JP2011126217A - Plate-like sound absorbing material and soundproof panel using the same - Google Patents

Plate-like sound absorbing material and soundproof panel using the same Download PDF

Info

Publication number
JP2011126217A
JP2011126217A JP2009288736A JP2009288736A JP2011126217A JP 2011126217 A JP2011126217 A JP 2011126217A JP 2009288736 A JP2009288736 A JP 2009288736A JP 2009288736 A JP2009288736 A JP 2009288736A JP 2011126217 A JP2011126217 A JP 2011126217A
Authority
JP
Japan
Prior art keywords
sound
plate
absorbing material
resin foam
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009288736A
Other languages
Japanese (ja)
Inventor
Izumi Ibata
泉 伊場田
Kyosuke Sagara
京助 相良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2009288736A priority Critical patent/JP2011126217A/en
Publication of JP2011126217A publication Critical patent/JP2011126217A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Building Environments (AREA)
  • Molding Of Porous Articles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sound absorbing material capable of absorbing a wide range of sounds in a frequency region of high sensitivity in human ears or efficiently absorbing sounds from a specific sound source, and a soundproof panel using the sound absorbing material. <P>SOLUTION: This plate-like sound absorbing material 2 is made of a resin foam molding molded using closed cell beads and having a porosity of 15-50%, and manufactured by partially changing the thickness of the resin foam molding according to the frequency of a sound absorbing object utilizing the correlation between the thickness of the resin foam molding and sound absorbing frequency. At least one surface of the plate-like sound absorbing material is covered with a sound insulating sheet 3 to form the soundproof panel 1. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、板状吸音材及びそれを用いた防音パネルに係わり、更に詳しくは音の伝播を防止するために用いる板状吸音材及びそれを用いた防音パネルに関するものである。   The present invention relates to a plate-shaped sound absorbing material and a soundproof panel using the same, and more particularly to a plate-shaped sound absorbing material used for preventing the propagation of sound and a soundproof panel using the same.

従来から建築や建設工事現場等で発生する騒音の周辺環境へ伝播するのを防止するために防音パネルが用いられている。この防音パネルは、遮音シートと吸音性を有する発泡合成樹脂板等を組み合わせて作製されている。   Conventionally, a soundproof panel has been used to prevent noise generated at a building or construction site from propagating to the surrounding environment. This soundproof panel is produced by combining a sound insulation sheet and a foamed synthetic resin plate having sound absorption.

例えば、特許文献1には、多数の連通孔を有し、空隙率が20〜50%の熱可塑性樹脂発泡体の表面を多孔シートで覆った板状吸音材が開示されて、更にこの板状吸音材を囲い板の音源側に貼着した仕切り材も開示されている。   For example, Patent Document 1 discloses a plate-like sound-absorbing material having a large number of communicating holes and the surface of a thermoplastic resin foam having a porosity of 20 to 50% covered with a porous sheet. A partition material in which a sound absorbing material is attached to the sound source side of the enclosure is also disclosed.

また、特許文献2には、合成樹脂からなる独立気泡の発泡成形品に多数の孔を形成した板状吸音材が開示され、特許文献3には、同じく合成樹脂からなる独立気泡の発泡成形品に有低又は貫通した所定幅の薄幅溝を形成した板状吸音材が開示されている。何れも発泡倍率が数十倍、空隙率が1〜20%程度の通常の発泡成形品を用い、合成樹脂の融点以上に加熱した針状部材あるいは板状部材を押し当てて、孔あるいは溝を形成したものである。   Patent Document 2 discloses a plate-like sound absorbing material in which a large number of holes are formed in a closed cell foam molded product made of a synthetic resin, and Patent Document 3 discloses a closed cell foam molded product also made of a synthetic resin. A plate-like sound-absorbing material is disclosed in which a thin groove having a predetermined width is formed. In any case, a normal foamed molded product having an expansion ratio of several tens of times and a porosity of about 1 to 20% is used, and a needle-like member or a plate-like member heated above the melting point of the synthetic resin is pressed to form a hole or groove. Formed.

通常、人間の耳の可聴周波数は、20〜20000Hzとされるが、通常の会話では200〜8000Hzの周波数領域が使用され、その中で1000〜3500Hzの範囲内で感度が最も高くなっている。そこで、板状吸音材も1000〜3500Hzの周波数領域に吸音特性のピークを持つように設定するのである。しかし、発泡成形品自体の吸音特性は、比較的狭い周波数領域にピークを持つパターンを有し、吸収できない音の周波数が多く残る。そこで、発泡成形品に、深さや径あるいは幅が異なる複数種類の孔あるいは溝を設けて、吸収する音の周波数帯域を広げる工夫を施したのであるが、発泡成形品に設ける孔や溝の開孔率が小さいため、孔や溝の形状を工夫しても吸音特性を劇的に変えることは不可能である。   Usually, the audible frequency of the human ear is 20 to 20000 Hz. In normal conversation, the frequency range of 200 to 8000 Hz is used, and the sensitivity is highest in the range of 1000 to 3500 Hz. Therefore, the plate-like sound absorbing material is also set so as to have a sound absorption characteristic peak in the frequency range of 1000 to 3500 Hz. However, the sound absorption characteristic of the foamed molded product itself has a pattern having a peak in a relatively narrow frequency region, and many frequencies of sound that cannot be absorbed remain. Therefore, the foam molded product has been devised to provide multiple types of holes or grooves with different depths, diameters, or widths to widen the frequency band of the sound to be absorbed. Since the porosity is small, it is impossible to dramatically change the sound absorption characteristics even if the shape of the hole or groove is devised.

尚、特許文献4には、柱状ビーズを点接着させ、成形体に20〜50%の空隙率を持たせたポリプロピレン系樹脂発泡成形体が開示され、板状吸音材として使用できる点が開示されている。   In addition, Patent Document 4 discloses a polypropylene resin foam molded body in which columnar beads are spot-bonded and the molded body has a porosity of 20 to 50%, and it can be used as a plate-like sound absorbing material. ing.

実用新案登録第3147955号公報Utility Model Registration No. 3147955 特開2005−119257号公報JP 2005-119257 A 特開2005−212112号公報JP-A-2005-212112 WO2006/016478号公報WO2006 / 016478

板状吸音材として備えるべき特性は、人間の耳において感度が高い1000〜3500Hzの周波数領域で、広い範囲で吸音率が高いことと、形状保持性が良いことである。本発明者らは、特許文献4記載のポリプロピレン系樹脂発泡成形体の吸音特性を調べている際に、樹脂発泡成形体の板厚によって吸音特性が劇的に変化することを発見した。   The characteristics to be provided as the plate-like sound absorbing material are that the sound absorption coefficient is high in a wide range in the frequency region of 1000 to 3500 Hz, which is highly sensitive to human ears, and that the shape retention is good. When investigating the sound absorption characteristics of the polypropylene resin foam molded article described in Patent Document 4, the present inventors have found that the sound absorption characteristics change dramatically depending on the thickness of the resin foam molded article.

そこで、本発明が前述の状況に鑑み、解決しようとするところは、人間の耳において感度が高い周波数領域で、広い範囲の音を吸収し、あるいは特定の音源からの音を効率良く吸収できる板状吸音材を提供し、併せてその板状吸音材を用いた防音パネルを提供する点にある。   Accordingly, in view of the above-described situation, the present invention intends to solve a board that can absorb a wide range of sound in a frequency range with high sensitivity in the human ear, or can efficiently absorb sound from a specific sound source. The present invention provides a sound absorbing panel and a soundproof panel using the plate sound absorbing material.

