JP2011137186A - Method for manufacturing metal-ceramics composite material - Google Patents

Method for manufacturing metal-ceramics composite material Download PDF

Info

Publication number
JP2011137186A
JP2011137186A JP2009295761A JP2009295761A JP2011137186A JP 2011137186 A JP2011137186 A JP 2011137186A JP 2009295761 A JP2009295761 A JP 2009295761A JP 2009295761 A JP2009295761 A JP 2009295761A JP 2011137186 A JP2011137186 A JP 2011137186A
Authority
JP
Japan
Prior art keywords
particles
ceramic
metal
preform
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009295761A
Other languages
Japanese (ja)
Other versions
JP5601833B2 (en
Inventor
Tomoyuki Hikita
友幸 引田
Mamoru Ishii
守 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2009295761A priority Critical patent/JP5601833B2/en
Publication of JP2011137186A publication Critical patent/JP2011137186A/en
Application granted granted Critical
Publication of JP5601833B2 publication Critical patent/JP5601833B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a metal-ceramics composite material, with which filling uniformity of ceramics particles and filling rate thereof can be improved. <P>SOLUTION: In the method for manufacturing the metal-ceramics composite material which is obtains by impregnating the metal as the basic material into a preform with the ceramics particles as reinforcing materials, the method for forming the preform includes: a step of obtaining a non-fluid mixture in a stationary state by mixing the ceramics particles with a binder with water as a dispersion medium; a step of charging the mixture into a mold and vibrating it to develop fluidity, settling the ceramics particles in the mixture, and obtaining a molding including the ceramics particles, the water and a binder component; a step of freeze-hardening the molding together with the die, and then, removing the freeze-hardened molding from the die and obtaining the hardened body; and a step of firing the hardened body in the air atmosphere and obtaining the preform composed of the ceramics particles and pores. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、基材に金属を、強化材にセラミックスを用いた金属−セラミックス複合材料の製造方法に関する。 The present invention relates to a method for producing a metal-ceramic composite material using a metal as a base material and ceramics as a reinforcing material.

セラミックスにより強化された金属−セラミックス複合材料は、金属とセラミックスの両方の特性を兼ね備えており、例えば、軽量、高弾性率、低熱膨張性、耐摩耗性等のセラミックスの優れた特性と、導電性、高靱性、高熱伝導性等の金属の優れた特性を備えている。このように、セラミックスと金属の両方の特性を備えているため、機械装置メーカ等の業界から次世代の材料として注目され、実用化が進められている。 Metal-ceramic composites reinforced with ceramics combine the properties of both metals and ceramics. For example, excellent properties of ceramics such as light weight, high elastic modulus, low thermal expansion, and wear resistance, and conductivity It has excellent metal properties such as high toughness and high thermal conductivity. Thus, since it has the characteristics of both ceramics and metal, it has been attracting attention as a next-generation material from the industry such as machine equipment manufacturers and is being put to practical use.

金属−セラミックス複合材料の特性は、基材と強化材の構成比率によりある程度の範囲で設計が可能であることから、よりセラミックスの特性を活かしたい場合は、セラミックスの構成比率を高める必要がある。その方法として、強化材の粉末充填率を高くすべく、強化材であるセラミックス繊維または粒子で構成されたプリフォームをあらかじめ作製し、そのプリフォームに基材である金属を含浸させる含浸法が提案されている。 Since the characteristics of the metal-ceramic composite material can be designed within a certain range depending on the composition ratio of the base material and the reinforcing material, it is necessary to increase the composition ratio of the ceramic material in order to utilize the ceramic characteristics more. In order to increase the powder filling rate of the reinforcing material, an impregnation method is proposed in which a preform composed of ceramic fibers or particles as a reinforcing material is prepared in advance, and the metal as a base material is impregnated into the preform. Has been.

例えば、特許文献1には水を分散媒とした沈降成形法が記載されており、セラミックス粉末の種類及び粗粒と微粒の割合を調整することでプリフォームの粉末充填率を73%にまで向上でき、かつバインダーの種類や添加量等を最適の組み合わせに調整することで、必要とする強度や破壊靱性値を有した金属−セラミックス複合材料を製造する方法が提案されている。 For example, Patent Document 1 describes a sedimentation molding method using water as a dispersion medium, and the powder filling rate of the preform is improved to 73% by adjusting the kind of ceramic powder and the ratio of coarse particles to fine particles. There has been proposed a method for producing a metal-ceramic composite material having the required strength and fracture toughness value by adjusting the type and amount of the binder to an optimum combination.

また、特許文献2には熱プレス法が記載されており、強化材として炭化珪素の#180と#800を60対40の割合で配合した粉末に、フェノ−ル樹脂(10質量%)を添加して乾式混合し、金型に投入して加熱しながらプレス成形を行うことで炭化珪素含有率が70体積%の成形体を作製する方法が開示されている。 Patent Document 2 describes a hot press method, in which phenol resin (10% by mass) is added to a powder containing silicon carbide # 180 and # 800 in a ratio of 60:40 as a reinforcing material. A method of producing a molded body having a silicon carbide content of 70% by volume by dry-mixing, press-molding while being put into a mold and heated is disclosed.

