JP3731550B2 - Method for manufacturing silicon wafer and method for manufacturing silicon epitaxial wafer - Google Patents

Method for manufacturing silicon wafer and method for manufacturing silicon epitaxial wafer Download PDF

Info

Publication number
JP3731550B2
JP3731550B2 JP2002053991A JP2002053991A JP3731550B2 JP 3731550 B2 JP3731550 B2 JP 3731550B2 JP 2002053991 A JP2002053991 A JP 2002053991A JP 2002053991 A JP2002053991 A JP 2002053991A JP 3731550 B2 JP3731550 B2 JP 3731550B2
Authority
JP
Japan
Prior art keywords
silicon
phase growth
single crystal
vapor phase
crystal substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002053991A
Other languages
Japanese (ja)
Other versions
JP2003257869A (en
Inventor
透 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP2002053991A priority Critical patent/JP3731550B2/en
Publication of JP2003257869A publication Critical patent/JP2003257869A/en
Application granted granted Critical
Publication of JP3731550B2 publication Critical patent/JP3731550B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Chemical Vapour Deposition (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、シリコンウェーハの製造方法およびシリコンエピタキシャルウェーハの製造方法に関する。
【0002】
【従来の技術】
従来より、例えば、シリコン単結晶基板(以下、単にシリコン基板ともいう。)の主表面上に原料ガスを供給することによって、該主表面上にシリコンエピタキシャル層(以下、単にエピタキシャル層ともいう。)を気相成長させて、シリコンエピタキシャルウェーハ(以下、単にエピタキシャルウェーハともいう。)を製造するといったように、シリコン基板の主表面上にシリコン薄膜を気相成長させてシリコンウェーハを製造する方法が知られている。
この気相成長の際には、例えば、シリコン基板をその主表面が上向きとなるよう略円板状のサセプタ上に載置し、該サセプタを板面方向に回転させるのに伴わせてシリコン基板も板面方向に回転させながら、該シリコン基板の主表面上に原料ガスを供給するようにしている。
【0003】
【発明が解決しようとする課題】
ここで、気相成長により得られるシリコンウェーハ(例えばエピタキシャルウェーハ)のシリコン薄膜(例えばエピタキシャル層)の膜厚は、供給される原料ガスの量と相関がある。
このため、従来は、上記のように、気相成長の際にシリコン基板を回転させるほか、シリコン基板の中央部と周縁部とで供給する原料ガス流量に格差を設定したりすることで、膜厚分布を調整するといった手段を講じる場合がある。
しかしながら、このような手段を講じても、シリコン薄膜の膜厚に、例えば円環状の分布を生じてしまうことがある。
【0004】
この発明は、上記のような問題点を解決するためになされたもので、シリコンウェーハ(例えばエピタキシャルウェーハ)のシリコン薄膜(例えばエピタキシャル層)の膜厚分布をより均一化することを可能とするシリコンウェーハの製造方法およびシリコンエピタキシャルウェーハの製造方法を提供することを目的とする。
【0005】
【課題を解決するための手段】
上記課題を解決するため、本発明のシリコンウェーハの製造方法は、略水平状態に配されたシリコン単結晶基板を板面方向に回転させつつ、該シリコン単結晶基板の主表面に対して略平行に原料ガスを供給することによって、該主表面上にシリコン薄膜を気相成長させるシリコンウェーハの製造方法において、前記気相成長中に原料ガスの進路を変更することにより、該シリコン単結晶基板の主表面上において、シリコン薄膜の成長速度の大きい位置を変更させることを特徴としている。
つまり、気相成長中における原料ガスの進路を、シリコン単結晶基板の板面に平行な面内において変更することにより、該シリコン単結晶基板の主表面上において、シリコン薄膜の成長速度の大きい位置を変更させることを特徴としている。
【0006】
より具体的には、本発明でシリコン単結晶基板の主表面上に気相成長させるシリコン薄膜としては、例えば、シリコンエピタキシャル層が挙げられ、従って、この場合、気相成長により製造するシリコンウェーハは、シリコンエピタキシャルウェーハとなる。
即ち、本発明は、略水平状態に配されたシリコン単結晶基板を板面方向に回転させつつ該シリコン単結晶基板の主表面に対して略平行に原料ガスを供給することによって、該主表面上にシリコンエピタキシャル層を気相成長させて、シリコンエピタキシャルウェーハを製造するシリコンエピタキシャルウェーハの製造方法において、前記気相成長中に原料ガスの進路を変更することにより、該シリコン単結晶基板の主表面上でシリコンエピタキシャル層の成長速度の大きい位置を変更させることが好ましい一例である。
なお、本発明は、これに限らず、例えば、シリコン単結晶基板の主表面上に、多結晶薄膜、窒化物、あるいは、酸化物のいずれかのシリコン薄膜を気相成長させてシリコンウェーハを製造する場合に適用しても良い。
【0007】
また、原料ガスの進路の変更は、例えば、シリコン単結晶基板の回転速度を変更することにより行うことが好ましい。
また、この場合、より具体的には、気相成長を行う期間が、シリコン単結晶基板の回転速度の互いに異なる複数の期間からなるように、該回転速度を変更しても良いし、或いは、気相成長を行う期間中、シリコン単結晶基板の回転速度を徐々に変更しても良い。
なお、原料ガスの進路の変更は、他にも、例えば、原料ガスの導入路(例えば、ノズルにより構成する)の向きを、シリコン単結晶基板の板面方向に平行な面内で変更することにより行っても良い。また、原料ガスの進路の変更は、他にも、例えば、サセプタを、シリコン単結晶基板の板面方向に平行な面内において、原料ガス流と交差する方向に移動させることにより行っても良い。
また、原料ガスの進路の変更は、他にも、例えば、キャリアガス流量を変更することにより行っても良い。すなわち、キャリアガス流量が大きい場合には、該キャリアガスと原料ガスとを含む気相成長用ガスの流速が大きくなり、従って、該気相成長用ガスの進路は、シリコン基板の回転による影響を受けにくくなる。対して、キャリアガス流量が小さい場合には、気相成長用ガスの流速が小さくなり、従って、該気相成長用ガスの進路は、シリコン基板の回転による影響を受けやすくなる(シリコン基板の回転方向に引きずられやすくなる)。従って、キャリアガス流量を増減するのに伴わせて、原料ガスの進路を変更することができる。
【0008】
本発明によれば、気相成長中に原料ガスの進路を変更することにより、シリコン単結晶基板の主表面上において、シリコン薄膜(例えばシリコンエピタキシャル層)の成長速度の大きい位置を変更させるため、シリコン薄膜の膜厚分布をより均一化できる。
【0009】
【発明の実施の形態】
以下、図面を参照して、本発明に係る実施の形態について説明する。
本実施の形態では、本発明に係るシリコンエピタキシャルウェーハの製造方法を実施するための気相成長装置として、いわゆる枚葉式の気相成長装置を適用する例について説明する。
【0010】
先ず、図1を参照して、枚葉式の気相成長装置1について説明する。
図1に示すように、気相成長装置1は、気相成長の際にシリコン単結晶基板2(以下、単にシリコン基板2ともいう。)が内部に配される反応容器3と、この反応容器3内に略水平状態に配され上面にシリコン基板2が載置される略円盤状のサセプタ4と、該反応容器3内に原料ガス(例えばトリクロロシラン等)およびキャリアガス(例えば水素ガス)を含む気相成長用ガスを導入するための導入路5と、該反応容器3よりガスを排気するための排気路6とを備えている。
他に、気相成長装置1は、反応容器3内のサセプタ4上のシリコン基板2を所望の温度に加熱するための加熱装置(図示略)と、気相成長の際にサセプタ4をその板面方向に回転させるのに伴わせて、シリコン基板2もその板面方向に回転させるための駆動装置7を備えている。この駆動装置7は、サセプタ4の回転速度を(従って、シリコン基板2の回転速度も)変更可能に構成されている。
【0011】
本実施の形態では、上記のような構成の気相成長装置1を用いて、以下に説明するようにして気相成長を行う。
【0012】
先ず、反応容器3内のサセプタ4上に、シリコン基板2をその主表面が上向きとなるように載置する。すなわち、シリコン基板2を略水平状態に配置する。
次に、該シリコン基板2を加熱装置により供給律速領域の所望の温度(例えば1100℃)に加熱するとともにその板面方向に回転させつつ、導入路5を介して気相成長用ガスをシリコン基板2の主表面に対して略平行に供給することにより、該主表面上へのシリコンエピタキシャル層(以下、単にエピタキシャル層ともいう。)の気相成長を行う。
そして、本実施形態では、この気相成長を行う期間の、例えば前半では低速(例えば10回転/分)で、後半では高速(例えば35回転/分)で、それぞれシリコン基板2を回転させる(図2(b))。
なお、この気相成長を行う期間全体の長さは、気相成長させる必要のあるエピタキシャル層の膜厚に基づき予め求めることができるので、この求めた期間の前半分を低速で回転させる期間とし、残りの半分を高速で回転させる期間とすれば良い。
【0013】
ここで、図5を参照して、導入路5より矢印A方向に従って反応容器3内に導入され、サセプタ4上のシリコン基板2の主表面上に供給される気相成長用ガス(原料ガスを含む)の流れについて説明する。
図5に示すように、シリコン基板2(およびサセプタ4)の回転速度が低速(例えば10回転/分)の場合には、シリコン基板2の主表面上における気相成長用ガス流の進路は、シリコン基板2(およびサセプタ4)の回転による影響を殆ど受けない。このため、気相成長用ガス流は、シリコン基板2の主表面上においても、矢印A方向とほぼ同方向の矢印C方向に沿う進路となる。