本発明は、前述の課題解決のために、独立気泡ビーズを用いて成形した空隙率15%以上50%以下の樹脂発泡成形体からなり、該樹脂発泡成形体の厚さと吸音周波数との相関を利用し、該樹脂発泡成形体の厚さを吸音対象の周波数に応じて部分的に変化させたことを特徴とする板状吸音材を構成した。   In order to solve the above-mentioned problems, the present invention comprises a resin foam molded article having a porosity of 15% or more and 50% or less molded using closed cell beads. The correlation between the thickness of the resin foam molded article and the sound absorption frequency is obtained. A plate-like sound-absorbing material characterized in that the thickness of the resin foam molded article was partially changed according to the frequency of the sound-absorbing object.

ここで、前記樹脂発泡成形体の密度は、15〜150g/Lであることが好ましく、また前記樹脂発泡成形体の厚さは、20〜200mmの範囲に設定することが好ましい。   Here, the density of the resin foam molded body is preferably 15 to 150 g / L, and the thickness of the resin foam molded body is preferably set in the range of 20 to 200 mm.

そして、本発明の板状吸音材は、板状の前記樹脂発泡成形体の片面又は両面に凹凸構造を形成し、音の伝播方向に対する厚さを、面内位置において部分的に変化させて構成することが好ましい。この場合、前記樹脂発泡成形体の凹凸構造を、該樹脂発泡成形体の成形時に形成する、あるいは前記樹脂発泡成形体の凹凸構造を、該樹脂発泡成形体の成形後に後加工によって形成することが可能である。   The plate-like sound absorbing material of the present invention is formed by forming a concavo-convex structure on one or both sides of the plate-like resin foam molded article, and partially changing the thickness in the in-plane position with respect to the sound propagation direction. It is preferable to do. In this case, the concavo-convex structure of the resin foam molded body may be formed during molding of the resin foam molded body, or the concavo-convex structure of the resin foam molded body may be formed by post-processing after molding of the resin foam molded body. Is possible.

また、本発明は、前述の特性の板状吸音材を用い、該板状吸音材の少なくとも一面を遮音シートで覆うことにより、好適に防音パネルを構成できる。ここで、防音パネルは、前記板状吸音材の片面に凹凸構造を形成し、該凹凸構造を形成した面を遮音シートで覆った構造とすることが好ましい。   Moreover, this invention can comprise a soundproof panel suitably by using the plate-shaped sound-absorbing material of the above-mentioned characteristic, and covering at least one surface of this plate-shaped sound-absorbing material with a sound insulation sheet. Here, it is preferable that the soundproof panel has a structure in which a concavo-convex structure is formed on one surface of the plate-like sound absorbing material, and the surface on which the concavo-convex structure is formed is covered with a sound insulating sheet.

以上にしてなる本発明の板状吸音材は、独立気泡ビーズを用いて発泡成形した空隙率15%以上50%以下の樹脂発泡成形体を用い、吸音対象の周波数に応じて樹脂発泡成形体の厚さを部分的に変化させたので、特定領域、あるいは広範囲の音を効率良く吸収することができる。   The plate-like sound-absorbing material of the present invention formed as described above uses a resin foam molded body having a porosity of 15% or more and 50% or less, which is foam-molded using closed-cell beads, and the resin foam molded body according to the frequency of the sound absorption target. Since the thickness is partially changed, a specific area or a wide range of sounds can be absorbed efficiently.

そして、前記樹脂発泡成形体として、独立気泡で空隙率15%以上50%以下、密度が15〜150g/Lの材料を用いることにより、特定の板厚に対して特定の周波数に共鳴的吸収ピークを持つ吸音特性が得られる。ここで、前記樹脂発泡成形体は、厚さを薄くすれば、高音領域の音を吸収し、厚さを厚くすれば、低音領域の音を吸収する傾向があるので、前記樹脂発泡成形体の厚さを部分的に変化させることにより、広い周波数領域の中で特定の周波数の音を効率良く吸収できる部分を形成することができ、それにより広い周波数領域の音を効率良く吸収できたり、あるいは特定の音源の特定周波数の音にターゲットを絞って効果的に吸収することができるのである。   And as the said resin foam molding, by using a material having a porosity of 15% to 50% and a density of 15 to 150 g / L with closed cells, a resonant absorption peak at a specific frequency with respect to a specific plate thickness Sound absorption characteristics with Here, the resin foam molded body tends to absorb the sound in the high frequency range if the thickness is reduced, and absorbs the sound in the low frequency range if the thickness is increased. By changing the thickness partially, it is possible to form a portion that can efficiently absorb a sound of a specific frequency in a wide frequency range, thereby efficiently absorbing a sound of a wide frequency range, or The target can be effectively absorbed by focusing on the sound of a specific frequency of a specific sound source.

そして、前述の吸音特性の板状吸音材を用い、該板状吸音材の少なくとも一面を遮音シートで覆って防音パネルを構成すれば、板状吸音材で音を吸収し、遮音シートで音の透過を防ぐので、建築や建設工事現場等で発生する騒音の周辺環境へ伝播するのを防止することができる。また、防音パネルは、記板状吸音材の片面に凹凸構造を形成し、該凹凸構造を形成した面を遮音シートで覆った構造とすることにより、表面に凹凸がないので、凹部に誇りや塵が溜まらず、また凸部の損傷を防止することができるので実用的である。   Then, if the plate-like sound absorbing material having the above-mentioned sound absorbing characteristics is used and a soundproof panel is formed by covering at least one surface of the plate-like sound absorbing material with a sound insulating sheet, the sound is absorbed by the plate-like sound absorbing material, and the sound insulating sheet absorbs the sound. Since transmission is prevented, it is possible to prevent noise generated at a construction site or construction site from propagating to the surrounding environment. In addition, the soundproof panel has a concavo-convex structure on one side of the recording plate-like sound-absorbing material, and has a structure in which the surface on which the concavo-convex structure is formed is covered with a sound insulation sheet. This is practical because dust does not collect and damage to the projections can be prevented.

本発明に係る防音パネルの断面図である。It is sectional drawing of the soundproof panel which concerns on this invention. 本実施形態で使用する板状吸音材を示し、(a)は単純な板状吸音材、(b)は片面に波型の凹凸構造を形成した板状吸音材、(c)は片面に断面四角形の凹凸構造を形成した板状吸音材、(d)は片面に断面台形状の凹凸構造を形成した板状吸音材をそれぞれ示している。The plate-like sound-absorbing material used in this embodiment is shown, (a) is a simple plate-like sound-absorbing material, (b) is a plate-like sound-absorbing material having a corrugated uneven structure on one side, and (c) is a cross-section on one side. A plate-like sound-absorbing material having a quadrangular concavo-convex structure is shown, and (d) shows a plate-shaped sound-absorbing material having a concavo-convex structure having a trapezoidal cross section on one side. 本発明で使用した板状吸音材の板厚を10mm、20mm、30mm、40mmとした場合の周波数に対する吸音率を示すグラフである。It is a graph which shows the sound absorption rate with respect to the frequency when the plate | board thickness of the plate-shaped sound absorption material used by this invention is 10 mm, 20 mm, 30 mm, and 40 mm. 厚さが20mmと40mmと不連続に変化するステップ状の凹凸構造を形成した板状吸音材の試験片(実施例1)を示し、(a)は正面図、(b)は側面図である。The test piece (Example 1) of the plate-shaped sound-absorbing material which formed the step-shaped uneven structure in which thickness changes discontinuously with 20 mm and 40 mm is shown, (a) is a front view, (b) is a side view. . 厚さが20mmから40mmの間で連続的に変化する波型の凹凸構造を形成した板状吸音材の試験片(実施例2)を示し、(a)は正面図、(b)は側面図である。The test piece (Example 2) of the plate-shaped sound-absorbing material in which the corrugated uneven structure whose thickness changes continuously between 20 mm and 40 mm is shown, (a) is a front view, (b) is a side view. It is. 比較例1として通常のEPP30倍発泡体(厚さ40mm)の周波数に対する吸音率を示すグラフである。4 is a graph showing the sound absorption coefficient with respect to the frequency of a normal EPP 30-fold foam (thickness: 40 mm) as Comparative Example 1. FIG. 比較例2として本実施形態で用いた板状吸音材を厚さ40mmの単純板状とした場合の周波数に対する吸音率を示すグラフである。It is a graph which shows the sound absorption rate with respect to the frequency at the time of making the plate-shaped sound-absorbing material used by this embodiment into the simple plate shape of thickness 40mm as the comparative example 2. 比較例3として本実施形態で用いた板状吸音材を厚さ20mmの単純板状とした場合の周波数に対する吸音率を示すグラフである。6 is a graph showing a sound absorption coefficient with respect to a frequency when the plate-like sound absorbing material used in the present embodiment is set as a simple plate having a thickness of 20 mm as Comparative Example 3. 実施例1の板状吸音材の周波数に対する吸音率を示すグラフである。It is a graph which shows the sound absorption rate with respect to the frequency of the plate-shaped sound-absorbing material of Example 1. 実施例2の板状吸音材の周波数に対する吸音率を示すグラフである。It is a graph which shows the sound absorption rate with respect to the frequency of the plate-shaped sound-absorbing material of Example 2.

