、直径200mm、厚さ規格725μm、P型、抵抗率5〜10mΩcmとなるシリコンウエーハを用意した。
(Examples and comparative examples)
As an epitaxial substrate W, a silicon wafer having a diameter of 200 mm, a thickness standard of 725 μm, a P type, and a resistivity of 5 to 10 mΩcm was prepared.

予め基準位置で停止した基板載置台2にシリコンウェーハWを載置し、ノッチに対する原料ガスの流入方向の位置θ1を調べ、次に基板載置台2の回転を止めた状態で上記図1に記載のエピタキシャル成長装置1を用いて下記条件でエピタキシャル成長を行った。
原料ガス(トリクロロシラン)流量:10slm
キャリアガス(Hガス)流量:40slm
エピタキシャル成長温度:1100℃
The silicon wafer W is placed on the substrate mounting table 2 previously stopped at the reference position, the position θ1 in the inflow direction of the source gas with respect to the notch is examined, and then the rotation of the substrate mounting table 2 is stopped as shown in FIG. The epitaxial growth apparatus 1 was used for epitaxial growth under the following conditions.
Source gas (trichlorosilane) flow rate: 10 slm
Carrier gas (H 2 gas) flow rate: 40 slm
Epitaxial growth temperature: 1100 ° C

次に、一定の回転速度ω1でエピタキシャル成長を行ったところ、偏きのある膜厚分布が生じた(比較例)。
膜厚の厚い部分の厚さT1、膜厚の薄い部分の厚さT2、ノッチを基準にした膜厚の薄い部分の位置θ2を求め、上記一般式(A)及び(B)に当てはめ、基板載置台2の回転方向の位置θに応じた回転速度ω(θ)を求めた。それぞれの値を以下に示す。
T1:12.19μm T2:11.87μm
θ1:270° θ2:235° ω1:35rpm
次に、上記と同様の条件でシリコンウェーハWを基板載置台2に載置し、サーボモータで基板載置台の回転方向の位置θを把握しながら、基板載置台2の回転方向の位置θに応じた回転速度ω(θ)で基板載置台2を回転させてエピタキシャル成長を行ったところ、比較例において膜厚の厚かった部分の位置の厚さは12.05μmとなり、比較例において膜厚の薄かった部分(膜厚を厚くしたい部分)の位置の厚さは12.01μmとなり、すなわち、膜厚を厚くしたい部分の平均成長速度を速くすることができ、比較例で観察された様な膜厚の傾きが解消された(実施例)。
Next, when epitaxial growth was performed at a constant rotational speed ω1, an uneven film thickness distribution was generated (Comparative Example).
The thickness T1 of the thick part, the thickness T2 of the thin part, and the position θ2 of the thin part on the basis of the notch are obtained and applied to the above general formulas (A) and (B). The rotational speed ω (θ) corresponding to the position θ in the rotational direction of the mounting table 2 was obtained. Each value is shown below.
T1: 12.19 μm T2: 11.87 μm
θ1: 270 ° θ2: 235 ° ω1: 35 rpm
Next, the silicon wafer W is mounted on the substrate mounting table 2 under the same conditions as described above, and the position θ in the rotation direction of the substrate mounting table 2 is grasped by the servo motor while the position θ in the rotation direction of the substrate mounting table 2 is determined. When epitaxial growth was performed by rotating the substrate mounting table 2 at a corresponding rotation speed ω (θ), the thickness of the portion where the film thickness was thick in the comparative example was 12.05 μm, and the film thickness was thin in the comparative example. The thickness of the portion (the portion where the film thickness is to be increased) is 12.01 μm, that is, the average growth rate of the portion where the film thickness is to be increased can be increased, and the film thickness as observed in the comparative example. The inclination of was eliminated (Example).

なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。   The present invention is not limited to the above embodiment. The above-described embodiment is an exemplification, and the present invention has any configuration that has substantially the same configuration as the technical idea described in the claims of the present invention and that exhibits the same effects. Are included in the technical scope.

W…基板、 1,11…エピタキシャル成長装置、 2,12…基板載置台、 3,13…原料ガス導入手段、 4…膜厚制御パラメータを変化させる手段、 5,15…モータ、 6,16…予熱部材、 7…マスフローコントローラ、 M,M’…主制御装置、 S…副制御装置。
W ... Substrate, 1,11 ... Epitaxial growth apparatus, 2,12 ... Substrate mounting table, 3,13 ... Raw material gas introduction means, 4 ... Means for changing film thickness control parameter, 5,15 ... Motor, 6,16 ... Preheating 7: Mass flow controller, M, M ′: Main control device, S: Sub control device.