これに対し、シリコン基板2(およびサセプタ4)の回転速度が高速(例えば35回転/分)の場合には、シリコン基板2の主表面上における気相成長用ガス流の進路は、シリコン基板2(およびサセプタ4)の回転による影響を大きく受ける。
具体的には、例えば、シリコン基板2(およびサセプタ4)の回転方向が、平面視において時計回り(図5の矢印B方向)であるとすれば、回転速度を上記高速とした場合の気相成長用ガス流の進路は、図5の矢印Dに示すように、矢印Cと比べて変化する。
これは、シリコン基板2の主表面上において、回転するシリコン基板2およびサセプタ4に引きずられて、気相成長用ガス流の進路が変化するためである(具体的には、例えば上流側部分(図5のE部分)では、矢印Cから離れるように進路が変化し、下流側部分(図5のF部分)では、矢印Cに近づくように進路が変更する等)。
【0014】
また、例えば図3(b)或いは図4(b)に示すように、気相成長を行う期間の全てで、シリコン基板2の回転速度を一定に設定して、エピタキシャルウェーハを製造した場合は、図3(a)或いは図4(a)に示すように、エピタキシャル層の膜厚に、円環状の分布が生じる。
具体的には、シリコン基板2の回転速度を、例えば10回転/分(低速)に設定した場合には、エピタキシャル層の膜厚は、図3(a)に示すように、中央部と周縁部で大きく、中央部と周縁部との間で小さくなる。
他方、シリコン基板2の回転速度を、例えば35回転/分(高速)に設定した場合には、エピタキシャル層の膜厚は、図4(a)に示すように、中央部で小さく、その両側部分で大きく、さらにその両側部分で小さく、周縁部で再び大きくなる。
ここで、気相成長を行う期間の全てでシリコン基板2の回転速度が一定の場合には、いずれの場合にも、エピタキシャル層の膜厚の均一性が良くないという点では同じであるが、エピタキシャルウェーハの直径方向の位置による膜厚の大きさが、シリコン基板2の回転速度に応じて異なることが分かる(例えば、シリコン基板2の回転速度が上記低速の場合には、膜厚が中央部で大きいのに対し、上記高速の場合には、中央部で小さい等。)。
【0015】
これに対し、本実施の形態のように、気相成長を行う期間の前半では低速(例えば10回転/分)で、後半では高速(例えば35回転/分)で、それぞれシリコン基板2を回転させると、例えば図2(a)に示すように、図3(a)と図4(a)の膜厚を合成したような膜厚分布となり、図3(a)、図4(a)のいずれの場合と比べてもエピタキシャル層の膜厚分布が均一化される。
これは、シリコン基板2の回転速度の変更に伴わせて原料ガス(気相成長用ガス)の進路を変更させることができる結果、シリコン基板2の主表面上において、エピタキシャル層の成長速度の大きい位置を変更させることができるためである。
従って、本実施の形態のように気相成長中にシリコン基板2の回転速度を変更することにより、気相成長を行う期間の全体では、シリコン基板2の主表面上におけるエピタキシャル層の成長量を、該主表面全体で均一に近づけることができる。その結果、エピタキシャルウェーハにおけるエピタキシャル層の膜厚分布を均一化できる。
【0016】
なお、上記の実施の形態では、気相成長を行う期間が、シリコン基板の回転速度が低速と高速との2つの期間からなる例について説明したが、シリコン基板の回転速度が互いに異なる3つ以上の期間からなることとしても良く、この場合、一層、エピタキシャル層の膜厚の均一化が図れる。
さらに、上記のように、気相成長を行う期間が、シリコン基板の回転速度が互いに異なる複数の期間からなる例に限らず、気相成長を行う期間中、シリコン基板の回転速度を徐々に変更するようにしても良く、このようにすれば、より一層エピタキシャル層の膜厚の均一化が図れる。
なお、この場合、シリコン基板の回転速度を低速から高速へと(或いは、高速から低速へと)徐々に変更しても良いし、低速から高速へと徐々に変更した後、再び低速へと徐々に変更しても良い(或いは、高速から低速へと徐々に変更した後、再び高速へと徐々に変更しても良い。)。
要するに、気相成長装置に起因する要因等を考慮して、膜厚がより均一になるように、シリコン基板の回転速度の変更態様を適宜設定すればよい。
【0017】
また、上記においては、シリコン基板の回転速度を変更することにより原料ガスの進路の変更を行う例について説明したが、これに限らず、原料ガスの導入路5(例えば、ノズルにより構成する)の向きを、シリコン基板の板面方向に平行な面内で変更することにより原料ガスの進路を変更しても良い。
この場合、具体的には、例えば、モータ駆動を、シリコン基板の板面方向に平行な面内での導入路5の揺動に変換する駆動伝達部材(ギア等により構成される)を介して、導入路5に伝達するようにすることが挙げられる。
あるいは、サセプタを、シリコン基板の板面方向に平行な面内において、原料ガス流と交差(例えば、略直交)する方向に移動させることにより行っても良い。この場合も、例えばモータ駆動を、駆動伝達部材により変換および駆動伝達すればよい。
【0018】
また、上記においては、枚葉式の気相成長装置を用いて気相成長を行う場合に、本発明を適用する例について説明したが、これに限らない。
例えばパンケーキ型の気相成長装置のように、略円盤状のサセプタ上面において互いに異なる位置にそれぞれシリコン基板を略水平状態に載置し、該サセプタをその板面方向に回転させるのに伴わせてシリコン基板もその板面方向に回転させつつ、これらシリコン基板の主表面に対して略平行に原料ガスを供給することによって、これら多数枚のシリコン基板に対し一度に気相成長を行って、一度に多数枚のエピタキシャルウェーハを製造する多数枚式の気相成長装置に適用しても良い。
この場合、上記の場合と同様の効果に加えて、一度に気相成長を行うシリコン基板どうしでの、供給される原料ガス量の格差を低減できるので、一度に製造されるエピタキシャルウェーハどうしでエピタキシャル層の膜厚を均一化できる。
【0019】
また、上記においては、シリコン単結晶基板の主表面上にエピタキシャル層を気相成長させてエピタキシャルウェーハを製造する場合に本発明を適用する例について説明したが、これに限らず、シリコン単結晶基板の主表面上に、シリコン多結晶薄膜(多結晶薄膜)、窒化珪素(窒化物)、あるいは、酸化珪素(酸化物)のいずれかのシリコン薄膜を気相成長させてシリコンウェーハを製造する場合に適用しても良い。
【0020】
【発明の効果】
本発明のシリコンウェーハの製造方法およびシリコンエピタキシャルウェーハの製造方法によれば、気相成長中に原料ガスの進路を変更することにより、シリコン単結晶基板の主表面上において、シリコン薄膜(例えばシリコンエピタキシャル層)の成長速度の大きい位置を変更させるので、気相成長を行う期間の全体では、シリコン単結晶基板の主表面上におけるシリコン薄膜の成長量を、該主表面全体で均一に近づけることができる。その結果、シリコン薄膜の膜厚分布をより均一化できる。
【図面の簡単な説明】
【図1】本発明に係る実施の形態に用いられる気相成長装置の好適な一例を示す模式的な正面断面図である。
【図2】(a)は気相成長中にシリコン単結晶基板の回転速度を変更する場合の膜厚分布の一例を示す図であり、(b)はこの場合の回転速度の変更態様を示す図である。
【図3】(a)は気相成長中のシリコン単結晶基板の回転速度が一定の場合の膜厚分布の一例を示す図であり、(b)はこの場合の回転速度を示す図である。
【図4】気相成長中のシリコン単結晶基板の回転速度が一定の場合の膜厚分布の他の一例を示す図であり、(b)はこの場合の回転速度を示す図である。
【図5】シリコン単結晶基板の回転速度に応じた原料ガス流の変化態様を説明するための模式的な平面図である。
【符号の説明】
2 シリコン単結晶基板
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a silicon wafer and a method for manufacturing a silicon epitaxial wafer.
[0002]
[Prior art]
Conventionally, for example, a source gas is supplied onto the main surface of a silicon single crystal substrate (hereinafter also simply referred to as a silicon substrate) to thereby form a silicon epitaxial layer (hereinafter also simply referred to as an epitaxial layer) on the main surface. There is a known method for producing a silicon wafer by vapor-phase-growing a silicon thin film on the main surface of a silicon substrate, such as producing a silicon epitaxial wafer (hereinafter also simply referred to as an epitaxial wafer) by vapor-phase-growing the substrate. It has been.
In this vapor phase growth, for example, the silicon substrate is placed on a substantially disc-shaped susceptor so that the main surface thereof is directed upward, and the silicon substrate is rotated along with the rotation of the susceptor in the plate surface direction. Also, the raw material gas is supplied onto the main surface of the silicon substrate while rotating in the plate surface direction.
[0003]
[Problems to be solved by the invention]
Here, the film thickness of the silicon thin film (for example, epitaxial layer) of the silicon wafer (for example, epitaxial wafer) obtained by vapor phase growth has a correlation with the amount of the source gas supplied.
