JP2011133360A - 距離計測装置、距離計測方法、及びプログラム - Google Patents

距離計測装置、距離計測方法、及びプログラム Download PDF

Info

Publication number
JP2011133360A
JP2011133360A JP2009293197A JP2009293197A JP2011133360A JP 2011133360 A JP2011133360 A JP 2011133360A JP 2009293197 A JP2009293197 A JP 2009293197A JP 2009293197 A JP2009293197 A JP 2009293197A JP 2011133360 A JP2011133360 A JP 2011133360A
Authority
JP
Japan
Prior art keywords
distance
image
imaging
projection
optical system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009293197A
Other languages
English (en)
Inventor
Hiroshi Yoshikawa
博志 吉川
Hiroyuki Osawa
弘幸 大澤
伸明 ▲桑▼原
Nobuaki Kuwahara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2009293197A priority Critical patent/JP2011133360A/ja
Publication of JP2011133360A publication Critical patent/JP2011133360A/ja
Withdrawn legal-status Critical Current

Links

Images

Abstract

【課題】テクスチャ情報の少ない被写体を高密度に距離計測することを目的とする。
【解決手段】光源から照射される光が投影光学系のレンズを透過する透過率を空間的に符号化する符号化素子を含む投影部と、投影部により光が投影された距離計測対象を撮像する撮像部と、撮像部により撮像された撮像画像と、予め定められた距離ごとに撮像部により予め撮像された複数のキャリブレーション画像との類似度を示す相関値を算出する算出部と、算出部により算出された相関値が最大となるキャリブレーション画像に対応する距離を距離計測対象までの距離として決定する決定部と、を備える。
【選択図】図7