Claims (2)

基板載置台と該基板載置台に載置された基板とを、前記基板載置台の幾何学的中心と回転の中心が一致していない状態で回転させ、前記基板の主面上に原料ガスを該基板の主面と平行に流通させることにより、前記基板主面上にエピタキシャル膜を形成させるエピタキシャルウェーハの製造方法において、前記基板を一定の回転速度で回転させてエピタキシャル成長を行った場合に、前記基板におけるエピタキシャル膜が薄くなる部分の位置を調べた後、膜厚制御パラメータとして前記基板載置台の回転速度を、前記基板載置台の回転方向の位置に応じて変化させ、前記基板におけるエピタキシャル膜が薄くなる部分が、前記原料ガスの上流にある場合には前記基板載置台の回転速度を遅くし、前記基板におけるエピタキシャル膜が薄くなる部分が、前記原料ガスの下流にある場合には前記基板載置台の回転速度を速くして、前記エピタキシャル膜を形成させることを特徴とするエピタキシャルウェーハの製造方法。 The substrate mounting table and the substrate mounted on the substrate mounting table are rotated in a state where the geometric center of the substrate mounting table and the center of rotation do not coincide with each other , and a source gas is introduced onto the main surface of the substrate. In the epitaxial wafer manufacturing method in which an epitaxial film is formed on the substrate main surface by flowing in parallel with the main surface of the substrate, when the substrate is rotated at a constant rotation speed and epitaxial growth is performed, after examining the position of the portion epitaxial film on the substrate becomes thinner, the rotational speed of the substrate table as a thickness control parameter is changed in accordance with the rotational position of the substrate mounting table, the epitaxial film in the substrate thinning portion, when in the upstream of the raw material gas is to slow the rotational speed of the substrate mounting table, it thin epitaxial film in the substrate Portion, wherein when the downstream of the raw material gas is to increase the rotational speed of the substrate mounting table, method for manufacturing an epitaxial wafer, characterized in that to form the epitaxial layer. 基板載置台と該基板載置台に載置された基板とを、前記基板載置台の幾何学的中心と回転の中心が一致していない状態で回転させ、前記基板の主面上に原料ガスを該基板の主面と平行に流通させることにより、前記基板主面上にエピタキシャル膜を形成させるエピタキシャル成長装置であって、該エピタキシャル成長装置は、更に、前記基板載置台の回転方向の位置情報を得て該基板載置台の回転方向の位置に応じて膜厚制御パラメータを変化させる手段を有するものであり、前記膜厚制御パラメータを変化させる手段は、前記基板載置台の回転方向の位置に応じて前記基板載置台の回転速度を変化させ、前記基板を一定の回転速度で回転させてエピタキシャル成長を行った場合に前記基板におけるエピタキシャル膜が薄くなる部分が、前記原料ガスの上流にある場合には前記基板載置台の回転速度を遅くし、前記基板におけるエピタキシャル膜が薄くなる部分が、前記原料ガスの下流にある場合には前記基板載置台の回転速度を速くするものであることを特徴とするエピタキシャル成長装置。 The substrate mounting table and the substrate mounted on the substrate mounting table are rotated in a state where the geometric center of the substrate mounting table and the center of rotation do not coincide with each other, and a source gas is introduced onto the main surface of the substrate. An epitaxial growth apparatus for forming an epitaxial film on the main surface of the substrate by flowing in parallel with the main surface of the substrate, wherein the epitaxial growth apparatus further obtains positional information of the rotation direction of the substrate mounting table. It has a means to change a film thickness control parameter according to the position of the substrate mounting table in the rotation direction, and the means to change the film thickness control parameter corresponds to the position of the substrate mounting table in the rotation direction. changing the rotational speed of the substrate mounting table, the epitaxial film in the substrate when performing rotated by epitaxial growth of the substrate at a constant rotational speed portion becomes thin, the If there is upstream of the material gas, a slower rotational speed of the substrate mounting table, parts epitaxial film is thinner in the substrate, when the downstream of the feed gas, the rotational speed of the substrate mounting table An epitaxial growth apparatus characterized by speeding up the process.
JP2010193994A 2010-08-31 2010-08-31 Epitaxial wafer manufacturing method and epitaxial growth apparatus Active JP5837290B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010193994A JP5837290B2 (en) 2010-08-31 2010-08-31 Epitaxial wafer manufacturing method and epitaxial growth apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010193994A JP5837290B2 (en) 2010-08-31 2010-08-31 Epitaxial wafer manufacturing method and epitaxial growth apparatus