特許第4217278号公報Japanese Patent No. 4217278 特開2008−50181号公報JP 2008-50181 A

しかしながら、上述の沈降成形法によりプリフォームを作製した場合、強化材のセラミックス粒子充填率を70%以上にできるものの、成形過程で原料スラリーを型に流し込む際にセラミックス粒子の粗粒と微粒とが分離しやすく、成形体の下部と上部で粗粒と微粒の粒度構成が変わる場合があった。このような場合には、微粒を多く含む上部を除去しなければならず、原料が無駄になるだけでなく、その廃棄処理費用がかかるという問題があった。 However, when the preform is produced by the above-described sedimentation molding method, the ceramic particle filling rate of the reinforcing material can be 70% or more, but when the raw material slurry is poured into the mold during the molding process, the coarse particles and fine particles of the ceramic particles are formed. It was easy to separate, and the grain size composition of the coarse and fine particles sometimes changed between the lower part and the upper part of the molded body. In such a case, there is a problem that the upper part containing a lot of fine particles has to be removed, and not only the raw material is wasted but also the disposal cost is high.

また、下部から上部にかけて高さ方向に充填率の傾斜が生じ易く、例えば高さ50mmを超えるような肉厚品で発生する場合があった。このような上部と下部で充填率が異なる不均質なプリフォームに金属を含浸した場合、得られる金属−セラミックス複合材料の熱膨張率も上部と下部に差が生じるため、反りや割れが発生するという問題があった。 In addition, the filling rate is likely to be inclined in the height direction from the lower part to the upper part. For example, it may occur in a thick product having a height exceeding 50 mm. When metal is impregnated with such a heterogeneous preform with different filling rates at the upper and lower parts, the resulting metal-ceramic composite material also has a difference in thermal expansion coefficient between the upper and lower parts, causing warping and cracking. There was a problem.

一方、熱プレス法であれば沈降速度差によるセラミックス粒子の分離はないものの、一軸プレスであるため、例えば50mmを超える肉厚品では型内での圧力分布が大きくなり、成形体中心部の充填率が低くなる傾向があった。また、大型の成形体を得るには高圧仕様の高価なプレス機が必要なことや、プレス成形であるため単純構造しか成形できず、複雑構造を付与するためには加工費が高くなること等、コスト面での課題もあった。 On the other hand, although there is no separation of the ceramic particles due to the difference in sedimentation speed in the case of the hot press method, since it is a uniaxial press, for example, in a thick product exceeding 50 mm, the pressure distribution in the mold becomes large and the center of the compact is filled. The rate tended to be low. In addition, an expensive press machine with high-pressure specifications is required to obtain a large molded body, only a simple structure can be formed because of press molding, and a processing cost is high to add a complicated structure, etc. There was also a cost issue.

本発明は、このような課題に鑑みなされたものであって、その目的は、セラミックス粒子の充填の均一性及び充填率を高めることができる金属−セラミックス複合材料の製造方法を提供することにある。 This invention is made | formed in view of such a subject, The objective is to provide the manufacturing method of the metal-ceramics composite material which can improve the uniformity and filling rate of ceramic particle filling. .

本発明は、上記課題を解決するため、
セラミックス粒子を強化材とするプリフォームに基材の金属を含浸させて得られる金属−セラミックス複合材料の製造方法において、
前記プリフォームの形成方法が、
セラミックス粒子を、水を分散媒としてバインダーと共に混合することで、静置状態で非流動性の混合物を得る工程と、
前記混合物を型に投入し振動を加えることで流動性を発現させて混合物中のセラミックス粒子を沈降させ、セラミックス粒子、水及びバインダー成分を含む成形体を得る工程と、
前記成形体を型ごと冷凍硬化させた後に、脱型して硬化体を得る工程と、
前記硬化体を大気雰囲気中で焼成してセラミックス粒子とバインダーと気孔からなるプリフォームを得る工程と、
を含むことを特徴とする金属−セラミックス複合材料の製造方法を提供する。
In order to solve the above problems, the present invention
In a method for producing a metal-ceramic composite material obtained by impregnating a preform of ceramic particles as a reinforcing material with a base metal,
The preform forming method comprises:
Mixing ceramic particles with a binder using water as a dispersion medium to obtain a non-flowable mixture in a stationary state;
Adding the mixture to a mold and applying vibrations to develop fluidity to precipitate ceramic particles in the mixture to obtain a molded body containing ceramic particles, water and a binder component;
A step of freeze-curing the molded body together with the mold and then demolding to obtain a cured body;
Firing the cured body in an air atmosphere to obtain a preform comprising ceramic particles, a binder, and pores;
The manufacturing method of the metal-ceramics composite material characterized by including this.

また、前記プリフォームのセラミックス粒子が、粗粒と微粒の2粒度の組み合わせを含むものであり、粗粒と微粒の平均粒径の比D(粗粒/微粒)が6〜20である金属−セラミックス複合材料の製造方法を提供する。 In addition, the ceramic particles of the preform include a combination of two particles of coarse particles and fine particles, and the ratio D (coarse particles / fine particles) of the average particle diameter of the coarse particles to the fine particles is 6 to 20— A method for producing a ceramic composite material is provided.

さらに、前記混合物のセラミックス/水体積比Vが、1.0〜2.0である金属−セラミックス複合材料の製造方法を提供する。 Furthermore, the manufacturing method of the metal-ceramics composite material whose ceramics / water volume ratio V of the said mixture is 1.0-2.0 is provided.

加えて、さらに前記プリフォームのセラミックス充填率が、74〜84体積%である金属−セラミックス複合材料の製造方法を提供する。 In addition, the present invention further provides a method for producing a metal-ceramic composite material in which the preform has a ceramic filling ratio of 74 to 84% by volume.

