JP2011134946A - Stage apparatus, exposure apparatus using the same, and method of manufacturing device - Google Patents

Stage apparatus, exposure apparatus using the same, and method of manufacturing device Download PDF

Info

Publication number
JP2011134946A
JP2011134946A JP2009294289A JP2009294289A JP2011134946A JP 2011134946 A JP2011134946 A JP 2011134946A JP 2009294289 A JP2009294289 A JP 2009294289A JP 2009294289 A JP2009294289 A JP 2009294289A JP 2011134946 A JP2011134946 A JP 2011134946A
Authority
JP
Japan
Prior art keywords
flow rate
substrate
stage
holding
support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009294289A
Other languages
Japanese (ja)
Inventor
Kazuo Sone
加寿夫 曽根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2009294289A priority Critical patent/JP2011134946A/en
Publication of JP2011134946A publication Critical patent/JP2011134946A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a stage apparatus which prevents a gap from being generated between a supporting means that supports the rear surface of a holding means for holding a substrate, and the rear surface, when adjusting the flatness of the substrate. <P>SOLUTION: The stage apparatus includes: a bearing means which supplies air between the rear surface of the holding means and the supporting means so as to lift the holding means from the supporting means; a detecting means which detects the flow rate of the air supplied by the bearing means; and a control means which controls the drive of the supporting means. The control means controls the drive of the supporting means so that the flow rate detected by the detecting means falls within a predetermined flow rate range when the holding means is lifted by the bearing means. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、ステージ装置、そのステージ装置を使って基板の露光を行う露光装置、及びデバイスの製造方法に関する。   The present invention relates to a stage apparatus, an exposure apparatus that exposes a substrate using the stage apparatus, and a device manufacturing method.

原版のパターンをウェハなどの基板に投影するために、露光装置が使用されるが、近年、この露光装置は、パターンの微細化が進み、ミクロンオーダレベルの精度が要求されている。微細化が進むと、焦点深度が浅くなる結果、焦点深度から要求される基板表面の平面度の要求も高くなる。そこで、この基板表面の平面度を向上させ、結像性能を確保するために、様々な工夫がなされている。   An exposure apparatus is used to project an original pattern onto a substrate such as a wafer. In recent years, however, the exposure apparatus is required to have a micron-order level accuracy as the pattern becomes finer. As miniaturization progresses, the depth of focus becomes shallow, and as a result, the flatness of the substrate surface required from the depth of focus also increases. Therefore, various ideas have been made to improve the flatness of the substrate surface and ensure imaging performance.

例えば、基板の保持部であるチャックに保持された基板をチャックの保持面と反対側の面(裏面)から、複数の支持部を駆動させて、基板表面を変位させ平面度調整する技術が提案されている(例えば特許文献1参照)。   For example, a technology is proposed that adjusts the flatness by displacing the substrate surface by driving a plurality of support units from the surface (back surface) opposite to the chuck holding surface of the substrate held by the chuck that is the substrate holding unit. (For example, refer to Patent Document 1).

支持部の駆動は、基板表面の平面度を変位センサで計測し、予め定めた理想の平面との差分情報から基板表面を平坦化させる駆動量を算出し、この駆動量に基づいて支持部を駆動させる。なお、支持部は、ダイヤフラム構造体で、裏面に接触支持して平面度調整を行う。   The driving of the support unit is performed by measuring the flatness of the substrate surface with a displacement sensor, calculating a driving amount for flattening the substrate surface from difference information from a predetermined ideal plane, and determining the supporting unit based on the driving amount. Drive. In addition, a support part is a diaphragm structure, contacts and supports the back surface, and performs flatness adjustment.

特開2009−218372号公報JP 2009-218372 A

ところで、基板をチャック上に供給するときに、置き誤差が生じるため、平面度調整を行う前に、基板の位置調整を行う必要がある。この基板の位置調整は、基板が供給されたチャックごと浮上させ、駆動系により、ステージに直交する軸の周方向(θ方向)に回動させて行う。この位置調整が、終了すると、チャックは、支持部に着座し、基板を保持して平面度調整が行われる。なお、チャックの浮上は、チャックの裏面に対して気体を供給し、チャックを非接触支持する軸受部(エアベアリング)によって行われる。   By the way, when a substrate is supplied onto the chuck, a placement error occurs. Therefore, it is necessary to adjust the position of the substrate before adjusting the flatness. The position adjustment of the substrate is performed by floating the entire chuck supplied with the substrate and rotating it in the circumferential direction (θ direction) of the axis orthogonal to the stage by the drive system. When this position adjustment is completed, the chuck is seated on the support portion, and the flatness is adjusted while holding the substrate. The chuck is lifted by a bearing (air bearing) that supplies gas to the back surface of the chuck and supports the chuck in a non-contact manner.