For this reason, conventionally, as described above, in addition to rotating the silicon substrate at the time of vapor phase growth, it is possible to set a difference in the flow rate of the raw material gas supplied between the central portion and the peripheral portion of the silicon substrate. There are cases where measures such as adjusting the thickness distribution are taken.
However, even if such measures are taken, for example, an annular distribution may occur in the film thickness of the silicon thin film.
[0004]
The present invention has been made in order to solve the above-described problems, and silicon that can make the film thickness distribution of a silicon thin film (e.g., epitaxial layer) of a silicon wafer (e.g., epitaxial wafer) more uniform. An object of the present invention is to provide a method for producing a wafer and a method for producing a silicon epitaxial wafer.
[0005]
[Means for Solving the Problems]
In order to solve the above problems, the silicon wafer manufacturing method of the present invention is substantially parallel to the main surface of the silicon single crystal substrate while rotating the silicon single crystal substrate arranged in a substantially horizontal state in the plate surface direction. in by supplying raw material gas, the method for producing a silicon wafer for a silicon thin film vapor phase growth on the major surface, by changing the path of the material gas in the vapor phase growth, of the silicon single crystal substrate It is characterized in that the position where the growth rate of the silicon thin film is large is changed on the main surface .
That is, by changing the path of the source gas during the vapor phase growth in a plane parallel to the plate surface of the silicon single crystal substrate, a position where the growth rate of the silicon thin film is high on the main surface of the silicon single crystal substrate. It is characterized by changing .
[0006]
More specifically, the silicon thin film to be vapor-grown on the main surface of the silicon single crystal substrate in the present invention includes, for example, a silicon epitaxial layer. Therefore, in this case, the silicon wafer manufactured by vapor-phase growth is It becomes a silicon epitaxial wafer.
That is, the present invention provides the main surface by supplying the source gas substantially parallel to the main surface of the silicon single crystal substrate while rotating the silicon single crystal substrate arranged in a substantially horizontal state in the plate surface direction. In a silicon epitaxial wafer manufacturing method for producing a silicon epitaxial wafer by vapor-phase-growing a silicon epitaxial layer on the main surface of the silicon single crystal substrate by changing a course of a source gas during the vapor-phase growth It is a preferable example that the position where the growth rate of the silicon epitaxial layer is high is changed .
The present invention is not limited to this. For example, a silicon wafer is manufactured by vapor-phase growth of a polycrystalline thin film, a nitride, or an oxide silicon thin film on the main surface of a silicon single crystal substrate. You may apply when you do.
[0007]
Moreover, it is preferable to change the course of the source gas by changing the rotational speed of the silicon single crystal substrate, for example.
In this case, more specifically, the rotational speed may be changed so that the period for performing vapor phase growth includes a plurality of periods with different rotational speeds of the silicon single crystal substrate, or During the vapor phase growth, the rotation speed of the silicon single crystal substrate may be gradually changed.
The source gas path can be changed, for example, by changing the direction of the source gas introduction path (for example, constituted by a nozzle) within a plane parallel to the plate surface direction of the silicon single crystal substrate. May be performed. In addition, the path of the source gas may be changed, for example, by moving the susceptor in a direction intersecting the source gas flow in a plane parallel to the plate surface direction of the silicon single crystal substrate. .
In addition, the course of the source gas may be changed by, for example, changing the carrier gas flow rate. That is, when the carrier gas flow rate is large, the flow rate of the vapor phase growth gas including the carrier gas and the source gas increases, and therefore the course of the vapor phase growth gas is influenced by the rotation of the silicon substrate. It becomes difficult to receive. On the other hand, when the carrier gas flow rate is small, the flow rate of the vapor phase growth gas is small, and therefore the course of the vapor phase growth gas is easily affected by the rotation of the silicon substrate (the rotation of the silicon substrate). Easier to be dragged in the direction). Therefore, the course of the source gas can be changed as the carrier gas flow rate is increased or decreased.