本発明によれば、プリフォームの成形において静置状態で非流動性の混合物を用いるので、粗粒と微粒の分離を抑えることができ、セラミックス粒子の充填の均一性及び充填率を高めることができる。したがって、原料の無駄を少なくし、廃棄処理費用等の製造コストを抑えることができる。また、セラミックス粒子の充填の均一性を高めることができるので、プリフォームに金属を含侵して得られる金属−セラミックス複合材料の反りや割れの問題を解消することができる。 According to the present invention, since a non-flowable mixture is used in the molding of a preform in a stationary state, separation of coarse and fine particles can be suppressed, and the uniformity and filling rate of ceramic particles can be increased. it can. Therefore, waste of raw materials can be reduced and manufacturing costs such as disposal costs can be suppressed. Moreover, since the uniformity of the ceramic particle filling can be improved, the problem of warpage and cracking of the metal-ceramic composite material obtained by impregnating the preform with metal can be solved.

また、上記のように、静置状態で非流動性の混合物を用い、振動を加えて流動性を発現させるので、セラミックス粒子の充填の均一性及び充填率を高めることができる。 In addition, as described above, the non-fluid mixture is used in a stationary state, and the fluidity is expressed by applying vibration. Therefore, the uniformity and filling rate of the ceramic particles can be improved.

また、さらに上記に加えて、セラミックス粒子として所定の平均粒径を有する粗粒と微粒を組み合わせたものを用いることにより充填率が高められ、強度等の諸特性に優れた金属−セラミックス複合材料を得ることができる。 Further, in addition to the above, by using a combination of coarse particles and fine particles having a predetermined average particle size as ceramic particles, a metal-ceramic composite material having an increased filling rate and excellent properties such as strength can be obtained. Obtainable.

以下、本発明について、更に詳しく説明する。 Hereinafter, the present invention will be described in more detail.

強化材のセラミックス粒子としては、アルミナ(Al)、ホウ酸アルミニウム(9Al・2B)、シリカ、ムライト等の酸化物、窒化珪素、窒化アルミニウム、窒化チタン、窒化ジルコニウム等の窒化物、炭化珪素(SiC)、炭化ホウ素(BC)、炭化チタン、炭化ボロン等の炭化物、ホウ化ジルコニウム、ホウ化チタン等のホウ化物等を用いることができる。なかでも炭化珪素、炭化ホウ素、アルミナ、ホウ酸アルミニウムが好ましい。炭化珪素は、安価であること、軽量、高剛性、低熱膨張率、高熱伝導度といった特性を兼ね備えており、機械部品として付加価値の高いものとなるので、金属−セラミックス複合材料の強化材として好適に用いることができる。また、炭化ホウ素は、炭化珪素よりもさらに軽量で、高剛性であり、また耐衝撃性、中性子吸収性に優れており、このような特性が求められる金属−セラミックス複合材料の強化材に用いることができる。アルミナは、安価でかつ耐プラズマ性が高く、高強度であることから汎用部材として好適である。またホウ酸アルミニウムは耐摩耗性に極めて優れており、これを強化材とした金属−セラミックス複合材料は摺動部材等に用いることができる。 As ceramic particles of the reinforcing material, alumina (Al 2 O 3 ), aluminum borate (9Al 2 O 3 .2B 2 O 3 ), oxides such as silica and mullite, silicon nitride, aluminum nitride, titanium nitride, zirconium nitride Nitrides such as silicon carbide (SiC), boron carbide (B 4 C), carbides such as titanium carbide and boron carbide, borides such as zirconium boride and titanium boride, and the like can be used. Of these, silicon carbide, boron carbide, alumina, and aluminum borate are preferable. Silicon carbide has characteristics such as low cost, light weight, high rigidity, low coefficient of thermal expansion, and high thermal conductivity, and has high added value as a machine part, so it is suitable as a reinforcing material for metal-ceramic composite materials. Can be used. Boron carbide is lighter and more rigid than silicon carbide, and has excellent impact resistance and neutron absorption, and should be used as a reinforcing material for metal-ceramic composite materials that require these characteristics. Can do. Alumina is suitable as a general-purpose member because it is inexpensive, has high plasma resistance, and has high strength. Aluminum borate is extremely excellent in wear resistance, and a metal-ceramic composite material using this as a reinforcing material can be used for a sliding member or the like.

上記セラミックスのうち、炭化珪素は、通常研磨材、もしくは耐火物の原料として用いられているものを用いることができる。研磨材であれば規格の#1000以上の粒度のものを用いることができる。炭化珪素の種類としては、グリーン、ブラック等いずれの種類のものでもよい。また、アルミナも炭化珪素と同様研磨材、耐火物の原料として用いられているものでよく、種類としては、電融アルミナ、焼結アルミナ、仮焼アルミナ等いずれの種類のものでも使用可能であり、その中でも電融アルミナは、充填率が高く好ましい。 Of the ceramics described above, silicon carbide that is usually used as an abrasive or a raw material for a refractory can be used. If it is an abrasive | polishing material, a thing with the particle size of # 1000 or more of a specification can be used. The type of silicon carbide may be any type such as green or black. Alumina may also be used as a raw material for abrasives and refractories like silicon carbide, and any kind of alumina such as fused alumina, sintered alumina, calcined alumina, etc. can be used. Of these, fused alumina is preferable because of its high filling rate.