位置調整が終了し、チャックが支持部に着座したときに、部品の公差の違いや、支持部を搭載するベース部の撓みなどにより、複数の支持部のうち、チャックの裏面で接触支持していないものが生じる場合がある。すなわち、エアベアリングで浮上させていないにもかかわらず、チャックの裏面と支持部との間に隙間が生じる。このような状態で、平面度調整を行っても、算出された駆動量は、支持部に適正に伝わらず、ミクロンオーダの平面度調整を行うことができないという不具合が生じていた。また、隙間が生じていても、すぐにそれによって基板表面の変形が起こるとも限らず、基板表面に変形が生じるまでに、数時間経過する場合もある。そのため、基板表面平面度調整を行った際は問題なくても、実際に基板を露光する際には基板表面に変形が生じ、露光精度に影響を与えてしまう場合もある。   When the position adjustment is completed and the chuck is seated on the support, contact is supported on the back of the chuck among the multiple supports due to differences in component tolerances and bending of the base on which the support is mounted. Something that doesn't happen. In other words, a gap is generated between the back surface of the chuck and the support portion even though the air bearing is not lifted. Even if the flatness adjustment is performed in such a state, the calculated driving amount is not properly transmitted to the support portion, and there is a problem that the flatness adjustment on the micron order cannot be performed. Further, even if a gap is generated, the substrate surface is not necessarily deformed immediately by this, and several hours may elapse before the substrate surface is deformed. For this reason, even if there is no problem when the substrate surface flatness is adjusted, the substrate surface may be deformed when the substrate is actually exposed, which may affect the exposure accuracy.

そこで、本発明は、基板の平面度調整を行う前に、支持部とチャックの裏面に隙間が生じないようにするステージ装置を提供することを目的とする。   Accordingly, an object of the present invention is to provide a stage device that prevents a gap from being formed between the support portion and the back surface of the chuck before the flatness of the substrate is adjusted.

上記の課題を解決するため、本発明は、基板を保持する保持手段と、前記保持手段を支持し前記保持面の反対側の面に対して押し上げ方向に駆動する支持手段とを備えたステージ装置であって、前記支持手段に設けられ、前記反対側の面と前記支持手段との間に気体を供給し、前記保持手段を前記支持手段から浮上させる軸受手段と、前記軸受手段から供給される気体の流量を検出する検出手段と、前記支持手段の駆動を制御する制御手段とを有し、前記制御手段は、前記軸受手段により前記保持手段を浮上させたときに、前記検出手段によって検出される流量が、所定の流量の範囲内になるように前記支持手段の駆動を制御することを特徴とする。   In order to solve the above-described problems, the present invention provides a stage apparatus including a holding unit that holds a substrate, and a support unit that supports the holding unit and drives the holding unit in a push-up direction with respect to a surface opposite to the holding surface. And a bearing means provided in the support means, for supplying a gas between the opposite surface and the support means, and for floating the holding means from the support means, and supplied from the bearing means. Detection means for detecting the flow rate of gas; and control means for controlling the drive of the support means. The control means is detected by the detection means when the holding means is levitated by the bearing means. The drive of the support means is controlled so that the flow rate of the support is within a predetermined flow rate range.

本発明によれば、すべての支持手段が、基板を保持した保持手段の裏面で接触支持していることを確認してから、平面度調整を行うので、ミクロンオーダレベルの平面度調整を高精度に行うことができるという効果を奏する。   According to the present invention, since the flatness adjustment is performed after confirming that all the support means are in contact with and supported by the back surface of the holding means holding the substrate, the flatness adjustment at the micron order level is highly accurate. The effect that it can be performed is produced.

本発明の実施形態に係るステージ装置を備えた露光装置の概略構成を示す図である。It is a figure which shows schematic structure of the exposure apparatus provided with the stage apparatus which concerns on embodiment of this invention. 本発明の実施形態にかかるステージ装置の構成を示す図である。It is a figure which shows the structure of the stage apparatus concerning embodiment of this invention. 制御部の処理フローを示す図である。It is a figure which shows the processing flow of a control part. (a)支持部がチャックベースに接触支持していない箇所が生じている状態を示す図である、(b)支持部のすべてがチャックベースに接触支持している状態を示す図である。(A) It is a figure which shows the state which the location which the support part does not contact-support to the chuck base has arisen, (b) It is a figure which shows the state which all the support parts are contacting and supporting to the chuck base.