[0008]
According to the present invention, by changing the path of the material gas in the vapor deposition, on a main surface of a silicon single crystal substrate, by changing the position greater growth rate of the silicon thin film (e.g., silicon epitaxial layer) because , it can be more uniform thickness of the silicon thin film.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
In the present embodiment, an example in which a so-called single wafer type vapor phase growth apparatus is applied as a vapor phase growth apparatus for carrying out the method for producing a silicon epitaxial wafer according to the present invention will be described.
[0010]
First, a single wafer type vapor phase growth apparatus 1 will be described with reference to FIG.
As shown in FIG. 1, a vapor phase growth apparatus 1 includes a reaction vessel 3 in which a silicon single crystal substrate 2 (hereinafter also simply referred to as a silicon substrate 2) is disposed during vapor phase growth, and the reaction vessel. 3, a substantially disc-shaped susceptor 4 which is arranged in a substantially horizontal state and on which the silicon substrate 2 is mounted, and a source gas (for example, trichlorosilane) and a carrier gas (for example, hydrogen gas) are introduced into the reaction vessel 3. An introduction path 5 for introducing the vapor phase growth gas to be included and an exhaust path 6 for exhausting the gas from the reaction vessel 3 are provided.
In addition, the vapor phase growth apparatus 1 includes a heating device (not shown) for heating the silicon substrate 2 on the susceptor 4 in the reaction vessel 3 to a desired temperature, and the susceptor 4 on the plate during the vapor phase growth. Along with the rotation in the surface direction, the silicon substrate 2 is also provided with a driving device 7 for rotating in the plate surface direction. The driving device 7 is configured to be able to change the rotational speed of the susceptor 4 (and hence the rotational speed of the silicon substrate 2).
[0011]
In the present embodiment, vapor phase growth is performed as described below, using the vapor phase growth apparatus 1 configured as described above.
[0012]
First, the silicon substrate 2 is placed on the susceptor 4 in the reaction vessel 3 so that the main surface thereof is directed upward. That is, the silicon substrate 2 is arranged in a substantially horizontal state.
Next, the silicon substrate 2 is heated to a desired temperature (for example, 1100 ° C.) in the supply rate-determining region by a heating device and rotated in the plate surface direction, and the vapor growth gas is supplied to the silicon substrate through the introduction path 5. The silicon epitaxial layer (hereinafter also simply referred to as “epitaxial layer”) is vapor-phase grown on the main surface by supplying substantially parallel to the two main surfaces.
In the present embodiment, the silicon substrate 2 is rotated at a low speed (for example, 10 rotations / minute) in the first half, and at a high speed (for example, 35 rotations / minute) in the second half, for example, during this vapor phase growth (see FIG. 2 (b)).
The total length of the vapor phase growth period can be determined in advance based on the film thickness of the epitaxial layer that needs to be vapor phase grown. The other half may be a period for rotating at high speed.
[0013]
Here, referring to FIG. 5, vapor phase growth gas (raw material gas is introduced into reaction vessel 3 from introduction path 5 in the direction of arrow A and supplied onto the main surface of silicon substrate 2 on susceptor 4. Including the flow).
As shown in FIG. 5, when the rotation speed of the silicon substrate 2 (and the susceptor 4) is low (for example, 10 rotations / minute), the course of the gas flow for vapor deposition on the main surface of the silicon substrate 2 is It is hardly affected by the rotation of the silicon substrate 2 (and the susceptor 4). For this reason, the gas flow for vapor phase growth becomes a course along the direction of arrow C which is substantially the same as the direction of arrow A even on the main surface of silicon substrate 2.
On the other hand, when the rotation speed of the silicon substrate 2 (and the susceptor 4) is high (for example, 35 rotations / minute), the path of the gas phase growth gas flow on the main surface of the silicon substrate 2 is the silicon substrate 2. (And susceptor 4) are greatly affected by the rotation.