本発明に使用するセラミックス粒子は、平均粒径10〜300μmの範囲内のものを用いることが好ましい。この範囲内の粗粒と微粒を組み合わせて使用することでセラミックス粒子の充填率を向上することができる。 The ceramic particles used in the present invention are preferably those having an average particle size in the range of 10 to 300 μm. By using a combination of coarse particles and fine particles within this range, the filling rate of the ceramic particles can be improved.

上記セラミックス粒子と水を分散媒としてバインダーと共に混合する。 The ceramic particles and water are mixed with a binder as a dispersion medium.

バインダーとしては、無機バインダーや水溶性の熱硬化樹脂等を用いることができる。無機バインダーとしては、例えばコロイダルシリカ、アルミナゾル、水ガラス、リチウムシリケート等を用いることができる。水溶性の熱硬化樹脂としては、例えば、フェノール樹脂、エポキシ樹脂、アクリル樹脂等を用いることができる。バインダーの添加量はセラミックス粒子に対して固形分換算で0.3〜10.0体積%となるよう調整することが好ましい。バインダー添加量が少なすぎるとプリフォームの強度が小さく複合化する際に支障が生じ、多すぎるとプリフォームに閉気孔が発生し、金属−セラミックス複合材料の特性が下がるため好ましくない。 As the binder, an inorganic binder, a water-soluble thermosetting resin, or the like can be used. As the inorganic binder, for example, colloidal silica, alumina sol, water glass, lithium silicate, or the like can be used. As the water-soluble thermosetting resin, for example, a phenol resin, an epoxy resin, an acrylic resin, or the like can be used. The amount of binder added is preferably adjusted to 0.3 to 10.0% by volume in terms of solid content with respect to the ceramic particles. If the added amount of the binder is too small, the strength of the preform is small and a problem occurs when the composite is formed. If the amount is too large, closed pores are generated in the preform and the characteristics of the metal-ceramic composite material are lowered.

セラミックス粒子、水及びバインダーを混合して得られる混合物は、静置状態で非流動性を有する。非流動性とすることにより、粗粒と微粒の分離を抑えることができ、セラミックス粒子の充填の均一性及び充填率を高めることができる。したがって、原料の無駄を少なくし、廃棄処理費用等の製造コストを抑えることができる。また、セラミックス粒子の充填の均一性を高めることができるので、プリフォームに金属を含侵して得られる金属−セラミックス複合材料の反りや割れの問題を解消することができる。ここで、静置状態とは、振動を与えずに放置した状態をいい、非流動性とは、静置状態で自己レベリングせず、型に投入した後の形状を保持する程度に流動性がないことをいう。 A mixture obtained by mixing ceramic particles, water and a binder has non-flowability in a stationary state. By using non-fluidity, separation of coarse particles and fine particles can be suppressed, and the uniformity and filling rate of the ceramic particles can be increased. Therefore, waste of raw materials can be reduced and manufacturing costs such as disposal costs can be suppressed. Moreover, since the uniformity of the ceramic particle filling can be improved, the problem of warpage and cracking of the metal-ceramic composite material obtained by impregnating the preform with metal can be solved. Here, the stationary state means a state left without giving vibration, and the non-fluidity means that the fluidity is high enough to hold the shape after being put into the mold without being self-leveling in the stationary state. Say nothing.

本発明では、上記のように混合物を非流動性にしたことに加え、セラミックス粒子について粗粒と微粒の2粒度の組み合わせを含むものとし、さらに、これらの平均粒径の比D(粗粒/微粒)を6〜20とした。 In the present invention, in addition to making the mixture non-flowable as described above, the ceramic particles include a combination of two sizes of coarse particles and fine particles, and further, a ratio D (coarse particles / fine particles) of these average particle sizes. ) Was set to 6-20.

通常、混合物の流動性が低下すると、セラミックス粒子が充填し難くなるので、充填率を上げることができなくなるが、本発明では、2粒度を組み合わせ、さらに平均粒径の比を所定範囲に調整することで、充填率を向上させている。6>Dの場合は単粒の場合と充填率があまり変わらず2粒度を組み合わせる効果が得られず、20<Dの場合は本発明の方法においてもセラミックス粒子の分離が抑制できず、不均質なプリフォームとなってしまうので好ましくない。なお、本発明は、セラミックス粒子について2粒度の組み合わせを含むものであるが、本発明の効果が得られる範囲であれば、3粒度以上としても構わない。その場合、第3以降の粒度は、粗粒と微粒よりも少量であることが好ましい。 Usually, when the fluidity of the mixture is lowered, it becomes difficult to fill the ceramic particles, so the filling rate cannot be increased. However, in the present invention, the two particle sizes are combined, and the ratio of the average particle sizes is adjusted to a predetermined range. Thus, the filling rate is improved. In the case of 6> D, the filling rate is not much different from that in the case of single particles, and the effect of combining two particle sizes cannot be obtained, and in the case of 20 <D, the separation of ceramic particles cannot be suppressed even in the method of the present invention, so It is not preferable because it becomes a preform. In addition, although this invention contains the combination of 2 particle sizes about ceramic particle | grains, as long as the effect of this invention is acquired, it does not matter as 3 particle sizes or more. In that case, the third and subsequent particle sizes are preferably smaller than the coarse particles and the fine particles.