Description

本発明は、測定対象の距離を非接触で光学的に計測する距離計測装置、距離計測方法、及びプログラムに関し、特にパターン投影を用いる距離計測装置、距離計測方法、及びプログラムに関する。
距離計測装置は、高密度な距離情報の取得が可能なため、組み立てのためのロボットハンド用ビジョンとして用いられる。また、動いている被写体に対しても形状計測を実施できるため、小型プロジェクタと組み合わせることで、ディジタルカメラなどの小型の撮像デバイスにも搭載でき、オートフォーカスのための距離入力手段としても用いられる。
これまでに、種々の距離計測法が提案されている。距離計測法には、照明装置である投影部を用いずに撮像部だけで距離計測を行うパッシブ方式と、投影部と撮像部を組み合わせて用いるアクティブ方式がある。パッシブ方式には主に三角測量に基づく手法と、撮像光学系のデフォーカス情報に基づく手法の2つがある。アクティブ方式には主に三角測量に基づく手法と、投影光学系のデフォーカス情報に基づく手法がある。
Anat Levin, Rob Fergus, Fredo Durand, William T. Freeman, "Image and depth from a conventional camera with a coded aperture, " Proceeding of SIGGRAPH 2007 (July 2007). 佐藤宏介、井口征士、"液晶レンジファインダー液晶シャッタによる高速距離画像計測システム",電子情報通信学会論文誌D Vol.J71-D No.7 pp.1249-1257(1988). Francesc Moreno-Noguer, Peter N. Belhumeur, Shree K. Nayar, "Active refocusing of images and videos," Proceeding of SIGGRAPH 2007 (July 2007).
しかしながら、パッシブ方式の距離計測技術では、表面テクスチャ情報の少ない被写体は距離計測ができないという課題がある。一方、三角測量を利用したアクティブ方式の距離計測技術では、複数枚の画像撮影が必要であるため、動きのある被写体に対応できないという課題がある。また、デフォーカス情報を利用したアクティブ方式の距離計測技術では、1回の画像撮影で距離計測ができるものの、計測密度が低くならざるを得ないという課題がある。
上記の課題に鑑み、本発明は、テクスチャ情報の少ない被写体に対して、計測密度を高密度に被写体までの距離を計測することを目的とする。
上記の目的を達成する本発明に係る距離計測装置は、
光源から照射される光が投影光学系のレンズを透過する透過率を空間的に符号化する符号化素子を含む投影手段と、
前記投影手段により光が投影された距離計測対象を撮像する撮像手段と、
前記撮像手段により撮像された撮像画像と、予め定められた距離ごとに前記撮像手段により予め撮像された複数のキャリブレーション画像との類似度を示す相関値を算出する算出手段と、
前記算出手段により算出された相関値が最大となるキャリブレーション画像に対応する距離を距離計測対象までの距離として決定する決定手段と、
を備えることを特徴とする。
本発明によれば、テクスチャ情報の少ない被写体に対して、計測密度を高密度に被写体までの距離を計測することが可能となる。
(a)ステレオ画像計測法の測定原理説明図、(b)DFD法の測定原理説明図。 (a)グレイコードパターン投影法の測定原理説明図、(b)n=4の場合のグレイコードパターンを示す図。 (a)投影光学系のデフォーカス情報に基づく手法の原理説明図、(b)規則的に並べられた略点光源パターンを示す図。 (a)第1実施形態の距離計測装置の概略上面図、(b)第1実施形態の符号化瞳を示した図。 (a)第1実施形態の全体処理フローチャート、(b)第1実施形態のキャリブレーションステップ時の装置構成図。 (a)第1実施形態のキャリブレーションステップの処理フローチャート、(b)キャリブレーション画像の例を示す図。 (a)第1実施形態の距離計測ステップの処理フローチャート、(b)略点光源の主光線の撮像素子上での結像位置の説明図。 (a)I=4,J=3のときの撮像画像の例を示す図、(b)被写体30の詳細説明図。 (a)相関演算領域の拡大図。 (a)i=0,j=0のときの1ライン分の正規化輝度分布、(b)i=3,j=0のときの1ライン分の正規化輝度分布。 相関値CorreをZに対してプロットした図。 (a)円形瞳の場合の撮像画像の例を示す図、(b)円形瞳の場合のキャリブレーション画像の例を示す図。 (a)円形瞳の場合の1ライン分の正規化輝度分布図、(b)円形瞳の場合の相関値CorreをZに対してプロットした図。 (a)隣接点光源によるボケ像に重なりがある場合の撮像画像(円形瞳)、(b)隣接点光源によるボケ像に重なりがある場合の撮像画像(符号化瞳)。 (a)隣接点光源によるボケ像に重なりがある場合の正規化輝度分布図、(b)隣接点光源によるボケ像に重なりがある場合の相関値をプロットした図。 (a)第2実施形態の距離計測装置の概略上面図、(b)第2実施形態の全体処理フローチャート。 (a)第2実施形態の距離計測ステップの処理フローチャート、(b)第2実施形態の相関演算処理図。 (a)第3実施形態の符号化瞳を示した図、(b)図18(a)の符号化瞳の周波数領域での性質を示す図、(c)円形瞳の周波数領域での性質を示す図。 (a)第3実施形態の全体処理フローチャート、(b)第3実施形態の距離計測ステップの処理フローチャート。
距離計測法には、照明装置である投影部を用いずに撮像部だけで距離計測対象までの距離を計測するパッシブ方式と、投影部と撮像部を組み合わせて用いるアクティブ方式がある。パッシブ方式には主に三角測量に基づく手法、撮像光学系のデフォーカス情報に基づく手法の2つがある。アクティブ方式には主に三角測量に基づく手法と、投影光学系のデフォーカス情報に基づく手法がある。
<パッシブ方式>
まず、パッシブ方式における三角測量に基づく手法について説明する。三角測量に基づく手法の代表例としては、ステレオ画像計測法がある。ステレオ画像計測法は、2台のカメラで計測対象を撮影したときの2枚の画像間で視差を求め、三角測量の原理で対象までの距離を算出する。
図1(a)に2台のカメラ10(撮像装置10)を距離Bだけ離して、平行に並べた場合の測定原理の説明図を示す。左の撮像装置10Lと、右の撮像装置10Rとで、被写体30の計測点Mの距離を計測することを想定している。左の撮像装置10Lと、右の撮像装置10Rの撮像光学系の焦点距離は、それぞれfとfである。ここでは簡単のために、fとfは同一の焦点距離fであると仮定する。このとき、計測点Mは左の撮像装置10Lでは撮像光学系11Lにより、撮像素子12L上のmの位置に結像される。同様に、右の撮像装置10Rでは撮像光学系11Rにより、撮像素子12R上のmの位置に結像される。mとmはそれぞれ撮像素子12の光軸上の点からx、xの距離に位置するため、視差dは以下の式(1)で算出される。
Figure 2011133360
三角形MO’と三角形m’とは相似の関係が成立する。すなわち、Z:fの比と、B:dの比が等しい。これより、左の撮像光学系11Lの光学中心Oから計測点Mまでの距離Zは、以下の式(2)で算出される。
Figure 2011133360
以上がステレオ画像計測法の原理である。ステレオ画像計測法は2台のカメラのみでシステムを構築できるため、簡易な構成で距離計測が可能である。しかし、2枚の画像間で視差を算出するために、2枚の画像間の類似性(類似度)を利用する必要がある。そのため、被写体のエッジのように特徴的な部分の距離計測は可能であるが、表面テクスチャ情報が少ない領域の計測は困難である。
次に、撮像光学系のデフォーカス情報に基づく距離計測手法について説明する。撮像光学系によるデフォーカス情報に基づく手法の代表例としては、Depth From Defocus法(以下、「DFD法」と称する)がある。
DFD法では撮像光学系によるデフォーカス情報、すなわち、ボケ像の大きさを算出することで距離を計測する。
図1(b)にDFD法の測定原理の説明図を示す。ここでは、撮像装置10で被写体30の計測点Mの距離を計測することを想定している。撮像装置10の撮像光学系11は合焦面40から出射した光線を撮像素子12上に結像するように配置されている。撮像光学系11の光学中心Oから合焦面40までの距離をZ、光学中心Oから撮像素子12までの距離をzとする。撮像光学系11の焦点距離をfとすると、撮像素子12と撮像光学系11は近軸結像公式から以下の式(3)を満たすように配置される。
Figure 2011133360
一方、撮像光学系11の光学中心Oから計測点Mまでの距離をZとすると、計測点Mから出射した光線は光学中心からzの距離に結像される。近軸結像公式からz、Z、fは以下の式(4)を満たす。
Figure 2011133360
式(4)から、撮像光学系11の光学中心Oから計測点Mまでの距離Zと、光学中心Oから合焦面40までの距離Zとが異なる場合(Z≠Z)を考える。その場合、z≠zとなり、結像位置も異なることがわかる。つまり、計測点Mから出射した光線は、撮像素子12上で一点には結像せず、広がった光束となる。光束の広がりが撮像光学系11によるボケ像の大きさである。このボケ像の大きさをbとすると、三角形αβγと三角形δεγは相似の関係が成立する。これよりb:Aの比とz−z:zの比が等しいので以下の式(5)が導かれる。
Figure 2011133360
ここで、Aは撮像光学系11の入射瞳径である。上記式(5)の関係から、合焦面40と計測点Mとの間隔が大きくなるほど、ボケ像の大きさが大きくなることがわかる。つまり、ボケ像の大きさを評価することで、合焦面40から計測点Mまでの距離を計測することができる。
非特許文献1では、撮像光学系の瞳を符号化することで撮像光学系によるボケ像の大きさの計測精度を向上させる技術が説明されている。この技術は、撮像光学系の瞳を符号化することで、ボケのパターンが瞳と同形状に符号化されることを利用している。
ただし、非特許文献1の手法でも撮像光学系によるボケ像の評価の際に、被写体のエッジやテクスチャ情報を利用する必要がある。そのため、エッジやテクスチャのない領域ではボケ像の大きさを評価することができない。
<アクティブ方式>
次にアクティブ方式について説明する。アクティブ方式はパッシブ方式に比べて被写体の表面テクスチャの影響を受けにくい距離計測が可能である。これは、計測対象の表面テクスチャ情報が少ない場合でも投影された照明パターンを手がかりにして、距離計測を行うためである。アクティブ方式には主に三角測量に基づく手法と、投影光学系のデフォーカス情報に基づく手法がある。
三角測量に基づく手法の代表例としては空間符号化法がある。非特許文献2では空間符号化法の一種であるグレイコードパターン投影法が説明されている。
図2(a)を参照して、グレイコードパターン投影法の原理について説明する。投影装置20により被写体に投影したパターンを、X方向に距離Bだけ離れた位置にある撮像装置10で撮影し、距離計測を行う。このとき、投影装置20の光軸は撮像装置10の光軸に対して角度ψだけ傾いているものとする。投影装置20からの主光線の出射角をφ、撮像装置10への入射角をθとすると、幾何学的な関係から以下の式(6)が導かれる。
Figure 2011133360