以下、本発明を実施するための最良の形態について、添付図面等を参照して説明する。なお、以下の説明では、具体的な構成、動作等を示して説明を行うが、これらは、適宜変更することができる。   The best mode for carrying out the present invention will be described below with reference to the accompanying drawings. In the following description, a specific configuration, operation, and the like are shown and described, but these can be changed as appropriate.

図1は、本発明の実施形態に係るステージ装置を備えた露光装置の概略構成を示す図である。   FIG. 1 is a view showing a schematic configuration of an exposure apparatus provided with a stage apparatus according to an embodiment of the present invention.

露光装置は、原版Mのパターンを照明装置10で照明し、投影光学系30を介して、原版Mのパターンを反映した光を基板ステージ(後述するステージ50)上の基板Mに投射して露光する。照明装置10は、原版Mを照明する光源11と、光源11の光を原版Mに均一に照明する照明光学系12とを有する。原版Mは、原版ステージ20に載置されて移動する。原版ステージ20は、原版ステージ定盤21とXYθステージ22とを有し、原版ステージ定盤21上にXYθステージ22が配置されてその上に原版Mが載置される。原版Mは、XYθステージ22により、X及びY方向の移動とXY面内での回転が可能である。原版ステージ20の上方には観察光学系13が配置される。観察光学系13は、原版Mと投影光学系30を介して結像された基板W上の像とを観察できる。なお、観察光学系13は、原版M及び基板Wの不図示の各基準マークを観察し、双方の基準マークの位置ずれ量に基づく原版Mのパターンと基板Wでの投影との位置合わせに供される。   The exposure apparatus illuminates the pattern of the original M with the illuminating device 10, and projects light that reflects the pattern of the original M onto the substrate M on the substrate stage (stage 50 described later) via the projection optical system 30 for exposure. To do. The illumination device 10 includes a light source 11 that illuminates the original M and an illumination optical system 12 that uniformly illuminates the original M with light from the light source 11. The original M is placed on the original stage 20 and moved. The original stage 20 has an original stage surface plate 21 and an XYθ stage 22, the XYθ stage 22 is disposed on the original stage surface plate 21, and the original plate M is placed thereon. The original M can be moved in the X and Y directions and rotated in the XY plane by the XYθ stage 22. An observation optical system 13 is disposed above the original stage 20. The observation optical system 13 can observe the original M and the image on the substrate W formed through the projection optical system 30. The observation optical system 13 observes each reference mark (not shown) of the original M and the substrate W, and uses it for alignment between the pattern of the original M and the projection on the substrate W based on the positional deviation amount of both reference marks. Is done.

照明装置10から原版Mを介して発せられた回折光は、投影光学系30を介して基板W上に投影される。原版Mと基板Wとは光学的に共役の関係にある。本実施形態にかかる露光装置では、各モジュールがスキャナーとして機能し、原版Mと基板Wとを縮小倍率比の速度比で同期走査する。この同期走査をすることにより原版パターンを基板Wに転写する。原版ステージ20の位置は干渉計40で常時測定される。投影光学系30の光学素子31は、原版Mのパターンを反映した光を基板Wに投影する。なお、投影光学系30の基板Wに最も近い最終光学素子32を液体に浸漬して液浸露光を実現してもよい。   Diffracted light emitted from the illuminating device 10 via the original M is projected onto the substrate W via the projection optical system 30. The original M and the substrate W are optically conjugate. In the exposure apparatus according to the present embodiment, each module functions as a scanner, and synchronously scans the original M and the substrate W at a speed ratio of a reduction magnification ratio. The original pattern is transferred to the substrate W by performing this synchronous scanning. The position of the original stage 20 is constantly measured by the interferometer 40. The optical element 31 of the projection optical system 30 projects light reflecting the pattern of the original M onto the substrate W. Note that immersion exposure may be realized by immersing the final optical element 32 closest to the substrate W of the projection optical system 30 in a liquid.

ステージ50は、リニアモータを利用し、XYZ方向及び回転(θ)方向に移動可能であり、保持手段としてのチャック56を介して基板Wを保持して移動する。なお、チャック56は、真空引きされた図示しない吸着孔を介して基板Wを吸着して保持するチャックアタッチメント561と、チャックアタッチメント561を支持するチャックベース562とを有する。チャックアタッチメント561のエアーブロー操作により吸着を解放することができる。   The stage 50 is movable in the XYZ direction and the rotation (θ) direction using a linear motor, and moves while holding the substrate W via a chuck 56 as a holding means. The chuck 56 includes a chuck attachment 561 that sucks and holds the substrate W through a suction hole (not shown) that is evacuated and a chuck base 562 that supports the chuck attachment 561. Adsorption can be released by air blow operation of the chuck attachment 561.

ステージ50は、本体ベース51上に配置したYステージ52及びXステージ53を有する。Xステージ53及びYステージ52上にZチルト駆動機構55を介してθZベース54が搭載され、この上に複数の支持系60(本実施の形態では4つ)を配置する。Zチルト駆動機構55はθZベース54から上の搭載物を傾斜可能に支持し、露光時に基板Mの表面を投影光学系30の基板側焦点面(像面)に一致させる。支持系60は、支持部61と支持部61の先端に設けられた非接触支持の軸受手段としてのエアベアリング62と与圧マグネット63とから構成されている。複数の支持部61は、基板Mを保持したチャック56を保持面と反対側の面(裏面)、即ち、チャックベース562から接触支持して平面度の調整を行う。支持部61の接触支持する部分は、例えば弾性体からなるダイヤフラム構造体である。図示しないモータ等の駆動源により、ピストンを介して流体の動きを制御し、チャックベース562に対して弾性体を押し上げ方向(Z方向)に駆動させて弾性変形させる。この弾性変形により、支持部61がチャックベース562に接触支持し、基板Mの撓みなどを押し上げて平面度調整が行われる。   The stage 50 has a Y stage 52 and an X stage 53 disposed on the main body base 51. A θZ base 54 is mounted on the X stage 53 and the Y stage 52 via a Z tilt drive mechanism 55, and a plurality of support systems 60 (four in the present embodiment) are arranged thereon. The Z tilt drive mechanism 55 supports the mounted object on the θZ base 54 so as to be tiltable, and makes the surface of the substrate M coincide with the substrate-side focal plane (image plane) of the projection optical system 30 during exposure. The support system 60 includes a support portion 61, an air bearing 62 as a non-contact support bearing means provided at the tip of the support portion 61, and a pressurizing magnet 63. The plurality of support portions 61 adjust the flatness by contacting and supporting the chuck 56 holding the substrate M from the surface (back surface) opposite to the holding surface, that is, the chuck base 562. The portion of the support portion 61 that supports the contact is, for example, a diaphragm structure made of an elastic body. The movement of fluid is controlled via a piston by a driving source such as a motor (not shown), and the elastic body is driven in the pushing-up direction (Z direction) with respect to the chuck base 562 to be elastically deformed. Due to this elastic deformation, the support portion 61 contacts and supports the chuck base 562, and the flatness adjustment is performed by pushing up the bending of the substrate M and the like.

エアベアリング62は、基板Mがチャック56に載置されるときに生じる置き誤差を是正するため、平面度調整を行う前に、基板Mの位置調整に使用される。即ち、基板Mをステージ50と直交する軸の周方向(θ方向)に回動させるため、裏面に対して気体を供給し、基板Mを保持したチャック56を浮上させる。このチャック56をエアベアリング62により非接触支持の状態にし、θ方向に回動させ、所定の位置で気体の供給を停止してチャック56を支持部61上に着座させる。なお、与圧マグネット63は、浮上時にステージ50に吸着する方向に吸引力を発生させ、エアベアリング62との圧力の均衡を図り浮上ギャップを一定に保持する。エアベアリング62から供給される気体は、空気や不活性ガス等を用いてよく、特に限定されない。   The air bearing 62 is used to adjust the position of the substrate M before adjusting the flatness in order to correct a placement error that occurs when the substrate M is placed on the chuck 56. That is, in order to rotate the substrate M in the circumferential direction (θ direction) of the axis orthogonal to the stage 50, gas is supplied to the back surface, and the chuck 56 holding the substrate M is floated. The chuck 56 is brought into a non-contact support state by the air bearing 62, is rotated in the θ direction, the gas supply is stopped at a predetermined position, and the chuck 56 is seated on the support portion 61. The pressurizing magnet 63 generates an attractive force in a direction to be attracted to the stage 50 when ascending, and balances the pressure with the air bearing 62 to keep the ascending gap constant. The gas supplied from the air bearing 62 may be air or an inert gas, and is not particularly limited.

原版ステージ20及びステージ50のそれぞれの位置は、干渉計40によって計測される。干渉計40は、検出光を射出する光源であるレーザヘッド41、ビームスプリッター42、折り曲げミラー43、検出光を反射するバーミラー44及び45を有する。バーミラー44はθZベース54に固定され、バーミラー45は原版ステージ定盤21に固定される。   The positions of the original stage 20 and the stage 50 are measured by the interferometer 40. The interferometer 40 includes a laser head 41 that is a light source for emitting detection light, a beam splitter 42, a bending mirror 43, and bar mirrors 44 and 45 that reflect detection light. The bar mirror 44 is fixed to the θZ base 54, and the bar mirror 45 is fixed to the original stage surface plate 21.

図2は、本発明の実施形態にかかるステージ装置の基板周りの構成を示す図である。図1で説明した基板Mの平面度調整において、駆動源による支持部61の駆動量は、基板Mの変位を計測することによって決定される。即ち、基板の表面の変位を計測する変位センサ80によって計測し、その計測結果データに基づいて支持部61の駆動量が決定される。変位センサ80は、チャック56を介して、各支持部61に対向配置され、1回の計測で複数箇所の変位を同時に読み取ることができる。   FIG. 2 is a diagram showing a configuration around the substrate of the stage apparatus according to the embodiment of the present invention. In the flatness adjustment of the substrate M described with reference to FIG. 1, the drive amount of the support unit 61 by the drive source is determined by measuring the displacement of the substrate M. That is, it is measured by the displacement sensor 80 that measures the displacement of the surface of the substrate, and the driving amount of the support portion 61 is determined based on the measurement result data. The displacement sensor 80 is disposed so as to face each support portion 61 via the chuck 56 and can simultaneously read displacements at a plurality of locations by one measurement.

ところで、基板Mをステージ50に搬入し、チャック56に載置したときには、各種部品の公差の違い、撓みなどにより、すべての支持部61がチャックベース562に接触支持していない場合がある。この状態で平面度の調整を行っても、ミクロンオーダレベルの精度の高い調整はできない。特に、支持部61が接触支持していなくても、その部分に撓み等が生じるまで数時間要する場合もある。この場合、変位センサ80では、基板Mの表面の変位を計測できないため、十分な平面度の調整をしないまま露光処理が開始されることになる。   By the way, when the substrate M is loaded onto the stage 50 and placed on the chuck 56, all the support portions 61 may not be in contact with and supported by the chuck base 562 due to a difference in tolerance of various parts, bending, or the like. Even if the flatness is adjusted in this state, it is not possible to adjust the micron-order level with high accuracy. In particular, even if the support portion 61 is not in contact support, it may take several hours until the portion is bent. In this case, since the displacement sensor 80 cannot measure the displacement of the surface of the substrate M, the exposure process is started without adjusting the flatness sufficiently.

そこで、図1で説明した各エアベアリング62の流量を検出し、各流量が所定の流量の範囲内になるように制御する。この制御は、第1制御部71と第2制御部72と演算部74から構成される制御部によって行われる。各エアベアリング62によるチャック56の浮上及び着座の制御は、第2制御部72によって行われる。チャック56の浮上は、ガイド90によってXY方向の動きを拘束し、θ方向の駆動及び浮上又は着座のみの駆動を可能にする。第2制御部72により、チャック56を浮上させたときに、各エアベアリング62の各流量を検出部73によって検出する。この検出された各流量のいずれか1つでも、所定の流量の範囲外である場合は、演算部74により、支持部61の駆動を制御する制御信号を生成し、第1制御部71に送信する。この制御信号を受信した第1制御部71は、所定の流量の範囲外であることが検出された箇所の支持部61を制御信号に従って駆動させる。この駆動の制御によってすべての支持部61が、チャック56の着座時に、チャックベース562に支持するため、高精度の平面度の調整が可能になる。   Therefore, the flow rate of each air bearing 62 described in FIG. 1 is detected, and control is performed so that each flow rate falls within a predetermined flow rate range. This control is performed by a control unit including a first control unit 71, a second control unit 72, and a calculation unit 74. The second controller 72 controls the flying and seating of the chuck 56 by the air bearings 62. The floating of the chuck 56 restricts the movement in the XY directions by the guide 90, and enables the driving in the θ direction and the driving of the flying or sitting only. When the chuck 56 is lifted by the second controller 72, each flow rate of each air bearing 62 is detected by the detector 73. If any one of the detected flow rates is out of the predetermined flow range, the control unit 74 generates a control signal for controlling the driving of the support unit 61 and transmits the control signal to the first control unit 71. To do. The first control unit 71 that has received this control signal drives the support unit 61 at a location where it is detected that the flow rate is outside the predetermined flow rate range according to the control signal. By controlling this drive, all the support portions 61 are supported by the chuck base 562 when the chuck 56 is seated, so that it is possible to adjust the flatness with high accuracy.

図3は、制御部の処理フローを示す図である。位置調整のために、第2制御部72により、エアベアリング62からチャックベース562に向けて気体を供給し、チャック56を浮上させる(S1)。このときの各エアベアリング62の流量を検出部73によって検出する(S2)。検出された各流量が、所定の流量の範囲内であるか否かを演算部74で判定する(S3)。各流量の範囲が、所定の流量の範囲内に含まれ、略均一になれば、チャック56の着座時にすべての支持部61がチャックベース562を接触支持しうる状態になると判断できる。なお、浮上させたチャック56を着座させ、このときの各流量を検出する形態であってもよい。この場合、接触支持している支持部61は、流量は零になるため、所定の流量の範囲は零を含む範囲と定めることができる。一方、いずれか1つでも流量が所定の流量の範囲外である場合(S3のNOの場合)、演算部74は、所定の流量の範囲外と判定された箇所の支持部61の駆動を制御する制御信号を生成する。   FIG. 3 is a diagram illustrating a processing flow of the control unit. In order to adjust the position, the gas is supplied from the air bearing 62 toward the chuck base 562 by the second controller 72, and the chuck 56 is floated (S1). The flow rate of each air bearing 62 at this time is detected by the detector 73 (S2). It is determined by the calculation unit 74 whether or not each detected flow rate is within a predetermined flow rate range (S3). If the range of each flow rate is included in the predetermined flow rate range and becomes substantially uniform, it can be determined that all the support portions 61 can contact and support the chuck base 562 when the chuck 56 is seated. In addition, the form which detects each flow volume at this time may be sufficient as the chuck | zipper 56 which floated is seated. In this case, since the flow rate of the support portion 61 that supports the contact is zero, the predetermined flow rate range can be determined as a range including zero. On the other hand, when any one of the flow rates is out of the predetermined flow rate range (in the case of NO in S3), the calculation unit 74 controls the drive of the support unit 61 at the location determined to be out of the predetermined flow rate range. A control signal is generated.

図4(a)に、チャック56の着座時に、支持部61がチャックベース562に接触支持していない箇所が生じている状態を示す。図面の正面視で左から2番目の支持部61とチャックベース562との間に隙間が生じている。このとき、S2で説明した通り、この隙間で生じている気体の流量を検出部73で検出する。この流量が、所定の流量の範囲外である場合、隙間が、支持部61により適正に平面度調整を行うことができる範囲を超えたものと判断できる。   FIG. 4A shows a state where a portion where the support portion 61 does not contact and support the chuck base 562 is generated when the chuck 56 is seated. A gap is formed between the second support portion 61 and the chuck base 562 from the left in the front view of the drawing. At this time, the flow rate of the gas generated in this gap is detected by the detection unit 73 as described in S2. When this flow rate is outside the range of the predetermined flow rate, it can be determined that the gap exceeds the range in which the flatness adjustment can be appropriately performed by the support portion 61.

演算部74は、算出された制御信号を第1制御部71に送信し、この制御信号を受信した第1制御部71は支持部61をチャックベース562を押し上げる方向に駆動させる(S4)。再びS2の検出を行い、以後、すべての流量が所定の流量の範囲内になるまでS2からS4のフィードバック制御を繰り返すことができる。すべての流量が所定の流量の範囲内になった場合(S3のYESの場合)、チャック56の平面度調整を開始する(S5)。図4(b)に、チャック56の着座時に、すべての支持部61がチャックベース562に接触支持している状態を示す。この状態で平面度調整すれば、ミクロンオーダレベルの高精度の調整が可能になる。   The calculation unit 74 transmits the calculated control signal to the first control unit 71, and the first control unit 71 that has received the control signal drives the support unit 61 in the direction of pushing up the chuck base 562 (S4). The detection of S2 is performed again, and thereafter, the feedback control from S2 to S4 can be repeated until all the flow rates are within a predetermined flow rate range. When all the flow rates are within the predetermined flow rate range (YES in S3), the flatness adjustment of the chuck 56 is started (S5). FIG. 4B shows a state where all the support portions 61 are in contact with and supported by the chuck base 562 when the chuck 56 is seated. If the flatness is adjusted in this state, high-precision adjustment on the order of microns can be achieved.

なお、S5で平面度調整を開始すると、演算部74は、変位センサ80から基板Mの表面の変位を計測した計測結果データを受信する。演算部74は、この計測結果データに基づいて支持部61を制御する制御信号を生成し、第1制御部71に送信し、平面度調整を行う。   When the flatness adjustment is started in S5, the calculation unit 74 receives measurement result data obtained by measuring the displacement of the surface of the substrate M from the displacement sensor 80. The calculation unit 74 generates a control signal for controlling the support unit 61 based on the measurement result data, and transmits the control signal to the first control unit 71 to adjust the flatness.

次に、本発明の一実施形態のデバイス(半導体デバイス、液晶表示デバイス等)の製造方法について説明する。半導体デバイスは、ウエハに集積回路を作る前工程と、前工程で作られたウエハ上の集積回路チップを製品として完成させる後工程を経ることにより製造される。前工程は、前述の露光装置を使用して感光剤が塗布されたウエハを露光する工程と、ウエハを現像する工程を含む。後工程は、アッセンブリ工程(ダイシング、ボンディング)と、パッケージング工程(封入)を含む。液晶表示デバイスは、透明電極を形成する工程を経ることにより製造される。透明電極を形成する工程は、透明導電膜が蒸着されたガラス基板に感光剤を塗布する工程と、前述の露光装置を使用して感光剤が塗布されたガラス基板を露光する工程と、ガラス基板を現像する工程を含む。本実施形態のデバイス製造方法によれば、従来よりも高品位のデバイスを製造することができる。   Next, a method for manufacturing a device (semiconductor device, liquid crystal display device, etc.) according to an embodiment of the present invention will be described. A semiconductor device is manufactured through a pre-process for producing an integrated circuit on a wafer and a post-process for completing an integrated circuit chip on the wafer produced in the pre-process as a product. The pre-process includes a step of exposing a wafer coated with a photosensitive agent using the above-described exposure apparatus, and a step of developing the wafer. The post-process includes an assembly process (dicing and bonding) and a packaging process (encapsulation). A liquid crystal display device is manufactured through a process of forming a transparent electrode. The step of forming the transparent electrode includes a step of applying a photosensitive agent to a glass substrate on which a transparent conductive film is deposited, a step of exposing the glass substrate on which the photosensitive agent is applied using the above-described exposure apparatus, and a glass substrate. The process of developing is included. According to the device manufacturing method of the present embodiment, it is possible to manufacture a higher quality device than before.

10 照明装置
20 原版ステージ
30 投影光学系
40 干渉計
50 ステージ
51 本体ベース
52 Yステージ
53 Xステージ
54 θZステージ
55 Zチルト機構
60 支持系
61 支持部
62 エアベアリング
63 与圧マグネット
M 原版
W 基板
DESCRIPTION OF SYMBOLS 10 Illuminating device 20 Original stage 30 Projection optical system 40 Interferometer 50 Stage 51 Main body base 52 Y stage 53 X stage 54 θZ stage 55 Z tilt mechanism 60 Support system 61 Support part 62 Air bearing 63 Pressurized magnet M Original W substrate

Claims (7)

基板を保持する保持手段と、前記保持手段を支持し前記保持面の反対側の面に対して押し上げ方向に駆動する支持手段とを備えたステージ装置であって、
前記支持手段に設けられ、前記反対側の面と前記支持手段との間に気体を供給し、前記保持手段を前記支持手段から浮上させる軸受手段と、
前記軸受手段から供給される気体の流量を検出する検出手段と、
前記支持手段の駆動を制御する制御手段と、を有し、
前記制御手段は、前記軸受手段により前記保持手段を浮上させたときに、前記検出手段によって検出される流量が、所定の流量の範囲内になるように前記支持手段の駆動を制御することを特徴とするステージ装置。
A stage apparatus comprising: holding means for holding a substrate; and support means for supporting the holding means and driving the holding means in a push-up direction with respect to a surface opposite to the holding surface,
Bearing means provided on the support means, supplying gas between the opposite surface and the support means, and causing the holding means to float from the support means;
Detecting means for detecting a flow rate of gas supplied from the bearing means;
Control means for controlling the driving of the support means,
The control means controls driving of the support means so that a flow rate detected by the detection means falls within a predetermined flow rate range when the holding means is levitated by the bearing means. A stage device.
前記制御手段は、前記支持手段の駆動を制御する第1制御部と、前記保持手段を浮上及び着座させるために、前記軸受手段の気体の流量を制御する第2制御部と、前記検出された気体の流量を前記所定の流量の範囲内にするために、前記支持手段の駆動を制御する制御信号を生成し、この制御信号を前記第1制御部に送信する演算部とを有することを特徴とする請求項1記載のステージ装置。   The control means includes a first control part for controlling the driving of the support means, a second control part for controlling a gas flow rate of the bearing means to float and seat the holding means, and the detected A control unit that generates a control signal for controlling the driving of the support means and transmits the control signal to the first control unit in order to set the flow rate of the gas within the range of the predetermined flow rate. The stage apparatus according to claim 1. 浮上させた前記保持手段を着座させてから、前記検出手段による検出をすることを特徴とする請求項1または請求項2に記載のステージ装置。   The stage apparatus according to claim 1 or 2, wherein the detection means detects after the floated holding means is seated. 前記演算部は、前記検出手段によって前記所定の流量の範囲外であることが検出された支持手段に対して、所定の流量の範囲内になるまで第1制御部に対して前記制御信号を送信するフィードバック制御を行うことを特徴とする請求項2または請求項3に記載のステージ装置。   The calculation unit transmits the control signal to the first control unit until the support unit that is detected by the detection unit to be out of the predetermined flow rate range is within the predetermined flow rate range. The stage apparatus according to claim 2 or 3, wherein feedback control is performed. 前記演算部は、前記フィードバック制御により、前記検出手段によって検出された流量が、前記所定の範囲内になったことを判定すると、前記基板の平面度を調整するために、基板の表面の変位を計測する変位センサから計測結果データを受信し、この計測結果データに基づいて前記支持手段の駆動を制御する制御信号を算出し、第1制御部に送信することを特徴とする請求項4記載のステージ装置。   When the calculation unit determines that the flow rate detected by the detection unit is within the predetermined range by the feedback control, the calculation unit adjusts the displacement of the surface of the substrate in order to adjust the flatness of the substrate. 5. The measurement result data is received from a displacement sensor to be measured, a control signal for controlling the driving of the support means is calculated based on the measurement result data, and transmitted to the first control unit. Stage device. 原版のパターンを投影光学系を介してステージに載置された基板に投影する露光装置であって、
請求項1から請求項5までのいずれか1項に記載のステージ装置を有することを特徴とする露光装置。
An exposure apparatus for projecting an original pattern onto a substrate placed on a stage via a projection optical system,
An exposure apparatus comprising the stage apparatus according to any one of claims 1 to 5.
請求項6記載の露光装置を用いて基板を露光する工程と、前記基板を現像する工程とを有することを特徴とするデバイスの製造方法。   7. A device manufacturing method comprising: exposing a substrate using the exposure apparatus according to claim 6; and developing the substrate.
JP2009294289A 2009-12-25 2009-12-25 Stage apparatus, exposure apparatus using the same, and method of manufacturing device Pending JP2011134946A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009294289A JP2011134946A (en) 2009-12-25 2009-12-25 Stage apparatus, exposure apparatus using the same, and method of manufacturing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009294289A JP2011134946A (en) 2009-12-25 2009-12-25 Stage apparatus, exposure apparatus using the same, and method of manufacturing device

Publications (1)

Publication Number Publication Date
JP2011134946A true JP2011134946A (en) 2011-07-07

Family

ID=44347351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009294289A Pending JP2011134946A (en) 2009-12-25 2009-12-25 Stage apparatus, exposure apparatus using the same, and method of manufacturing device

Country Status (1)

Country Link
JP (1) JP2011134946A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013106007A (en) * 2011-11-16 2013-05-30 Canon Inc Stage device, exposure equipment and device manufacturing method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63260129A (en) * 1987-04-17 1988-10-27 Hitachi Electronics Eng Co Ltd Aligner
JPH05226214A (en) * 1992-02-10 1993-09-03 Canon Inc Substrate holding apparatus
JPH11165868A (en) * 1997-12-06 1999-06-22 Horiba Ltd Plate member holding device
JP2009218372A (en) * 2008-03-10 2009-09-24 Canon Inc Exposure system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63260129A (en) * 1987-04-17 1988-10-27 Hitachi Electronics Eng Co Ltd Aligner
JPH05226214A (en) * 1992-02-10 1993-09-03 Canon Inc Substrate holding apparatus
JPH11165868A (en) * 1997-12-06 1999-06-22 Horiba Ltd Plate member holding device
JP2009218372A (en) * 2008-03-10 2009-09-24 Canon Inc Exposure system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013106007A (en) * 2011-11-16 2013-05-30 Canon Inc Stage device, exposure equipment and device manufacturing method

Similar Documents

Publication Publication Date Title
JP6981458B2 (en) Conveyance system, exposure equipment, transfer method, exposure method and device manufacturing method
US10586728B2 (en) Suction device, carry-in method, carrier system and exposure apparatus, and device manufacturing method
TWI655517B (en) Exposure apparatus and method, and component manufacturing method
JP2014003259A (en) Load method, substrate holding apparatus, and exposure apparatus
JP2011134946A (en) Stage apparatus, exposure apparatus using the same, and method of manufacturing device
JP2012033921A (en) Exposure apparatus, and method for manufacturing device
JP2017116868A (en) Lithography device, article manufacturing method, stage device, and measuring device
TW550668B (en) Stage apparatus, exposure system and device production method
JP2000223411A (en) Positioner and aligner, and device manufacture
JP2014127654A (en) Suction apparatus, method, and exposure device
JP2014138078A (en) Conveyance system and conveyance method, exposure device and exposure method, and method of manufacturing device
JP2014154647A (en) Measuring apparatus and exposure device
JP2006339411A (en) Aligner
JP2010266688A (en) Stage apparatus, exposure apparatus, and method of manufacturing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121225

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140311