Specifically, for example, if the rotation direction of the silicon substrate 2 (and the susceptor 4) is clockwise (in the direction of arrow B in FIG. 5) in a plan view, the vapor phase when the rotation speed is the above high speed. The path of the growth gas flow changes as compared with the arrow C as shown by the arrow D in FIG.
This is because on the main surface of the silicon substrate 2, the course of the gas flow for vapor phase growth is changed by being dragged by the rotating silicon substrate 2 and the susceptor 4 (specifically, for example, the upstream portion ( In the part E of FIG. 5, the course changes away from the arrow C, and in the downstream part (F part of FIG. 5), the course changes so as to approach the arrow C).
[0014]
For example, as shown in FIG. 3B or FIG. 4B, when the epitaxial wafer is manufactured by setting the rotation speed of the silicon substrate 2 to be constant throughout the vapor phase growth period, As shown in FIG. 3A or 4A, an annular distribution occurs in the film thickness of the epitaxial layer.
Specifically, when the rotation speed of the silicon substrate 2 is set to, for example, 10 rotations / minute (low speed), the film thickness of the epitaxial layer is such that the central portion and the peripheral portion are as shown in FIG. It is large and becomes small between the central part and the peripheral part.
On the other hand, when the rotation speed of the silicon substrate 2 is set to 35 rotations / minute (high speed), for example, the film thickness of the epitaxial layer is small at the center as shown in FIG. Larger at the both sides, smaller at both sides, and larger again at the periphery.
Here, when the rotational speed of the silicon substrate 2 is constant throughout the vapor phase growth period, it is the same in that the uniformity of the thickness of the epitaxial layer is not good in any case. It can be seen that the film thickness depending on the position of the epitaxial wafer in the diameter direction differs depending on the rotation speed of the silicon substrate 2 (for example, when the rotation speed of the silicon substrate 2 is the low speed, the film thickness is in the center portion). (In contrast, it is small at the center in the case of the above high speed.)
[0015]
On the other hand, as in the present embodiment, the silicon substrate 2 is rotated at a low speed (for example, 10 rotations / minute) in the first half of the period for performing vapor phase growth and at a high speed (for example, 35 rotations / minute) in the second half. For example, as shown in FIG. 2A, a film thickness distribution is obtained by synthesizing the film thicknesses of FIG. 3A and FIG. 4A, and either of FIG. 3A or FIG. Compared to the case, the film thickness distribution of the epitaxial layer is made uniform.
This is because the path of the source gas (vapor phase growth gas) can be changed in accordance with the change in the rotation speed of the silicon substrate 2, and as a result, the growth rate of the epitaxial layer is high on the main surface of the silicon substrate 2. This is because the position can be changed.
Therefore, by changing the rotational speed of the silicon substrate 2 during the vapor phase growth as in the present embodiment, the growth amount of the epitaxial layer on the main surface of the silicon substrate 2 is reduced over the entire period of the vapor phase growth. , The entire main surface can be made uniform. As a result, the film thickness distribution of the epitaxial layer in the epitaxial wafer can be made uniform.
[0016]
In the above-described embodiment, the example in which the period during which the vapor phase growth is performed includes two periods in which the rotational speed of the silicon substrate is low and high is described. However, three or more different rotational speeds of the silicon substrate are different from each other. In this case, the thickness of the epitaxial layer can be made uniform.
Furthermore, as described above, the period during which the vapor phase growth is performed is not limited to an example in which the rotation speed of the silicon substrate is different from each other, and the rotation speed of the silicon substrate is gradually changed during the period during which the vapor phase growth is performed. In this case, the thickness of the epitaxial layer can be made even more uniform.
In this case, the rotational speed of the silicon substrate may be gradually changed from a low speed to a high speed (or from a high speed to a low speed), or after gradually changing from a low speed to a high speed, the speed gradually decreases again. (Or after gradually changing from high speed to low speed, it may be changed gradually to high speed again).
In short, in consideration of factors caused by the vapor phase growth apparatus, the mode of changing the rotation speed of the silicon substrate may be appropriately set so that the film thickness becomes more uniform.