混合物のセラミックス/水体積比Vは、1.0〜2.0とすることが好ましい。粗粒と微粒の分離は主に混合機から型に混合物を投入する工程と、型に投入した混合物に振動を加え沈降成形する工程で起きる。本発明では静置状態で非流動性の混合物が得られるように、粒度配合及び水分量を所定の値に調整しているので、混合物の投入時の分離や、沈降成形時の沈降距離を小さくすることができ、上記粒度配合と相俟って高充填率を実現できる。具体的には、例えばセラミックス粒子の充填率を74〜84体積%まで向上できる。上記の観点から体積比は、1.3〜1.7とすることがより好ましく、1.4〜1.6とすることがさらに好ましい。 The ceramic / water volume ratio V of the mixture is preferably 1.0 to 2.0. Separation of coarse and fine particles mainly occurs in the step of feeding the mixture from the mixer into the mold and the step of sedimentation molding by adding vibration to the mixture charged in the mold. In the present invention, the particle size blending and the water content are adjusted to predetermined values so that a non-flowable mixture can be obtained in a stationary state, so that the separation at the time of charging the mixture and the settling distance at the time of sedimentation molding are reduced. In combination with the above particle size blending, a high filling rate can be realized. Specifically, for example, the filling rate of ceramic particles can be improved to 74 to 84% by volume. From the above viewpoint, the volume ratio is more preferably 1.3 to 1.7, and further preferably 1.4 to 1.6.

上記のようにして得た混合物を型に投入する。このとき、混合物は静置状態において非流動性であり分離し難いことから、安定して均質なプリフォームを得ることができる。 The mixture obtained as described above is put into a mold. At this time, since the mixture is non-flowable in a stationary state and is difficult to separate, a stable and homogeneous preform can be obtained.

混合物を型に投入した後、振動をかけて成形する。振動を加えることにより、混合物を流動させ、セラミックス粒子を高充填化することができる。溶媒の水はセラミックス粒子の充填を阻害する粒子同士の摩擦を低減し、振動は高充填化を助長する働きがある。振動を加える方法は振動台上に型を設置し振動をかければよい。振動強さは、セラミックス粒子が沈降充填してできる成形体全体に10〜30m/s程度の振動が伝わればよい。成形に用いる型の材質は、アルミニウムや鉄等の金属や、プラスチック、ゴム等を用いればよいが、脱型のしやすさを考慮すると特にゴムが好ましい。 After the mixture is put into a mold, it is molded by vibration. By applying vibration, the mixture can be fluidized and the ceramic particles can be highly filled. The solvent water reduces the friction between the particles that impede the filling of the ceramic particles, and the vibration serves to promote a high filling. As a method of applying vibration, it is sufficient to place a mold on a vibration table and apply vibration. The vibration strength may be such that a vibration of about 10 to 30 m / s 2 is transmitted to the entire formed body formed by sedimentation and filling of ceramic particles. The material of the mold used for molding may be metal such as aluminum or iron, plastic, rubber or the like, but rubber is particularly preferable in view of ease of demolding.

本発明では、セラミックス粒子の分離が抑えられているので、成形体の上部に微粒を多く含む部分が形成されないので、上部の除去を少なくすることができる。したがって、上部の除去代は、混合物の振動時のレベリング精度を考慮して決めれば良く、例えば、成形体の厚さに対して5%以下に抑えることができる。 In the present invention, since the separation of the ceramic particles is suppressed, a portion containing a large amount of fine particles is not formed on the upper portion of the formed body, so that the removal of the upper portion can be reduced. Therefore, the removal amount of the upper part may be determined in consideration of leveling accuracy during vibration of the mixture, and can be suppressed to 5% or less with respect to the thickness of the molded body, for example.

次に、成形体を型ごと冷凍硬化させる。成形体には、水が含まれているので、冷凍することによって硬化させることができる。成形体を型ごと冷凍させるのは、脱型する際の保形のためである。冷凍は、徐々に行うと水分中に分散したバインダー成分が濃縮され、偏析が起きるため急速に行う必要があり、−25℃以下の温度で行うことが好ましい。なお、成形体に含まれる水は、成形後に成形体上部にできる上澄みを除去した残部の水である。 Next, the molded body is freeze-cured together with the mold. Since the molded body contains water, it can be cured by freezing. The reason why the molded body is frozen together with the mold is to maintain the shape when the mold is removed. When the freezing is gradually performed, the binder component dispersed in the water is concentrated and segregation occurs. Therefore, it is necessary to perform the freezing rapidly, and it is preferably performed at a temperature of −25 ° C. or lower. The water contained in the molded body is the remaining water from which the supernatant formed on the upper part of the molded body has been removed after molding.

脱型して得られた硬化体を大気雰囲気中で焼成する。焼成はバインダーが十分固化する温度条件に調整することが好ましい。 The cured product obtained by demolding is fired in an air atmosphere. Firing is preferably adjusted to a temperature condition at which the binder is sufficiently solidified.

次に、得られたプリフォームに加圧含侵または非加圧含侵によりに金属を含侵させて金属−セラミックス複合材料とする。 Next, the obtained preform is impregnated with metal by pressure impregnation or non-pressure impregnation to obtain a metal-ceramic composite material.