撮像装置10への入射角θは計測点Mの結像位置がmであることから、以下の式(7)で計算することができる。
Figure 2011133360
ここで、fは撮像装置10の撮像光学系11の焦点距離である。一方、撮像画像上で投影装置20からの出射角φを一意に求めるためには、投影パターンに何らかの符号化が必要になる。グレイコードパターン投影法では、投影装置20の光源アレイ22に入力されるパターンをグレイコードパターンにし、複数枚の画像投影と撮像を行うことで、投影装置20からの出射角φを一意に定める。X方向の出射角の識別本数を2にするためには、少なくともn枚の投影パターンが必要になる。
図2(b)にn=4の場合の投影パターンを示す。このように、0と1からなるバイナリーのパターンを投影し、画像上で0か1かの判定を行う。判定結果に応じて、画像上の各画素に0か1かの符号を割り振る。n=4の場合、これを4回繰り返すことで、4bitの符号が各画素に割り振られることになる。4bitのグレイコードは0〜15の値をとるため、空間を16領域に分割することができる。以下の表(1)に符号と領域番号の対応関係を示す。
Figure 2011133360
領域番号iが判明すれば投影装置20の画角と光源アレイ22のサイズから光源アレイ22上での位置xを一意に決定することができる。光源アレイ22上での位置xが決まると、出射角φは以下の式(8)で算出される。
Figure 2011133360
グレイコードパターン投影法では、空間の分割数が大きい程高密度な距離計測が可能になるが、投影パターン数が増加する。よって、高密度計測を行う場合、計測時間が増加するため、動きのある被写体を計測し難い。
空間符号化法には、他にもレインボー法と呼ばれる光の波長方向で符号化する方法や、多値パターンを用いて符号化する方法が提案されている。しかし、何れの方法もグレイコードパターン投影法と比較して被写体の分光反射率に影響を受けやすい手法であるため、ロバストな計測は困難である。
次に、投影光学系のデフォーカス情報に基づく手法について説明する。図3(a)を参照して、投影光学系のデフォーカス情報に基づく手法の原理について説明する。光源アレイ22から出射された光線を合焦面40に結像するように、投影装置20の投影光学系21を配置する。投影光学系21の焦点距離をf、投影光学系21の光学中心Oから合焦面40までの距離をZとする。また、光学中心Oから光源アレイ22までの距離をzとする。近軸結像公式から以下の関係式(9)を満たすように投影装置20の投影光学系21を配置する必要がある。
Figure 2011133360
投影装置20の光源アレイ22には略点光源パターンが入力される。光源アレイ22上の位置sに略点光源パターンを表示した場合、合焦面40上ではSの位置に結像される。
ただし、距離Zの位置に被写体30がある場合には、一点に結像されず光束が広がる。この光束の広がりを投影光学系のデフォーカス情報、すなわち、ボケ像の大きさとする。ボケ像の大きさbは三角形αβγと三角形αδεの相似の関係から、以下の式(10)で記述される。
Figure 2011133360
一方、撮像装置10は撮像光学系11の光軸と、投影装置20の投影光学系21の光軸がZ方向で一致するように配置されている。図3(a)では、ビームスプリッタ50を用いて反射光と透過光の強度分割をすることで、同軸配置を実現している。撮像光学系11がパンフォーカスであり、撮像素子12と撮像光学系11との距離が焦点距離fと等しい場合、撮像光学系11の横倍率ηは以下の式(11)となる。
Figure 2011133360
従って、撮像素子12上でのボケ像の大きさbは横倍率を考慮した以下の式(12)で記述される。
Figure 2011133360
これより撮像素子12上でのボケ像の大きさを算出することで、距離Zを求めることができる。
次に非特許文献3では、図3(a)で説明した構成を用いて、図3(b)に示す規則的に並んだ略点光源パターンを被写体に投影し、投影された略点光源のボケ像の大きさから距離計測を行う手法が説明されている。この非特許文献3では、式(12)を明示的には用いない方法について説明されている。この手法では、キャリブレーション工程で予め略点光源のボケ像の大きさと距離の関係を取得しておく。そして、計測時に撮像画像とキャリブレーション画像の略点光源のボケ像を比較することで距離を算出する。
非特許文献3の手法は、入力するパターンが図3(b)に示す規則的に並んだ略点光源パターンの1種類であるため、1回の画像撮影で距離計測が算出可能である。そのため、移動する被写体に対しても距離計測が可能である。
一つの略点光源が一つの距離計測点に対応しているため、略点光源数が多いほど、高密度な距離計測が可能である。ただし、非特許文献3で用いられるボケ像の大きさの評価法では、計測したい略点光源のボケ像と隣接する略点光源のボケ像が重なり合う範囲では、計測が困難となる。そのため、略点光源の間隔を十分に広くする必要があり、距離計測点の密度は低くならざるを得ない。非特許文献3の手法では、画像セグメンテーションを用いた補間処理を導入することで距離計測の密度を向上させる方法が導入されている。ただし、画像セグメンテーションが失敗する範囲ではこの補間処理は実行できない。
(第1実施形態)
図4(a)を参照して、第1実施形態に係る距離計測装置の概略上面図について説明する。距離計測装置は、撮像装置10、投影装置20が、ビームスプリッタ50、距離計測部80を備える。また被写体30が図に示す位置に配置されている。
投影装置20は、投影光学系21、略点光源アレイ22、パターン制御部23、光学伝達特性変更素子24を備える。
投影光学系21は、一又は複数の屈折・反射光学素子から構成されるもので、焦点距離fを有する。投影光学系21の歪曲収差など各種パラメータは予めキャリブレーションしてあるものとする。
略点光源アレイ22には、LDアレイ、LEDアレイ、有機EL素子など各種自発光型の素子を集積化したものを用いることができる。指向性の高いビームを出力するLDアレイを用いる場合には、LDアレイの前方に拡散板を配置し、拡散光に変換することが望ましい。また、照明光の透過率を任意に調整可能なLCDやLCOSのように非自発光型の素子を用いることもできる。
パターン制御部23は、略点光源アレイ22の発光パターンを任意に制御することができる。自発光型の素子の場合には、パターン制御部23により発光輝度を段階的に調整することが可能である。同様に非自発光型の素子の場合にも、パターン制御部23により透過率を任意に制御できるため、輝度を段階的に調整することが可能である。
第1実施形態では、略点光源アレイ22の発光パターンは図3(b)に示す規則的に並べられた略点光源パターン60を用いることができる。略点光源パターン60は略点光源61と、非発光領域62とから構成される。略点光源61は水平方向にはpの間隔で、垂直方向にはpの間隔で配置される。水平方向の略点光源61の点数をI、垂直方向の略点光源61の点数をJとする。つまり、略点光源アレイ22上に略点光源は、I×J点配置されている。
ただし、略点光源アレイ22の発光パターンは図3(b)に示したものに限られず、対象シーンの範囲、計測する奥行き範囲、被写体の反射率など各種条件に応じて適切なものに調整可能である。また、略点光源61は必ずしも規則的に並んでいる必要はない。さらに略点光源アレイ22の略点光源61を全て発光させると、投影装置20からは均一な照明が被写体に照射されることになる。これを利用することで、均一照明画像の撮影も可能になる。すなわち、本構成を用いれば、略点光源アレイ22上の発光パターンの切り替えを行うのみで、距離計測と均一照明画像の撮影とを実行することができる。
座標(X、Y、Z)の原点には、投影光学系21の光学中心Oが位置するようにする。座標の向きは図4(a)のように設定する。略点光源アレイ22は座標の−zの位置に、XY平面に対して平行となるよう配置される。このとき、略点光源アレイ22から出射した光束は、投影光学系21によりZの位置に設定された合焦面40に収束する。近軸結像公式から略点光源アレイ22の位置z、合焦面40の位置Z、投影光学系21の焦点距離fは以下の式(13)で記述される関係にある。
Figure 2011133360
合焦面40は計測範囲のカメラから最も遠い位置に設定されることが望ましい。これは、合焦面40の前側で生じたボケ像と、後側で生じたボケ像の分離が困難なためである。光学伝達特性変更素子24は、投影光学系21の瞳位置(レンズ位置)に配置される。第1実施形態で変更される光学伝達特性は点像分布関数(Point Spread Function;以下、「PSF」と称する)である。この場合、光学伝達特性変更素子24は透過率を空間的に符号化した空間透過率符号化素子である。第1実施形態では、空間透過率符号化素子は瞳位置に配置された符号化された開口であるとみなすことができるため、以下、符号化瞳と称する。
図4(b)を参照して、第1実施形態の符号化瞳部70について説明する。図4(b)に示した符号化瞳部70は微小開口71がランダムに配置されたパターンである。微小開口以外の領域は遮光部72である。第1実施形態では、使用する符号化瞳部70として、ランダムな微小開口71のパターンを例に挙げて説明するが、空間的に周期性の低いパターンであれば良い。従って、通信などで利用されるM系列からなるパターンも同様に用いることができる。なお、符号化瞳部70の直径はAである。
投影光学系21によるボケ像は符号化瞳部70の形状と同形状になることが知られている。符号化瞳部70を有する投影光学系で略点光源から出射した光束を投影すると、Zに配置された被写体30上には符号化瞳部70のパターンと同形状のパターンが投影される。
ボケ像の大きさbを単純な光線で考慮すると、三角形αβγと三角形αδεとの相似の関係からbは以下の式(14)のように記述される。
Figure 2011133360
式(14)からボケ像の大きさbは被写体距離Zに依存した関数であることがわかる。このため、ボケ像の大きさbを評価することで、距離計測を行うことが可能である。簡単のために幾何光学的に説明したが、実際には波動光学的な振る舞いもするため、それを考慮する必要がある。
波動光学的な振る舞いとは具体的には回折である。符号化瞳部70の形状が円形である場合、回折の影響により、ボケ像内での強度分布は0次のベッセル関数で表現される。また、符号化瞳部70の形状が矩形の場合には、ボケ像内での強度分布がsinc関数(シンク関数)で表現される。これらの回折の影響による強度変動は、計測の前に行うキャリブレーションステップにより、適切に補正することができる。キャリブレーションステップの詳細については後述する。
撮像装置10は撮像光学系11、撮像素子12を備える。撮像光学系11は一又は複数の屈折・反射光学素子から構成されるもので、焦点距離fを持つ。なお撮像光学系11の歪曲収差などの各種カメラパラメータは予めキャリブレーションしてあるものとする。撮像素子12はCCDセンサやCMOSセンサなどの各種光電変換素子を用いることができる。
撮像装置10はパンフォーカス状態とし、被写界深度が撮像領域よりも大きいことが好ましい。これは、投影装置20の投影光学系21によるデフォーカスと撮像光学系11によるデフォーカスを分離することが目的である。そのためには、撮像光学系11の絞り径を適切な値に設定する必要がある。