[0017]
In the above description, the example of changing the path of the source gas by changing the rotation speed of the silicon substrate has been described. However, the present invention is not limited thereto, and the source gas introduction path 5 (for example, constituted by a nozzle) is used. The course of the source gas may be changed by changing the direction in a plane parallel to the plate surface direction of the silicon substrate.
In this case, specifically, for example, via a drive transmission member (configured by a gear or the like) that converts motor driving into oscillation of the introduction path 5 in a plane parallel to the plate surface direction of the silicon substrate. And transmitting to the introduction path 5.
Alternatively, the susceptor may be moved by moving it in a direction crossing (for example, substantially orthogonal to) the raw material gas flow in a plane parallel to the plate surface direction of the silicon substrate. Also in this case, for example, the motor drive may be converted and transmitted by the drive transmission member.
[0018]
In the above description, an example in which the present invention is applied when vapor phase growth is performed using a single wafer type vapor phase growth apparatus has been described, but the present invention is not limited thereto.
For example, as in a pancake-type vapor phase growth apparatus, silicon substrates are placed in substantially horizontal positions at different positions on the upper surface of a substantially disc-shaped susceptor, and the susceptor is rotated in the direction of the plate surface. By rotating the silicon substrate in the direction of the plate surface and supplying the source gas substantially parallel to the main surface of these silicon substrates, vapor phase growth is performed on these multiple silicon substrates at once, The present invention may be applied to a multi-stage vapor phase growth apparatus that manufactures a large number of epitaxial wafers at a time.
In this case, in addition to the same effect as the above case, the difference in the amount of source gas supplied between silicon substrates that perform vapor phase growth at one time can be reduced, so that epitaxial wafers manufactured at one time can be epitaxially grown. The layer thickness can be made uniform.
[0019]
In the above description, the example in which the present invention is applied to the case where an epitaxial wafer is manufactured by vapor-phase growth of an epitaxial layer on the main surface of the silicon single crystal substrate has been described. When a silicon wafer is manufactured by vapor-phase growth of a silicon thin film of either a silicon polycrystalline thin film (polycrystalline thin film), silicon nitride (nitride), or silicon oxide (oxide) on the main surface of It may be applied.
[0020]
【The invention's effect】
According to the method for producing a silicon wafer and the method for producing a silicon epitaxial wafer of the present invention, a silicon thin film (for example, silicon epitaxial) is formed on the main surface of the silicon single crystal substrate by changing the path of the source gas during vapor phase growth. Runode to change the position greater growth rate of the layer), the total period for vapor-phase growth, the growth amount of the silicon thin film on the main surface of a silicon single crystal substrate, it made more uniform across the main surface it can. As a result, the film thickness distribution of the silicon thin film can be made more uniform.
[Brief description of the drawings]
FIG. 1 is a schematic front sectional view showing a preferred example of a vapor phase growth apparatus used in an embodiment according to the present invention.
FIG. 2A is a diagram showing an example of a film thickness distribution when the rotational speed of a silicon single crystal substrate is changed during vapor phase growth, and FIG. 2B shows how the rotational speed is changed in this case. FIG.
3A is a diagram showing an example of a film thickness distribution when the rotational speed of a silicon single crystal substrate during vapor phase growth is constant, and FIG. 3B is a diagram showing the rotational speed in this case. .
FIG. 4 is a diagram showing another example of the film thickness distribution when the rotational speed of the silicon single crystal substrate during vapor phase growth is constant, and (b) is a diagram showing the rotational speed in this case.
FIG. 5 is a schematic plan view for explaining a change mode of the raw material gas flow according to the rotation speed of the silicon single crystal substrate.
[Explanation of symbols]
2 Silicon single crystal substrate

