JP2011127897A - Automatic hot water supply device - Google Patents

Automatic hot water supply device Download PDF

Info

Publication number
JP2011127897A
JP2011127897A JP2011076458A JP2011076458A JP2011127897A JP 2011127897 A JP2011127897 A JP 2011127897A JP 2011076458 A JP2011076458 A JP 2011076458A JP 2011076458 A JP2011076458 A JP 2011076458A JP 2011127897 A JP2011127897 A JP 2011127897A
Authority
JP
Japan
Prior art keywords
hot water
water supply
mixing valve
temperature
side mixing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011076458A
Other languages
Japanese (ja)
Other versions
JP5455958B2 (en
Inventor
Masaki Toyoshima
正樹 豊島
Hironori Yabuuchi
宏典 薮内
Shinsuke Ise
伸介 伊勢
Koji Yamashita
浩司 山下
Fumio Matsuoka
文雄 松岡
Tetsuya Matsuyama
哲也 松山
Yasushi Honjo
康史 本庄
Toshiyuki Sakuma
利幸 佐久間
Kei Yanagimoto
圭 柳本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2011076458A priority Critical patent/JP5455958B2/en
Publication of JP2011127897A publication Critical patent/JP2011127897A/en
Application granted granted Critical
Publication of JP5455958B2 publication Critical patent/JP5455958B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Domestic Hot-Water Supply Systems And Details Of Heating Systems (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an automatic hot water supply device capable of stably controlling a hot water supply temperature from a mixing valve (for example, shower) of high priority, even when a driving condition of the mixing valve (for example, shower) of high priority is changed. <P>SOLUTION: In this automatic hot water supply device including a plurality of mixing valves (general hot water supply-side mixing valve 2a, bath hot water supply-side mixing valve 2b) for mixing hot water from a hot water flow channel and water from a water flow channel, and supplying hot water from a hot water supply passage, temperature sensors 12a-12d respectively detecting a fluid temperature of the hot water flow channel, a fluid temperature of the water flow channel and a fluid temperature of the hot water supply passage, and a control section 10 for controlling the mixing valves on the basis of results of detections by the temperature sensors 12a-12d and data input in advance, the control section 10 corrects controlled variable of the mixing valves on the basis of openings of the mixing valves and a ratio of flow rates of hot water and water of the fluid supplied from the mixing valves. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、湯と水を混合弁にて所望の温度に混合し、風呂や台所等に給湯を行う自動給湯装置に関するものである。   The present invention relates to an automatic hot water supply apparatus that mixes hot water and water at a desired temperature with a mixing valve and supplies hot water to a bath, a kitchen, or the like.

従来の自動給湯装置としては、例えば「高温差し湯開始直後に浴槽温度センサ32が検出した温度T2=40℃であれば、設定80℃との偏差ΔT2>10℃であるので、浴槽混合弁61の開度θ2が大きくなるように駆動速度v2=15[開度%/s]で高速駆動を行う。この動作によって、浴槽湯流路1への湯流路1から供給される湯量が急激に増加していくので、一般蛇口給湯路6へ供給される湯量が急激に減少する。しかし、同時に、蛇口混合弁61の開度θ1も大きくなるように駆動しているので、蛇口混合弁61で混ぜ合わせる湯と水の比率は湯側が大きくなってきており、湯流路1より一般蛇口給湯路6へ供給される湯量が急激に減少していくことによって発生する一般蛇口湯流路1の給湯温度のアンダーシュートを防止もしくは、そのアンダーシュートの絶対量を低減、および発生時間の短縮を実現することができる。ここで、蛇口混合弁61の駆動速度v1’は浴槽混合弁31の駆動速度v1に応じて決定し、その絶対値は実験的に求めるが、例えば、浴槽混合弁31の1/2の速度で駆動するというように、浴槽混合弁31の駆動速度より遅くするのが好ましい。」(例えば特許文献1参照)というものが提案されている。   As a conventional automatic hot water supply apparatus, for example, if the temperature T2 detected by the bathtub temperature sensor 32 immediately after the start of hot hot water is 40 ° C., the deviation ΔT2> 10 ° C. from the setting 80 ° C. The high-speed driving is performed at a driving speed v2 = 15 [opening% / s] so that the opening degree θ2 of the hot water is increased. As the flow rate increases, the amount of hot water supplied to the general faucet hot water supply path 6 decreases rapidly, but at the same time, the faucet mixing valve 61 is driven so as to increase the opening θ1, so that the faucet mixing valve 61 The ratio of hot water to water to be mixed is larger on the hot water side, and the hot water supply in the general faucet hot water channel 1 generated by the rapid decrease in the amount of hot water supplied from the hot water flow channel 1 to the general faucet hot water supply channel 6. Prevents temperature undershoot The absolute amount of the undershoot can be reduced and the generation time can be shortened, where the driving speed v1 ′ of the faucet mixing valve 61 is determined according to the driving speed v1 of the bathtub mixing valve 31, Although the absolute value is obtained experimentally, it is preferable to make it slower than the driving speed of the bathtub mixing valve 31, for example, driving at a speed half that of the bathtub mixing valve 31. This has been proposed.

特開2005−172257号公報(段落番号0036,0037、図1)Japanese Patent Laying-Open No. 2005-172257 (paragraph numbers 0036 and 0037, FIG. 1)

例えば特許文献1では、影響度の高い混合弁(例えば、シャワーと風呂給湯があるとき、給湯流量が大きい風呂側が影響度の高い混合弁となる)の駆動速度を、影響度の低い混合弁(例えばシャワー)の駆動速度に反映させる方法によって、2以上の混合弁が同時に作動(同時給湯)するときの給湯温度のオーバーシュート、アンダーシュート、又はハンチングといった不都合の解消に努めているが、混合弁を制御する制御時間周期については考慮されていない。同時給湯開始後又は同時給湯終了後の給湯温度の変化は非常に早く、制御時間周期が遅いと給湯温度のオーバーシュート等の不都合が解消できないという問題点があった。さらに、影響度の高い混合弁の駆動速度を影響度の低い混合弁に反映させるため、影響度の低い混合弁の制御性の方が重要な場合(シャワーなど人体に直接給湯するため、温度変化を極力抑える必要がある場合など)、つまり影響度の低い混合弁の方が優先度が高い場合に、優先度が高い混合弁からの給湯温度のオーバーシュート等の不都合が長く続くことがあった。   For example, in Patent Document 1, the driving speed of a high-impact mixing valve (for example, when there is a shower and bath hot water, the bath side having a large hot water flow rate becomes a high-impact mixing valve) is changed to a low-impact mixing valve ( For example, the method of reflecting in the driving speed of the shower) tries to eliminate inconveniences such as overshooting, undershooting or hunting of hot water temperature when two or more mixing valves operate simultaneously (simultaneous hot water supply). The control time period for controlling is not considered. The change in hot water temperature after the start of simultaneous hot water supply or after the end of simultaneous hot water supply is very fast, and there is a problem that inconveniences such as overshoot of the hot water temperature cannot be solved if the control time period is slow. Furthermore, in order to reflect the driving speed of the mixing valve with high influence on the mixing valve with low influence, when the controllability of the mixing valve with low influence is more important (the temperature changes because the hot water is directly supplied to the human body such as a shower). In other words, when the priority of the low-impact mixing valve is higher, problems such as hot water temperature overshoot from the higher-priority mixing valve may continue for a long time. .

また、例えば特許文献1では、影響度が低い混合弁の駆動速度を実験的に求める必要がある。したがって、湯温、水温、及び設定温度などの条件の組み合わせによっては駆動速度が不適切となり、給湯温度のオーバーシュート等の不都合が発生するという問題点があった。また、想定されうる全ての条件をカバーした試験を実施するためには多大な時間を要し、開発負荷・コストが高くなるという問題点があった。さらに、影響度の高い混合弁の駆動速度を影響度の低い混合弁に反映させるため、影響度の低い混合弁の制御性の方が重要な場合(シャワーなど人体に直接給湯するため、温度変化を極力抑える必要がある場合など)、つまり影響度の低い混合弁の方が優先度が高い場合に適切に制御されない可能性があった。   Further, for example, in Patent Document 1, it is necessary to experimentally determine the driving speed of the mixing valve having a low influence. Therefore, depending on the combination of conditions such as hot water temperature, water temperature, and set temperature, the driving speed becomes inappropriate, and there is a problem that inconveniences such as overshooting of hot water temperature occur. In addition, it takes a lot of time to carry out a test that covers all the conditions that can be assumed, resulting in a high development load and cost. Furthermore, in order to reflect the driving speed of the mixing valve with high influence on the mixing valve with low influence, when the controllability of the mixing valve with low influence is more important (the temperature changes because the hot water is directly supplied to the human body such as a shower). In other words, there is a possibility that the control valve is not properly controlled when the priority is higher in the mixing valve having a lower influence.

この発明は上述のような課題を解決するためになされたものであり、優先度の高い混合弁(例えばシャワー)の駆動条件が変化した場合でも、優先度の高い混合弁(例えばシャワー)からの給湯温度を安定して制御することができる自動給湯装置を得るものである。   The present invention has been made to solve the above-described problems. Even when the driving condition of a high-priority mixing valve (for example, a shower) changes, the high-priority mixing valve (for example, a shower) An automatic hot water supply apparatus capable of stably controlling the hot water supply temperature is obtained.

この発明に係る自動給湯装置は、湯流路からの湯と水流路からの水とを混合して給湯路から給湯する複数の混合弁と、前記湯流路の流体温度、前記水流路の流体温度、及び前記給湯路の流体温度をそれぞれ検出する温度検出手段と、前記温度検出手段の検出結果及び予め入力されているデータに基づいて前記混合弁を制御する制御手段とを備えた自動給湯装置において、前記制御手段は、前記混合弁の制御量を、前記混合弁の開度及び前記混合弁から給湯される流体の温水流量比に基づいて補正するものである。   An automatic hot water supply apparatus according to the present invention includes a plurality of mixing valves that mix hot water from a hot water channel and water from a water channel and supply hot water from the hot water channel, fluid temperature of the hot water channel, fluid of the water channel An automatic hot water supply apparatus comprising temperature detection means for detecting the temperature and the fluid temperature of the hot water supply passage, and control means for controlling the mixing valve based on the detection result of the temperature detection means and pre-input data The control means corrects the control amount of the mixing valve based on the opening degree of the mixing valve and the hot water flow rate ratio of the fluid supplied from the mixing valve.

この発明においては、混合弁の制御量を、混合弁の開度及び混合弁から給湯される流体の温水流量比に基づいて補正するので、優先度の高い混合弁からの給湯温度を安定して制御することができる。   In this invention, the control amount of the mixing valve is corrected based on the opening of the mixing valve and the hot water flow rate ratio of the fluid supplied from the mixing valve, so that the hot water supply temperature from the high priority mixing valve can be stabilized. Can be controlled.