撮像装置10の前方被写界深度Lと後方被写界深度Lは、それぞれ以下の式(15)と式(16)から計算される。
Figure 2011133360
Figure 2011133360
ここで、φは許容錯乱円径、FnoはF値(絞り値)、Zは被写体距離、fは撮像光学系11の焦点距離である。前方被写界深度Lと後方被写界深度Lとの和が撮像光学系11の被写界深度である。
例えば、1/2インチ、VGA、焦点距離16mmのレンズからなるカメラを用いて、1m離れた30cmの奥行き範囲のシーンを撮影する場合を考える。許容錯乱円径φが撮像素子12のピクセルピッチと同じ0.01mmであるとすると、F値(絞り値)は4よりも大きく設定する必要がある。一方、回折によるボケの限界は以下に示すエアリーの式(17)で計算される。
Figure 2011133360
ここでλは光の波長である。可視光において最も長波長である780nmで計算すると、撮像素子12のピクセルピッチが0.01mmであればF値はF11よりも小さくすれば回折による影響はなくなることになる。つまり、上記条件の下ではF値をF4〜F11の間に設定する必要がある。
一方、ビームスプリッタ50を用いて、撮像装置10の撮像光学系11の光軸と投影装置20の投影光学系21の光軸とを一致させる。ビームスプリッタ50には強度で反射光と透過光を分割する素子であるハーフミラーを用いることができる。通常は反射光と透過光の比を1:1とするが、プロジェクタの輝度やカメラの感度に応じて適切に調整しても良い。ビームスプリッタ50による反転を考慮した座標原点位置と撮像光学系11の光学中心Oが一致するよう撮像光学系11を配置する。また、撮像素子12は撮像光学系11の光学中心Oから焦点距離fだけ離して配置される。
距離計測部80は、光学伝達特性変化量計測部81と、キャリブレーションデータ格納部82を備える。光学伝達特性変化量計測部81で変化量を計測する光学伝達特性として、例えばPSF(点像分布関数)を使用する。PSFの変化量の計測には相関演算を用いる。演算装置としては、パーソナルコンピュータ、FPGA、専用ハードウェアなど各種演算装置を用いることができる。
キャリブレーションデータ格納部82は、後述するキャリブレーションステップで取得するキャリブレーション画像を保存する。ハードディスクドライブ、フラッシュメモリーなど各種ストレージ機器を用いることができる。
図5(a)を参照して、第1実施形態の全体処理フローについて説明する。全体処理では、最初にキャリブレーションステップS501で装置のキャリブレーションが行われる。その後、距離計測ステップS502で距離計測が行われる。計測終了判定ステップS503において計測終了となるまで、距離計測ステップS502を繰り返し行う。
キャリブレーションステップS501では、図5(b)に示した装置構成でキャリブレーションを実施する。図4(a)との違いはキャリブレーションボード90と、並進ステージ91と、図示しない並進ステージ制御部92が追加されている点である。
キャリブレーションボード90はXY平面と平行に配置され、並進ステージ91に乗せられる。並進ステージ91は、並進ステージ制御部92からの制御に基づいて、キャリブレーションボード90をXY平面との平行関係を維持したまま、Z軸に沿って移動する。キャリブレーションボード90の表面はランバート面であることが好ましいが、反射率が均一で、拡散性がある表面ならば他の面であっても良い。
また、キャリブレーションボード90のサイズは計測範囲をカバーすることが望ましい。カメラから最も遠い計測位置をZendとし、プロジェクタの水平半画角をφmax,hとする。この場合、キャリブレーションボード90の水平サイズWcalib,hは以下の式(18)を満たすことが望ましい。
Figure 2011133360
同様に、プロジェクタの垂直半画角をφmax,vとすると、垂直サイズWcalib,vは以下の式(19)を満たすことが望ましい。
Figure 2011133360
このサイズより大きいサイズのキャリブレーションボード90が準備できない場合には、X方向とY方向に動作する並進ステージ91を用いて計測範囲をカバーするように動かせば良い。
図6(a)を参照して、第1実施形態のキャリブレーションステップS501の具体的な処理フローについて説明する。第1実施形態では投影光学系、撮像光学系ともにシフトインバリアントなものであると仮定している。そのため、キャリブレーションステップは簡略化される。
キャリブレーションステップは回折によるボケ像内の強度変動を補正するために必要になる。キャリブレーションステップでは、最初にステップS601において、距離取得範囲の開始位置であるZstartと終了位置であるZendが設定される。なお、Zendは合焦面40までの距離Zよりも小さくする。ステップS602において、キャリブレーションボード90をZに移動させ、投影光学系21を合焦面40に合焦する。ステップS603で計測ピッチZpitchを設定する。この計測ピッチZpitchは距離の計測分解能に対応する。
ステップS604において、並進ステージ制御部92によりキャリブレーションボード90を制御して、キャリブレーションボード90をZstartに移動させる。ステップS605では、投影装置20内のパターン制御部23により、略点光源アレイ22の中央部の略点光源を点灯させる。ステップS606において、撮像装置10により、画像撮影を実施する。ここでは、投影光学系21、撮像光学系11ともにシフトインバリアントを仮定しているため、中央部の一点のみを点灯させて、画像撮像すれば良い。投影光学系21、撮像光学系11のシフトインバリアントが仮定できない場合には、図3(b)に示した略点光源パターン60に対応する位置の略点光源を順に点灯させて画像撮影する必要がある。
ステップS607において、撮像画像をキャリブレーションボード90の位置Zに関連づけて、キャリブレーションデータ格納部82に保存する。ステップS608において、キャリブレーションボードの位置がZendに到達しているかを判定する。到達している場合には(ステップS608;YES)、キャリブレーションステップを終了する。到達していない場合には(ステップS608;NO)、ステップS609に進み、キャリブレーションボード90をZpitchだけ移動させる。そして、ステップS605に戻る。
図6(b)を参照して、にZを変えながら撮影した複数枚のキャリブレーション画像の例について説明する。画像93はZ=Zstartのときのキャリブレーション画像である。画像94はZ=Zのときのキャリブレーション画像である。画像95はZ=Zのときのキャリブレーション画像である。画像96はZ=Zendのときのキャリブレーション画像である。なお、それぞれのZの値はZstart<Z<Z<Zendという関係にある。
また、パターン97はボケ像のパターンを示している。符号化瞳部70を有する投影装置20によるボケ像は符号化瞳と同形状になる。合焦位置Zに近いZendではボケ像のサイズは小さくなる。Zendから離れ、Zstartに近づくほど、合焦位置Zから離れるため、ボケ像のサイズが大きくなる。
以上がキャリブレーションステップS501の具体的な処理フローである。なお、キャリブレーションステップS100は投影光学系21のレンズデータが判明している場合には、光学シミュレーションにより省略することができる。例えば、キャリブレーションボード90に対応する位置に評価面を設定し、略点光源位置から光線追跡を行い、スポットダイアグラムを計算する。これにより、PSFが得られるため、キャリブレーション画像と同等のものが得られる。
次に図7(a)を参照して、図5(a)で説明した第1実施形態の距離計測ステップS502の具体的な処理フローについて説明する。距離計測ステップでは、ステップS701で略点光源アレイ22に規則的に並べられたI×J点の略光源パターンを点灯させる。 次にステップS702において、撮像装置10により画像撮影を実施する。ステップS703において、計測略点光源をi=0、j=0に設定する。計測略点光源数はI×J点存在するため、iは0からI−1まで、jは0からJ−1までの整数値をとることになる。ステップS704において、iとjの各値から撮像画像座標上での主光線の位置X=X’、Y=Y’を計算する。
図7(b)に略点光源の主光線の撮像素子12上での結像位置を示す。図7(b)では、簡単のためにXZ平面による断面図を示している。投影装置20において、i=iの略点光源sから出射する光線Rayの略点光源アレイ22上でのX座標Xは以下の式(20)で示される。ここで、pは図3(b)で説明した、規則的に並べられた略点光源パターン60の水平方向の間隔である。
Figure 2011133360
また投影光学系21の光軸に対する主光線の出射角φは以下の式(21)で示される。
Figure 2011133360
被写体30上の計測点Mに照射された光は、計測点Mを2次光源として光線を発する。発せられた光線はビームスプリッタ50で反射し、光線Ray’となり、撮像装置10に入射する。撮像装置10における受光角θは、撮像素子12上での結像位置をX’とすると、物体の奥行き位置に依らず以下の式(22)で示される。
Figure 2011133360
同軸、かつ、画角が等しい場合、φ=θが成り立つので、式(21)及び式(22)から結像位置X’は以下の式(23)で示される。
Figure 2011133360
すなわち、略光源の点灯位置Xから、被写体30の奥行きに依らず撮像素子12上での主光線の結像位置X’を導出することができる。これをY方向についても同様に、以下の式(24)、式(25)が導かれる。
Figure 2011133360
Figure 2011133360
次にステップS705において、Zの値をZstartに設定する。キャリブレーション画像はステップS607においてキャリブレーションデータ格納部82にZの値と関連付けて保存してあるので、Z=Zのキャリブレーション画像を読み出す。
ステップS706において、光学伝達特性変化量計測部81は撮像画像と読み出したキャリブレーション画像とで相関演算を実施する。
キャリブレーション画像の中心位置と撮像画像のX’ 、Y’を一致させて相関演算をするために、以下の式(26)を使用する。式(26)により算出される相関値は、まず図9で後述する画像13A、または、画像13Bと画像93A〜画像96Aを最大値で正規化する。その後、相関演算領域W×Wの全画素に対して差分の絶対値を演算し、それらの和の逆数をとったものに相当する。
Figure 2011133360
ここで、Correは相関値を表す。Wは水平方向の評価ウィンドウサイズ、Wは垂直方向の評価ウィンドウサイズである。また、gcalibはキャリブレーション画像を、gcapは撮像画像を示している。abs ( )は( )内の絶対値を計算する関数である。なお、gcalibとgcapは、画像輝度による変動分をキャンセルするために、評価ウィンドウW×W内の輝度の最大値で予め正規化してあるものとする。(x,y)は画像座標値であり、以下の式(27)で示すように座標値(X,Y)をピクセルピッチpで除した値である。
Figure 2011133360
式(26)で示される相関演算を実施すると、キャリブレーション画像gcalibと撮像画像gcapの差が大きいほど、Correの値は小さくなる。一方、キャリブレーション画像gcalibと撮像画像gcapの差が小さいほどCorreの値は大きくなる。すなわち、Correの値の大小で、キャリブレーション画像と撮像画像の類似性を評価することができる。