Publications (2)

Publication Number Publication Date
JP2012054310A JP2012054310A (en) 2012-03-15
JP5837290B2 true JP5837290B2 (en) 2015-12-24

Family

ID=45907361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010193994A Active JP5837290B2 (en) 2010-08-31 2010-08-31 Epitaxial wafer manufacturing method and epitaxial growth apparatus

Country Status (1)

Country Link
JP (1) JP5837290B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6330720B2 (en) * 2015-04-30 2018-05-30 信越半導体株式会社 Epitaxial wafer manufacturing method and vapor phase growth apparatus
WO2018163399A1 (en) * 2017-03-10 2018-09-13 株式会社Kokusai Electric Substrate treatment device, method for manufacturing semiconductor device, and program
JP2019087576A (en) * 2017-11-02 2019-06-06 東京エレクトロン株式会社 Deposition system, and deposition method
US11486038B2 (en) 2019-01-30 2022-11-01 Applied Materials, Inc. Asymmetric injection for better wafer uniformity
TW202125673A (en) 2019-09-09 2021-07-01 美商應用材料股份有限公司 Processing system and method of delivering a reactant gas
CN110578166A (en) * 2019-10-15 2019-12-17 上海新昇半导体科技有限公司 Epitaxial growth apparatus and epitaxial growth method
CN110685009A (en) * 2019-10-15 2020-01-14 上海新昇半导体科技有限公司 Epitaxial growth apparatus and epitaxial growth method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW429271B (en) * 1997-10-10 2001-04-11 Applied Materials Inc Introducing process fluid over rotating substrates
JP3731550B2 (en) * 2002-02-28 2006-01-05 信越半導体株式会社 Method for manufacturing silicon wafer and method for manufacturing silicon epitaxial wafer
JP5069424B2 (en) * 2006-05-31 2012-11-07 Sumco Techxiv株式会社 Film forming reaction apparatus and method
JP5742185B2 (en) * 2010-03-19 2015-07-01 東京エレクトロン株式会社 Film forming apparatus, film forming method, rotation speed optimization method, and storage medium

Also Published As

Publication number Publication date
JP2012054310A (en) 2012-03-15

Similar Documents

Publication Publication Date Title
JP5837290B2 (en) Epitaxial wafer manufacturing method and epitaxial growth apparatus
US10494737B2 (en) Apparatus for producing SiC epitaxial wafer and method for producing SiC epitaxial wafer
TWI625781B (en) Method for epitaxially coating semiconductor wafers, and semiconductor wafer
JP2009267159A (en) Device and method for manufacturing semiconductor wafer
US9273414B2 (en) Epitaxial growth apparatus and epitaxial growth method
JP5445508B2 (en) Eccentricity evaluation method and epitaxial wafer manufacturing method
JP5943201B2 (en) Eccentricity evaluation method and epitaxial wafer manufacturing method
JP2017055086A (en) MANUFACTURING METHOD OF SiC EPITAXIAL WAFER AND MANUFACTURING APPARATUS OF SiC EPITAXIAL WAFER
TWI445053B (en) Epitaxy growth method
JP6330720B2 (en) Epitaxial wafer manufacturing method and vapor phase growth apparatus
JP6132163B2 (en) Eccentricity evaluation method and epitaxial wafer manufacturing method
TWI714651B (en) Substrate processing chamber and process and method of epitaxial film growth
JP5988486B2 (en) Film forming apparatus and film forming method
JP2011023422A (en) Method of manufacturing epitaxial wafer
JP5712782B2 (en) Susceptor support shaft for epitaxial wafer growth apparatus and epitaxial growth apparatus
JP2009038294A (en) Output adjustment method, manufacturing method of silicon epitaxial wafer, and susceptor
JP4876937B2 (en) Thin film vapor deposition method on wafer and thin film vapor deposition apparatus on wafer
JP3514254B2 (en) Heat treatment apparatus and method for manufacturing silicon epitaxial wafer
JP2011060979A (en) Method of manufacturing epitaxial wafer
JP3901155B2 (en) Vapor phase growth method and vapor phase growth apparatus
JP3731550B2 (en) Method for manufacturing silicon wafer and method for manufacturing silicon epitaxial wafer
JP2005109303A (en) Thin film forming method
JP6733802B1 (en) Epitaxial wafer manufacturing method and susceptor
JPH08250430A (en) Manufacture of single-crystal thin film
TWI688682B (en) Semiconductor wafer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130730

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140603

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140821

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140828

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20140919

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150915

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151105

R150 Certificate of patent or registration of utility model

Ref document number: 5837290

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250