この発明の実施形態における自動給湯装置の構成図である。It is a block diagram of the automatic hot water supply apparatus in embodiment of this invention. この発明の実施形態における自動給湯装置の制御構成図である。It is a control block diagram of the automatic hot water supply apparatus in embodiment of this invention. この発明の実施形態における同時給湯開始時の制御フローである。It is a control flow at the time of the simultaneous hot water supply start in embodiment of this invention. この発明の実施形態における同時給湯終了時の制御フローである。It is a control flow at the time of completion | finish of the simultaneous hot water supply in embodiment of this invention. この発明の実施形態における理論弁開度と温水流量比の関係図である。It is a related figure of the theoretical valve opening degree and warm water flow ratio in the embodiment of this invention. この発明の実施形態における一般給湯側混合弁2aの開度と温水流量比の関係図である。It is a related figure of the opening degree of the general hot water supply side mixing valve 2a and the hot water flow rate ratio in the embodiment of the present invention. この発明の実施形態における同時給湯開始時の一般給湯温度の変化率と経過時間の関係図である。It is a related figure of the change rate of the general hot water supply temperature at the time of the simultaneous hot water supply start in this embodiment of this invention, and elapsed time. この発明の実施形態における風呂給湯側混合弁2bの同時給湯補正係数Kmと一般給湯側混合弁2aのenとの関係図である。It is a relationship figure between simultaneous hot-water supply correction coefficient Km of bath hot-water supply side mixing valve 2b and en of general hot-water supply side mixing valve 2a in an embodiment of this invention. この発明の実施形態における一般給湯側混合弁2a及び風呂給湯側混合弁2bの開度と一般給湯温度及び風呂給湯温度との関係図(Kmの適用なし)である。FIG. 4 is a relationship diagram between the opening degree of the general hot water supply side mixing valve 2a and the bath hot water supply side mixing valve 2b, the general hot water supply temperature, and the bath hot water temperature in the embodiment of the present invention (Km not applied). この発明の実施形態における一般給湯側混合弁2a及び風呂給湯側混合弁2bの開度と一般給湯温度及び風呂給湯温度との関係図(Kmの適用あり)である。It is a relationship figure (with application of Km) of the opening degree of the general hot water supply side mixing valve 2a and the bath hot water supply side mixing valve 2b, the general hot water supply temperature, and the bath hot water temperature in the embodiment of the present invention.

実施の形態
図1は、この発明の実施形態における自動給湯装置の構成図である。この自動給湯装置は、貯湯ユニットA及び熱源ユニットBから構成されている。
貯湯ユニットAは、貯湯タンク1、一般給湯側混合弁2a、風呂側混合弁2b、減圧弁3、電磁弁4、及び本発明の制御手段に相当する制御部10にて構成されている。貯湯タンク1は例えばステンレスなどの金属製の缶体であり、周囲には断熱材(図示せず)が設けられていて、熱源ユニットBにて加熱された高温湯を長時間にわたって保温することができる。Bは熱源ユニットであり、市水等の水を目標の貯湯温度まで昇温加熱する熱交換器などの加熱器(図示せず)が内蔵されている。熱源ユニットは、例えば二酸化炭素などを冷媒としたヒートポンプである。また、ヒートポンプに換えて、加熱源を電気ヒーターなどに置き換えても良いし、加熱源を貯湯タンク1に内蔵する構成としてもよい。
Embodiment FIG. 1 is a block diagram of an automatic water heater in an embodiment of the present invention. This automatic hot water supply apparatus includes a hot water storage unit A and a heat source unit B.
The hot water storage unit A includes a hot water storage tank 1, a general hot water supply side mixing valve 2a, a bath side mixing valve 2b, a pressure reducing valve 3, an electromagnetic valve 4, and a control unit 10 corresponding to the control means of the present invention. The hot water storage tank 1 is a can made of metal such as stainless steel, for example, and is provided with a heat insulating material (not shown) around the hot water storage tank 1 to keep the hot water heated by the heat source unit B for a long time. it can. B is a heat source unit and has a built-in heater (not shown) such as a heat exchanger for heating and heating water such as city water to a target hot water storage temperature. The heat source unit is a heat pump using, for example, carbon dioxide as a refrigerant. Further, instead of the heat pump, the heating source may be replaced with an electric heater or the like, or the heating source may be built in the hot water storage tank 1.

また、図1に示す5は風呂側混合弁2bから給湯される湯を貯留する浴槽であり、6は一般給湯側混合弁2aから給湯される湯と水源から供給される水とを混合して給湯する混合栓である。混合栓6は、シャワー(図示せず)が接続されている場合などもある。7は自動給湯装置と情報の入出力(例えば給湯温度の設定や、浴槽への給湯の開始又は停止操作等)が可能なリモコンである。リモコン7は、風呂用や台所用など複数個設置してもよい。   1 is a bathtub for storing hot water supplied from the bath-side mixing valve 2b, and 6 is a mixture of hot water supplied from the general hot-water mixing valve 2a and water supplied from a water source. Mixing tap for hot water supply. The mixing plug 6 may be connected to a shower (not shown). Reference numeral 7 denotes a remote controller capable of inputting / outputting information to / from the automatic hot water supply apparatus (for example, setting of a hot water supply temperature, starting or stopping of hot water supply to a bathtub). A plurality of remote controllers 7 may be installed such as for baths and kitchens.

水源から供給された水は配管を通り、貯湯タンク1下部、一般給湯側混合弁2a、風呂側混合弁2b、及び混合栓6にそれぞれ分岐して送られる。水源から一般給湯側混合弁2a及び風呂側混合弁2bへ供給される水は、途中まで同一の配管を流れ、その後分岐して一般給湯側混合弁2a及び風呂側混合弁2bに送られる。貯湯タンク1下部と熱源ユニットBは、配管により接続されており、貯湯タンク1下部に貯えられた水は、この配管を通って熱源ユニットBに送られる。熱源ユニットBに送られた水は、目標温度まで加熱昇温された後、熱源ユニットBから貯湯タンク1の上部へと接続された配管を経て貯湯タンク1上部に戻される。また、貯湯タンク1上部には一般給湯側混合弁2aと風呂側混合弁2bへ配管が接続されており、貯湯タンク1上部に貯えられた高温湯は2分岐して一般給湯側混合弁2aと風呂側混合弁2bへ送られる。   The water supplied from the water source passes through the piping and is branched and sent to the lower part of the hot water storage tank 1, the general hot water supply side mixing valve 2a, the bath side mixing valve 2b, and the mixing plug 6. The water supplied from the water source to the general hot water supply side mixing valve 2a and the bath side mixing valve 2b flows through the same pipe partway, and then branches to be sent to the general hot water supply side mixing valve 2a and the bath side mixing valve 2b. The lower part of the hot water tank 1 and the heat source unit B are connected by a pipe, and the water stored in the lower part of the hot water tank 1 is sent to the heat source unit B through this pipe. The water sent to the heat source unit B is heated to a target temperature and then returned to the upper part of the hot water storage tank 1 through a pipe connected from the heat source unit B to the upper part of the hot water storage tank 1. The upper part of the hot water storage tank 1 is connected with piping to the general hot water supply side mixing valve 2a and the bath side mixing valve 2b, and the hot water stored in the upper part of the hot water storage tank 1 is branched into two branches to the general hot water supply side mixing valve 2a. It is sent to the bath-side mixing valve 2b.

一般給湯側混合弁2a及び風呂側混合弁2bは、例えばサーボモータ等の駆動源により弁体を駆動する混合弁である。弁体を動かし混合弁の開度を調整することで高温湯と水の混合比率を調整し、給湯温度を制御する。水源から送られてきた水と貯湯タンク1から送られてきた高温湯は一般給湯側混合弁2a及び風呂側混合弁2bにて混合され、所定温度の湯となってそれぞれ混合栓6及び浴槽5へ給湯される。風呂側混合弁2bと浴槽5を接続する配管には電磁弁4が設けられている。この電磁弁4が開くことにより、風呂側混合弁2bから給湯された湯が浴槽に溜まる構成となっている。混合栓6では、一般給湯側混合弁2aから給湯された湯と水源から送られる水とを混合し、所望温度の湯を使用する。   The general hot water supply side mixing valve 2a and the bath side mixing valve 2b are mixing valves that drive the valve body by a driving source such as a servo motor. By adjusting the opening of the mixing valve by moving the valve body, the mixing ratio of hot water and water is adjusted, and the hot water supply temperature is controlled. The water sent from the water source and the hot water sent from the hot water storage tank 1 are mixed by the general hot water supply side mixing valve 2a and the bath side mixing valve 2b to become hot water of a predetermined temperature, respectively, and the mixing plug 6 and the bathtub 5 respectively. Hot water is supplied. A solenoid valve 4 is provided in a pipe connecting the bath-side mixing valve 2 b and the bathtub 5. When the electromagnetic valve 4 is opened, the hot water supplied from the bath-side mixing valve 2b is stored in the bathtub. In the mixing tap 6, hot water supplied from the general hot water supply side mixing valve 2a is mixed with water sent from a water source, and hot water at a desired temperature is used.

なお、本実施形態は混合栓6が1つの構成となっているが、混合栓は例えば台所や洗面所の蛇口、浴室のカラン兼シャワーなどに接続されるものであり、複数の混合栓を設けてもよい。また、貯湯タンク1は1本の構成としたが、2本以上の貯湯タンクを直列もしくは並列に接続する構成としてもよい。   In this embodiment, the mixer tap 6 is configured as a single unit. However, the mixer tap is connected to, for example, a kitchen faucet, a bathroom faucet or shower, and is provided with a plurality of mixer taps. May be. Moreover, although the hot water storage tank 1 is configured as one, it may be configured such that two or more hot water storage tanks are connected in series or in parallel.

貯湯ユニットAの各構成要素を接続する配管には、本発明の温度検出手段に相当する温度センサ12a〜12d及び流量センサ11a,11bが設けられている。温度センサ12aは、一般給湯側混合弁2aから混合栓6へ給湯される湯の給湯温度を検出する。温度センサ12bは、風呂側混合弁2bから浴槽5へ給湯される湯の給湯温度を検出する。温度センサ12cは、水源から一般給湯側混合弁2a及び風呂側混合弁2bへ送られる水の温度を検出する。温度センサ12dは、貯湯タンク1から一般給湯側混合弁2a及び風呂側混合弁2bへ送られる高温湯の温度を検出する。また、流量センサ11aは一般給湯側混合弁2aから混合栓6へ送られる湯の流量を検出し、流量センサ11bは風呂側混合弁2bから浴槽5へ送られる湯の流量を検出する。   The pipes connecting the constituent elements of the hot water storage unit A are provided with temperature sensors 12a to 12d and flow rate sensors 11a and 11b corresponding to the temperature detecting means of the present invention. The temperature sensor 12a detects a hot water supply temperature of hot water supplied from the general hot water supply side mixing valve 2a to the mixing tap 6. The temperature sensor 12b detects a hot water supply temperature of hot water supplied from the bath-side mixing valve 2b to the bathtub 5. The temperature sensor 12c detects the temperature of water sent from the water source to the general hot water supply side mixing valve 2a and the bath side mixing valve 2b. The temperature sensor 12d detects the temperature of the hot water sent from the hot water storage tank 1 to the general hot water supply side mixing valve 2a and the bath side mixing valve 2b. The flow rate sensor 11a detects the flow rate of hot water sent from the general hot water supply side mixing valve 2a to the mixing tap 6. The flow rate sensor 11b detects the flow rate of hot water sent from the bath side mixing valve 2b to the bathtub 5.