ステップS707では、ZがZendよりも小さいか否かの判定を行う。ZがZendよりも小さい場合(ステップS707;YES)、ステップS708に進む。ステップS708において、Zの値にZpitchの値を加算し、ステップS706に戻る。一方、ZがZendよりも大きい場合(ステップS707;NO)、ステップS709に進む。
ステップS709において、ZstartからZendの間で算出した相関値の中でも最も高い値を示したZの値を距離として出力する。ステップS710において、iがIよりも小さいか否かを判定する。iがIよりも小さい場合(ステップS710;YES)、ステップS711に進む。ステップS711において、iをi+1に更新した後、ステップS704に戻る。一方、i=Iである場合(ステップS710;NO)、ステップS712に進む。ステップS712において、同様にjがJよりも小さいか否かを判定する。jがJよりも小さい場合(ステップS712;YES)、ステップS713に進む。ステップS713において、jをj+1に更新した後、ステップS704に戻る。一方、j=Jである場合(ステップS712;NO)、距離計測ステップを終了する。
次に図8乃至図11を参照して、相関演算を実施することでボケ像の大きさを判定する原理について説明する。
図8(a)はI=4、J=3の場合に被写体30を撮影した画像13を示した図である。図8(b)は撮影に使用した被写体30の詳細を示した図である。図8(b)に示すように、被写体30は座標の原点Oから距離Zの面30Aと、距離Zの面30Bを有する階段状の物体である。なお、被写体30はX方向には階段状になっているが、Y方向には勾配はない。図8の撮像画像においては、合焦面40に近い面30Bではボケ像のサイズが比較的小さく、合焦面40から遠い面30Aではボケ像のサイズが比較的大きくなっていることがわかる。
図9に示した画像13Aは、図8(a)における撮像画像13のi=0、j=0のときの相関演算領域W×Wを拡大図である。同様に13Bはi=3,j=0の相関演算領域W×Wの拡大図である。
また、画像93Aは図6(b)の画像93で示したZ=Zstartのときのキャリブレーション画像の相関演算領域W×Wの拡大図である。同様に画像94A、画像95A、画像96Aは、それぞれ画像94、画像95、画像96から相関演算領域W×Wを切り出し、拡大した図である。
図10(a)に画像13Aと画像93A〜画像96Aの中央部1ラインのデータを抽出し、正規化した後の画像の輝度分布をプロットしたグラフを示す。同様に図10(b)に画像13Bと画像93A〜画像96Aの場合の画像の輝度分布をプロットしたグラフを示す。図10(a)の撮像画像のグラフ13aと、画像93A〜画像96Aに対応するグラフ93a〜グラフ96aの各グラフとを比較すると、Z=Zのときのグラフ94aとの類似性が高い。一方、図10(b)の撮像画像のグラフ13bはZ=Zのときのグラフ95aとの類似性が高い。
図11に、横軸に距離Z、縦軸に相関値Correをプロットしたグラフを示す。グラフCaがi=0、j=0のときのグラフを、グラフCbがi=3、j=0のときのグラフを示している。i=0、j=0のときはZで最も高い相関値Corremaxを示すので、距離Zを出力する。一方、i=3、j=0のときはZで最も高い相関値Corremaxを示すので、距離Zを出力する。
上記のように相関値Correが最も高いZの値を出力した後、ステップS710に進む。ステップS710において、iがIよりも小さいか否かの判定を行う。iがIよりも小さい場合(ステップS710;YES)、ステップS711に進み、iの値に1を加算した後、ステップS704に戻る。一方、iがIと等しい場合(ステップS710;NO)、ステップS712に進む。
ステップS712において、ステップS710と同様に、jがJよりも小さいか否かの判定を行う。jがJよりも小さい場合(ステップS712;YES)、ステップS713に進み、jの値に1を加算した後、ステップS704に戻る。一方、jがJと等しい場合(ステップS712;NO)、画像中の全ての略点光源において距離Zが出力されたことになるため、距離計測ステップS502を終了する。以上が距離計測ステップS502の処理フローである。
ステップS502が終了すると、ステップS503の計測終了判定ステップに進む。ステップS503において、計測を終了するか否かの判定を行う。計測を終了しない場合(ステップS503;NO)、ステップS502に戻る。これにより複数画面内での距離計測を行うことができる。一方、計測を終了する場合(ステップS503;NO)、計測を終了し、リターンする。
ここで、投影装置20の瞳を非特許文献3で用いられている円形瞳ではなく、ランダムなパターンの符号化瞳とした場合の効果の説明をする。まず、隣接する略点光源においてボケ像の重なりがない場合について説明する。
図12(a)に円形瞳で撮影したときの撮像画像を、また、図12(b)にキャリブレーション画像を示す。そして、図13(a)に円形瞳の場合の相関演算領域W×Wにおける正規化輝度分布を示す。図13(b)に円形瞳の場合の相関値Correの結果を示す。グラフCacがi=0、j=0のときのグラフであり、グラフCbcがi=3、j=0のときのグラフである。グラフCacは被写体距離Zで、グラフCbcは被写体距離Zで相関値Correの最大ピークを持つ。従って、円形瞳であっても図12(a)の撮像画像のように隣接する略点光源においてボケ像の重なりがない場合には、ボケの大きさを判定することができる。
次に、図14を参照して、計測する略点光源によるボケと隣接する略点光源のボケが重なり合う場合について説明する。略点光源数を9×5点としたとき(I=9、J=5)の撮像画像である。図14(a)は円形瞳の場合、図14(b)が符号化瞳の場合である。略点光源数を増やしたため、その密度が上がり、隣接する略点光源によるボケ像に重なりが生じている。
図14(a)に示される相関演算領域13AC’と、図14(b)に示される相関演算領域13A’の1ラインの正規化輝度分布とキャリブレーション画像の正規化輝度分布を図15(a)に示す。また、図15(b)に隣接略点光源によるボケ像に重なりがある場合の相関値Correをプロットしたグラフを示す。グラフCac’が円形瞳の場合の相関値を示したもので、グラフCa’が符号化瞳の場合の相関値を示したものである。
円形瞳の場合、ボケ像に重なりがあると隣接する略点光源のボケ像の分離を行うことができない。そのため、図15(a)の正規化輝度分布において、被写体30が存在する距離であるZ=Zのキャリブレーション画像との相関が低くなる。図15(b)のグラフCac’に示すように、相関値Correをとっても対応する位置に相関のピークが来ない。Z=Zstartのようにキャリブレーション画像の中で最もボケ像幅の広いものとの相関が高くなってしまう。
一方、符号化瞳の場合には、ボケ像に重なりがあっても計測する略点光源によるボケ像と隣接する略点光源によるボケ像の分離を行うことができる。これは、ボケ像に重なりがあっても、ランダムに配置された微小開口による個々のボケ像の一部が保存されるからである。そのため、図15(a)の正規化輝度分布において、被写体30が存在する距離であるZ=Zのキャリブレーション画像との相関が高くなる。また図215(b)のグラフCa’に示すように正しい距離で相関値Correの最大ピークとなる。
このように、投影装置20の瞳を従来法の円形瞳で計測を行う場合には、ボケ像の重なりが悪影響を及ぼすため、略点光源を配置する密度に制限があった。一方、第1実施形態で説明したように、符号化瞳で計測を行う場合には、ボケ像の重なりの影響を除外できる。そのため、略点光源を従来よりも高密度に配置することができる。これにより距離データを取得する密度を向上させることができる。また、密度が同じであったとしても許容されるボケ像に重なりが生じても良いため、距離取得範囲を拡大することも可能となる。
(第2実施形態)
図16(a)を参照して、第2実施形態に係る距離計測装置の概略上面図について説明する。第2実施形態では投影装置20の投影光学系21と撮像装置10の撮像光学系11の光軸が同軸ではない構成である。投影装置20と撮像装置10は光軸が平行になるように基線長Bだけ離して配置されている。座標の原点、すなわち(X,Y,Z)=(0,0,0)となる位置は、撮像光学系11の光学中心位置Oとする。
第2実施形態では、第1実施形態とは異なりビームスプリッタ50を必要としない構成である。ビームスプリッタを使用する構成だと、ビームスプリッタ50がハーフミラーである場合、反射光と透過光の比は1:1である。投影装置20から出射した光は一度の透過と一度の反射後に、撮像装置10に入射するため、1/4に減衰することになる。そのため、ハーフミラーを必要としない第2実施形態では、照明の効率が4倍になるというメリットがある。
一方で、第1実施形態とは異なり、投影光学系21と撮像光学系11が同軸でないため、オクルージョンが発生し、距離計測ができない領域が存在するというデメリットがある。また、点光源の結像位置が撮像素子12上のどの位置に来るのかは事前にわからないため、キャリブレーション画像をラスタスキャンしながら相関演算する必要がある。そのため、第1実施形態に比べると演算コストが増加する。よって、要求される照明効率と、演算コスト・オクルージョンに応じて第1実施形態と第2実施形態の構成のうち適切なものを選択すればよい。
図16(b)を参照して、第2実施形態における全体処理フローチャートについて説明する。キャリブレーションステップS1601と計測終了判定ステップS1603は第1実施形態で説明した図5のステップS501、ステップ503と同一であるため、ここでは説明を省略する。
図17(a)を参照して、第2実施形態における距離計測ステップS1602の具体的な処理を示したフローチャートについて説明する。距離計測ステップではまず、ステップS1701において、略点光源アレイ22に規則的に並べられたI×Jの略点光源パターンを点灯する。次にステップS1702において、画像撮影を行う。ステップS1703において、キャリブレーション画像の距離ZをZstartに設定する。
次にステップS1704において、撮像画像の画像座標をx = xstart、y=ystartに設定する。なお、x=xstart、y=ystartは撮像画像の相関演算を開始する画像座標を表している。なお、相関演算を終了する画像座標はx=xend、y=yendである。
ステップS1705において、距離Zのときのキャリブレーション画像と撮像画像の座標(x,y)を中心とする相関演算領域W×Wで相関演算を実施し、相関値Correを算出する。相関演算には第1実施形態で用いた式(26)を使用する。次にステップS1706において、算出された相関値Correが予め設定した相関値の閾値Correthよりも大きいか否か判定する。大きい場合には(ステップS1706;YES)、ステップS1707に進む。一方、閾値以下の場合には(ステップS1706;NO)、ステップS1708に進む。ステップS1707において、画像座標(x,y)における距離候補値をZcanとし、座標(x,y)における閾値Correthを、算出された相関値Correに更新する。