加圧含侵は、加圧により溶融したアルミニウム等をプリフォームの気孔に強制的に含侵させる方法である。プリフォームに浸透させる金属は、アルミニウムまたはアルミニウム合金を用いることが好ましい。具体的には、例えば純度99.0%以上の純アルミニウムや金型鋳物、砂型鋳物に用いられるAC3A、AC8Aや、ダイカスト用のADC12等、一般的に用いられている合金を用いることができる。 The pressure impregnation is a method for forcibly impregnating pores of the preform with aluminum or the like melted by pressurization. It is preferable to use aluminum or an aluminum alloy as the metal that penetrates the preform. Specifically, for example, pure aluminum having a purity of 99.0% or more, a metal casting, AC3A used for sand casting, AC12A used for die casting, ADC12 for die casting, and the like can be used.

含侵時の圧力は、5〜100MPaが好ましく、10〜80MPaがより好ましい。これより低い圧力ではプリフォームの細孔に十分にアルミニウムまたはアルミニウム合金が浸透せず、ヤング率などの特性において十分なものが得られないおそれがある。本発明により得られるプリフォームは充填率が高く、強度に優れるので大きな圧力を加えることができる。したがって、微細な気孔に含侵させることができ、より緻密で強度の高い金属−セラミックス複合材料を得ることができる。アルミニウムまたはアルミニウム合金の溶融温度は、融点以上であって、十分に浸透が進行する温度であれば良い。具体的には、650〜800℃の溶融温度を採用することができる。 The pressure during impregnation is preferably 5 to 100 MPa, and more preferably 10 to 80 MPa. If the pressure is lower than this, aluminum or an aluminum alloy does not sufficiently permeate into the pores of the preform, and there is a risk that sufficient properties such as Young's modulus may not be obtained. Since the preform obtained by the present invention has a high filling rate and excellent strength, a large pressure can be applied. Accordingly, fine pores can be impregnated, and a denser and higher strength metal-ceramic composite material can be obtained. The melting temperature of aluminum or aluminum alloy may be any temperature as long as it is not lower than the melting point and sufficiently penetrates. Specifically, a melting temperature of 650 to 800 ° C. can be employed.

非加圧含侵を用いる場合は、アルミニウムまたはアルミニウム合金の他に、Siや、Alを0〜40体積%含んだSi−Al合金等も含浸できる。アルミニウムまたはアルミニウム合金を含浸させる場合は、プリフォームに窒素気流中で700〜1000℃の温度でAl−Si−Mg系またはAl−Mg系のアルミニウム合金を含浸させることにより金属−セラミックス複合材料を得ることができる。Siや、Alを0〜40体積%含んだSi−Al合金を含浸させる場合は、有機バインダーを用いたプリフォームを真空中、もしくは非酸化雰囲気で熱処理することによりバインダーを炭化させた後、融点以上の温度に加熱され溶融したSi、もしくはAlを0〜40体積%含んだSi−Al合金をプリフォームと接触させる方法を採用することができる。 When non-pressure impregnation is used, in addition to aluminum or an aluminum alloy, Si, an Si—Al alloy containing 0 to 40% by volume of Al, or the like can be impregnated. When impregnating with aluminum or an aluminum alloy, a metal-ceramic composite material is obtained by impregnating the preform with an Al—Si—Mg based or Al—Mg based aluminum alloy at a temperature of 700 to 1000 ° C. in a nitrogen stream. be able to. When impregnating Si or an Al-Si alloy containing 0 to 40% by volume of Al, after melting the binder by carbonizing a preform using an organic binder in a vacuum or non-oxidizing atmosphere, the melting point A method in which Si that has been heated and melted at the above temperature or Si-Al alloy containing 0 to 40% by volume of Al is brought into contact with the preform can be employed.

以下、本発明の試験例を具体的に挙げ、本発明をより詳細に説明する。 Hereinafter, the present invention will be described in more detail with specific test examples of the present invention.

[混合物]
粗粒と微粒を所定比とした市販のセラミックス粒子に対して、バインダーのコロイダルシリカ液10質量%(固形分:2.0質量% 溶媒:水)と共に、所定量のセラミックス/水体積比となるようイオン交換水を加え、混合して混合物を得た。なお、本発明では、レーザー回折式粒度分布測定によるメディアン径(D50)をもって平均粒径とした。
[blend]
With respect to commercially available ceramic particles having a predetermined ratio of coarse particles and fine particles, a predetermined amount of ceramic / water volume ratio is obtained together with 10% by mass of binder colloidal silica liquid (solid content: 2.0% by mass, solvent: water). Ion exchange water was added and mixed to obtain a mixture. In the present invention, the median diameter (D50) determined by laser diffraction particle size distribution measurement is used as the average particle diameter.

[成形]
混合物をゴム型に投入して振動(加速度30m/s)を加えてセラミックス粒子を沈降させ成形体(幅100×奥行100×厚さ100mm)を得た。
[Molding]
The mixture was put into a rubber mold and vibrations (acceleration 30 m / s 2 ) were applied to settle the ceramic particles to obtain a molded body (width 100 × depth 100 × thickness 100 mm).

[冷凍硬化]
成形体を型ごと−30℃で冷凍硬化させた後に、脱型して硬化体を得た。
[Freeze curing]
The molded body was freeze-cured together with the mold at −30 ° C. and then demolded to obtain a cured body.

[焼成]
硬化体を大気雰囲気中で1℃/minの昇温速度で1100℃まで昇温し、3hr保持した後に1℃/minの降温速度で室温まで冷却してプリフォームを得た。
[Baking]
The cured body was heated to 1100 ° C. at a rate of 1 ° C./min in the air atmosphere, held for 3 hours, and then cooled to room temperature at a rate of 1 ° C./min to obtain a preform.