なお、本実施形態において温度センサ12dは貯湯タンク1上部の配管に設けられているが、貯湯タンク1の缶体表面に設ける構成としてもよい。貯湯タンク1内部に貯えられた高温湯の温度を直接検出する構成としてもよい。また、温度センサ12a〜12dの配管への設置方法としては、配管表面にロー付け、溶接、又はフォルダ固定するなどの方法や、水温を直接測るように配管内部にセンサを内没させる設置方法など種々の方法が可能である。   In the present embodiment, the temperature sensor 12d is provided in the pipe at the top of the hot water storage tank 1, but may be provided on the surface of the can body of the hot water storage tank 1. It is good also as a structure which detects the temperature of the hot water stored in the hot water storage tank 1 directly. Moreover, as a method of installing the temperature sensors 12a to 12d in the pipe, a method of brazing, welding, or fixing the folder to the pipe surface, a method of installing the sensor in the pipe so as to directly measure the water temperature, and the like. Various methods are possible.

図2は、本実施形態における自動給湯装置の制御構成図である。熱源ユニットB、一般給湯側混合弁2a、風呂側混合弁2b、電磁弁4、リモコン7、流量センサ11a,11b、及び温度センサ12a〜12dは制御部10と通信ケーブルにより有線接続されており、信号の授受が可能になっている。なお、制御部10と前記センサ類などの通信は、無線経由としてもよい。   FIG. 2 is a control configuration diagram of the automatic water heater in the present embodiment. The heat source unit B, the general hot water supply side mixing valve 2a, the bath side mixing valve 2b, the electromagnetic valve 4, the remote controller 7, the flow rate sensors 11a and 11b, and the temperature sensors 12a to 12d are connected to the control unit 10 through a communication cable. Signals can be exchanged. Note that communication between the control unit 10 and the sensors may be via wireless communication.

制御部10は貯湯ユニットAに内蔵されており、演算部、駆動部、送受信部、記憶部、出力部、及び入力部により構成されている。演算部は、流量センサ11a,11b、及び温度センサ12a〜12dにより検出された各箇所の流量及び水温に基づき演算、比較、及び判定などを行う。駆動部は、演算部によって得られた演算結果に基づき一般給湯側混合弁2a、風呂側混合弁2b、及び電磁弁4を駆動する。送受信部は、熱源ユニットへ運転指令などを送信する。演算部、駆動部での処理は制御部10に備えられたマイコンにより処理される。記憶部は、例えば制御部10に備えられた半導体メモリー等である。演算部によって得られた結果や、一般給湯側混合弁2a、風呂側混合弁2b、及び電磁弁4を駆動する駆動条件等を計算する関数やテーブル等や、リモコン7により入力されたデータはこの記憶部に記憶されている。これら記憶部に記憶されている内容は、必要に応じて参照したり、又は書き換えることが可能となっている。   The control unit 10 is built in the hot water storage unit A, and includes a calculation unit, a drive unit, a transmission / reception unit, a storage unit, an output unit, and an input unit. The calculation unit performs calculation, comparison, determination, and the like based on the flow rate and water temperature at each location detected by the flow rate sensors 11a and 11b and the temperature sensors 12a to 12d. The drive unit drives the general hot water supply side mixing valve 2a, the bath side mixing valve 2b, and the electromagnetic valve 4 based on the calculation result obtained by the calculation unit. The transmission / reception unit transmits an operation command or the like to the heat source unit. Processing in the calculation unit and the driving unit is performed by a microcomputer provided in the control unit 10. The storage unit is, for example, a semiconductor memory provided in the control unit 10. The results obtained by the calculation unit, the functions and tables for calculating the driving conditions for driving the general hot water supply side mixing valve 2a, the bath side mixing valve 2b, and the electromagnetic valve 4, and the data input by the remote control 7 are It is stored in the storage unit. The contents stored in these storage units can be referred to or rewritten as necessary.

出力部では、マイコンによる処理結果をLEDやモニター等に表示したり、警告音等を発したりする。また、電話回線、LAN回線、又は無線等の通信手段(図示せず)により遠隔地へマイコンによる処理結果等を出力する。入力部では、リモコン7等からのデータ情報を記憶部へ入力する。また、電話回線、LAN回線、無線などの通信手段(図示せず)からのデータ情報を記憶部へ入力する。   In the output unit, the processing result by the microcomputer is displayed on an LED, a monitor or the like, or a warning sound is generated. In addition, a processing result by the microcomputer is output to a remote place by a communication means (not shown) such as a telephone line, a LAN line, or wireless. In the input unit, data information from the remote controller 7 or the like is input to the storage unit. Further, data information from a communication means (not shown) such as a telephone line, a LAN line, and a radio is input to the storage unit.

なお、本実施形態では制御部10を貯湯ユニットAに内蔵したが、貯湯ユニットAにメイン制御部を、熱源ユニットBに制御部の機能の一部を持つサブ制御部を設けて、メイン制御部とサブ制御部との間でデータ通信を行うことにより連携処理を行う構成としてもよい。リモコン7に制御部10の一部の機能を持たせる構成や、外部に制御部10を別置きする構成としてもよい。   In this embodiment, the control unit 10 is built in the hot water storage unit A. However, the main control unit is provided in the hot water storage unit A, and the sub control unit having a part of the function of the control unit is provided in the heat source unit B. It is good also as a structure which performs a cooperation process by performing data communication between a sub-control part. A configuration in which the remote controller 7 has a part of the function of the control unit 10 or a configuration in which the control unit 10 is provided outside may be employed.

次に給湯動作について説明する。貯湯タンク1に貯える高温湯の温度はリモコン7で予め設定することが可能である。深夜時間帯に熱源ユニットBが設定温度まで沸き上げた高温湯は、貯湯タンク1に貯えられる。また、混合栓6への給湯温度及び浴槽5への給湯温度等も予めリモコン7にて設定することが可能である。   Next, the hot water supply operation will be described. The temperature of the hot water stored in the hot water storage tank 1 can be preset with the remote controller 7. The hot water heated to the set temperature by the heat source unit B in the midnight time zone is stored in the hot water storage tank 1. Further, the hot water supply temperature to the mixing tap 6 and the hot water supply temperature to the bathtub 5 can be set in advance by the remote controller 7.

まずは、一般給湯(混合栓6への給湯)動作について説明する。混合栓6を開くと、制御部10は、温度センサ12aで一般給湯側(混合栓6)へ給湯される湯の温度を検出する。制御部10は、この温度センサ12aで検出される温度が設定されている給湯温度となるように一般給湯側混合弁2aの開度を制御し、貯湯タンク1上部から送られる湯と水源から送られる水を適温に混合する。   First, general hot water supply (hot water supply to the mixing tap 6) operation will be described. When the mixing plug 6 is opened, the control unit 10 detects the temperature of hot water supplied to the general hot water supply side (mixing plug 6) with the temperature sensor 12a. The control unit 10 controls the opening degree of the general hot water supply side mixing valve 2a so that the temperature detected by the temperature sensor 12a becomes the set hot water supply temperature, and the hot water supplied from the upper part of the hot water storage tank 1 and the water source are supplied. Mix the resulting water at a suitable temperature.

続いて、風呂給湯(浴槽5への給湯)動作について説明する。風呂給湯動作としては、湯張り、高温差し湯、足し湯、及び注水の4つのパターンがある。
以下それぞれの給湯動作について説明する。
Then, bath hot water supply (hot water supply to the bathtub 5) operation | movement is demonstrated. There are four patterns of bath water supply operations, such as hot water filling, high temperature hot water, addition hot water, and water injection.
Each hot water supply operation will be described below.

湯張りを行うには、リモコン7の湯張りスイッチ(図示せず)を押す。リモコン7から湯張りの指令を受けた制御部10は、温度センサ12bの検出温度が設定されている浴槽への給湯温度となるように風呂給湯側混合弁2bの開度を制御するとともに、電磁弁4を開いて浴槽5への湯張りを開始する。浴槽5への湯張り開始後、流量センサ11bにより積算流量をカウントし、リモコン7であらかじめ設定された浴槽湯量に到達するまで、湯張りを継続する。積算流量が設定された浴槽湯量に到達すると、電磁弁4を閉じて湯張りを完了する。   In order to perform filling, a filling switch (not shown) of the remote controller 7 is pressed. Upon receiving a hot water filling command from the remote controller 7, the control unit 10 controls the opening of the hot water supply side mixing valve 2b so that the temperature detected by the temperature sensor 12b becomes the hot water supply temperature to the set bathtub, and electromagnetic Open the valve 4 and start filling the bathtub 5 with water. After the hot water filling to the bathtub 5 is started, the integrated flow rate is counted by the flow sensor 11b, and the hot water filling is continued until the amount of the hot water bath set in advance by the remote controller 7 is reached. When the accumulated flow reaches the set amount of hot water in the bathtub, the solenoid valve 4 is closed to complete the hot water filling.

浴槽5内のお湯の温度が下がったときに高温差し湯を行うためには、リモコン7の高温差し湯スイッチ(図示せず)を押す。リモコン7から高温差し湯の指令を受けた制御部10は、温度センサ12bの検出温度が高温(例えば60℃)になるように風呂給湯側混合弁2bの開度を制御するとともに、電磁弁4を開いて浴槽5への高温差し湯を開始する。浴槽5への高温差し湯開始後、流量センサ11bにより積算流量をカウントし、一定量(例えば20L)に到達すると電磁弁9を閉じて高温差し湯を完了する。   In order to perform hot hot water supply when the temperature of hot water in the bathtub 5 falls, a hot hot water supply switch (not shown) of the remote controller 7 is pressed. The control unit 10 that has received a high-temperature hot water instruction from the remote controller 7 controls the opening degree of the bath hot water mixing valve 2b so that the temperature detected by the temperature sensor 12b is high (for example, 60 ° C.), and the electromagnetic valve 4 To start hot hot water supply to the bathtub 5. After the hot water supply to the bathtub 5 is started, the integrated flow rate is counted by the flow sensor 11b, and when reaching a certain amount (for example, 20 L), the solenoid valve 9 is closed to complete the hot water supply.

浴槽5内のお湯の量が減った時に足し湯を行うためには、リモコン7で、足し湯スイッチ(図示せず)を押す。リモコン7から足し湯の指令を受けた制御部10は、温度センサ12bの検出温度が設定されている浴槽への給湯温度となるように風呂給湯側混合弁2bの開度を制御するとともに、電磁弁4を開いて浴槽5への足し湯を開始する。浴槽5への足し湯開始後、流量センサ11bにより積算流量をカウントし、一定量(例えば20L)に到達すると電磁弁4を閉じて足し湯を完了する。   In order to add hot water when the amount of hot water in the bathtub 5 decreases, a hot water switch (not shown) is pushed with the remote controller 7. The control unit 10 that has received a command for adding hot water from the remote controller 7 controls the opening degree of the hot water supply side mixing valve 2b so that the temperature detected by the temperature sensor 12b becomes the hot water supply temperature to the set bathtub, and electromagnetic The valve 4 is opened to start adding hot water to the bathtub 5. After the start of adding hot water to the bathtub 5, the integrated flow rate is counted by the flow sensor 11b, and when reaching a certain amount (for example, 20L), the solenoid valve 4 is closed to complete the adding hot water.