ステップS1708において、xがxendよりも小さいか否かの判定を行う。xがxendよりも小さい場合(ステップS1708;YES)には、ステップS1709に進み、xに1を加算した後、ステップS1705に戻る。一方、xがxendよりも大きい場合(ステップS1708;NO)には、ステップS1710に進む。
ステップS1710において、yがyendよりも小さいか否かの判定を行う。yがyendよりも小さい場合(ステップS1710;YES)には、ステップS1711に進み、yに1を加算した後、ステップS1705に戻る。一方、yがyendよりも大きい場合(ステップS1710;NO)には、ステップS1712に進む。
ステップS1712において、ZがZendよりも小さいか否かの判定を行う。ZがZendよりも小さい場合(ステップS1712;YES)には、ステップS1713に進み、ZにZpicthを加算した後、ステップS1704に戻る。一方、ZがZendよりも大きい場合(ステップS1712;NO)には、ステップS1714に進む。
ステップS1704〜ステップS1713は、図17(b)に示すように奥行き値Zstart〜Zendに対応するキャリブレーション画像を、撮像画像13中でラスタスキャンしながら相関演算することに相当する。第2実施形態では、撮像光学系11と投影光学系21の光軸が同軸ではないため、点光源中心位置が画像中で一意に決まらない。そのため、上記ラスタスキャン処理が必要となる。
ステップS1714において、距離候補値Zcanの絞り込みを行う。例えば、隣接する(x,y)に同一の奥行き値が割り振られた場合には、より相関値の高い方を出力するといった処理をする。
ステップS1715において、ステップS1714で絞り込まれた距離候補Zcanに対して、座標(X,Y)を算出する。図16の計測点Mの距離計測結果がZのとき、その座標(X,Y)は、以下の式(28)で算出される。
Figure 2011133360
ここで、(x,y)はカメラ座標上での計測点Mの結像位置である。上記(X,Y)の算出を全ての距離候補に対して計算する。ステップS1716おいて、ステップS1715で算出した座標(X,Y,Z)の値を出力する。以上が距離計測ステップS1602の具体的な処理フローである。
(第3実施形態)
第3実施形態に係る距離計測装置の概略上面図は、第1実施形態の図4(a)と同様である。ただし、光学伝達特性変更素子24のパターンが第1実施形態とは異なる。第3実施形態でも変更される光学伝達特性はPSFである。この場合も、光学伝達特性変更素子24は透過率を空間的に符号化した空間透過率符号化素子である。第3実施形態でも、空間透過率符号化素子は瞳位置に配置された符号化された開口であるとみなせるため、以下、符号化瞳と称する。
第1実施形態の場合、符号化瞳24として図4(b)で示した微小開口がランダムに配置された符号化瞳部70のパターン、あるいは、M系列に基づくパターンを使用する構成について説明した。第3実施形態の場合には、図18(a)で示すパターンの符号化瞳部70’を使用する。
このパターンは非特許文献1の撮像光学系の瞳部分に使われているパターンである。このパターンは周波数領域で特異な性質を持つ。図18(b)は、図18(a)の符号化瞳部70’の周波数領域での性質を示すための図である。この図18(b)は、空間領域におけるパターンのスケールを変えたときの、対応する周波数領域の信号をプロットしたものである。グラフ70s4’、グラフ70s2’、グラフ70s1’は瞳径がそれぞれ4Apb、2Apb、Apbのときの空間領域でのグラフである。一方、グラフ70f4’、グラフ70f2’、グラフ70f1’は、瞳径がそれぞれ4Apb、2Apb、Apbのときの周波数領域でのグラフである。周波数領域での零点の位置をFで示している。これより、パターンのスケールに応じて零点の位置Fが変わるという性質を持つことがわかる。
比較のために、図18(c)に、円形瞳の周波数領域での性質を説明するための図を示す。グラフ70s4、グラフ70s2、グラフ70s1は瞳径がそれぞれ4Apb、2Apb、Apbのときの空間領域でのグラフである。グラフ70f4、グラフ70f2、グラフ70f1は、瞳径がそれぞれ4Apb、2Apb、Apbのときの周波数領域でのグラフである。周波数領域での代表的な零点の位置をFで示している。これより、スケールによって零点の発生周期は異なるものの、同一位置に零点が発生していることがわかる。
第3実施形態では、PSFを利用したデコンボリューションにより、距離計測を行う。PSFは光学系のインパルス応答に対応する。図18(a)で示すパターンの性質を利用すると、PSFを利用したデコンボリューションの際に、距離計測精度が向上するという効果がある。その効果の詳細については後述する。なお、第3実施形態に使用できるパターンは、上述した性質を有するものであれば図18(a)のパターンに限られるものではない。
非特許文献1では符号化瞳部70’を撮像光学系の瞳部分に使用することで、撮像光学系によるボケ像のサイズの評価に用いていた。しかし、第3実施形態では、投影光学系の瞳に図18(a)で示す符号化瞳を導入することで、ボケ像のサイズを評価する。非特許文献1では撮像光学系によるボケを利用した距離計測であるため、テクスチャの無い被写体では計測できなかった。第3実施形態では投影光学系により符号化瞳パターンを投影するため、テクスチャの無い被写体でも距離計測が可能になる。
図19(a)を参照して、第3実施形態の全体処理のフローチャートについて説明する。キャリブレーションステップS1901と計測終了判定ステップS1903は、第1実施形態で説明したステップS501、ステップS503と同様であるため、ここでは省略する。なお、ステップS1901で取得したキャリブレーション画像は投影光学系21の略点光源に対する応答を表していると考えられる。従って、キャリブレーション画像は各距離で取得したPSFであるとみなせる。
図19(b)を参照して、第3実施形態の距離計測ステップS1902の具体的な処理フローについて説明する。
ステップS1951において、図3(b)に示す略点光源アレイに規則的に並べられたI×J点の略点光源パターンを点灯する。次にステップS1952において、撮像装置10により画像撮影を実施する。
ステップS1953において、計測略点光源をi=0、j=0に設定する。次にステップS1954において、iとjの値から撮像画像座標上での主光線の位置X=X’、Y=Y’を計算する。第1実施形態と同様にX’とY’の値は、式(23)と式(25)により計算される。
ステップS1955において、Zの値をZstartに設定する。次にステップS1956において、観測画像gobsにZ=ZのときのPSFを利用したデコンボリューションを行い、回復画像grecvを生成する。なお、観測画像gobsとは撮像画像の(X’,Y’)を中心とする演算領域W×Wを切り出した画像であるとする。
観測画像gobsは、以下の式(29)のように物体の強度分布gobjとPSFのコンボリューションで記述される。
Figure 2011133360
ここで、h(x,y)はPSFである。式(29)から、観測画像gobsをPSFであるh(x,y)でデコンボリューションすれば物体の強度分布gobjが得られることがわかる。通常、PSFによるデコンボリューションは周波数領域で演算される。その理由は、周波数領域ではコンボリューションを掛け算で演算可能であり、計算を簡略化できるためである。式(29)をフーリエ変換すると以下の式(30)となる。
Figure 2011133360
ここで、Gobs、Gobj、Hはそれぞれ観測画像gobs、物体の強度分布gobj、PSFであるh(x,y)のフーリエ変換を表す。u,vは周波数領域における変数である。式(30)から物体の強度分布のフーリエ変換Gobj(u,v)は、以下の式(31)のように表される。
Figure 2011133360
式(31)を逆フーリエ変換すれば観測画像と光学系のPSFから物体の強度分布を復元することができる。ただし、式(31)はH(u,v)で割り算をしているため、H(u,v)が零の値を持つときには誤差が生じ、完全な物体の強度分布を復元できない。よって、区別するために回復画像のデコンボリューションをGrecvと表記した以下の式(32)を用いる。
Figure 2011133360
回復画像grecvは以下の式(33)で示すようにGrecvの逆フーリエ変換で求められる。
Figure 2011133360
ステップS1957において、ステップS1956で生成した回復画像grecvにPSFであるh(x,y)をコンボリューションし、再ぼかし画像gblurを生成する。再ぼかし画像は以下の式(34)で得られる。
Figure 2011133360
ステップS1958において、観測画像gobsと再ぼかし画像gblurの差の絶対値をとることで、Z=Zのときの誤差値Errorを評価する。具体的には以下の式(35)を用いる。
Figure 2011133360
ステップS1959において、ZがZendよりも小さいか否かの判定を行う。ZがZendよりも小さい場合(ステップS1959;YES)には、ステップS1960に進み、Zの値にZpitchを加算した後、ステップS1956に戻る。一方、ZがZendよりも大きい場合(ステップS1959;NO)には、ステップS1961に進む。ステップS1961において、誤差Errorの値が最も小さいZの値を距離として出力する。
ここで、図18(a)の符号化瞳部70’はスケールに応じて、周波数領域で零点の位置が変わるという性質を持つことを図18(b)により説明した。この性質は、ステップS1956におけるデコンボリューションと、ステップS1957におけるコンボリューションの際に、スケールが異なる場合には誤差が強調され、スケールが一致する場合には誤差が抑えられることを示している。具体的には、スケールが異なる場合、周波数領域での零点の位置が必ず異なるため、零での割り算が発生し誤差が強調される。一方、スケールが一致する場合には、零を零で割ることになるため、誤差が抑えられる。上記、性質を利用することで、PSFのスケールの評価が高精度に行えるため、距離計測の精度も向上する。
次にステップS1962において、iがIよりも小さいか否かの判定を行う。iがIよりも小さい場合(ステップS1962;YES)には、ステップS1963に進み、iに1を加算した後、ステップS1954に戻る。一方、iがIよりも大きい場合(ステップS1962;NO)には、ステップS1964に進む。
ステップS1964において、jがJよりも小さいか否かの判定を行う。一方、jがJよりも小さい場合(ステップS1964;YES)には、ステップS1965に進み、jに1を加算した後ステップS1954に戻る。一方、jがJよりも大きい場合(ステップS1964;NO)には、距離計測ステップS1902を終了する。
ステップS1962からステップS1965の各ステップを行うことで、略点光源アレイ22に並んだ略点光源パターンの全略点光源において距離計測を行うことができる。
(その他の実施形態)
また、本発明は、以下の処理を実行することによっても実現される。即ち、上述した実施形態の機能を実現するソフトウェア(プログラム)を、ネットワーク又は各種記憶媒体を介してシステム或いは装置に供給し、そのシステム或いは装置のコンピュータ(またはCPUやMPU等)がプログラムを読み出して実行する処理である。

Claims (6)

  1. 光源から照射される光が投影光学系のレンズを透過する透過率を空間的に符号化する符号化素子を含む投影手段と、
    前記投影手段により光が投影された距離計測対象を撮像する撮像手段と、
    前記撮像手段により撮像された撮像画像と、予め定められた距離ごとに前記撮像手段により予め撮像された複数のキャリブレーション画像との類似度を示す相関値を算出する算出手段と、
    前記算出手段により算出された相関値が最大となるキャリブレーション画像に対応する距離を距離計測対象までの距離として決定する決定手段と、
    を備えることを特徴とする距離計測装置。
  2. 前記相関値は、撮像画像の各画素とキャリブレーション画像の各画素との差分の絶対値の和の逆数であることを特徴とする請求項1に記載の距離計測装置。
  3. 前記符号化素子は、空間的にランダムに前記透過率を符号化することを特徴とする請求項1又は2に記載の距離計測装置。
  4. 前記投影手段及び前記撮像手段の光軸はビームスプリッタにより同軸に配置されることを特徴とする請求項1乃至3の何れか1項に記載の距離計測装置。
  5. 投影手段が、光源から照射される光が投影光学系のレンズを透過する透過率を空間的に符号化する符号化素子を含む投影工程と、
    撮像手段が、前記投影工程により光が投影された距離計測対象を撮像する撮像工程と、
    算出手段が、前記撮像工程により撮像された撮像画像と、予め定められた距離ごとに前記撮像工程により予め撮像された複数のキャリブレーション画像との類似度を示す相関値を算出する算出工程と、
    決定手段が、前記算出工程により算出された相関値が最大となるキャリブレーション画像に対応する距離を距離計測対象までの距離として決定する決定工程と、
    を有することを特徴とする距離計測方法。
  6. 請求項5に記載の距離計測方法をコンピュータに実行させるためのプログラム。
JP2009293197A 2009-12-24 2009-12-24 距離計測装置、距離計測方法、及びプログラム Withdrawn JP2011133360A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009293197A JP2011133360A (ja) 2009-12-24 2009-12-24 距離計測装置、距離計測方法、及びプログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009293197A JP2011133360A (ja) 2009-12-24 2009-12-24 距離計測装置、距離計測方法、及びプログラム

Publications (1)

Publication Number Publication Date
JP2011133360A true JP2011133360A (ja) 2011-07-07

Family

ID=44346250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009293197A Withdrawn JP2011133360A (ja) 2009-12-24 2009-12-24 距離計測装置、距離計測方法、及びプログラム

Country Status (1)

Country Link
JP (1) JP2011133360A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013008578A1 (en) * 2011-07-08 2013-01-17 Canon Kabushiki Kaisha Image capturing apparatus, control method of image capturing apparatus, three-dimensional measurement apparatus, and storage medium
CN103837129A (zh) * 2014-02-27 2014-06-04 华为终端有限公司 一种终端中的测距方法、装置及终端
JP2014131109A (ja) * 2012-12-28 2014-07-10 Canon Inc 撮像装置
WO2017029905A1 (ja) * 2015-08-19 2017-02-23 国立研究開発法人産業技術総合研究所 単一カメラによる物体の変位と振動の測定方法、装置およびそのプログラム

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013008578A1 (en) * 2011-07-08 2013-01-17 Canon Kabushiki Kaisha Image capturing apparatus, control method of image capturing apparatus, three-dimensional measurement apparatus, and storage medium
JP2013019729A (ja) * 2011-07-08 2013-01-31 Canon Inc 撮像装置、撮像装置の制御方法、三次元計測装置、およびプログラム
JP2014131109A (ja) * 2012-12-28 2014-07-10 Canon Inc 撮像装置
CN103837129A (zh) * 2014-02-27 2014-06-04 华为终端有限公司 一种终端中的测距方法、装置及终端
WO2017029905A1 (ja) * 2015-08-19 2017-02-23 国立研究開発法人産業技術総合研究所 単一カメラによる物体の変位と振動の測定方法、装置およびそのプログラム
JPWO2017029905A1 (ja) * 2015-08-19 2018-05-31 国立研究開発法人産業技術総合研究所 単一カメラによる物体の変位と振動の測定方法、装置およびそのプログラム
AU2016308995B2 (en) * 2015-08-19 2019-02-14 National Institute Of Advanced Industrial Science And Technology Method, device, and program for measuring displacement and vibration of object by single camera

Similar Documents

Publication Publication Date Title
JP6855587B2 (ja) 視点から距離情報を取得するための装置及び方法
US10041787B2 (en) Object detection device
US10571668B2 (en) Catadioptric projector systems, devices, and methods
JP6580673B2 (ja) 画像を記録するための装置および方法
KR101824936B1 (ko) 이미지들 내에서 초점 에러 추정
US20140307100A1 (en) Orthographic image capture system
JP2018537709A (ja) 異なる照明条件下で画像を生成するためのコンピュータ顕微鏡及び方法
TW201531730A (zh) 資訊處理裝置及資訊處理方法
US10713810B2 (en) Information processing apparatus, method of controlling information processing apparatus, and storage medium
JP7078173B2 (ja) 画像処理装置及び3次元計測システム
JP2017150878A (ja) 画像処理装置、撮像装置および画像処理プログラム
WO2014011182A1 (en) Convergence/divergence based depth determination techniques and uses with defocusing imaging
JP2013190394A (ja) パターン照明装置、及び測距装置
JP7180608B2 (ja) 情報処理装置、情報処理方法、及び、プログラム、並びに、交換レンズ
JP2016024052A (ja) 3次元計測システム、3次元計測方法及びプログラム
JP2018189443A (ja) 距離測定装置、距離測定方法及び撮像装置
CN113115027B (zh) 校准摄像头的方法和系统
WO2020235067A1 (ja) 3次元計測システム及び3次元計測方法
JP2011133360A (ja) 距離計測装置、距離計測方法、及びプログラム
CN110836647B (zh) 三维扫描系统
JP2022524923A (ja) 散乱媒質を介したイメージングシステム及び方法
JP6671589B2 (ja) 3次元計測システム、3次元計測方法及び3次元計測プログラム
JP7416057B2 (ja) 交換レンズ、情報処理装置、情報処理方法、及び、プログラム
KR102129069B1 (ko) 스캐닝 홀로그램 기반 자동광학검사 장치 및 방법
RU2806249C1 (ru) Способ получения изображений высокого пространственного разрешения оптико-электронным средством наблюдения за удаленными объектами

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20130305