次に、添付図面に示した実施形態に基づき、本発明を更に詳細に説明する。図1は、本発明に係る防音パネルを示し、図2は板状吸音材を示している。   Next, the present invention will be described in more detail based on the embodiments shown in the accompanying drawings. FIG. 1 shows a soundproof panel according to the present invention, and FIG. 2 shows a plate-like sound absorbing material.

本発明の防音パネル1は、独立気泡ビーズを用いて成形した空隙率15%以上50%以下の樹脂発泡成形体からなり、該樹脂発泡成形体の厚さと吸音周波数との相関を利用し、該樹脂発泡成形体の厚さを吸音対象の周波数に応じて部分的に変化させた板状吸音材2を用い、該板状吸音材2の少なくとも一面を遮音シート3で覆って構成した。ここで、前記防音パネル1は、板状吸音材2の片面に凹凸構造4を形成し、該凹凸構造4を形成した面を遮音シート3で覆った構造とすることが好ましい。   The soundproof panel 1 of the present invention comprises a resin foam molded article having a porosity of 15% or more and 50% or less molded using closed cell beads, utilizing the correlation between the thickness of the resin foam molded article and the sound absorption frequency, The plate-like sound absorbing material 2 in which the thickness of the resin foam molded body was partially changed according to the frequency of the sound absorbing object was used, and at least one surface of the plate-like sound absorbing material 2 was covered with the sound insulating sheet 3. Here, it is preferable that the soundproof panel 1 has a structure in which the concavo-convex structure 4 is formed on one surface of the plate-like sound absorbing material 2 and the surface on which the concavo-convex structure 4 is formed is covered with the sound insulating sheet 3.

そして、本発明の板状吸音材2は、板状の前記樹脂発泡成形体の片面又は両面に凹凸構造4を形成し、音の伝播方向に対する厚さを、面内位置において部分的に変化させて構成している。   The plate-like sound absorbing material 2 of the present invention forms the concavo-convex structure 4 on one side or both sides of the plate-like resin foam molded article, and partially changes the thickness with respect to the sound propagation direction at the in-plane position. Is configured.

図2は、板状吸音材2の凹凸構造4の例を示している。図2(a)は、参考のために記載した凹凸構造を有さない単純な板状吸音材2を示し、本発明では単独でこの形状の板状吸音材2を用いることはないが、この形状の板状吸音材2を部分的に複数枚重ねて接着し、厚さを部分的に変化させることは可能である。図2(b)は、片面に波型の凹凸構造4を形成した板状吸音材2を示している。波型の凹凸構造4の場合、波の底部5が最も板厚が薄く、波の頂部6が最も板厚が厚くなり、その中間は連続的に厚さが変化していることが特徴である。図2(c)は、片面に断面四角形の凹凸構造4を形成した板状吸音材2を示している。この凹凸構造4の場合、同じパターンで凹部7と凸部8が繰り返すと、厚さは二段階に変化するたけであるが、凹部7の深さを変えれば、多段階に厚さを変化させることができる。図2(d)は、片面に断面台形状の凹凸構造4を形成した板状吸音材2を示している。この凹凸構造4も前記同様に、凹部9と凸部10を繰り返して形成したものであるが、同じパターンで繰り返しても、凹部9と凸部10の間の斜面11の部分は板厚が連続的に変化していることが特徴である。   FIG. 2 shows an example of the uneven structure 4 of the plate-like sound absorbing material 2. FIG. 2A shows a simple plate-shaped sound absorbing material 2 that does not have the uneven structure described for reference. In the present invention, the plate-shaped sound absorbing material 2 having this shape alone is not used. It is possible to partially change the thickness by partially stacking and bonding a plurality of plate-shaped sound absorbing materials 2. FIG. 2B shows a plate-like sound absorbing material 2 having a corrugated uneven structure 4 formed on one side. In the case of the corrugated concavo-convex structure 4, the wave bottom 5 is the thinnest, the wave top 6 is the thickest, and the thickness is continuously changing in the middle. . FIG. 2C shows a plate-like sound absorbing material 2 in which a concavo-convex structure 4 having a square cross section is formed on one side. In the case of the concavo-convex structure 4, when the concave portion 7 and the convex portion 8 are repeated in the same pattern, the thickness only changes in two steps. However, if the depth of the concave portion 7 is changed, the thickness is changed in multiple steps. be able to. FIG. 2D shows a plate-like sound absorbing material 2 in which a concavo-convex structure 4 having a trapezoidal cross section is formed on one side. The concave-convex structure 4 is also formed by repeatedly forming the concave portion 9 and the convex portion 10 in the same manner as described above. However, even if the concave / convex structure 4 is repeated in the same pattern, the portion of the slope 11 between the concave portion 9 and the convex portion 10 has a continuous thickness. It is characteristic that it changes.

前述の凹凸構造4は、板状吸音材2の両面に形成することも可能である。また、前述の凹凸構造4は、板状吸音材2の広い面に沿って一方向にパターンを繰り返すことも、二方向にパターンを繰り返して二次元的な構造にすることも可能である。また、板状吸音材2の表面において、部分的に厚さの異なる凹凸構造4を形成する場合、厚さの範囲毎に面積の広狭を設定し、特定の周波数の音を特に効果的に吸収するようにすることも可能である。例えば、厚さ40mmの領域の面積を50%、厚さ30mmの領域の面積を20%、厚さ20mmの領域の面積を30%というように設定することも好ましい。   The concavo-convex structure 4 described above can also be formed on both surfaces of the plate-like sound absorbing material 2. Moreover, the above-mentioned concavo-convex structure 4 can repeat a pattern in one direction along the wide surface of the plate-like sound absorbing material 2 or can have a two-dimensional structure by repeating the pattern in two directions. Further, when the uneven structure 4 having a partially different thickness is formed on the surface of the plate-like sound absorbing material 2, the area of each thickness range is set to absorb the sound of a specific frequency particularly effectively. It is also possible to do so. For example, it is also preferable to set the area of the 40 mm thick region to 50%, the area of the 30 mm thick region to 20%, and the area of the 20 mm thick region to 30%.

本発明において、樹脂発泡成形体の厚さと吸音周波数との相関を利用し、該樹脂発泡成形体の厚さを吸音対象の周波数に応じて部分的に変化させるという場合の「厚さ」とは、音の伝播方向に沿った厚さを示している。つまり、前記板状吸音材2の面に垂直に音が入射する場合は、板厚そのものが厚さであり、板状吸音材2の面に斜めに音が入射する場合には、その入射方向に横切る長さである。   In the present invention, using the correlation between the thickness of the resin foam molded body and the sound absorption frequency, the “thickness” in the case where the thickness of the resin foam molded body is partially changed in accordance with the frequency of the sound absorption target. , Shows the thickness along the sound propagation direction. That is, when sound is incident on the surface of the plate-like sound absorbing material 2 perpendicularly, the plate thickness itself is thick, and when sound is incident on the surface of the plate-like sound absorbing material 2 obliquely, the incident direction It is the length that crosses.

ここで、前記板状吸音材2として用いる樹脂発泡成形体の密度は、15〜150g/Lであることが好ましい。樹脂発泡成形体の密度と空隙率は密接な関連があり、独立パラメータではないが、本発明では、独立気泡ビーズを用いて成形した空隙率15%以上50%以下の樹脂発泡成形体で、密度を15〜150g/Lとした場合、樹脂発泡成形体の厚さを20〜200mmの範囲に設定すれば、人間の耳に感度の高い1000〜3500Hzの周波数の音を吸収することができる。   Here, the density of the resin foam molded body used as the plate-like sound absorbing material 2 is preferably 15 to 150 g / L. The density and porosity of the resin foam molding are closely related and are not independent parameters, but in the present invention, the resin foam molding with a porosity of 15% to 50% molded using closed cell beads When the thickness of the resin foam molded body is set in a range of 20 to 200 mm, sound having a frequency of 1000 to 3500 Hz, which is highly sensitive to human ears, can be absorbed.

樹脂発泡成形体の密度は、樹脂発泡成形体の重量を、見かけ体積Xで除した値である。ここで、樹脂発泡成形体の空隙率(%)は、樹脂発泡成形体の見かけ体積をX(cm3)、樹脂発泡成形体の真の体積をY(cm3)としたとき、次式によって算出される。
樹脂発泡成形体の空隙率(%)={(X−Y)/X}×100
樹脂発泡成形体の見かけ体積Xは、樹脂発泡成形体の外寸から算出することができる。また、樹脂発泡成形体の真の体積Yは、樹脂発泡成形体をアルコール中に沈めた時の増量した体積である。
The density of the resin foam molding is a value obtained by dividing the weight of the resin foam molding by the apparent volume X. Here, the porosity (%) of the resin foam molded article is expressed by the following equation when the apparent volume of the resin foam molded article is X (cm 3 ) and the true volume of the resin foam molded article is Y (cm 3 ). Calculated.
Porosity of resin foam molding (%) = {(XY) / X} × 100
The apparent volume X of the resin foam molded body can be calculated from the outer dimensions of the resin foam molded body. Moreover, the true volume Y of the resin foam molded article is an increased volume when the resin foam molded article is submerged in alcohol.

また、前記板状吸音材2として用いる樹脂発泡成形体の凹凸構造4は、該樹脂発泡成形体の成形時に形成する、あるいは該樹脂発泡成形体の成形後に後加工によって形成する、の何れの方法で形成しても良い。但し、凹凸構造4の形成方法によって、表面の微細構造は相違する。つまり、発泡成形時に凹凸構造4を形成する場合は、凹凸構造4の表面にビーズの表面層が存在する。また、発泡成形後に切削によって凹凸構造4を形成する場合は、凹部の表面に独立気泡が露出し、電熱線による熱溶断によって凹凸構造4を形成する場合は、凹部の表面に溶融部が形成される。このように、凹凸構造4の形成方法によって、表面の微細構造は相違し、音波の表面での反射、侵入の程度が異なるので、使用目的に最適な製法を選択すべきである。   Further, the uneven structure 4 of the resin foam molded body used as the plate-like sound absorbing material 2 is formed at the time of molding the resin foam molded body, or formed by post-processing after molding of the resin foam molded body. May be formed. However, the fine structure of the surface differs depending on the method of forming the uneven structure 4. That is, when the uneven structure 4 is formed during foam molding, a bead surface layer is present on the surface of the uneven structure 4. In addition, when the concavo-convex structure 4 is formed by cutting after foam molding, closed cells are exposed on the surface of the recess, and when the concavo-convex structure 4 is formed by thermal fusing with a heating wire, a melted part is formed on the surface of the recess. The As described above, the fine structure of the surface differs depending on the method of forming the concavo-convex structure 4, and the degree of reflection and intrusion of the sound wave on the surface is different. Therefore, a manufacturing method optimum for the purpose of use should be selected.

前記遮音シート3は、アスファルトシート、塩化ビニルシートや合成ゴムなどによって成形される制振シートなどの面密度が大きな可撓性のシート材であり、金属粉や無機材を配合して更に密度を高めて遮音効果を高めたものもある。   The sound insulation sheet 3 is a flexible sheet material having a large surface density, such as a vibration damping sheet formed of an asphalt sheet, a vinyl chloride sheet, a synthetic rubber, or the like, and further mixed with a metal powder or an inorganic material. Some have improved the sound insulation effect.

本実施形態では、樹脂発泡成形体としてポリプロピレン系樹脂発泡成形体を用いることが好ましい。このポリプロピレン系樹脂は、プロピレンモノマー単位が50重量%以上、好ましくは80重量%以上、更に好ましくは90重量%以上からなる重合体であり、チーグラー型塩化チタン系触媒またはメタロセン触媒で重合された、立体規則性の高いものが好ましい。具体例としては、例えば、プロピレン単独共重合体、エチレン−プロピレンランダム共重合体、プロピレン−ブテンランダム共重合体、エチレン−プロピレン−ブテンランダム共重合体、エチレン−プロピレンブロック共重合体、無水マレイン酸―プロピレンランダム共重合体、無水マレイン酸―プロピレンブロック共重合体、プロピレン−無水マレイン酸グラフト共重合体等が挙げられ、それぞれ単独あるいは混合して用いられる。特に、エチレン−プロピレンランダム共重合体、プロピレン−ブテンランダム共重合体、エチレン−プロピレン−ブテンランダム共重合体が好適に使用し得る。また、これらのポリプロピレン系樹脂は無架橋のものが好ましいが、架橋したものも使用できる。   In this embodiment, it is preferable to use a polypropylene resin foam molded body as the resin foam molded body. This polypropylene resin is a polymer comprising propylene monomer units of 50% by weight or more, preferably 80% by weight or more, more preferably 90% by weight or more, and polymerized with a Ziegler type titanium chloride catalyst or a metallocene catalyst. Those having high stereoregularity are preferred. Specific examples include, for example, propylene homopolymer, ethylene-propylene random copolymer, propylene-butene random copolymer, ethylene-propylene-butene random copolymer, ethylene-propylene block copolymer, maleic anhydride -Propylene random copolymer, maleic anhydride-propylene block copolymer, propylene-maleic anhydride graft copolymer, etc. are mentioned, and each is used alone or in combination. In particular, an ethylene-propylene random copolymer, a propylene-butene random copolymer, and an ethylene-propylene-butene random copolymer can be suitably used. Further, these polypropylene resins are preferably non-crosslinked, but crosslinked resins can also be used.

前記ポリプロピレン系樹脂は、JIS K7210に準拠し、温度230℃、荷重2.16kgで測定したメルトインデックス(以下、MI)が0.1g/10分以上9g/10分以下であることが好ましく、更に好ましくは2g/10分以上8g/10分以下である。MIが0.1g/10分未満では、独立気泡ビーズを製造する際の発泡力が低く、高発泡倍率の独立気泡ビーズを得るのが難しくなる。また、発泡成形体としたときの独立気泡ビーズ同士の融着強度を確保することが難しくなる。MIが9g/10分を超えると、発泡成形体としたときの空隙率を安定した値で制御することが難しくなる場合がある。   The polypropylene resin preferably has a melt index (hereinafter referred to as MI) measured at a temperature of 230 ° C. and a load of 2.16 kg in a range of 0.1 g / 10 min to 9 g / 10 min in accordance with JIS K7210. Preferably they are 2g / 10min or more and 8g / 10min or less. When MI is less than 0.1 g / 10 min, the foaming power when producing closed cell beads is low, and it becomes difficult to obtain closed cell beads having a high expansion ratio. Moreover, it becomes difficult to ensure the fusion strength between the closed-cell beads when the foam-molded body is formed. If MI exceeds 9 g / 10 min, it may be difficult to control the porosity of the foamed molded product with a stable value.

また、上記ポリプロピレン系樹脂は、機械的強度、耐熱性に優れた発泡成形体を得るために、融点は、好ましくは130℃以上168℃以下、更に好ましくは135℃以上160℃以下、特に好ましくは140℃以上155℃以下である。融点が当該範囲内である場合、成形性と機械的強度、耐熱性のバランスが取り易い傾向が強い。ここで、前記融点とは、示差走査熱量計によってポリプロピレン系樹脂1〜10mgを40℃から220℃まで10℃/分の速度で昇温し、その後40℃まで10℃/分の速度で冷却し、再度220℃まで10℃/分の速度で昇温した時に得られるDSC曲線における吸熱ピークのピーク温度をいう。   The polypropylene resin has a melting point of preferably 130 ° C. or higher and 168 ° C. or lower, more preferably 135 ° C. or higher and 160 ° C. or lower, particularly preferably, in order to obtain a foamed molded article having excellent mechanical strength and heat resistance. 140 ° C. or higher and 155 ° C. or lower. When the melting point is within this range, there is a strong tendency to easily balance moldability, mechanical strength, and heat resistance. Here, the melting point is a temperature of 10 to 10 ° C./min from 40 ° C. to 220 ° C., and then cooled to 40 ° C. at a rate of 10 ° C./min with a differential scanning calorimeter. The peak temperature of the endothermic peak in the DSC curve obtained when the temperature is increased again to 220 ° C. at a rate of 10 ° C./min.

そして、樹脂発泡成形体を製造するための独立気泡ビーズは、上記ポリプロピレン系樹脂を基材樹脂として、セル径が150μm以下であることが好ましく、且つ示差走査熱量測定によって得られるDSC曲線に2つの融解ピークを有し、低温側ピークの融解熱量α(J/g)、高温側ピークの融解熱量β(J/g)としたときのβ/(α+β)が0.35以上0.75以下であることが好ましい。これらの要件を満たすことにより、簡便で経済的に、倍率バラツキが小さく、空隙率15%以上50%以下であるポリプロピロピレン系樹脂からなる樹脂発泡成形体を安定的に製造することが可能となる傾向がある。   The closed cell beads for producing the resin foam molded article preferably have a cell diameter of 150 μm or less using the above polypropylene resin as a base resin, and two DSC curves obtained by differential scanning calorimetry. It has a melting peak, β / (α + β) is 0.35 or more and 0.75 or less when the heat of fusion α (J / g) of the low temperature side peak and the heat of fusion β (J / g) of the high temperature side peak Preferably there is. By satisfying these requirements, it is possible to stably and economically produce a resin foam molded article made of a polypropylene-based resin having a small variation in magnification and a porosity of 15% to 50%. Tend.

ここで、独立気泡ビーズの示差走査熱量測定によって得られるDSC曲線とは、独立気泡ビーズ1〜10mgを示差走査熱量計によって10℃/分の昇温速度で40℃から220℃まで昇温したときに得られるDSC曲線のことである。また、得られたDSC曲線の極大点を通る直線とDSC曲線との低温側の接点とDSC曲線で囲まれた面積から低温側ピークの融解熱量α(J/g)を算出し、DSC曲線の極大点を通る直線とDSC曲線との高温側の接点とDSC曲線で囲まれた面積から高温側ピークの融解熱量β(J/g)が算出される。   Here, the DSC curve obtained by differential scanning calorimetry of closed cell beads means that 1 to 10 mg of closed cell beads is heated from 40 ° C. to 220 ° C. at a heating rate of 10 ° C./min by a differential scanning calorimeter. It is a DSC curve obtained in (1). Further, the melting heat quantity α (J / g) of the low temperature side peak is calculated from the contact point on the low temperature side between the straight line passing through the maximum point of the obtained DSC curve and the DSC curve and the area surrounded by the DSC curve. From the contact point on the high temperature side of the straight line passing through the maximum point and the DSC curve and the area surrounded by the DSC curve, the heat of fusion β (J / g) of the high temperature side peak is calculated.

次に、ポリプロピレン系樹脂を用いて独立気泡ビーズを製造する方法について述べる。前記ポリプロピレン系樹脂は、既知の方法を用いて、例えば、押出機、ニーダー、バンバリーミキサー(商標)、ロール等を用いて溶融して、1粒の重量が0.2〜10mg、好ましくは0.5〜6mgの樹脂粒子に加工される。一般的には、押出機を用いて溶融し、ストランドカット法もしくはアンダーウォーターカット法にて製造する。例えば、ストランドカット法を用いる場合、円形ダイスからストランド状に押出されたポリプロピレン系樹脂を水、空気等で冷却、固化させたものを切断して、所望の形状の樹脂粒子を得る。   Next, a method for producing closed cell beads using a polypropylene resin will be described. The polypropylene resin is melted using a known method, for example, using an extruder, a kneader, a Banbury mixer (trademark), a roll or the like, and the weight of one particle is 0.2 to 10 mg, preferably 0.8. Processed into 5-6 mg resin particles. Generally, it melts using an extruder and is manufactured by a strand cut method or an underwater cut method. For example, when the strand cutting method is used, a polypropylene resin extruded in a strand form from a circular die is cooled and solidified with water, air, or the like to obtain resin particles having a desired shape.

更に、樹脂粒子製造の際、必要により種々の添加剤を、ポリプロピレン系樹脂の特性を損なわない範囲内で添加することができる。
例えば、変性ポリオレフィン樹脂および/または変性スチレン樹脂を添加することが好ましい。酸化ポリエチレンワックス、酸化ポリプロピレンワックス、無水マレイン酸変性ポリエチレン、無水マレイン酸変性ポリプロピレンがより好適に使用される。
酸化ポリエチレンワックスを使用する場合、ASTM D3236に準拠して150℃で測定される粘度が5mPa・s以上800mPa・s以下であることが好ましく、10mPa・s以上500mPa・s以下であることがより好ましい。
Furthermore, during the production of the resin particles, various additives can be added as necessary within a range that does not impair the properties of the polypropylene resin.
For example, it is preferable to add a modified polyolefin resin and / or a modified styrene resin. Oxidized polyethylene wax, oxidized polypropylene wax, maleic anhydride-modified polyethylene, and maleic anhydride-modified polypropylene are more preferably used.
When using an oxidized polyethylene wax, the viscosity measured at 150 ° C. in accordance with ASTM D3236 is preferably 5 mPa · s or more and 800 mPa · s or less, more preferably 10 mPa · s or more and 500 mPa · s or less. .

また、ASTM D1386に準拠して測定される酸価が5mgKOH/g以上50mgKOH/g以下であることが好ましく、10mgKOH/g以上30mgKOH/g以下であることが、より高い親和性を得る上で好ましい。数平均分子量は、分岐構造等により異なるが、多くの場合、500以上5000以下の範囲である。   Further, the acid value measured in accordance with ASTM D1386 is preferably 5 mgKOH / g or more and 50 mgKOH / g or less, and preferably 10 mgKOH / g or more and 30 mgKOH / g or less in order to obtain higher affinity. . The number average molecular weight varies depending on the branched structure and the like, but in many cases is in the range of 500 or more and 5000 or less.

本発明における独立気泡ビーズの製造には、従来から知られている方法を利用できる。例えば、密閉容器内に、上記樹脂粒子、発泡剤、分散剤および分散助剤を含む水系分散媒を仕込み、攪拌しながら昇温して一定温度(以下、発泡温度という場合がある)として樹脂粒子に発泡剤を含浸させ、必要に応じて発泡剤を追加添加して、密閉容器内を一定圧力(以下、発泡圧力という場合がある)に保持した後、密閉容器下部から内容物を密閉容器内圧より低圧雰囲気下に放出する方法により独立気泡ビーズが製造される。   A conventionally known method can be used for producing the closed cell beads in the present invention. For example, an aqueous dispersion medium containing the resin particles, the foaming agent, the dispersant, and the dispersion aid is charged into a sealed container, and the temperature is raised while stirring to increase the temperature of the resin particles as a constant temperature (hereinafter sometimes referred to as the foaming temperature). After impregnating with a foaming agent, add additional foaming agent as necessary to maintain the inside of the sealed container at a constant pressure (hereinafter sometimes referred to as foaming pressure), and then remove the contents from the bottom of the sealed container. Closed-cell beads are produced by a method of discharging under a lower pressure atmosphere.

前記発泡剤としては、プロパン、イソブタン、ノルマルブタン、イソペンタン、ノルマルペンタン等の脂肪族炭化水素およびそれらの混合物;空気、窒素、二酸化炭素等の無機ガス;水などが挙げられる。より高発泡倍率の独立気泡ビーズを得るためにはイソブタン、ノルマルブタンおよびそれらの混合物を発泡剤として用いるのが好ましい。低発泡倍率で、発泡倍率バラツキの小さい独立気泡ビーズを得るためには水を発泡剤として用いるのが好ましい。
水を発泡剤として用いる場合には、前記樹脂粒子を製造する際にナトリウムアイオノマー、カリウムアイオノマー、メラミン、イソシアヌル酸等の吸水剤を添加しておくことが好ましい。
Examples of the blowing agent include aliphatic hydrocarbons such as propane, isobutane, normal butane, isopentane, and normal pentane, and mixtures thereof; inorganic gases such as air, nitrogen, and carbon dioxide; and water. In order to obtain closed cell beads having a higher expansion ratio, it is preferable to use isobutane, normal butane and a mixture thereof as a foaming agent. In order to obtain closed-cell beads with low expansion ratio and small expansion ratio variation, it is preferable to use water as a foaming agent.
When water is used as a foaming agent, it is preferable to add a water absorbing agent such as sodium ionomer, potassium ionomer, melamine, or isocyanuric acid when the resin particles are produced.

この様にして密閉容器内に調整されたポリプロピレン系樹脂粒子の水系分散物は、攪拌下、所定の発泡温度まで昇温され、一定時間、通常5〜180分間、好ましくは10〜60分間保持されるとともに、密閉容器内の圧力は上昇し、発泡剤が樹脂粒子に含浸される。この後、所定の発泡圧力になるまで発泡剤が追加供給され、一定時間、通常5〜180分間、好ましくは10〜60分間保持される。かくして、発泡温度、発泡圧力で保持されたポリプロピレン系樹脂粒子の水系分散物を、密閉容器下部に設けられたバルブを開放して低圧雰囲気下(通常は大気圧下)に放出することにより独立気泡ビーズを製造することができる。
樹脂粒子の水系分散物を低圧雰囲気に放出する際、流量調整、倍率バラツキ低減などの目的で2〜10mmφの開口オリフィスを通して放出することもできる。また、発泡倍率を高くする目的で、上記低圧雰囲気を飽和水蒸気で満たす場合もある。
The aqueous dispersion of polypropylene resin particles thus adjusted in a sealed container is heated to a predetermined foaming temperature with stirring, and is maintained for a certain time, usually 5 to 180 minutes, preferably 10 to 60 minutes. At the same time, the pressure in the sealed container rises and the foaming agent is impregnated into the resin particles. Thereafter, the foaming agent is additionally supplied until a predetermined foaming pressure is reached, and is maintained for a certain time, usually 5 to 180 minutes, preferably 10 to 60 minutes. Thus, an aqueous dispersion of polypropylene resin particles held at the foaming temperature and foaming pressure is released by opening the valve provided at the bottom of the sealed container and releasing it in a low-pressure atmosphere (usually atmospheric pressure). Beads can be produced.
When the aqueous dispersion of resin particles is discharged into a low-pressure atmosphere, it can be discharged through an opening orifice of 2 to 10 mmφ for the purpose of adjusting the flow rate and reducing the variation in magnification. In some cases, the low-pressure atmosphere is filled with saturated steam for the purpose of increasing the expansion ratio.

以上のようにして得られた独立気泡ビーズの形状は、特に限定はなく、一般的な球形状や、例えばWO2006/16478号公報に開示されているような柱形状、例えば特開平7−137063号公報に開示されているような円筒形状を始めとした異形状等が挙げられるが、樹脂発泡成形体の空隙率を15%以上50%以下としやすいため、柱形状或いは異形状であることが好ましい。   The shape of the closed-cell beads obtained as described above is not particularly limited, and is a general spherical shape or a column shape as disclosed in, for example, WO2006 / 16478, for example, JP-A-7-137063. Examples include irregular shapes such as a cylindrical shape disclosed in the gazette. However, since the void ratio of the resin foam molded body is easily set to 15% or more and 50% or less, a columnar shape or an irregular shape is preferable. .

柱形状である場合、独立気泡ビーズの最長部の長さをL、L方向と垂直な断面における最大径Dmaxと最小径DminとしたときのDmaxとDminの平均値Dの比(L/D)が1.5以上3以下の柱状形状であることが好ましい。
L方向に垂直な断面形状は、円、楕円等の凹部のない閉じた曲線であり、DmaxおよびDminはL方向に沿って略一定の値をとる。柱形状の独立気泡ビーズの具体例としては、円柱形状、楕円柱形状が挙げられる。
L/Dを1.5以上3以下とすると、成形のため金型に充填した際に、独立気泡ビーズ同士の適度な接触面積を保って、高い空隙率を形成しやすい傾向になる。L/Dが1.5未満となると、金型に充填した際に十分な空隙率を有する樹脂発泡成形体を得ることが困難な場合がある。L/Dが3を超えると、金型に充填する際の充填口での目詰まりが発生し易く、充填不良の原因、或いは、樹脂発泡成形体の局所間での空隙率にバラツキが生じ易い傾向がある。
In the case of a columnar shape, the ratio of the average value D of Dmax and Dmin (L / D) when the length of the longest part of the closed cell beads is L and the maximum diameter Dmax and the minimum diameter Dmin in the cross section perpendicular to the L direction Is preferably a columnar shape of 1.5 or more and 3 or less.
The cross-sectional shape perpendicular to the L direction is a closed curve without a concave portion such as a circle or an ellipse, and Dmax and Dmin take substantially constant values along the L direction. Specific examples of the columnar closed cell beads include a columnar shape and an elliptical columnar shape.
When L / D is 1.5 or more and 3 or less, when filling the mold for molding, an appropriate contact area between the closed cell beads is maintained, and a high porosity tends to be formed. When L / D is less than 1.5, it may be difficult to obtain a resin foam molded article having a sufficient porosity when filled in a mold. When L / D exceeds 3, clogging at the filling port when filling the mold is likely to occur, and the cause of filling failure or the void ratio between the local portions of the resin foam molded product tends to vary. Tend.

異形状である場合、特開平7−137063号公報に記載されているような、独立気泡ビーズを、三次元座標上のxy、yz、zxの各平面のそれぞれが上記独立気泡ビーズに少なくとも一点で接し、且つ上記各平面が独立気泡ビーズを切断しないように三次元座標上に配置した時、上記独立気泡ビーズ表面におけるx、y、zの各座標の絶対値の最大値のいずれかがとり得る最小の座標値絶対値をaとし、座標値絶対値aを示した座標軸と直交する方向の2つの座標値絶対値の最大値のいずれかとり得る最小の値をbとし、残りの座標値絶対値をcとしたときにa≦b≦cであり、1≦b/a<2であり、1≦c/a<2を満足するような形状であることが好ましい。   In the case of an irregular shape, the closed cell beads as described in JP-A-7-137063 are each at least one point on each of the above-mentioned closed cell beads in each of the xy, yz, and zx planes on the three-dimensional coordinates. When arranged on a three-dimensional coordinate so that the flat surfaces do not cut the closed cell beads, any one of the maximum absolute values of the x, y, and z coordinates on the closed cell bead surface can be taken. Let a be the minimum coordinate value absolute value, b be the smallest possible value of the two coordinate value absolute values in the direction orthogonal to the coordinate axis that indicated the coordinate value absolute value a, and the remaining coordinate value absolute When the value is c, a ≦ b ≦ c, 1 ≦ b / a <2, and a shape satisfying 1 ≦ c / a <2 is preferable.

上記のようにして得たポリプロピレン系樹脂からなる独立気泡ビーズは、従来から知られている成形方法により、空隙率が15%以上50%以下のポリプロピレン系樹脂発泡成形体にすることができる。例えば、イ)独立気泡ビーズを無機ガスで加圧処理して独立気泡ビーズ内に無機ガスを含浸させ所定の独立気泡ビーズ内圧を付与した後、金型に充填し、水蒸気で加熱融着させる方法、ロ)独立気泡ビーズをガス圧力で圧縮して金型に充填し、独立気泡ビーズの回復力を利用して、水蒸気で加熱融着させる方法、ハ)特に前処理することなく独立気泡ビーズを金型に充填し、水蒸気で加熱融着させる方法、などの方法が利用し得る。   The closed cell beads made of the polypropylene resin obtained as described above can be made into a polypropylene resin foam molded article having a porosity of 15% or more and 50% or less by a conventionally known molding method. For example, a) a method in which closed cell beads are pressurized with an inorganic gas, impregnated with the inorganic gas in the closed cell beads, given a predetermined internal cell bead internal pressure, filled into a mold, and heated and fused with water vapor. B) A method in which closed cell beads are compressed by gas pressure and filled into a mold, and the recovery force of the closed cell beads is used to heat and melt with water vapor. C) Closed cell beads are not subjected to any pretreatment. A method such as a method of filling a mold and heat-sealing with water vapor can be used.

上記の成形方法の中でも、独立気泡ビーズを無機ガスで加圧処理して独立気泡ビーズ内に無機ガスを含浸させ所定の独立気泡ビーズ内圧を付与した後、金型に充填し、水蒸気で加熱融着させる方法がより好ましく、該独立気泡ビーズ内圧を0.2kgf/cm2・G以上0.7kgf/cm2・G以下とするのが更に好ましい。独立気泡ビーズ内圧を0.2kgf/cm2・G以上0.7kgf/cm2・G以下とすることにより、空隙率のコントロールがより容易となり、空隙率15%以上50%以下の樹脂発泡成形体をより安定に製造することができる。 Among the above molding methods, the closed cell beads are pressurized with an inorganic gas, impregnated with the inorganic gas in the closed cell beads to give a predetermined closed cell bead internal pressure, filled into a mold, and heated and melted with steam. more preferably a method of wearing, even more preferably to the closed cell beads pressure than 0.2kgf / cm 2 · G or 0.7kgf / cm 2 · G. By the closed cell beads pressure than 0.2kgf / cm 2 · G or 0.7kgf / cm 2 · G, control of the porosity becomes easier, porosity 15% to 50% of a resin foam molded article Can be manufactured more stably.

上記無機ガスとしては、空気、窒素、酸素、ヘリウム、ネオン、アルゴン、炭酸ガスなどが使用できる。これらは単独で用いても、2種以上混合使用してもよい。これらの中でも、汎用性の高い空気、窒素が好ましい。
上記成形方法以外にも、独立気泡ビーズに接着剤を塗布し、当該独立気泡ビーズを、所望形状の成形型に流し込み、固化させることにより、空隙率15%以上50%以下の樹脂発泡成形体としてもよい。
As the inorganic gas, air, nitrogen, oxygen, helium, neon, argon, carbon dioxide, or the like can be used. These may be used alone or in combination of two or more. Among these, highly versatile air and nitrogen are preferable.
In addition to the molding method described above, a resin foam molded article having a porosity of 15% or more and 50% or less is obtained by applying an adhesive to closed cell beads, pouring the closed cell beads into a mold having a desired shape, and solidifying. Also good.

樹脂発泡成形体の空隙率は吸音特性と強く関係しており、空隙率は15%以上50%以下、更に好ましくは20%以上45%以下である。空隙率が15%未満となると、ピーク周波数における吸音率が低下し、十分な吸音特性が得られない。空隙率が50%を超えると、独立気泡ビーズ間の接触面積が低下して発泡成形体の割れが生じ易くなるばかりか、機械強度が低下して実用上の使用に耐えない。   The porosity of the resin foam molding is strongly related to the sound absorption characteristics, and the porosity is 15% to 50%, more preferably 20% to 45%. When the porosity is less than 15%, the sound absorption rate at the peak frequency is lowered, and sufficient sound absorption characteristics cannot be obtained. When the porosity exceeds 50%, the contact area between the closed cell beads is reduced, and the foamed molded body is liable to crack, and the mechanical strength is lowered to be unusable for practical use.

前述の円柱形状のポリプロピレン系樹脂独立気泡ビーズは、dB(ドックボーン:株式会社カネカ製)として市販されている。この独立気泡ビーズを用いて作製した33倍発泡の樹脂発泡成形体の吸音特性を図3に示している。図3は、前記樹脂発泡成形体の厚さを10mm、20mm、30mm、40mmとした場合の周波数に対する吸音率のグラフであり、厚さによって共鳴的吸収ピークを持つことが分かる。樹脂発泡成形体の厚さが増加すると、吸音ピークはより低い周波数に移動する。ここで、厚さ10mmの樹脂発泡成形体の場合は、4500Hz近辺の周波数で吸音ピークを持つので、本発明の防音目的にはそぐわない。吸収ピークは、厚さ20mmでは約2400Hz、30mmでは約1600Hz、400mmでは約1250Hzである。何れの厚さの吸音特性も高音領域へ長いテールを有している。また、前記樹脂発泡成形体の厚さが20mmよりも薄いと形状保持性が悪くなり、機械的強度も低下し過ぎるので、防音パネルとして使用するには適さない場合がある。そこで、本発明では、板状吸音材2の厚さの下限を20mmとした。また、板状吸音材2の厚さが200mmを超えると、防音パネルとして厚くなり過ぎ、取り扱いが難しくなる傾向がある。   The above-described cylindrical polypropylene-based resin closed cell beads are commercially available as dB (Dockbone: manufactured by Kaneka Corporation). FIG. 3 shows the sound absorption characteristics of a 33-fold foamed resin foam molded article produced using these closed cell beads. FIG. 3 is a graph of the sound absorption coefficient with respect to the frequency when the thickness of the resin foam molded article is 10 mm, 20 mm, 30 mm, and 40 mm. It can be seen that there is a resonance absorption peak depending on the thickness. As the thickness of the resin foam molding increases, the sound absorption peak moves to a lower frequency. Here, in the case of a resin foam molded body having a thickness of 10 mm, since it has a sound absorption peak at a frequency around 4500 Hz, it is not suitable for the soundproofing purpose of the present invention. The absorption peak is about 2400 Hz at a thickness of 20 mm, about 1600 Hz at 30 mm, and about 1250 Hz at 400 mm. The sound absorption characteristics of any thickness have a long tail in the treble region. On the other hand, if the thickness of the resin foam molding is less than 20 mm, the shape retainability is deteriorated and the mechanical strength is excessively lowered, so that it may not be suitable for use as a soundproof panel. Therefore, in the present invention, the lower limit of the thickness of the plate-like sound absorbing material 2 is set to 20 mm. Moreover, when the thickness of the plate-like sound absorbing material 2 exceeds 200 mm, it tends to be too thick as a soundproof panel and difficult to handle.