注水を行うためには、リモコン7の注水スイッチを押す。リモコン7から注水の指令を受けた制御部10は、温度センサ12bの検出温度が水温となるように風呂給湯側混合弁2bの開度を制御するとともに、電磁弁4を開いて浴槽5への注水を開始する。浴槽5への注水開始後、流量センサ11bにより積算流量をカウントし、一定量(例えば20L)に到達すると電磁弁4を閉じて注水を完了する。   In order to perform water injection, the water injection switch of the remote controller 7 is pressed. Upon receiving the water injection command from the remote controller 7, the control unit 10 controls the opening degree of the hot water supply side mixing valve 2b so that the temperature detected by the temperature sensor 12b becomes the water temperature, and opens the electromagnetic valve 4 to the bathtub 5. Start pouring water. After the start of water injection into the bathtub 5, the integrated flow rate is counted by the flow sensor 11b, and when reaching a certain amount (for example, 20L), the electromagnetic valve 4 is closed to complete the water injection.

自動給湯装置の使用条件によっては、一般給湯と風呂給湯が同時に行われることがある。このときの同時給湯開始時の制御フローを図3に示す。また、同時給湯終了時の制御フローを図4に示す。
図3は、同時給湯開始時の制御フローである。この図の初期状態は一般給湯のみの単独給湯状態である。ST1では、温度センサ12aで検出される給湯温度が設定温度となるように一般給湯側混合弁2aの開度を制御する。一般給湯側混合弁2aの開度制御は、現在の給湯温度と設定温度との偏差量に応じたフィードバック制御(詳細後述)により行われる。ST2では、風呂給湯があるか否かの判定を行う。なお、一般給湯および風呂給湯の給湯有無は、流量センサ11a,11bにより検出される流量から判定することができる。ST2で風呂給湯ありと判定した場合には、ST3に進む。
Depending on the use conditions of the automatic water heater, general hot water and bath hot water may be performed simultaneously. The control flow at the time of starting simultaneous hot water supply at this time is shown in FIG. Moreover, the control flow at the time of completion | finish of simultaneous hot-water supply is shown in FIG.
FIG. 3 is a control flow at the start of simultaneous hot water supply. The initial state of this figure is a single hot water supply state of general hot water supply only. In ST1, the opening degree of the general hot water supply side mixing valve 2a is controlled so that the hot water temperature detected by the temperature sensor 12a becomes the set temperature. The opening degree control of the general hot water supply side mixing valve 2a is performed by feedback control (details will be described later) according to the deviation amount between the current hot water supply temperature and the set temperature. In ST2, it is determined whether there is a hot water bath. In addition, the presence or absence of hot water supply of general hot water supply and bath hot water supply can be determined from the flow rates detected by the flow rate sensors 11a and 11b. If it is determined in ST2 that there is bath hot water supply, the process proceeds to ST3.

ST3では、風呂給湯が開始された直後か否かを判定する。判定方法としては、例えば一定の制御時間周期ΔTで図3に示す制御フローにしたがってST1からST5までの判定を行う。前回の判定では風呂給湯なし(流量センサ11b出力=0)であり、今回の判定で風呂給湯あり(流量センサ11b出力>0)となった場合に風呂給湯が開始された直後と判定する。ST3で、風呂給湯が開始された直後と判定した場合には、ST4で、風呂給湯側混合弁2bの開度を指定された初期開度に設定する。ST3で、風呂給湯が開始された直後ではないと判定した場合(風呂給湯側混合弁2bの開度を指定された初期開度に設定終了した後)は、ST5にて、温度センサ12bで検出される温度が設定温度となるように風呂給湯側混合弁2bの開度を制御する。風呂給湯側混合弁2bの開度制御は、一般給湯側混合弁2aの開度制御と同様に、現在の給湯温度と設定温度との偏差量に応じたフィードバック制御(詳細後述)により行われる。   In ST3, it is determined whether or not bath hot water supply has just started. As a determination method, for example, the determination from ST1 to ST5 is performed according to the control flow shown in FIG. 3 at a constant control time period ΔT. In the previous determination, there is no bath hot water supply (flow rate sensor 11b output = 0), and in this determination, if there is bath hot water supply (flow rate sensor 11b output> 0), it is determined that bath hot water supply has just started. If it is determined in ST3 that the bath hot water supply has just started, the opening degree of the bath hot water side mixing valve 2b is set to the designated initial opening degree in ST4. When it is determined in ST3 that it is not immediately after the start of bath hot water supply (after the setting of the opening degree of the bath hot water side mixing valve 2b to the designated initial opening degree), the temperature sensor 12b detects in ST5 The opening degree of the hot water supply side mixing valve 2b is controlled so that the temperature to be set becomes the set temperature. The opening degree control of the bath hot water supply side mixing valve 2b is performed by feedback control (details will be described later) according to the deviation amount between the current hot water supply temperature and the set temperature, similarly to the opening degree control of the general hot water supply side mixing valve 2a.

ここで、ST4の指定初期開度とは、同時給湯が開始又は終了した場合でも、極力一般給湯側(優先度が高い)の給湯温度に変化が生じない風呂給湯側混合弁2b(優先度が低い)の開度のことであり、風呂給湯側混合弁2bの開度の中心(開度50%)付近であることが多い。風呂給湯が開始された直後(同時給湯開始直後)に風呂給湯側混合弁2bの開度を指定初期開度に設定することで、風呂給湯が開始された直後の(同時給湯開始直後)一般給湯側混合弁2aの給湯温度のハンチング、オーバーシュート、又はアンダーシュートを防止することができる。貯湯タンク1から一般給湯側混合弁2a及び風呂給湯側混合弁2bまでの配管取り回し等による配管圧損と、水源から一般給湯側混合弁2a及び風呂給湯側混合弁2bまでの配管取り回し等による配管圧損のバランスによっては、指定初期開度が風呂給湯側混合弁2bの開度の中心付近ではない場合もある。この場合には予め試験により風呂給湯側混合弁2bの指定初期開度を定めてもよい。また、指定初期開度が、一般給湯と風呂給湯の絶対流量、流量比、又は設定温度等に対して依存性がある場合には、これらの関数として指定初期開度を設定してもよい。なお、優先度の定義については、後述する。   Here, the designated initial opening degree of ST4 is a hot water supply side mixing valve 2b (priority is higher) in which the hot water temperature on the general hot water supply side (high priority) does not change as much as possible even when simultaneous hot water supply starts or ends. Low) and is often near the center (opening 50%) of the opening of the hot water supply side mixing valve 2b. General hot water supply immediately after the start of bath hot water supply (immediately after the start of simultaneous hot water supply) by setting the opening of the bath hot water supply side mixing valve 2b to the specified initial opening immediately after the start of bath hot water supply (immediately after the start of simultaneous hot water supply) Hunting, overshoot, or undershoot of the hot water supply temperature of the side mixing valve 2a can be prevented. Pipe pressure loss due to pipe routing from hot water storage tank 1 to general hot water supply side mixing valve 2a and bath hot water supply side mixing valve 2b, and pipe pressure loss due to pipe routing from water source to general hot water supply side mixing valve 2a and bath hot water supply side mixing valve 2b Depending on the balance, the designated initial opening may not be near the center of the opening of the hot water supply side mixing valve 2b. In this case, the designated initial opening degree of the hot water supply side mixing valve 2b may be determined in advance by a test. In addition, when the specified initial opening degree is dependent on the absolute flow rate, the flow rate ratio, the set temperature, or the like of general hot water and bath water supply, the specified initial opening degree may be set as a function of these. The definition of priority will be described later.

図4は、同時給湯終了時の制御フローである。この図の初期状態は一般給湯と風呂給湯が同時に行われている状態である。ST6では、温度センサ12aで検出される給湯温度が設定温度となるように一般給湯側混合弁2aの開度を制御する。一般給湯側混合弁2aの開度制御は、現在の給湯温度と設定温度との偏差量に応じたフィードバック制御(詳細後述)により行われる。ST7では、風呂給湯が終了したか否かの判定を行う。判定方法としては、例えば一定の制御時間周期ΔTで図4に示す制御フローにしたがってST6からST10までの判定を行う。前回の判定では風呂給湯あり(流量センサ11b出力>0)であり、今回の判定で風呂給湯なし(流量センサ11b出力=0)となった場合に風呂給湯が終了したと判定する。風呂給湯が終了していない場合にはST10へ進み、温度センサ12bで検出される給湯温度が設定温度となるように風呂給湯側混合弁2bの開度を制御する。風呂給湯が終了した場合にはST8へ移り、風呂側の電磁弁4を閉じる。なお、このとき風呂給湯側混合弁2bの開度はそのままでもよいし、予め定められた規定の開度にしてもよい。そして、ST9で一般給湯側混合弁2aの開度を以下に示す設定温度に対する理論弁開度に設定する。一般給湯側混合弁2aの開度を理論弁開度に設定した後、再びST6に戻り、一般給湯温度は設定温度に制御される。   FIG. 4 is a control flow at the end of simultaneous hot water supply. The initial state in this figure is a state where general hot water supply and bath hot water supply are performed simultaneously. In ST6, the opening degree of the general hot water supply side mixing valve 2a is controlled so that the hot water temperature detected by the temperature sensor 12a becomes the set temperature. The opening degree control of the general hot water supply side mixing valve 2a is performed by feedback control (details will be described later) according to the deviation amount between the current hot water supply temperature and the set temperature. In ST7, it is determined whether or not the bath water supply has ended. As a determination method, for example, the determination from ST6 to ST10 is performed according to the control flow shown in FIG. 4 at a constant control time period ΔT. In the previous determination, bath hot water is present (flow sensor 11b output> 0), and in this determination, bath hot water is determined not to be present (flow sensor 11b output = 0). If bath hot water supply is not completed, the process proceeds to ST10, and the opening degree of the bath hot water side mixing valve 2b is controlled so that the hot water supply temperature detected by the temperature sensor 12b becomes the set temperature. When bath hot water supply is completed, the process proceeds to ST8, and the solenoid valve 4 on the bath side is closed. At this time, the opening degree of the bath hot water supply side mixing valve 2b may be left as it is, or may be a predetermined opening degree determined in advance. In ST9, the opening degree of the general hot water supply side mixing valve 2a is set to the theoretical valve opening degree for the set temperature shown below. After setting the opening degree of the general hot water supply side mixing valve 2a to the theoretical valve opening degree, the process returns to ST6 again, and the general hot water supply temperature is controlled to the set temperature.

一般給湯側混合弁2aの理論弁開度STrは次式で求められる。
STr=(Ts−Tw)/(Th−Tw)…(1)
ここで、Ts[℃]は設定温度(リモコン7にて設定された一般給湯温度)、Th[℃]は温度センサ12dで検出される貯湯タンク1から一般給湯側混合弁2aへ送られる高温湯の温度、及びTw[℃]は温度センサ12cで検出される水源から一般給湯側混合弁2a送られる水の温度である。なお、理論弁開度STrの値は0(開度0%)〜1(開度100%)の範囲となる。理論弁開度STrの値が0(開度0%)の状態は、水源側のポートが全開(つまり、水源からの水が給湯される)状態である。理論弁開度STrの値が1(開度100%)の状態は、貯湯タンク1側のポートが全開(つまり、貯湯タンク1からの高温湯が給湯される)状態である。
The theoretical valve opening STr of the general hot water supply side mixing valve 2a is obtained by the following equation.
STr = (Ts−Tw) / (Th−Tw) (1)
Here, Ts [° C.] is a set temperature (general hot water temperature set by the remote controller 7), and Th [° C.] is hot water sent from the hot water storage tank 1 detected by the temperature sensor 12d to the general hot water supply side mixing valve 2a. And Tw [° C.] are temperatures of water sent from the water source detected by the temperature sensor 12c to the general hot water supply side mixing valve 2a. The value of the theoretical valve opening STr is in the range of 0 (opening 0%) to 1 (opening 100%). The state where the value of the theoretical valve opening STr is 0 (opening 0%) is a state in which the port on the water source side is fully opened (that is, water from the water source is supplied). The state where the value of the theoretical valve opening STr is 1 (opening 100%) is a state in which the port on the hot water storage tank 1 side is fully opened (that is, hot water from the hot water storage tank 1 is supplied).

理論弁開度とは、設定温度と水源から一般給湯側混合弁2aに供給される水との熱エネルギー差と、貯湯タンク1から一般給湯側混合弁2aに供給される高温湯と水源から一般給湯側混合弁2aに供給される水との熱エネルギー差との比である。実際には、水は高温になるほど密度は減少し、また温度によって比熱も変化する。混合弁も個々の特性により開度と流量比の関係は比例しない。この理論開度STrは、水の温度の違いによる密度及び比熱の差異や混合弁特性を考慮しない理論的な開度である。この場合、理論弁開度STrは次式に示す温水流量比XHrに等しくなる。図5に理論弁開度STrと温水流量比XHrの関係を示す。
XHr=Qq/(Qq+Qw)…(2)
ここで、Qqは貯湯タンク1から一般給湯側混合弁2aへ送られる高温湯の流量、及びQwは水源から一般給湯側混合弁2aへ送られる水の流量である。
The theoretical valve opening is generally defined by the difference in thermal energy between the set temperature and water supplied from the water source to the general hot water supply side mixing valve 2a, and from the hot water and water source supplied from the hot water storage tank 1 to the general hot water supply side mixing valve 2a. It is a ratio with the thermal energy difference with the water supplied to the hot water supply side mixing valve 2a. In practice, the density of water decreases as the temperature increases, and the specific heat changes with temperature. As for the mixing valve, the relationship between the opening and the flow rate ratio is not proportional due to individual characteristics. This theoretical opening STr is a theoretical opening that does not take into account differences in density and specific heat due to differences in water temperature and mixing valve characteristics. In this case, the theoretical valve opening STr is equal to the hot water flow rate ratio XHr shown in the following equation. FIG. 5 shows the relationship between the theoretical valve opening STr and the hot water flow rate ratio XHr.
XHr = Qq / (Qq + Qw) (2)
Here, Qq is the flow rate of high-temperature hot water sent from the hot water storage tank 1 to the general hot water supply side mixing valve 2a, and Qw is the flow rate of water sent from the water source to the general hot water supply side mixing valve 2a.

なお、本実施形態では、一般給湯の単独給湯状態から風呂給湯が開始される同時運転開始動作、及び一般給湯と風呂給湯が同時に行われている状態から風呂給湯のみが停止する同時運転終了動作について説明したが、一般給湯と風呂給湯の関係が逆の場合でも同様に制御することが可能である。   In the present embodiment, the simultaneous operation start operation in which the bath water supply is started from the single hot water supply state of the general hot water supply, and the simultaneous operation end operation in which only the bath water supply is stopped from the state in which the general hot water supply and the bath hot water supply are performed simultaneously. Although explained, even when the relationship between general hot water supply and bath hot water supply is reversed, the same control can be performed.

次に、本実施形態における一般給湯側混合弁2aの開度制御方法を説明する。なお、風呂給湯側混合弁2bも同様の制御方法により制御している。本実施形態における一般給湯側混合弁2aの開度制御方法は、次式に示すように、設定温度(リモコン7にて設定された一般給湯温度)と実際の給湯温度との偏差量に比例係数を乗じたフィードバック制御を基本としている。
MV(n)=MV(n−1)+dMV…(3)
ここで、MV(n)は今回設定する一般給湯側混合弁2aの開度、及びMV(n−1)は前回設定した一般給湯側混合弁2aの開度を示す。また、dMVは一般給湯側混合弁2aの補正開度、つまりフィードバック量を示す。
Next, the opening degree control method of the general hot water supply side mixing valve 2a in the present embodiment will be described. The hot water supply side mixing valve 2b is also controlled by a similar control method. The opening control method of the general hot water supply side mixing valve 2a in the present embodiment is proportional to the deviation between the set temperature (the general hot water temperature set by the remote controller 7) and the actual hot water temperature, as shown in the following equation. It is based on feedback control multiplied by.
MV (n) = MV (n-1) + dMV (3)
Here, MV (n) represents the opening degree of the general hot water supply side mixing valve 2a set this time, and MV (n-1) represents the opening degree of the general hot water supply side mixing valve 2a set last time. DMV represents the corrected opening degree of the general hot water supply side mixing valve 2a, that is, the feedback amount.

この補正開度dMVは次式となる。
dMV=Z・Ki・Km・en…(4)
en=Ts−Tq[℃]…(5)
ここで、enは設定温度と実際の給湯温度との偏差量、Kiは制御ゲイン、Kmは同時給湯補正係数、及びTqは実際の給湯温度を示す。
The corrected opening dMV is expressed by the following equation.
dMV = Z ・ Ki ・ Km ・ en (4)
en = Ts−Tq [° C.] (5)
Here, en is the deviation amount between the set temperature and the actual hot water temperature, Ki is the control gain, Km is the simultaneous hot water correction coefficient, and Tq is the actual hot water temperature.

続いて、一般給湯の設定温度に対する温度追従性を向上させた一般給湯側混合弁2aの開度制御方法の特徴について説明する。同時給湯が開始又は終了した時に、優先度が高い一般給湯温度のハンチング、オーバーシュート、又はアンダーシュートが問題となる。したがって、優先度の高い一般給湯の設定温度に対する温度追従性を向上させるために、一般給湯側混合弁2aの駆動条件の変化に対する高追従性、一般給湯の温度変化への早期対処、及び一般給湯と風呂給湯の同時給湯開始時における一般給湯側混合弁2aの開度と風呂給湯側混合弁2bの開度連動制御の向上を図った。   Then, the characteristic of the opening degree control method of the general hot water supply side mixing valve 2a which improved the temperature followability with respect to the preset temperature of general hot water supply is demonstrated. When simultaneous hot water supply starts or ends, hunting, overshooting, or undershooting of general hot water supply temperature with high priority becomes a problem. Therefore, in order to improve the temperature followability with respect to the set temperature of the general hot water supply with high priority, high followability with respect to the change in the driving condition of the general hot water supply side mixing valve 2a, early response to the temperature change of the general hot water supply, and general hot water supply The opening degree interlocking control of the general hot water supply side mixing valve 2a and the opening degree of the hot water supply side mixing valve 2b at the start of simultaneous hot water supply and bath hot water supply was improved.

一般給湯側混合弁2aの駆動条件の変化に対する高追従性の向上を図った制御方法について以下説明する。
図6は、実際の一般給湯側混合弁2aの開度STnと温水流量比XHnとの関係を示す。図6中には、あわせて図5の理論弁開度STrと温水流量比XHrの関係も示す。なお、温水流量比XHnは、式(1)及び式(2)より求められる次式を用いて求めた。
XHn=(Tq−Tw)/(Th−Tw)…(6)
ここで、Tq[℃]は温度センサ12aで検出される一般給湯温度である。
A control method for improving high followability with respect to changes in the driving conditions of the general hot water supply side mixing valve 2a will be described below.
FIG. 6 shows the relationship between the actual opening degree STn of the hot water supply side mixing valve 2a and the hot water flow rate ratio XHn. FIG. 6 also shows the relationship between the theoretical valve opening STr and the hot water flow rate ratio XHr in FIG. The hot water flow rate ratio XHn was obtained using the following equation obtained from equations (1) and (2).
XHn = (Tq−Tw) / (Th−Tw) (6)
Here, Tq [° C.] is a general hot water supply temperature detected by the temperature sensor 12a.

一般給湯側混合弁2aの開度STnに対し、実際の温水流量比XHnは、傾きγ(=1)のライン(図中XHsの位置)から外れてしまい、理論上の温水流量比XHsから偏差dXHだけずれてしまう。一般給湯側混合弁2aの開度STnと温水流量比XHnとの関係は、様々な一般給湯側混合弁2aの駆動条件に影響を受けるからである。例えば、水の温度の違いによる密度及び比熱の差異、一般給湯側混合弁2aの特性(開度と流量比の関係が比例しない等)、又は貯湯タンク1から一般給湯側混合弁2aに供給される高温湯と水源から一般給湯側混合弁2aに供給される水の圧力差などである。これら一般給湯側混合弁2aの駆動条件の中では、特に貯湯タンク1から一般給湯側混合弁2aに供給される高温湯と水源から一般給湯側混合弁2aに供給される水の圧力差が大きい。例えば、一般給湯中に風呂給湯の高温差し湯動作が行われると、貯湯タンク1から一般給湯側混合弁2aに供給される高温湯の圧力が低下する。このため、高温湯の流量が低下し、温水流量比はゼロに近づき、一般給湯温度は水源から供給される水の温度に近くなってしまう。   The actual hot water flow rate ratio XHn deviates from the slope γ (= 1) line (the position of XHs in the figure) with respect to the opening degree STn of the general hot water supply side mixing valve 2a, and deviates from the theoretical hot water flow rate ratio XHs. It will shift by dXH. This is because the relationship between the opening degree STn of the general hot water supply side mixing valve 2a and the hot water flow rate ratio XHn is affected by various driving conditions of the general hot water supply side mixing valve 2a. For example, the difference in density and specific heat due to the difference in water temperature, the characteristics of the general hot water supply side mixing valve 2a (the relationship between the opening degree and the flow rate ratio is not proportional), or the hot water storage tank 1 is supplied to the general hot water supply side mixing valve 2a. And the pressure difference of water supplied from the hot water source to the general hot water supply side mixing valve 2a. Among these drive conditions for the general hot water supply side mixing valve 2a, the pressure difference between the hot water supplied from the hot water storage tank 1 to the general hot water supply side mixing valve 2a and the water supplied from the water source to the general hot water supply side mixing valve 2a is particularly large. . For example, when a hot water supply operation for bath hot water is performed during the general hot water supply, the pressure of the high temperature hot water supplied from the hot water storage tank 1 to the general hot water supply side mixing valve 2a decreases. For this reason, the flow rate of hot water decreases, the hot water flow rate ratio approaches zero, and the general hot water supply temperature becomes close to the temperature of water supplied from the water source.