[評価]
プリフォームの嵩密度をアルキメデス法で測定し、セラミックス粒子の充填率を求めた。また、測定は、プリフォームの厚さ方向に5試料採取して行い、充填率の平均を算出した。さらに、充填率の最大と最小の差を平均で除した値の百分率を充填率の傾斜として算出した。結果を表1に示す。表1の「粗粒」と「微粒」の欄はそれぞれの平均粒径を示し、「粗/微」は、粗粒/微粒を示す。
[Evaluation]
The bulk density of the preform was measured by the Archimedes method, and the filling rate of the ceramic particles was determined. In addition, the measurement was performed by collecting five samples in the thickness direction of the preform, and the average filling rate was calculated. Furthermore, the percentage of the value obtained by dividing the difference between the maximum and minimum filling rates by the average was calculated as the slope of the filling rate. The results are shown in Table 1. In the column of “Coarse Grain” and “Fine Grain” in Table 1, the average particle diameter of each is shown, and “Coarse / Fine” indicates coarse / fine grain.

Figure 2011137186
Figure 2011137186

試験No.2〜6、9〜12、15〜19、及び22〜25では、静置状態で非流動性の混合物が得られた。目視観察では、成形体の上部に微粒を多く含む層は認められなかった。これらのプリフォームは、充填率74〜84体積%、傾斜2.5%以下であり、高充填で充填傾斜の極めて小さいものが得られた。 Test No. In 2-6, 9-12, 15-19, and 22-25, the non-flowable mixture was obtained in the stationary state. By visual observation, a layer containing a large amount of fine particles was not observed on the upper part of the compact. These preforms had a filling rate of 74 to 84% by volume and an inclination of 2.5% or less, and a highly filled and extremely small filling inclination was obtained.

一方、試験No.8、21の混合物は、静置状態で流動性を有しており、得られた成形体の上部には、微粒を多く含む層が目視で認められた。これらのプリフォームは、充填率が低く、傾斜が大きいものであった。また、試験No.13、26の混合物は静置状態で流動性を示さないものの、セラミックス/水体積比Vが高すぎるため振動をかけても流動せず充填率が低かった。試験No.1、14は平均粒径の比Dが小さいため、充填率が上がらず、試験No.7、20は平均粒径の比Dが大きすぎるため、微粒の分離を抑制できず、傾斜が高かった。 On the other hand, test no. The mixture of Nos. 8 and 21 had fluidity in a stationary state, and a layer containing a lot of fine particles was visually observed at the upper part of the obtained molded body. These preforms had a low filling rate and a large slope. In addition, Test No. Although the mixture of Nos. 13 and 26 did not exhibit fluidity in a stationary state, the ceramic / water volume ratio V was too high, so that it did not flow even under vibration and the filling rate was low. Test No. Nos. 1 and 14 have a small average particle diameter ratio D, so the filling rate does not increase. Nos. 7 and 20 were too high in inclination because the ratio D of the average particle diameters was too large to prevent the separation of fine particles.

Claims (4)

セラミックス粒子を強化材とするプリフォームに基材の金属を含浸させて得られる金属−セラミックス複合材料の製造方法において、
前記プリフォームの形成方法が、
セラミックス粒子を、水を分散媒としてバインダーと共に混合することで、静置状態で非流動性の混合物を得る工程と、
前記混合物を型に投入し振動を加えることで流動性を発現させて混合物中のセラミックス粒子を沈降させ、セラミックス粒子、水及びバインダー成分を含む成形体を得る工程と、
前記成形体を型ごと冷凍硬化させた後に、脱型して硬化体を得る工程と、
前記硬化体を大気雰囲気中で焼成してセラミックス粒子とバインダーと気孔からなるプリフォームを得る工程と、
を含むことを特徴とする金属−セラミックス複合材料の製造方法
In a method for producing a metal-ceramic composite material obtained by impregnating a preform of ceramic particles as a reinforcing material with a base metal,
The preform forming method comprises:
Mixing ceramic particles with a binder using water as a dispersion medium to obtain a non-flowable mixture in a stationary state;
Adding the mixture to a mold and applying vibrations to develop fluidity to precipitate ceramic particles in the mixture to obtain a molded body containing ceramic particles, water and a binder component;
A step of freeze-curing the molded body together with the mold and then demolding to obtain a cured body;
Firing the cured body in an air atmosphere to obtain a preform comprising ceramic particles, a binder, and pores;
A method for producing a metal-ceramic composite material comprising
前記プリフォームのセラミックス粒子が、粗粒と微粒の2粒度の組み合わせを含むものであり、粗粒と微粒の平均粒径の比D(粗粒/微粒)が6〜20である請求項1記載の金属−セラミックス複合材料の製造方法 The ceramic particles of the preform include a combination of two particle sizes of coarse particles and fine particles, and the ratio D (coarse particles / fine particles) of the average particle diameter of the coarse particles to the fine particles is 6 to 20. Method for producing metal-ceramic composite material 前記混合物のセラミックス/水体積比Vが、1.0〜2.0である請求項1または2記載の金属−セラミックス複合材料の製造方法 The method for producing a metal-ceramic composite material according to claim 1 or 2, wherein the mixture has a ceramic / water volume ratio V of 1.0 to 2.0. 前記プリフォームのセラミックス充填率が、74〜84体積%である請求項1〜3記載の金属−セラミックス複合材料の製造方法 The method for producing a metal-ceramic composite material according to claim 1, wherein the preform has a ceramic filling ratio of 74 to 84% by volume.
JP2009295761A 2009-12-25 2009-12-25 Method for producing metal-ceramic composite material Active JP5601833B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009295761A JP5601833B2 (en) 2009-12-25 2009-12-25 Method for producing metal-ceramic composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009295761A JP5601833B2 (en) 2009-12-25 2009-12-25 Method for producing metal-ceramic composite material