Claims (5)

略水平状態に配されたシリコン単結晶基板を板面方向に回転させつつ、該シリコン単結晶基板の主表面に対して略平行に原料ガスを供給することによって、該主表面上にシリコン薄膜を気相成長させるシリコンウェーハの製造方法において、前記気相成長中に原料ガスの進路を変更することにより、該シリコン単結晶基板の主表面上において、シリコン薄膜の成長速度の大きい位置を変更させることを特徴とするシリコンウェーハの製造方法。A silicon thin film is formed on the main surface by supplying a source gas substantially parallel to the main surface of the silicon single crystal substrate while rotating the silicon single crystal substrate arranged in a substantially horizontal state in the plate surface direction. In the method for producing a silicon wafer to be vapor-grown, by changing the path of the source gas during the vapor-phase growth, the position where the growth rate of the silicon thin film is large is changed on the main surface of the silicon single crystal substrate. A method for producing a silicon wafer. 前記原料ガスの進路の変更は、シリコン単結晶基板の回転速度を変更することにより行うことを特徴とする請求項1に記載のシリコンウェーハの製造方法。2. The method for producing a silicon wafer according to claim 1, wherein the path of the source gas is changed by changing a rotation speed of the silicon single crystal substrate. 前記気相成長を行う期間は、シリコン単結晶基板の回転速度が互いに異なる複数の期間からなることを特徴とする請求項2に記載のシリコンウェーハの製造方法。3. The method for manufacturing a silicon wafer according to claim 2, wherein the period for performing the vapor phase growth includes a plurality of periods in which rotation speeds of the silicon single crystal substrate are different from each other. 前記気相成長を行う期間中、シリコン単結晶基板の回転速度を徐々に変更することを特徴とする請求項2に記載のシリコンウェーハの製造方法。3. The method of manufacturing a silicon wafer according to claim 2, wherein the rotation speed of the silicon single crystal substrate is gradually changed during the vapor phase growth. 略水平状態に配されたシリコン単結晶基板を板面方向に回転させつつ該シリコン単結晶基板の主表面に対して略平行に原料ガスを供給することによって、該主表面上にシリコンエピタキシャル層を気相成長させて、シリコンエピタキシャルウェーハを製造するシリコンエピタキシャルウェーハの製造方法において、前記気相成長中に原料ガスの進路を変更することにより、該シリコン単結晶基板の主表面上において、シリコンエピタキシャル層の成長速度の大きい位置を変更させることを特徴とするシリコンエピタキシャルウェーハの製造方法。A silicon epitaxial layer is formed on the main surface by supplying a source gas substantially parallel to the main surface of the silicon single crystal substrate while rotating the silicon single crystal substrate arranged in a substantially horizontal state in the plate surface direction. In the silicon epitaxial wafer manufacturing method for producing a silicon epitaxial wafer by vapor phase growth , a silicon epitaxial layer is formed on the main surface of the silicon single crystal substrate by changing the path of the source gas during the vapor phase growth. A method for producing a silicon epitaxial wafer, wherein the position at which the growth rate of silicon is high is changed .
JP2002053991A 2002-02-28 2002-02-28 Method for manufacturing silicon wafer and method for manufacturing silicon epitaxial wafer Expired - Fee Related JP3731550B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002053991A JP3731550B2 (en) 2002-02-28 2002-02-28 Method for manufacturing silicon wafer and method for manufacturing silicon epitaxial wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002053991A JP3731550B2 (en) 2002-02-28 2002-02-28 Method for manufacturing silicon wafer and method for manufacturing silicon epitaxial wafer