そこで、本実施形態における一般給湯側混合弁2aの開度制御方法では、実際の一般給湯側混合弁2aの開度と温水流量比XHnの関係から、「混合弁開度−温水流量比」座標平面(図6)において、そのときの運転条件に適した補正傾き(図6のα,β)を求めて、一般給湯側混合弁2aの補正開度dMV’(フィードバック量)を求める。具体的には、図6に示すように実際の温水流量比XHnが理論上の温水流量比XHsより小さい場合、つまり一般給湯温度が設定温度より低い場合は、一般給湯側混合弁2aの補正開度dMV’は補正傾きαを利用して求める。一般給湯側混合弁2aの補正開度dMV’は次式となる。
dMV’=A・dXH/α=Ki/α・en=Z・Ki・en…(7)
ここで
dXH=(Ts−Tq)/(Th−Tw)=en/(Th−Tw)…(8)
Ki=A/(Th−Tw)…(9)
Z = 1/α=(1−STn)/(1−XHn)…(10)
である。また、式(7)のAは定数、enは式(5)の設定温度と実際の給湯温度との偏差量を示す。なお、一般給湯側混合弁2aの補正開度dMV’の同時給湯補正係数(式(4)に示すKm)は1である。
Therefore, in the method for controlling the opening degree of the general hot water supply side mixing valve 2a in the present embodiment, the coordinates of the “mixing valve opening degree-warm water flow rate ratio” are obtained from the relationship between the actual opening degree of the general hot water supply side mixing valve 2a and the hot water flow rate ratio XHn. On the plane (FIG. 6), the corrected inclination (α, β in FIG. 6) suitable for the operating conditions at that time is obtained, and the corrected opening degree dMV ′ (feedback amount) of the general hot water supply side mixing valve 2a is obtained. Specifically, as shown in FIG. 6, when the actual hot water flow rate ratio XHn is smaller than the theoretical hot water flow rate ratio XHs, that is, when the general hot water supply temperature is lower than the set temperature, the correction opening of the general hot water supply side mixing valve 2a is performed. The degree dMV ′ is obtained using the correction slope α. The corrected opening degree dMV ′ of the general hot water supply side mixing valve 2a is expressed by the following equation.
dMV ′ = A · dXH / α = Ki / α · en = Z · Ki · en (7)
Where dXH = (Ts−Tq) / (Th−Tw) = en / (Th−Tw) (8)
Ki = A / (Th−Tw) (9)
Z = 1 / α = (1-STn) / (1-XHn) (10)
It is. Further, A in equation (7) is a constant, and en represents the deviation amount between the set temperature in equation (5) and the actual hot water supply temperature. The simultaneous hot water supply correction coefficient (Km shown in the equation (4)) of the correction opening degree dMV ′ of the general hot water supply side mixing valve 2a is 1.

補正傾きα、βはenの正負により、現在の弁特性に基づいて使い分ける。en≧0のとき、つまり一般給湯温度が設定温度より低い場合は、一般給湯側混合弁2aの開度をSTnより大きくする(開く)補正を行うので、補正傾きαを用いる。en<0のとき、つまり一般給湯温度が設定温度より高い場合は、一般給湯側混合弁2aの開度をSTnより小さくする(閉じる)補正を行うので、補正傾きβを用いる。したがって、en<0のとき、式(10)は次式となる。
Z=1/β=(STn−0)/(XHn−0)…(11)
The correction slopes α and β are selectively used based on the current valve characteristics depending on the sign of en. When en ≧ 0, that is, when the general hot water supply temperature is lower than the set temperature, correction is performed to make the opening of the general hot water supply side mixing valve 2a larger (open) than STn, and therefore, the correction gradient α is used. When en <0, that is, when the general hot water supply temperature is higher than the set temperature, correction is performed to make the opening degree of the general hot water supply side mixing valve 2a smaller (close) than STn, so the correction slope β is used. Therefore, when en <0, equation (10) becomes the following equation.
Z = 1 / β = (STn-0) / (XHn-0) (11)

このように制御された自動給湯装置においては、実際の一般給湯側混合弁2aの開度STnと温水流量比XHnとの関係から一般給湯側混合弁2aの駆動条件に合わせた補正開度dMV’(フィードバック量)を求め、式(3)の補正開度(dMV)に代入することによって、一般給湯側混合弁2aの駆動条件の変化に対する高追従性の向上を図ることができる。したがって、同時給湯が開始又は終了した時の、優先度が高い一般給湯温度のハンチング、オーバーシュート、又はアンダーシュートを極力抑え、正確に一般給湯温度を制御することが可能となる。また、一般給湯側混合弁2aの種類が変更となったり、貯湯ユニットA内の配管取り回しが変更になるなどの設計変更が生じた場合でも制御ソフトを変更せず対応することができる。   In the automatic hot water supply apparatus controlled in this way, the corrected opening degree dMV ′ according to the driving condition of the general hot water supply side mixing valve 2a from the relationship between the actual opening degree STn of the general hot water supply side mixing valve 2a and the hot water flow rate ratio XHn. By obtaining (feedback amount) and substituting it into the corrected opening degree (dMV) of equation (3), it is possible to improve high followability with respect to changes in the driving conditions of the general hot water supply side mixing valve 2a. Therefore, it is possible to control the general hot water temperature accurately by suppressing hunting, overshooting or undershooting of the general hot water temperature having a high priority when simultaneous hot water supply starts or ends. Further, even if a design change occurs such as a change in the type of the general hot water supply side mixing valve 2a or a change in the piping arrangement in the hot water storage unit A, the control software can be handled without changing.

さらに、一般給湯側混合弁2aの補正開度dMV’を求めるにあたり、貯湯タンク1から一般給湯側混合弁2aへ送られる高温湯の温度Th及び水源から一般給湯側混合弁2a送られる水の温度Twを用いているので、補正開度dMV’を大きくすると優先度が高い一般給湯温度がハンチング等を起こしてしまう場合や、また逆に補正開度dMV’を大きくしても優先度が高い一般給湯温度に影響しない場合など、一般給湯側混合弁2aの駆動条件に対応して迅速に一般給湯側混合弁2aの開度を制御可能な補正開度dMV’を求めることができる。   Further, in obtaining the corrected opening degree dMV ′ of the general hot water supply side mixing valve 2a, the temperature Th of high-temperature hot water sent from the hot water storage tank 1 to the general hot water supply side mixing valve 2a and the temperature of water sent from the water source to the general hot water supply side mixing valve 2a. Since Tw is used, when the correction opening degree dMV ′ is increased, the general hot water temperature having a high priority causes hunting or the like. Conversely, even when the correction opening degree dMV ′ is increased, the general priority is high. For example, when the hot water supply temperature is not affected, the correction opening degree dMV ′ capable of quickly controlling the opening degree of the general hot water supply side mixing valve 2a can be obtained in accordance with the driving conditions of the general hot water supply side mixing valve 2a.

なお、一般給湯の単独給湯の場合、給湯温度が設定温度となる一般給湯側混合弁2aの開度は理論弁開度STrに近いので、同時給湯終了時に一般給湯側混合弁2aの開度を理論弁開度STrに一旦戻す制御を入れることにより、同時給湯終了時の一般給湯温度の過渡変化においても一般給湯温度を安定して保つことができる。   In the case of single hot water supply for general hot water supply, the opening degree of the general hot water supply side mixing valve 2a at which the hot water supply temperature becomes the set temperature is close to the theoretical valve opening degree STr. By controlling to return to the theoretical valve opening STr once, the general hot water temperature can be stably maintained even in the transient change of the general hot water temperature at the end of the simultaneous hot water supply.

一般給湯の温度変化への早期対処を図った制御方法について以下説明する。
図7は、この発明の実施形態における同時給湯開始時の一般給湯温度の変化率と経過時間の関係図である。この図は、一般給湯側混合弁2a及び風呂給湯側混合弁2bの双方の開度を固定した状態で、一般給湯の単独給湯から一般給湯と風呂給湯の同時給湯を開始したときの一般給湯温度の経時変化を示している。横軸は経過時間であり0[sec]の時点で同時給湯を開始する(0[sec]より前は一般給湯単独の安定給湯状態)。縦軸は一般給湯温度の変化率を表し、0[sec]を変化率0の基準(0%)として、同時給湯後に一般給湯温度が安定した状態を変化率100%としている。同時給湯開始後の一般給湯温度の変化は非常に早く、変化率が安定状態の63.2%に達するまでの時間は約0.1〜0.3[sec]となる。この一般給湯温度の変化に追従した一般給湯側混合弁2aの開度制御を行うために、制御時間周期ΔTを少なくとも0.1〜0.3[sec]以下にする必要がある。
A control method for quickly dealing with a temperature change in general hot water supply will be described below.
FIG. 7 is a relationship diagram between the rate of change of the general hot water temperature and the elapsed time at the start of simultaneous hot water supply in the embodiment of the present invention. This figure shows a general hot water supply temperature when simultaneous hot water supply of general hot water and bath hot water is started from a single hot water supply of general hot water in a state in which the opening degree of both of the general hot water supply side mixing valve 2a and the bath hot water supply side mixing valve 2b is fixed. The change with time is shown. The horizontal axis is the elapsed time, and simultaneous hot water supply is started at the time of 0 [sec] (stable hot water supply state of general hot water alone before 0 [sec]). The vertical axis represents the rate of change of the general hot water supply temperature, with 0 [sec] being the reference for the rate of change 0 (0%), and the state where the general hot water temperature is stable after simultaneous hot water supply is 100%. The change of the general hot water temperature after the start of the simultaneous hot water supply is very fast, and the time until the rate of change reaches 63.2% of the stable state is about 0.1 to 0.3 [sec]. In order to control the opening degree of the general hot water supply side mixing valve 2a following the change in the general hot water temperature, the control time period ΔT needs to be at least 0.1 to 0.3 [sec] or less.

このように制御された自動給湯装置においては、制御時間周期ΔTを少なくとも0.1〜0.3[sec]以下で一般給湯側混合弁2aの開度制御をすることにより、同時給湯開始時の一般給湯温度の過渡変化や、給湯流量の急激な変化等の外乱にも迅速に対応することができる。したがって、優先度が高い一般給湯温度のオーバーシュート、アンダーシュートを極力抑え、正確に一般給湯温度を制御することが可能となる。
また同様に、制御時間周期ΔTを少なくとも0.1〜0.3[sec]以下で風呂給湯側混合弁2bの開度制御をすることにより、同時給湯開始時の風呂給湯温度の過渡変化や、給湯流量の急激な変化等の外乱にも迅速に対応することができる。したがって、優先度が低い風呂給湯温度についてもオーバーシュート、アンダーシュートを極力抑え、正確に一般給湯温度を制御することが可能となる。
In the automatic hot water supply apparatus controlled in this way, the opening time of the general hot water supply side mixing valve 2a is controlled at a control time period ΔT of at least 0.1 to 0.3 [sec] or less, so that the simultaneous hot water supply is started. It is possible to quickly cope with disturbances such as a transient change in the general hot water temperature and a sudden change in the hot water flow rate. Therefore, it is possible to control the general hot water temperature accurately by suppressing overshoot and undershoot of the general hot water temperature having a high priority as much as possible.
Similarly, by controlling the opening of the hot water supply side mixing valve 2b at a control time period ΔT of at least 0.1 to 0.3 [sec] or less, a transient change in the hot water temperature at the start of simultaneous hot water supply, It is possible to respond quickly to disturbances such as a rapid change in the hot water flow rate. Accordingly, it is possible to control the general hot water temperature accurately by suppressing overshoot and undershoot as much as possible even for the bath hot water temperature having a low priority.

同時給湯開始時における一般給湯側混合弁2aと風呂給湯側混合弁2bの連動制御の向上を図った制御方法について以下説明する。
一般給湯と風呂給湯の同時給湯においては、一般給湯側混合弁2a及び風呂給湯側混合弁2b双方の開度がお互いの給湯温度の制御性に影響を及ぼし合う。一般給湯と風呂給湯の同時給湯においては、それぞれの給湯温度の安定性の要求度合いが異なり、シャワーや手洗いなど、使用中に給湯温度が急変した場合に危険や不快感が発生する可能性がある一般給湯の方が優先度が高い。風呂給湯の場合は、湯が浴槽内に給湯されるため、温度の安定までに多少時間を要しても危険や不快感が生じる可能性が低く、優先度は低くなる。このような場合には、優先度が低い風呂給湯側混合弁2bの給湯温度制御性を多少犠牲にしても、優先度が高い一般給湯側混合弁2aの給湯温度制御性を重視して、一般給湯温度の変化を最小にすることが可能となる方が制御として望ましい。
A control method for improving the interlock control of the general hot water supply side mixing valve 2a and the bath hot water supply side mixing valve 2b at the start of simultaneous hot water supply will be described below.
In simultaneous hot water supply of general hot water supply and bath hot water supply, the opening degree of both the general hot water supply side mixing valve 2a and the bath hot water supply side mixing valve 2b affects the controllability of the hot water supply temperature. In the simultaneous hot water supply of general hot water and bath hot water, the required degree of stability of each hot water temperature is different, and there is a possibility that danger or discomfort may occur if the hot water temperature changes suddenly during use, such as showering and hand washing General hot water supply has a higher priority. In the case of bath hot water supply, since hot water is supplied into the bathtub, there is little possibility of danger or discomfort even if it takes some time to stabilize the temperature, and the priority is low. In such a case, even if the hot water supply temperature controllability of the low-priority bath hot water supply side mixing valve 2b is sacrificed somewhat, the hot water supply temperature controllability of the general hot water supply side mixing valve 2a with high priority is emphasized. It is desirable for the control to be able to minimize the change in the hot water supply temperature.

また、同時給湯開始時と終了時とでは、同時給湯終了時は一般給湯(又は風呂給湯)の単独給湯に戻るため一般給湯側混合弁2a(又は風呂給湯側混合弁2b)の開度が理論弁開度STrに近く、開度の予測がしやすい。しかし、同時給湯開始時は、貯湯タンク1から一般給湯側混合弁2aに供給される高温湯及び水源から一般給湯側混合弁2aに供給される水の流量が急変するため、開度の予測が難しい。したがって、同時給湯開始時は、一般給湯及び風呂給湯それぞれの給湯温度がバランスする一般給湯側混合弁2aの開度及び風呂給湯側混合弁2bの開度に安定するまでに、給湯温度のオーバーシュートやアンダーシュートが発生しやすく、一般給湯側混合弁2aの開度及び風呂給湯側混合弁2b双方の混合弁の影響を加味しながら制御を行うことが望ましい。   In addition, when the simultaneous hot water supply is started and finished, the opening degree of the general hot water supply side mixing valve 2a (or the bath hot water supply side mixing valve 2b) is theoretically determined to return to the single hot water supply of the general hot water supply (or bath hot water) at the end of the simultaneous hot water supply. Close to the valve opening STr, it is easy to predict the opening. However, when the simultaneous hot water supply starts, the flow rate of the hot water supplied from the hot water storage tank 1 to the general hot water supply side mixing valve 2a and the water supplied from the water source to the general hot water supply side mixing valve 2a change abruptly. difficult. Therefore, at the start of simultaneous hot water supply, the hot water supply temperature overshoots until the hot water temperature of the general hot water supply side and the hot water supply side mixing valve 2b and the opening of the hot water supply side mixing valve 2b are stabilized. It is desirable to perform control while taking into consideration the opening degree of the general hot water supply side mixing valve 2a and the effects of the mixing valves of both the hot water supply side mixing valve 2b.

図8は、本実施形態における風呂給湯側混合弁2b(優先度が低い方)の同時給湯補正係数Km(式(4))と一般給湯側混合弁2a(優先度が高い方)のen(設定温度と実際の給湯温度との偏差量)との関係図である。横軸は一般給湯側混合弁2a(優先度が高い方)のenの絶対値、縦軸は風呂給湯側混合弁2b(優先度が低い方)の同時給湯補正係数Kmである。一般給湯側混合弁2a(優先度が高い方)のenの絶対値がゼロに近く、ほぼ一般給湯温度が設定温度に制御できている場合には、同時給湯補正係数Kmは1(補正なしに等しい)に近い値をとる。一般給湯側混合弁2a(優先度が高い方)のenの絶対値が大きくなるにつれて、風呂給湯側混合弁2b(優先度が低い方)の同時給湯補正係数Kmは0に近づく(優先度が低い風呂給湯側混合弁2bの開度調整量は小さくなる)。一般給湯側混合弁2a(優先度が高い方)のenの絶対値が予め設定した値F(例えばF=5℃など)以上では、風呂給湯側混合弁2b(優先度が低い方)の同時給湯補正係数Kmは0になる(優先度が低い風呂給湯側混合弁2bの開度調整を停止する)。   FIG. 8 shows the simultaneous hot water supply correction coefficient Km (formula (4)) of the bath hot water supply side mixing valve 2b (lower priority) in the present embodiment and en of the general hot water supply side mixing valve 2a (higher priority). FIG. 6 is a relationship diagram between a set temperature and a deviation amount between actual hot water supply temperatures). The horizontal axis represents the absolute value of en of the general hot water supply side mixing valve 2a (higher priority), and the vertical axis represents the simultaneous hot water supply correction coefficient Km of the bath hot water mixing valve 2b (lower priority). When the absolute value of en of the general hot water supply side mixing valve 2a (which has higher priority) is close to zero and the general hot water temperature can be controlled to the set temperature, the simultaneous hot water supply correction coefficient Km is 1 (no correction) It is close to (equal). As the absolute value of en of the general hot water supply side mixing valve 2a (higher priority) increases, the simultaneous hot water supply correction coefficient Km of the bath hot water mixing valve 2b (lower priority) approaches 0 (priority becomes lower). The amount of opening adjustment of the low hot water supply side mixing valve 2b is small). When the absolute value of en of the general hot water supply side mixing valve 2a (higher priority) is equal to or greater than a preset value F (for example, F = 5 ° C.), the bath hot water mixing valve 2b (lower priority) is simultaneously used. The hot water supply correction coefficient Km becomes 0 (the opening degree adjustment of the hot water supply side mixing valve 2b having a low priority is stopped).

このように制御された自動給湯装置においては、一般給湯側混合弁2a(優先度が高い方)の偏差量enが拡大する場合には、風呂給湯側混合弁2b(優先度が低い方)の開度調整量を規制することで、一般給湯側混合弁2a(優先度が高い方)の給湯温度のオーバーシュート、アンダーシュート量を小さく抑えることが可能となる。また、一般給湯側混合弁2a(優先度が高い方)の偏差量enが小さい場合には、風呂給湯側混合弁2b(優先度が低い方)の開度調整量の規制を行わないように制御するため、風呂給湯側混合弁2b(優先度が低い方)の開度制御を迅速に行うことが可能となる。つまり、風呂給湯側混合弁2b(優先度が低い方)の給湯温度を迅速に目標温度に制御することができる。   In the automatic hot water supply apparatus controlled in this way, when the deviation amount en of the general hot water supply side mixing valve 2a (higher priority) increases, the bath hot water supply side mixing valve 2b (lower priority) By regulating the opening degree adjustment amount, it is possible to suppress the amount of overshoot and undershoot of the hot water supply temperature of the general hot water supply side mixing valve 2a (which has higher priority). When the deviation amount en of the general hot water supply side mixing valve 2a (higher priority) is small, the opening adjustment amount of the bath hot water mixing valve 2b (lower priority) is not regulated. In order to control, the opening degree control of the bath hot water side mixing valve 2b (low priority) can be quickly performed. That is, the hot water supply temperature of the bath hot water supply side mixing valve 2b (which has a lower priority) can be quickly controlled to the target temperature.

図9は、風呂給湯側混合弁2b(優先度が低い方)の開度制御に同時給湯補正係数Kmを適用しない場合における、一般給湯側混合弁2a及び風呂給湯側混合弁2bの開度と一般給湯温度及び風呂給湯温度との関係図であり、(a)は一般給湯側混合弁2a及び風呂給湯側混合弁2bの開度と経過時間との関係図、また(b)は一般給湯温度及び風呂給湯温度と経過時間との関係図を示す。また、図10は、風呂給湯側混合弁2b(優先度が低い方)の開度制御に同時給湯補正係数Kmを適用する場合における、一般給湯側混合弁2a及び風呂給湯側混合弁2bの開度と一般給湯温度及び風呂給湯温度との関係図であり、(a)は一般給湯側混合弁2a及び風呂給湯側混合弁2bの開度と経過時間との関係図、また(b)は一般給湯温度及び風呂給湯温度と経過時間との関係図を示す。   FIG. 9 shows the opening degrees of the general hot water supply side mixing valve 2a and the bath hot water supply side mixing valve 2b when the simultaneous hot water supply correction coefficient Km is not applied to the opening degree control of the bath hot water supply side mixing valve 2b (which has a lower priority). It is a related figure with general hot-water supply temperature and bath hot-water supply temperature, (a) is a relation figure of the opening degree of general hot-water supply side mixing valve 2a and bath hot-water supply side mixing valve 2b, and elapsed time, (b) is general hot-water supply temperature And the relationship figure of bath hot-water supply temperature and elapsed time is shown. FIG. 10 shows the opening of the general hot water supply side mixing valve 2a and the bath hot water supply side mixing valve 2b when the simultaneous hot water supply correction coefficient Km is applied to the opening degree control of the bath hot water side mixing valve 2b (which has a lower priority). (A) is a relationship diagram between the opening of the general hot water supply side mixing valve 2a and the bath hot water side mixing valve 2b and the elapsed time, and (b) is a general diagram. The relationship figure of hot water supply temperature and bath hot water supply temperature, and elapsed time is shown.

同時給湯補正係数Kmを適用しない場合は、一般給湯側混合弁2a及び風呂給湯側混合弁2bの開度は無関係に制御されるため、風呂給湯側混合弁2bの開度が大きすぎて、一般給湯温度のアンダーシュート量が大きくなっている。しかし、同時給湯補正係数Kmを適用する場合は、一般給湯のen(設定温度と実際の給湯温度との偏差量)が拡大するにつれて風呂給湯側混合弁2bの開度変化量が小さくなっており、一般給湯温度のアンダーシュート量が小さくなっている。なお、同時給湯補正係数Kmを適用する場合は風呂給湯温度が安定に達するまでの時間が若干長くなるが、前記説明のように優先度が高い一般給湯の給湯温度安定性確保の方が重要であり、また風呂側の安定までの時間短縮は重要な要素ではないため問題はない。   When the simultaneous hot water supply correction coefficient Km is not applied, the opening degrees of the general hot water supply side mixing valve 2a and the bath hot water supply side mixing valve 2b are controlled independently. The amount of undershoot in the hot water supply temperature is large. However, when the simultaneous hot water supply correction coefficient Km is applied, the amount of change in the opening degree of the hot water supply side mixing valve 2b becomes smaller as en of general hot water (the amount of deviation between the set temperature and the actual hot water temperature) increases. The undershoot amount of the general hot water temperature is small. When applying the simultaneous hot water supply correction coefficient Km, the time until the bath hot water temperature reaches a stable time is slightly longer. However, as described above, it is more important to ensure the hot water temperature stability of general hot water with a high priority. Yes, and there is no problem because shortening the time to stabilization on the bath side is not an important factor.

なお、本実施形態では、一般給湯側混合弁2a及び風呂給湯側混合弁2bの弁体の駆動速度を変更しなかったが、目標設定温度と実際の給湯温度との偏差量enの大きさに応じて、駆動速度を制御してもよい。例えば、偏差量enが大きいときには駆動速度を速くして、目標設定温度までの収束速度を速め、偏差量enが小さいときには駆動速度を遅くして、ハンチング等を防止する。   In the present embodiment, the drive speeds of the valve bodies of the general hot water supply side mixing valve 2a and the bath hot water supply side mixing valve 2b are not changed, but the magnitude of the deviation amount en between the target set temperature and the actual hot water supply temperature is not changed. Accordingly, the driving speed may be controlled. For example, when the deviation amount en is large, the driving speed is increased to increase the convergence speed to the target set temperature, and when the deviation amount en is small, the driving speed is decreased to prevent hunting or the like.

また、本実施形態における一般給湯側混合弁2a及び風呂給湯側混合弁2bの開度制御に加えて、各混合弁の設定温度、水源から供給される水の温度、又は流量などの駆動条件に応じて、同時給湯開始や終了の際に、予め所定の弁開度に移動させる方法(フィードフォワード制御)を併用してもよい。ここで、所定の弁開度は、試験や詳細なシミュレーション結果などに基づき予め値を定め、制御部10の記憶手段に記憶させておく。また、このフィードフォワード制御は、一部の条件に限定して用いる方法としてもよい。   In addition to the opening control of the general hot water supply side mixing valve 2a and the bath hot water supply side mixing valve 2b in this embodiment, the driving conditions such as the set temperature of each mixing valve, the temperature of water supplied from the water source, or the flow rate are set. Accordingly, a method of moving to a predetermined valve opening in advance (feed forward control) may be used in combination at the start or end of simultaneous hot water supply. Here, the predetermined valve opening is determined in advance based on a test or a detailed simulation result, and is stored in the storage means of the control unit 10. Further, this feedforward control may be a method that is used limited to some conditions.

1 貯湯タンク、2a 一般給湯側混合弁、2b 風呂給湯側混合弁、3 減圧弁、4 電磁弁、5 浴槽、6 混合栓、7 リモコン、10 制御部、11a,b 流量センサ、12a〜12d 温度センサ、A 貯湯ユニット、B 熱源ユニット。   DESCRIPTION OF SYMBOLS 1 Hot water storage tank, 2a General hot water supply side mixing valve, 2b Bath hot water supply side mixing valve, 3 Pressure reducing valve, 4 Solenoid valve, 5 Bathtub, 6 Mixing plug, 7 Remote control, 10 Control part, 11a, b Flow sensor, 12a-12d Temperature Sensor, A hot water storage unit, B heat source unit.

Claims (6)

湯流路からの湯と水流路からの水とを混合して給湯路から給湯する複数の混合弁と、
前記湯流路の流体温度、前記水流路の流体温度、及び前記給湯路の流体温度をそれぞれ検出する温度検出手段と、
前記温度検出手段の検出結果及び予め入力されているデータに基づいて前記混合弁を制御する制御手段とを備えた自動給湯装置において、
前記制御手段は、
前記混合弁の制御量を、
前記混合弁の開度及び前記混合弁から給湯される流体の温水流量比に基づいて補正することを特徴とする自動給湯装置。
A plurality of mixing valves for mixing hot water from the hot water channel and water from the water channel and supplying hot water from the hot water supply channel;
Temperature detecting means for detecting the fluid temperature of the hot water channel, the fluid temperature of the water channel, and the fluid temperature of the hot water channel,
In an automatic hot water supply apparatus comprising a control means for controlling the mixing valve based on the detection result of the temperature detection means and pre-input data,
The control means includes
The control amount of the mixing valve is
An automatic hot water supply apparatus that corrects based on an opening degree of the mixing valve and a hot water flow rate ratio of fluid supplied from the mixing valve.
前記温水流量比とは、
少なくとも前記湯流路、前記水流路、及び前記給湯路の流体温度から計算される、前記給湯路を流通する流体における前記湯流路を流通する流体と前記水流路を流通する流体との混合温度割合であることを特徴とする請求項1に記載の自動給湯装置。
The hot water flow rate ratio is
The mixing temperature of the fluid flowing through the hot water channel and the fluid flowing through the water channel in the fluid flowing through the hot water channel, calculated from at least the fluid temperatures of the hot water channel, the water channel, and the hot water channel The automatic hot water supply apparatus according to claim 1, wherein the automatic hot water supply apparatus is a ratio.
前記給湯路を流通する流体の流量を検出する流量検出手段を備え、
前記給湯路の流量に応じて前記混合弁を制御することを特徴とする請求項1または請求項2に記載の自動給湯装置。
Comprising flow rate detection means for detecting the flow rate of the fluid flowing through the hot water supply path,
The automatic hot water supply apparatus according to claim 1 or 2, wherein the mixing valve is controlled in accordance with a flow rate of the hot water supply passage.
前記制御手段は、
前記混合弁の補正開度を、
少なくとも前記湯流路の流体温度及び前記水流路の流体温度に基づいて求めることを特徴とする請求項1〜請求項3のいずれかに記載の自動給湯装置。
The control means includes
The correction opening of the mixing valve is
The automatic hot water supply apparatus according to any one of claims 1 to 3, wherein the automatic hot water supply apparatus is obtained based on at least a fluid temperature of the hot water channel and a fluid temperature of the water channel.
前記制御手段は、目標給湯温度と実際の給湯温度の偏差量に応じて前記混合弁の駆動速度を制御することを特徴とする請求項1〜請求項4のいずれかに記載の自動給湯装置。   The automatic hot water supply apparatus according to any one of claims 1 to 4, wherein the control means controls the driving speed of the mixing valve in accordance with a deviation amount between a target hot water supply temperature and an actual hot water supply temperature. 前記制御手段は、
前記湯流路の温度、前記水流路の温度、及び目標給湯温度に基づいて、
前記混合弁が2つ以上同時に作動するときの同時作動開始時又は終了時における前記混合弁の初期開度を所定の開度に制御することを特徴とする請求項1〜請求項5のいずれかに記載の自動給湯装置。
The control means includes
Based on the temperature of the hot water channel, the temperature of the water channel, and the target hot water temperature,
6. The initial opening degree of the mixing valve at the start or end of simultaneous operation when two or more mixing valves are simultaneously operated is controlled to a predetermined opening degree. The automatic hot water supply apparatus as described in.
JP2011076458A 2011-03-30 2011-03-30 Automatic water heater Active JP5455958B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011076458A JP5455958B2 (en) 2011-03-30 2011-03-30 Automatic water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011076458A JP5455958B2 (en) 2011-03-30 2011-03-30 Automatic water heater

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2007111248A Division JP4812682B2 (en) 2007-04-20 2007-04-20 Automatic water heater

Publications (2)

Publication Number Publication Date
JP2011127897A true JP2011127897A (en) 2011-06-30
JP5455958B2 JP5455958B2 (en) 2014-03-26

Family

ID=44290660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011076458A Active JP5455958B2 (en) 2011-03-30 2011-03-30 Automatic water heater

Country Status (1)

Country Link
JP (1) JP5455958B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110895049A (en) * 2019-11-29 2020-03-20 广东万和热能科技有限公司 Method for remotely controlling water heater

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06102941A (en) * 1992-09-17 1994-04-15 Toto Ltd Hot water supply device
JP2002115291A (en) * 2000-10-06 2002-04-19 Toto Ltd Combination faucet apparatus
JP2005172257A (en) * 2003-12-08 2005-06-30 Matsushita Electric Ind Co Ltd Hot water supply temperature control device
JP2005180860A (en) * 2003-12-22 2005-07-07 Sanyo Electric Co Ltd Hot water storage type water supply device
JP2006125644A (en) * 2004-10-26 2006-05-18 Corona Corp Hot water storage type water heater

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06102941A (en) * 1992-09-17 1994-04-15 Toto Ltd Hot water supply device
JP2002115291A (en) * 2000-10-06 2002-04-19 Toto Ltd Combination faucet apparatus
JP2005172257A (en) * 2003-12-08 2005-06-30 Matsushita Electric Ind Co Ltd Hot water supply temperature control device
JP2005180860A (en) * 2003-12-22 2005-07-07 Sanyo Electric Co Ltd Hot water storage type water supply device
JP2006125644A (en) * 2004-10-26 2006-05-18 Corona Corp Hot water storage type water heater

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110895049A (en) * 2019-11-29 2020-03-20 广东万和热能科技有限公司 Method for remotely controlling water heater
CN110895049B (en) * 2019-11-29 2021-07-13 广东万和热能科技有限公司 Method for remotely controlling water heater

Also Published As

Publication number Publication date
JP5455958B2 (en) 2014-03-26

Similar Documents

Publication Publication Date Title
TWI427450B (en) Temperature control device
TWI408524B (en) A temperature control device
CA2754683C (en) Hot-water supply system
WO2015122153A1 (en) Hot and cold water mixing device
JP5101548B2 (en) Hot water system
JP5312508B2 (en) Automatic water heater
JP6160772B2 (en) Hot water storage water heater
JP4812682B2 (en) Automatic water heater
JP5455958B2 (en) Automatic water heater
KR20170073908A (en) Heating device and method for controlling the same
JP2014020760A (en) Hot water storage type water heater
JP2016217545A (en) Hot water storage type heat pump water heater
JPH0330058B2 (en)
JP2012078041A (en) Hot-water storage type hot-water supply device
JP2016186764A (en) Hot water and water mixing device
JP5398680B2 (en) HEAT SOURCE DEVICE, HEAT MEDIUM USING SYSTEM, AND HEAT SOURCE DEVICE CONTROL METHOD
JP3915775B2 (en) Hot water temperature controller
JP2001124356A (en) Method for controlling instantaneous hot water output for instantaneous hot water outputting device
JP4890125B2 (en) Hot water storage water heater
JP5870844B2 (en) Hot water storage water heater
JP4788807B2 (en) Hot water mixing device
JP6757967B2 (en) Hot water supply system
JP2013185789A (en) Storage type water heater
JP2016217641A (en) Hot water and cold water mixing device
JP4723766B2 (en) Hot water storage water heater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140107

R150 Certificate of patent or registration of utility model

Ref document number: 5455958

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250