Publications (2)

Publication Number Publication Date
JP2011137186A true JP2011137186A (en) 2011-07-14
JP5601833B2 JP5601833B2 (en) 2014-10-08

Family

ID=44348879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009295761A Active JP5601833B2 (en) 2009-12-25 2009-12-25 Method for producing metal-ceramic composite material

Country Status (1)

Country Link
JP (1) JP5601833B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013075810A (en) * 2011-09-30 2013-04-25 Nihon Ceratec Co Ltd Method for producing composite material
KR20180113573A (en) 2016-04-25 2018-10-16 니뽄 도쿠슈 도교 가부시키가이샤 Wavelength converting member, method of manufacturing the same, and light emitting device
CN112461635A (en) * 2020-12-08 2021-03-09 首钢集团有限公司 Stemming sample and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107870634B (en) * 2016-09-28 2021-01-15 中冶长天国际工程有限责任公司 Material filling rate control and detection method and system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02111827A (en) * 1988-06-17 1990-04-24 Norton Co Improved composite material and method for its manufacture
JPH04182102A (en) * 1990-01-16 1992-06-29 Toto Ltd Manufacture of powder molded item
JP2002194456A (en) * 2000-12-20 2002-07-10 Taiheiyo Cement Corp Method for manufacturing large-size thick-walled ceramics/metal composite material
JP2008144151A (en) * 2006-11-15 2008-06-26 Mitsubishi Materials Corp Printing ink and its manufacturing method, and electrode for plasma display panel obtained by using printing ink and its manufacturing method
JP2011523613A (en) * 2008-05-16 2011-08-18 エレメント シックス (プロダクション)(プロプライエタリィ) リミテッド Boron carbide composite material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02111827A (en) * 1988-06-17 1990-04-24 Norton Co Improved composite material and method for its manufacture
JPH04182102A (en) * 1990-01-16 1992-06-29 Toto Ltd Manufacture of powder molded item
JP2002194456A (en) * 2000-12-20 2002-07-10 Taiheiyo Cement Corp Method for manufacturing large-size thick-walled ceramics/metal composite material
JP2008144151A (en) * 2006-11-15 2008-06-26 Mitsubishi Materials Corp Printing ink and its manufacturing method, and electrode for plasma display panel obtained by using printing ink and its manufacturing method
JP2011523613A (en) * 2008-05-16 2011-08-18 エレメント シックス (プロダクション)(プロプライエタリィ) リミテッド Boron carbide composite material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013075810A (en) * 2011-09-30 2013-04-25 Nihon Ceratec Co Ltd Method for producing composite material
KR20180113573A (en) 2016-04-25 2018-10-16 니뽄 도쿠슈 도교 가부시키가이샤 Wavelength converting member, method of manufacturing the same, and light emitting device
US10590341B2 (en) 2016-04-25 2020-03-17 Ngk Spark Plug Co., Ltd. Wavelength conversion member, production method therefor, and light emitting device
CN112461635A (en) * 2020-12-08 2021-03-09 首钢集团有限公司 Stemming sample and preparation method thereof

Also Published As

Publication number Publication date
JP5601833B2 (en) 2014-10-08

Similar Documents

Publication Publication Date Title
JP2008133160A (en) Boron carbide sintered compact and method of manufacturing the same
JP5775112B2 (en) Cast body, castable composition, and production method thereof
JP5601833B2 (en) Method for producing metal-ceramic composite material
JP5031711B2 (en) Porous body, metal-ceramic composite material, and production method thereof
JP2011136845A (en) Preform and metal-ceramic composite material
EP4182287A1 (en) Molten metal processing apparatus
JPH11172348A (en) Metal-ceramics composite and its production
JP4217278B2 (en) Method for producing metal-ceramic composite material
JP6821207B2 (en) Manufacturing method of aluminum alloy-based composite material
EP1560672B1 (en) Method for casting coarse grain siliconized silicon carbide parts
JP6984926B1 (en) Method for manufacturing metal-based composite material and method for manufacturing preform
JPH10140263A (en) Production of metal-ceramics composite
CN103160716B (en) Low-heat-expansion high-intensity alumina-silicon-aluminum (AlN-Si-Al) mixed composite material and preparation method thereof
JP4276304B2 (en) Method for producing metal-ceramic composite material
JP3828622B2 (en) Method for producing metal-ceramic composite material
JPH10158762A (en) Manufacture of metal-ceramics composite
JPH11264032A (en) Production of metal-ceramics composite material for casting
JPH11157965A (en) Metal-ceramic composite material and its production
JPH1088255A (en) Production of metal-ceramics composite material
JPH111732A (en) Manufacture of metal-ceramics composite
JPH1180860A (en) Production of metal-ceramics composite material
JPH1161291A (en) Metal-ceramics composite and its production
JP2005336504A (en) Metal-ceramics composite material component and its production method
JPH10195558A (en) Production of metal-ceramics composite material
JPH10140262A (en) Production of metal-ceramics composite material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140313

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20140314

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20140603

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140805

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140819

R150 Certificate of patent or registration of utility model

Ref document number: 5601833

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250