Publications (2)

Publication Number Publication Date
JP2003257869A JP2003257869A (en) 2003-09-12
JP3731550B2 true JP3731550B2 (en) 2006-01-05

Family

ID=28665266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002053991A Expired - Fee Related JP3731550B2 (en) 2002-02-28 2002-02-28 Method for manufacturing silicon wafer and method for manufacturing silicon epitaxial wafer

Country Status (1)

Country Link
JP (1) JP3731550B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5837290B2 (en) * 2010-08-31 2015-12-24 信越半導体株式会社 Epitaxial wafer manufacturing method and epitaxial growth apparatus
CN103337506B (en) * 2013-06-17 2015-09-02 中国电子科技集团公司第四十六研究所 A kind of preparation technology of silicon epitaxial wafer for CCD device
US10446393B2 (en) * 2017-05-08 2019-10-15 Asm Ip Holding B.V. Methods for forming silicon-containing epitaxial layers and related semiconductor device structures

Also Published As

Publication number Publication date
JP2003257869A (en) 2003-09-12

Similar Documents

Publication Publication Date Title
TWI335945B (en) Vapor-phase epitaxial growth method and vapor-phase epitaxy apparatus
TWI625781B (en) Method for epitaxially coating semiconductor wafers, and semiconductor wafer
KR101077324B1 (en) Methods for producing epitaxially coated silicon wafers
JP3207832B2 (en) CVD reactor and method for producing epitaxially grown semiconductor wafers
US10930492B2 (en) Method for producing SiC epitaxial wafer and apparatus for producing SiC epitaxial wafer
US7060944B2 (en) Heat treatment device and heat treatment method
JPH09312245A (en) Thin-film-deposited substrate and manufacture thereof
JP2007210875A (en) Vapor phase deposition apparatus and vapor phase deposition method
TW200807505A (en) Method for maintaining semiconductor manufacturing apparatus, semiconductor manufacturing apparatus, and method for manufacturing semiconductor
JP3731550B2 (en) Method for manufacturing silicon wafer and method for manufacturing silicon epitaxial wafer
JP5306432B2 (en) Vapor growth method
JP2019169743A (en) Manufacturing method of sic epitaxial wafer
JP4443689B2 (en) Film forming method and film forming apparatus
JPS62263629A (en) Vapor growth device
CN110785831B (en) Method, control system and apparatus for processing semiconductor wafers, and semiconductor wafer
JP5176679B2 (en) Thin film vapor deposition method
JP2013016562A (en) Vapor-phase growth method
JPH08250430A (en) Manufacture of single-crystal thin film
WO2023199656A1 (en) Method for producing polysilicon wafer
JP2011060979A (en) Method of manufacturing epitaxial wafer
JP2008243938A (en) Thermal cvd method and thermal cvd device
JP2007180417A (en) Semiconductor substrate manufacturing method
JPH06349748A (en) Vapor growth device for semiconductor
JP6748549B2 (en) SiC epitaxial wafer manufacturing method and SiC epitaxial wafer manufacturing apparatus
JP2000091237A (en) Manufacture of semiconductor wafer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040729

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050920

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051003

R150 Certificate of patent or registration of utility model

Ref document number: 3731550

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081021

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081021

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091021

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101021

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111021

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121021

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131021

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees