JP2011133477A - 長さ測定装置 - Google Patents

長さ測定装置 Download PDF

Info

Publication number
JP2011133477A
JP2011133477A JP2010282266A JP2010282266A JP2011133477A JP 2011133477 A JP2011133477 A JP 2011133477A JP 2010282266 A JP2010282266 A JP 2010282266A JP 2010282266 A JP2010282266 A JP 2010282266A JP 2011133477 A JP2011133477 A JP 2011133477A
Authority
JP
Japan
Prior art keywords
read head
magnet
measuring device
magnetic
length measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010282266A
Other languages
English (en)
Inventor
Josef Siraky
シラキ ヨーゼフ
Florian Grieshaber
グリースハーバー フローリアン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sick Stegmann GmbH
Original Assignee
Sick Stegmann GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sick Stegmann GmbH filed Critical Sick Stegmann GmbH
Publication of JP2011133477A publication Critical patent/JP2011133477A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/142Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
    • G01D5/147Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices influenced by the movement of a third element, the position of Hall device and the source of magnetic field being fixed in respect to each other

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

【課題】簡単な構成の測度形成体を備える長さ測定装置を提供する。
【解決手段】双安定磁気素子102、測度形成体200、測度形成体200に間隔を開けて設けられた多数の磁気的な短絡要素202を備えた測定分布要素202、及び測度形成体200の長さ方向に相対移動可能で第1の読み取りヘッド磁石114a及び第2の読み取りヘッド磁石114bを含み、読み取りヘッド磁石114a〜bが長さ方向に垂直な方向に、互いに逆極性で配置された読み取りヘッド100から長さ測定装置10を構成する。読み取りヘッド磁石114a〜bの一方がいずれかの測定分布要素202に配置される。第1の相対位置において短絡要素202が第1の読み取りヘッド磁石114aの磁場116aのみを抑制し、第2の相対位置において短絡要素202が第2の読み取りヘッド磁石114bの磁場116bのみを抑制するように、読み取りヘッド磁石114a〜bが互いに離間している。
【選択図】図2

Description

本発明は、請求項1又は12のプレアンブルに記載の長さ測定装置及び長さ測定方法に関する。
ウィーガンド効果に基づいて動作する磁気式の長さ測定装置が知られている。ウィーガンド線は、磁気的に柔らかいコアと磁気的に硬い被覆から成る導線である。まずコア及び被覆の磁場が同方向に向いた状態で、ウィーガンド線を逆極性の外側の磁場の中に置くと、コアの磁化方向が突然反転し、外側の磁場が更に強い場合には被覆の磁化方向も反転する。ウィーガンド線の磁化方向に生じる各変化は電圧ショックを誘発し、これがウィーガンド線を取り囲むコイルにより検出される。コアの極性だけが反転して被覆の極性に適合すると、「発火」と呼ばれる非常に強い電圧ショックが生じる。このような理由から、被覆に対してコアを逆方向に磁化する操作はバイアスの印加(Vorspannen)と呼ばれる。
磁気式の長さ測定装置の重要な応用分野の一つに、一次元的に移動する装置の位置の検出が頻繁に必要となる自動化技術がある。このような長さ測定装置は軌道測定装置(Bahnmesssystem)とも呼ばれる。この種の長さ測定装置には増分(インクリメント)方式のものも多い。この装置の電源を入れる際には、増分情報から絶対位置を得るための基準走行を一通り実行しなければならない。
絶対位置を検出できる磁気式の長さ測定装置の場合、基準走行は不要である。この装置では、長さ目盛りの上での位置が測定分布体の中で符号化されている。また、読み取りヘッドは、様々に磁化された測定分布体の各領域を解析してその結果から絶対位置を求めるために、専用のエネルギー供給を受けて動作する。
従来の絶対式の長さ測定装置で用いられている測度形成体では、高価でコストのかかる符号化が必要である。その上、符号軌道の数に応じて読み取りヘッドも高価な作りとなる。更に、測度形成体の利用可能な長さの最大値は符号化方式の強度に依存する。つまり、長さ測定装置が長くなればなるほど、より強力な符号化方式が必要となり、符号軌道の数がそれだけ多くなり、それに応じて測度形成体と読み取りヘッドのコストが高くなる。
従来の解決策の更に別の欠点は、測度形成体の製造コストが高いということである。従来の場合、通常、極性が交互に替わる複数の磁石が測度形成体の長さ方向に垂直な方向に配置されるか、あるいはそのように磁化された磁気担持体が用いられる。磁石の必要数は測定すべき長さに比例するため、このような測度形成体は比較的コストがかかる。その上、個々の磁石の磁化状態が異なるため、計数間隔を等距離にすることができない。更に、産業的な環境では、測度形成体の磁石が鉄くずや小さなネジ等の磁性部材を引き寄せてしまうという煩わしい問題がある。
回転角及び長さをインクリメント方式で測定する装置がDE 34 08 478 C1に開示されている。この装置は切り欠き状に形成された測定分布体を有する直線状の担持体を備えている。各切り欠きの中にはウィーガンド線が担持体に直交して配線されている。切り欠きはウィーガンド線よりも幅が広い。担持体に直交して(従ってウィーガンド線に平行に)配置された、互いに逆極性を有する二つの磁石を有する走査ヘッドが切り欠きの上を通ると、そのヘッドはまずウィーガンド線のコアの磁化状態を変化させる。すると、磁化状態の反転によりウィーガンド線は切り欠きの反対側へとすばやく移動する。移動先では被覆の磁化方向をも反転させるのに十分な強度の磁場が形成されている。切り欠きの方が幅が広いため、最初の「発火」の後に運動方向が逆転しても、そのときには十分に定義された磁気的な関係が既に存在するため、誤計数につながりかねないウィーガンド衝撃は発生しない。
この従来技術には、測度形成体が、切り欠き、カバー、及び測定分布体の数に応じた多数のウィーガンド線を有するため、そのコストが高いという欠点がある。更に、インクリメント方式の長さ測定は、先に述べたように、基準走行の実行が必要といった点で絶対測定に比べて不利である。
DE 34 08 478 C1
従って、本発明の課題は、従来よりも簡単な構成の測度形成体を備える長さ測定装置を提供することである。
この課題は、請求項1に記載の長さ測定装置及び請求項12に記載の長さ測定方法により解決される。本発明の基本思想は、よりコストのかかる部品を読み取りヘッドの中に収めること、つまりそれらの部品を測定分布体毎に一組ではなく全体で一組だけ用いるということにある。従って、ウィーガンド効果を発生させるためのウィーガンド線と読み取りヘッド磁石は、読み取りヘッドと共に移動する。測定分布体の上を通過する際に、必要な磁場変化が生じるようにするため、読み取りヘッド磁石の1つの磁場が一時的に抑制される。そのために、測度形成体の各測定分布体は磁気的な短絡要素を備えている。測度形成体に対する読み取りヘッドの各相対位置において、1つの読み取りヘッド磁石の磁場が短絡され、それによりウィーガンド線に対する磁気的な作用が消失する、又は大幅に弱まる。その結果、ウィーガンド線は、主にもう1つ読み取りヘッド磁石により作り出される残りの磁場の中に置かれることになる。
本発明には、測度形成体そのものの構成が非常に簡単になり、その材料コストをほぼ鋼板又は鉄板のコストにまで削減できるという利点がある。測定分布体は等間隔(例えば2〜3センチメートル間隔)で取り付けることができる。測定分布体に、例えば磁石、切り欠き又はウィーガンド線といったコストのかかる形態や部品を用いる必要はない。更に、所望の長さの測度形成体を全く同じ方法で作製することができる。
双安定磁気素子は、磁気的に柔らかいコアと磁気的に硬い被覆を有し、逆極性を有する外部磁場の中に置かれるとコア及び/又は被覆の磁化状態が急激に変化するものが好ましい。このような双安定磁気素子として、特にウィーガンド線が挙げられる。双安定磁気素子とはウィーガンド線の概念を一般化したものである。つまりそれは、磁気的な硬さ又は抗磁力の異なる一対の大きな領域を有しており、従って、前記一対の領域の一方が消失すると、大きくて再現性のあるバルクハウゼン現象が生じるような磁気素子を意味している。このような双安定磁気素子は、外部磁場の中に明瞭に検出可能な衝撃を誘発する。これを利用して長さ測定の計数を行う。ウィーガンド線は、双安定磁気素子としてよく知られた、定評のある例である。双安定磁気素子の具体的な幾何形状、材料又は製造方法はさほど重要ではなく、誘発される電圧ショックの方が重要であるが、その電圧ショックの形態は双安定磁気素子の具体的な形態を通じて最適化することができる。
双安定磁気素子にはコイルが割り当てられ、双安定磁気素子の磁化状態が変化するとコイル内に電圧ショックが誘発されるようにすることが好ましい。これにより、ウィーガンド効果を検出して長さ測定装置のために利用することができる。この場合、双安定磁気素子をコイルの内側に配置することにより、電圧ショックを最大化することが特に好ましい。
測度形成体に対する読み取りヘッドの相対移動の間に通過する測定分布要素の数を数える不揮発性のカウンタを設けると有利であり、特に、双安定磁気素子により誘発される電圧ショックに基づいてカウント値を増減させることができるものがよい。不揮発性のカウンタは電圧ショックからのエネルギー供給により自立的に動作する。このようにして、長さ測定装置又は該装置が設置されている設備の動作状態とは無関係にカウント信号が得られる。
その場合、カウント値から測度形成体に対する読み取りヘッドの絶対位置を測定できる解析ユニットを設けることにより、長さ測定装置を絶対式の長さ測定装置として構成することが特に好ましい。カウント値が失われないため、インクリメント式のカウント信号から絶対位置信号を得ることができる。従って、基準走行又はそれに類する操作を行う必要はない。絶対位置が出力されるにもかかわらず、測度形成体にはコストのかかる符号化が必要なく、しかもほぼ任意の長さにすることができる。この長さはカウンタの幅だけに依存する。測定分布体の間隔が数センチメートルの場合、数メートルのオーダーの長さに対しては8ビットのカウンタで十分である。16ビット又は32ビットのカウンタを用いれば、測定分布体の間隔をより狭くしても、必要とされるほぼすべての長さに対応できる。
少なくとも1つの追加的な磁気センサ、特にホールセンサ、AMRセンサ(異方性磁気抵抗センサ)又はGMRセンサ(巨大磁気抵抗センサ)を設け、該磁気センサを有する解析ユニットにおいて、測度形成体に対する読み取りヘッドの相対移動の方向の検出及び/又は隣接する測定分布要素の間における読み取りヘッドの中間位置の測定ができるようにすること、特に、読み取りヘッドに複数の隣接する磁気センサを設けて、各磁気センサの位置における磁場の強度を比較することにより相対移動の方向の検出及び/又は中間位置の測定を行うようにすることが好ましい。移動方向を検出するのは、カウント値が読み取りヘッドの移動パターンに関係なく測度形成体上におけるヘッドの絶対位置を表すように、カウントされた衝撃を正しい方向で評価するためである。一方、中間位置を測定すれば、2つの測定分布要素の間隔よりも更に細かい精度で長さを測定できる。
解析ユニット及び/又は追加的な磁気センサは双安定磁気素子により誘発される電圧ショックからエネルギー供給を受けることができるようにすることが好ましい。これにより、長さ測定装置がエネルギー的に自立したものとなる。特に重要なのは、カウンタを外部からのエネルギー供給に依存しないものにすることにより、常に絶対位置が分かる状態にしておくことである。設備や長さ測定装置が本来の意味で稼働している間に追加的なエネルギー供給を行うことは容易である。それでも、できるだけ多くの要素が自立的に動作する方が有利である。2つの測定分布要素の間で内挿を行う場合、相対運動が十分に連続的に行われる限り、境界以外の区間では自立的動作はできない。また、読み取りヘッドが静止していたり、2つの測定分布要素の間だけで移動したりする場合、電圧ショックは発生せず、従ってエネルギーは利用できない。その場合、カウント値は変化しない。一方、新たに測定分布要素をカウントする直前になると、電圧ショックが発生し、カウント動作に必要なエネルギーが利用できる。
短絡要素は、両端が第1の相対位置又は第2の相対位置において第1の読み取りヘッド磁石又は第2の読み取りヘッド磁石の両極を囲むように構成されたU字形の湾曲体を備えることが好ましい。このような短絡要素は作製が非常に容易であるとともに、測定分布要素の近傍にある読み取りヘッドの磁石の磁場を非常に効果的に抑制する。別の形態では、第1の読み取りヘッド磁石及び第2の読み取りヘッド磁石が蹄鉄状であり、細長い形状の短絡要素によって蹄鉄状磁石の両極を短絡させる。この形態は、測定分布要素の構成が非常に簡単になるため、低コストでしかも一層簡単に取り扱うことができる測度形成体が得られるという点で有利である。
短絡要素、特に測定分布要素を含む測度形成体は、鋼又は鉄のような磁性体を有することが好ましい。測定分布要素を含む測度形成体と短絡要素を同一の材料で一体的に作製すればコストが非常に低くなる。鋼又は鉄でできた短絡要素は他の磁性体に比べてコスト的に有利である。
双安定磁気素子及び各読み取りヘッド磁石が互いに平行に配置され、各読み取りヘッド磁石が双安定磁気素子の両側からそれぞれ等距離に配置され、特に、読み取りヘッド磁石の間隔が隣接する2つの測定分布要素の間隔よりも小さくなるようにすることが好ましい。このような配置にすれば、読み取りヘッド磁石が双安定磁気素子に対して非常に効果的に作用し、しかもその作用が測定分布要素に対する相対位置に依存していることが明瞭に解析できるようになる。
本発明の好ましい発展形態においては、様々な幾何形状の測定対象に適応するために、細長い測度形成体がねじれ形状又は湾曲形状に成形される。このように3次元的に変形された測度形成体も、本願明細書では細長い測度形成体であると解釈する。なぜなら、仮に移動経路が複雑な曲線に沿っていても、読み取りヘッドはその長さ方向に移動するからである。測定原理からすれば、測度形成体は直線形でも湾曲形でもよい。つまり測度形成体はほぼ任意の形に変形させることができる。それゆえ3次元幾何形状にすることも可能である。これにより本発明の長さ測定装置の応用分野が広がる。
従って、本発明の長さ測定装置は、細長い測度形成体を円形に曲げることにより回転角測定装置として構成することも可能である。この場合、測定される長さは円弧の断片であり、それは円の半径を単位とする角度(ラジアン)に対応する。これにより本発明の長さ測定装置の利用分野が更に広くなる。
本発明に係る方法は、装置の場合と同様のやり方で、更に別の特徴によって仕上げることが可能であり、それにより同様の利点を示す。そのような更に別の特徴の模範例は、装置の請求項に従属する各請求項に記載されているが、それらに限られるものではない。
以下、本発明について、添付の図面を参照しつつ、実施例に基づいて、更なる利点及び特徴にも触れながら説明を行う。図面の内容は以下のとおりである。
本発明に係る長さ測定装置の読み取りヘッドの概略平面図。 本発明の測度形成体の上に図1の読み取りヘッドを配置した様子を示す平面図。 図2の測度形成体の立体図と、読み取りヘッドの一部の構成要素の空間的な配置を明確に示すための簡略図。 本発明の読み取りヘッドの簡略断面図であって、測定分布体の間における内挿の方法を説明するための図。 中間位置における図4の読み取りヘッドの電圧測定結果の模範例。 蹄鉄状磁石として構成された読み取りヘッドの実施形態の断面図。 図6aの読み取りヘッド用の細長い測定分布体を有する測度形成体の平面図。 円に沿って配置された測度形成体の縦断面図。
図1は本発明に係る長さ測定装置の読み取りヘッド100の概略平面図である。磁気的に柔らかいコア102aと磁気的に硬い被覆102bを有するウィーガンド線102がコイル104の内側に配置されている。コイル104の両端は解析ユニット106に接続されている。解析ユニット106は不揮発性メモリを有するカウンタ108を備えている。更に解析ユニット106は出力110にも接続されている。それに加えて、又はその代わりに、表示装置(図示せず)を設けてもよい。追加的な磁気センサ112(例えばホールセンサ、AMRセンサ又はGMRセンサ)が解析ユニット106に接続されている。この追加的なセンサ112は複数のセンサで構成してもよく、その詳細については後で図4を参照しながら説明する。
ウィーガンド線102の両側には、それぞれ例えば棒状の永久磁石として構成された読み取りヘッド磁石(以下、ヘッド磁石と呼ぶ)114a又は114bが配置されている。この2つのヘッド磁石114a〜bは互いに平行で、且つウィーガンド線102にも平行である。また、図中で一端に付した影が示すように、その極性は互いに逆向きになっている。
図2に本発明に係る長さ測定装置10を示す。この図では、読み取りヘッド100が測度形成体200の上に配置されている。なお、この図及び以下の図において、同一の符号は同一の特徴部分を示す。測定分布体としての短絡要素202が数センチ(例えば4センチ)の等間隔で並んでいる。図3の立体図を見れば更によく分かるように、短絡要素202は、例えばU字形の短絡用湾曲体として構成されている。なお、図3では、構造を見やすくするため、読み取りヘッド100をすべて描かず、そのうちのウィーガンド線102及び一対の磁石114a〜bだけを描いている。短絡用湾曲体202は鉄や鋼などの磁性体で作製されている。
装置10の稼働中、読み取りヘッド10は測度形成体200に対して相対的に走行する。その際、2つのヘッド磁石114a〜bが交互に短絡用湾曲体202によって磁気的に短絡される。図2では、第1のヘッド磁石114aが1つの短絡用湾曲体202の内側に位置している。そのため、その磁場116aの作用は外側にはほとんど及ばない。なお、短絡が完全でなければ弱い磁場が漏れ出すが、ここではそれを考慮しない。こうして、ウィーガンド線102内には実質的に第2のヘッド磁石114bの磁場116bの作用だけが及ぶ。
読み取りヘッド100が別の位置にあるときは状況が逆になる。即ち、第1のヘッド磁石114aが解放状態に戻る一方、第2のヘッド磁石114bが短絡用湾曲体の内側に入り、ウィーガンド線102には第1のヘッド磁石114aによる逆極性の磁場だけが作用するようになる。その他の位置では、一時的にヘッド磁石114a〜bが両方とも短絡用湾曲体の外にある状態となる。そのときは、2つのヘッド磁石114a〜bの磁場が重なり合うが、両方の磁石は強度が同じで対称的に配置されているため、ウィーガンド線102のある場所では磁場がほとんど消失する。
読み取りヘッド100が測度形成体200上を移動する間、第1のヘッド磁石114a又は第2のヘッド磁石114bが短絡要素202の内側に入るたびに、ウィーガンド線102に作用する磁場116a又は116bの極性が反転する。例えばヘッド磁石114aが短絡される位置において、磁場強度があるレベルに達すると、ウィーガンド線102の磁化状態が突然、変化速度に無関係に変化する。すると、ウィーガンド線102が「発火」し、コイル104内に電圧ショックを誘発する。その後、例えばヘッド磁石114bが短絡される位置に達すると、ウィーガンド線102には逆極性の新たなバイアスが印加される。
コイル104の内側に誘発された電圧ショックは解析ユニット106において記録される。その際、電圧ショックのエネルギーを利用することで、解析ユニット106に別途エネルギーを供給することなく、測定分布体202の通過数の計測と、カウンタ108のカウント値を不揮発的に記憶する操作とが行われる。情報を不揮発的に記憶するため、カウンタ108は例えばFRAM(Ferroelectric Random Access Memory)を備えている。
追加的な磁気センサ112の好ましい実施形態においては、図4に示したように、3個のホールセンサ112a〜cが隣接して配置される。ただし、ホール効果とは別の磁気効果を持つセンサ(例えば先に例示したようなもの)を代わりに用いてもよい。なお、見やすくするために、図4ではウィーガンド線102を移動させ、例えば別の深さ(つまり図4の紙面に対してずれた位置)に配置してある。3個のホールセンサ112〜112cで2個の測定分布体202の間における絶対位置を検出することにより、2個の測定分布体202の間隔よりも細かい精度で測定を行うことができる。
図5は読み取りヘッド100がある位置にあるときに3個のホールセンサ112a〜cが出力するホール電圧を純粋な模範例として示している。読み取りヘッド100の位置が変わると、ヘッド磁石114a又は114bの短絡要素202内への進入又はそこからの離脱にともなって磁場が消失又は発生するため、ホール電圧も変化する。解析ユニット106は3個のホールセンサ112a〜cを通じてホール電圧の推移のずれを検出し、それに基づいて読み取りヘッド100の中間位置を計算する。
こうして求められた中間位置はカウンタ108のカウント情報と結び付けられる。そのため、測定領域全体にわたってミリメートル未満の高い精度で絶対位置を測定することができる。使用するホールセンサ112a〜cの数を変えることも考えられるが、多くの用途では3個で測定精度と装置のコストの両方を最適化できる。より簡単な実施形態として、中間位置の算出と解析を行わず、カウント値から分かる測定分布体202の絶対位置だけを使って長さの測定を行ってもよい。
解析ユニット106は、エネルギー的に自立したカウンタ108の計数方向を求めるために、追加的な磁気センサ112の方向情報を利用する。そのためには、中間位置を内挿する複数のホールセンサ112a〜cの配置情報を利用することができる。なお、方向の決定に必要な最低限の消費電力を有するもう1つの追加的なホールセンサ(図示せず)を設け、その電力をウィーガンド線102の電圧ショックだけでまかなうようにすると非常に有利である。
このようにすると、測定分布体202、カウンタ108、方向決定用ホールセンサ及び付属の論理素子のエネルギーがウィーガンド線102から供給されるため、測定分布体202の間隔に等しい解像度での長さ測定をエネルギー的に完全に自立して行うことができる。例えば、設備を電源が入った状態で長さ測定装置10を作動させる場合のように、運転状態にあるときは、解析ユニット106及び追加的な磁気センサ112へ電力を供給するために外部のエネルギーを利用できる。従って、中間位置の測定までエネルギー的に自立させることが絶対に必要というわけではない。なぜなら、いずれにせよ、中間位置の測定が必要なときには常に、外部の制御装置へ位置を読み出すために外部エネルギーが利用できるからである。あるいは、まさに移動が頻繁に起きる場合には、ホールセンサ112a〜c及び解析ユニット106内の付属の論理素子に供給すべきエネルギーの少なくとも一部をウィーガンド線102による誘発される電圧ショックによりまかなうことが考えられる。
以上のように、長さ測定装置10はインクリメント式カウンタのように動作するものであるが、カウント情報はいつでも利用可能であり、カウンタ108は電圧ショックによりエネルギー的に自立して動作するから、利用の観点から見れば絶対式の長さ又は位置測定装置となる。
図6aはヘッド磁石114a〜bの別の形態の断面図であり、図6bはそれに付随する測度形成体200の平面図である。この形態では、ヘッド磁石114が蹄鉄状磁石であるのに対し、測定分布体202が直線状で、いわば図3の幾何形状を逆転させたものである。これにより、測度形成体200の構成が更に簡単になる。この場合、2つの測定分布体202の間の区間で磁気的な短絡が生じないように、測度形成体200の担持体(この上に測定分布体202が取り付けられている)には、例えば樹脂のような完全な非磁性体か、あるいは測定分布体202そのものよりも十分に幅の狭い部材を用いる必要がある。この実施形態から、ヘッド磁石114a〜b並びに測定分布体202の具体的な幾何形状は長さ測定にとってさほど重要ではなく、ヘッド磁石114a〜bのそれぞれの磁場を位置に応じて抑制できることが重要であるということが分かる。
図7は円形の測度形成体200の縦断面図であって、本発明の原理を実質的に任意の形状の測度形成体に拡張できることを示している。従って、長さの代わりに角度位置を(場合によっては回転数をも)測定する回転装置を実現することができる。なお、これは一例に過ぎず、測度形成体200の形状は3次元的にほぼ無制限に選択可能である。従って、考え得る多数の用途にそれを適合させることができる。

Claims (15)

  1. 双安定磁気素子(102)、長さ方向に延在する測度形成体(200)、該測度形成体(200)に間隔を開けて設けられた多数の測定分布要素(202)、及び読み取りヘッド(100)を備え、該読み取りヘッド(100)が前記測度形成体(200)の長さ方向に相対移動可能であるとともに少なくとも第1の読み取りヘッド磁石(114a)及び第2の読み取りヘッド磁石(114b)を含み、これら読み取りヘッド磁石(114a〜b)が前記長さ方向に垂直な方向に、互いに対して逆極性で配置された長さ測定装置(10)において、
    前記双安定磁気素子(102)が読み取りヘッド(100)の一部であること、
    前記測定分布要素(202)はそれぞれ磁気的な短絡要素(202)を備え、前記読み取りヘッド磁石(114a〜b)の一方がいずれかの測定分布要素(202)に配置されると、該磁石の磁場(116a〜b)が前記短絡要素(202)により大幅に抑制され、従って双安定磁気素子(102)を貫通しなくなること、及び
    前記読み取りヘッド(100)の第1の相対位置においては前記短絡要素(202)が実質的に第1の読み取りヘッド磁石114aの磁場116aのみを抑制し、前記読み取りヘッド(100)の第2の相対位置においては前記短絡要素(202)が実質的に第2の読み取りヘッド磁石114bの磁場116bのみを抑制するように、前記読み取りヘッド磁石(114a〜b)が互いに離間して配置されていること
    を特徴とする長さ測定装置(10)。
  2. 前記双安定磁気素子(102)が磁気的に柔らかいコア(102a)と磁気的に硬い被覆(102b)を有し、逆極性を有する外部磁場(116a〜b)の中に置かれると該コア(102a)及び/又は被覆(102b)の磁化状態が急激に変化するものであって、特に該双安定磁気素子(102)がウィーガンド線であることを特徴とする、請求項1に記載の長さ測定装置(10)。
  3. 前記双安定磁気素子(102)にコイル(104)が割り当てられ、特に該双安定磁気素子(102)が該コイル(104)の内側に配置され、該双安定磁気素子(102)の磁化状態が変化すると該コイル(104)内に電圧ショックを誘発されることを特徴とする、請求項1又は2に記載の長さ測定装置(10)。
  4. 前記測度形成体(200)に対する前記読み取りヘッド(100)の相対移動の間に通過する測定分布要素(202)の数を数える不揮発性のカウンタ(108)が設けられ、特に前記双安定磁気素子(102)により誘発される電圧ショックに基づいてそのカウント値(108)を増減させることができることを特徴とする、請求項1〜3のいずれかに記載の長さ測定装置(10)。
  5. 前記カウント値(108)から前記測度形成体(200)に対する前記読み取りヘッド(100)の絶対位置を測定できる解析ユニット(106)が設けられていることにより、絶対式の長さ測定装置として構成されていることを特徴とする、請求項4に記載の長さ測定装置(10)。
  6. 少なくとも1つの追加的な磁気センサ(112)、特にホールセンサ、AMRセンサ又はGMRセンサが設けられ、該磁気センサ(112)を有する解析ユニット(116)において、前記測度形成体(200)に対する前記読み取りヘッド(100)の相対移動の方向の検出及び/又は隣接する測定分布要素(202)の間における該読み取りヘッド(100)の中間位置の測定ができること、特に、該読み取りヘッド(100)に複数の磁気センサ(112a〜c)が並べて設けられ、各磁気センサの位置における磁場の強度を比較することにより相対移動の方向の検出及び/又は中間位置の測定を行うことを特徴とする、請求項1〜5のいずれかに記載の長さ測定装置(10)。
  7. 前記解析ユニット(106)及び/又は前記追加的な磁気センサ(112)が前記双安定磁気素子(102)により誘発される電圧ショックからエネルギー供給を受けることができることを特徴とする、請求項5又は6に記載の長さ測定装置(10)。
  8. 前記短絡要素(202)がU字形の湾曲体を備え、該湾曲体の両端が第1の相対位置又は第2の相対位置において第1の読み取りヘッド磁石(114a)又は第2の読み取りヘッド磁石(114b)の両極を囲むように構成されているか、あるいは、第1の読み取りヘッド磁石(114a)及び第2の読み取りヘッド磁石(114b)が蹄鉄状であり、前記短絡要素(202)が細長い形状を有し、細長い形状の短絡要素(202)によって該蹄鉄状磁石の両極を短絡させることを特徴とする、請求項1〜7のいずれかに記載の長さ測定装置(10)。
  9. 前記短絡要素(202)、特に前記測定分布要素(202)を含む前記測度形成体(200)が、鋼又は鉄のような磁性体を有することを特徴とする、請求項1〜8のいずれかに記載の長さ測定装置(10)。
  10. 前記双安定磁気素子(102)及び各読み取りヘッド磁石(114a〜b)が互いに平行に配置され、各読み取りヘッド磁石(114a〜b)が前記双安定磁気素子(102)の両側からそれぞれ等距離に配置され、特に、該読み取りヘッド磁石(114a〜b)の間隔が隣接する2つの測定分布要素(202)の間隔よりも小さいことを特徴とする、請求項1〜9のいずれかに記載の長さ測定装置(10)。
  11. 様々な幾何形状の測定対象に適応するために、細長い測度形成体(200)がねじれ形状又は湾曲形状に成形され、特に、前記細長い測度形成体(200)を円形に曲げることにより回転角測定装置として構成されていることを特徴とする、請求項1〜10のいずれかに記載の長さ測定装置(10)。
  12. 少なくとも第1の読み取りヘッド磁石(114a)及び第2の読み取りヘッド磁石(114b)を含む読み取りヘッド(100)を、互いに離間して配置された多数の測定分布要素(202)を有する細長い測度形成体(200)に対して相対移動させ、前記読み取りヘッド磁石(114a〜b)を前記測度形成体(200)の長さ方向に垂直な方向に、互いに対して逆極性で配置し、前記読み取りヘッド(100)の位置決定のために双安定磁気素子(102)を用いる長さ測定方法において、
    前記双安定磁気素子(102)が前記読み取りヘッド(100)の一部として該ヘッドとともに移動しすること、及び
    該読み取りヘッド(100)の第1の相対位置においては前記第1の読み取りヘッド磁石(114a)が、また該読み取りヘッド(100)の第2の相対位置において前記第2の読み取りヘッド磁石(114b)が、それぞれ測定分布要素(202)の磁気的な短絡要素(202)に配置され、その際、実質的に他方の磁石の磁場、すなわち第2の読み取りヘッド磁石(114b)又は第1の読み取りヘッド磁石(114a)の磁場(116a〜b)だけが前記双安定磁気素子(102)を貫通すること
    を特徴とする長さ測定方法。
  13. 前記第1の読み取りヘッド磁石(114a)及び/又は第2の読み取りヘッド磁石(114b)が相対移動の間に前記双安定磁気素子(102)の磁化状態をすばやく反転させ、該磁化状態の反転により誘発される電圧ショックに基づいて、測定分布要素(202)の通過数を数えて不揮発性のカウンタ(108)に記録し、そのカウント値(108)から前記測度形成体(200)に対する前記読み取りヘッド(100)の絶対位置を測定することを特徴とする、請求項12に記載の長さ測定方法。
  14. 少なくとも1つの追加的な磁気センサ(112)、特にホールセンサ、AMRセンサ又はGMRセンサを用いて、前記測度形成体(200)に対する前記読み取りヘッド(100)の相対移動の方向の検出及び/又は隣接する測定分布要素(202)に対する前記読み取りヘッド(100)の中間位置の測定を行い、特に前記読み取りヘッド(100)内に並べて設けられた複数の追加的な磁気センサ(112a〜c)を用いて磁場強度を解析することにより前記相対移動の方向の検出及び/又は中間位置の測定を行うことを特徴とする、請求項12又は13に記載の長さ測定方法。
  15. カウント操作、絶対位置の測定、方向の検出及び/又は中間位置の測定に必要なエネルギーを、前記双安定磁気素子(102)の磁化状態の反転により誘発される電圧ショックにより作り出すことを特徴とする、請求項13又は14に記載の長さ測定方法。
JP2010282266A 2009-12-22 2010-12-17 長さ測定装置 Pending JP2011133477A (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP09180353 2009-12-22
EP09180353.6 2009-12-22
EP10150088.2 2010-01-05
EP10150088.2A EP2343506B1 (de) 2009-12-22 2010-01-05 Längenmessvorrichtung

Publications (1)

Publication Number Publication Date
JP2011133477A true JP2011133477A (ja) 2011-07-07

Family

ID=43734101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010282266A Pending JP2011133477A (ja) 2009-12-22 2010-12-17 長さ測定装置

Country Status (4)

Country Link
US (1) US8575931B2 (ja)
EP (1) EP2343506B1 (ja)
JP (1) JP2011133477A (ja)
CN (1) CN102102973A (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10093349B2 (en) * 2016-03-02 2018-10-09 Trw Automotive U.S. Llc Monitoring of an electric motor in an electric power steering assembly
CN110651135B (zh) * 2017-06-07 2021-04-16 舍弗勒技术股份两合公司 用于确定致动器的围绕旋转轴线旋转的构件的绝对位置的方法和装置
CN115317724A (zh) * 2017-12-21 2022-11-11 赛诺菲 确定注射状态
CN108413857A (zh) * 2018-05-08 2018-08-17 河北布鲁克科技有限公司 一种钢丝绳的行程计量装置及方法
DE102022124159B4 (de) 2022-09-21 2024-04-11 Fachhochschule Aachen, Körperschaft d. öffentl. Rechts Positionssensorvorrichtung

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3225500A1 (de) * 1982-07-08 1984-01-12 Doduco KG Dr. Eugen Dürrwächter, 7530 Pforzheim Magnetischer fuehler
DE3408478C1 (de) 1984-03-08 1985-01-10 Doduco KG Dr. Eugen Dürrwächter, 7530 Pforzheim Vorrichtung zur inkrementalen Drehwinkel- oder Längenmessung
JP3352366B2 (ja) * 1997-09-17 2002-12-03 株式会社ヒロセチェリープレシジョン パルス信号発生装置
DE102004013022B3 (de) * 2004-03-16 2005-10-13 Sew-Eurodrive Gmbh & Co. Kg Abschnittszähler und Antrieb

Also Published As

Publication number Publication date
US8575931B2 (en) 2013-11-05
EP2343506B1 (de) 2013-06-26
US20110148397A1 (en) 2011-06-23
EP2343506A2 (de) 2011-07-13
CN102102973A (zh) 2011-06-22
EP2343506A3 (de) 2013-01-02

Similar Documents

Publication Publication Date Title
JP6926209B2 (ja) 距離センサ
US8766625B2 (en) Linear segment or revolution counter with a ferromagnetic element
US10228267B2 (en) Magnetic sensor for absolute counting of revolutions or linear distances
JP6472175B2 (ja) 位置検出装置
US9410788B2 (en) Magnetic length measuring system, length measuring method and method for producing a magnetic length measuring system
JP2011059130A (ja) 位置検出器
JP2011133477A (ja) 長さ測定装置
US11614341B2 (en) Methods and devices for using multi-turn magnetic sensors with extended magnetic windows
US20170167896A1 (en) Absolute measuring length measuring system and method for its operation
KR102550704B1 (ko) 절대값 인코더
US20150115940A1 (en) Position Measuring Device
JP6147637B2 (ja) 位置検出装置
US7908762B2 (en) Device for measuring the relative position of a material measure and a reading head
KR20110106329A (ko) 자기 인코더
JP5348009B2 (ja) 角度センサ
CA2283209C (en) Device for detecting the position of a moveable magnet for generating a magnetic field
JP2007093532A (ja) 磁気センサー装置
JP2006322811A (ja) 磁気エンコーダ及び被検出部材
EP1784619B1 (en) Inductive position sensing device and method
JP3626341B2 (ja) 磁性金属センサ及び磁性金属検出システム
US20220120587A1 (en) Sensor apparatus and operating method therefor
JP6824484B1 (ja) 磁気式リニア位置検出器
JP4775705B2 (ja) 磁気式アブソリュートエンコーダー
JP2008261800A (ja) 磁気検出装置及び磁気検出方法
CN118119825A (zh) 转速检测器