(実施例1,2)
次に、dB(ドックボーン、株式会社カネカの独立気泡ビーズの商品名)の独立気泡ビーズを用いて金型内で33倍発泡させ、図4及び図5に示した形状の試験片(空隙率25%)を作製し、吸音特性を調べた。図4に示した試験片(実施例1)は、直径40mmで、その片面に直径部分を境に厚さを40mmと20mmにステップ状(段型)に変化させた凹凸構造を形成したものである。図5に示した試験片(実施例2)は、直径40mmで、その片面に底部の厚さが20mm、頂部の厚さが40mmの波型の凹凸構造を形成したものである。
(Examples 1 and 2)
Next, using a closed cell bead of dB (Docbone, a trade name of Kaneka Corporation's closed cell bead), the foam was expanded 33 times in a mold, and a test piece (porosity) having the shape shown in FIGS. 25%), and the sound absorption characteristics were examined. The test piece (Example 1) shown in FIG. 4 has a diameter of 40 mm, and a concavo-convex structure in which the thickness is changed to a step shape (step type) from 40 mm and 20 mm with the diameter portion as a boundary on one side. is there. The test piece (Example 2) shown in FIG. 5 has a diameter of 40 mm, and a corrugated concavo-convex structure having a bottom thickness of 20 mm and a top thickness of 40 mm formed on one surface thereof.

(比較例1〜3)
比較例1として、通常のEPP30倍発泡体(厚さ40mm)を作製した。また、dB(ドックボーン)の独立気泡ビーズを用いて金型内で33倍発泡させた厚さ40mm(比較例2)と20mm(比較例3)の樹脂発泡成形体を作製した。
(Comparative Examples 1-3)
As Comparative Example 1, a normal EPP 30-fold foam (thickness 40 mm) was produced. In addition, resin foam molded products having thicknesses of 40 mm (Comparative Example 2) and 20 mm (Comparative Example 3), which were foamed 33 times in a mold using closed cell beads of dB (Dockbone), were produced.

図6は比較例1の樹脂発泡成形体の吸音特性を示し、図7は比較例2の吸音特性を示し、図8は比較例3の吸音特性を示している。各吸音特性のグラフの横軸は、音波の周波数、縦軸は吸音率を示し、吸音率は最大値を1に規格化している。図6より、通常のEPP30倍発泡体には、吸音効果は殆どないことが分かった。また、図7及び図8より、樹脂発泡成形体の厚さに応じて、特定の周波数領域の音を吸収するが、それ以外の周波数の音に対して吸収は少なく、多くの音を透過させてしまうことが分かる。   6 shows the sound absorption characteristics of the resin foam molded article of Comparative Example 1, FIG. 7 shows the sound absorption characteristics of Comparative Example 2, and FIG. 8 shows the sound absorption characteristics of Comparative Example 3. The horizontal axis of each sound absorption characteristic graph indicates the frequency of sound waves, the vertical axis indicates the sound absorption rate, and the maximum value of the sound absorption rate is normalized to 1. From FIG. 6, it was found that the normal EPP 30-fold foam has almost no sound absorbing effect. 7 and 8, according to the thickness of the resin foam molded article, it absorbs sound in a specific frequency range, but absorbs less sound than other frequencies, and allows many sounds to pass through. You can see that

それに対して、実施例1(dB33 20mm+40mm段型)の場合、図7と図8の吸音特性を合成したような吸音特性を有し、広い周波数領域(1000〜3500Hz)で音を効果的吸収することが分かる。同様に、実施例2(dB33 20mm〜40mm波型)の場合、吸音特性として広い周波数領域(1000〜3500Hz)に大きく横に広がった山が形成され、広い周波数領域で音を効果的に吸収することが分かる。   On the other hand, in the case of Example 1 (dB33 20 mm + 40 mm step type), it has a sound absorption characteristic that combines the sound absorption characteristics of FIG. 7 and FIG. 8 and is effective in a wide frequency range (1000 to 3500 Hz). It can be seen that it absorbs. Similarly, in the case of Example 2 (dB33 20 mm to 40 mm wave type), as a sound absorption characteristic, a mountain that spreads widely in a wide frequency region (1000 to 3500 Hz) is formed, and sound is effectively absorbed in a wide frequency region. I understand that.

1 防音パネル
2 板状吸音材
3 遮音シート
4 凹凸構造
5 底部
6 頂部
7 凹部
8 凸部
9 凹部
10 凸部
11 斜面
DESCRIPTION OF SYMBOLS 1 Soundproof panel 2 Plate-shaped sound-absorbing material 3 Sound insulation sheet 4 Uneven structure 5 Bottom part 6 Top part 7 Concave part 8 Convex part 9 Concave part 10 Convex part 11 Slope

Claims (8)

独立気泡ビーズを用いて成形した空隙率15%以上50%以下の樹脂発泡成形体からなり、該樹脂発泡成形体の厚さと吸音周波数との相関を利用し、該樹脂発泡成形体の厚さを吸音対象の周波数に応じて部分的に変化させたことを特徴とする板状吸音材。   It consists of a resin foam molding with a porosity of 15% or more and 50% or less molded using closed cell beads. The thickness of the resin foam molding is determined by utilizing the correlation between the thickness of the resin foam molding and the sound absorption frequency. A plate-like sound-absorbing material that is partially changed according to the frequency of the sound-absorbing target. 前記樹脂発泡成形体の密度は、15〜150g/Lである請求項1記載の板状吸音材。   The plate-like sound-absorbing material according to claim 1, wherein the resin foam molded body has a density of 15 to 150 g / L. 前記樹脂発泡成形体の厚さは、20〜200mmの範囲に設定した請求項1又は2記載の板状吸音材。   The plate-like sound-absorbing material according to claim 1 or 2, wherein a thickness of the resin foam molded body is set in a range of 20 to 200 mm. 板状の前記樹脂発泡成形体の片面又は両面に凹凸構造を形成し、音の伝播方向に対する厚さを、面内位置において部分的に変化させた請求項1〜3何れかに記載の板状吸音材。   The plate shape according to any one of claims 1 to 3, wherein a concavo-convex structure is formed on one side or both sides of the plate-like resin foam molded body, and the thickness with respect to the sound propagation direction is partially changed at an in-plane position. Sound absorbing material. 前記樹脂発泡成形体の凹凸構造を、該樹脂発泡成形体の成形時に形成する請求項4記載の板状吸音材。   The plate-like sound-absorbing material according to claim 4, wherein the concavo-convex structure of the resin foam molded body is formed when the resin foam molded body is molded. 前記樹脂発泡成形体の凹凸構造を、該樹脂発泡成形体の成形後に後加工によって形成する請求項4記載の板状吸音材。   The plate-like sound-absorbing material according to claim 4, wherein the uneven structure of the resin foam molded body is formed by post-processing after the resin foam molded body is molded. 請求項1〜6何れかに記載の板状吸音材の少なくとも一面を遮音シートで覆った防音パネル。   A soundproof panel in which at least one surface of the plate-like sound absorbing material according to claim 1 is covered with a sound insulating sheet. 前記板状吸音材の片面に凹凸構造を形成し、該凹凸構造を形成した面を遮音シートで覆った請求項7記載の防音パネル。
The soundproof panel according to claim 7, wherein a concavo-convex structure is formed on one surface of the plate-like sound absorbing material, and the surface on which the concavo-convex structure is formed is covered with a sound insulating sheet.
JP2009288736A 2009-12-21 2009-12-21 Plate-like sound absorbing material and soundproof panel using the same Pending JP2011126217A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009288736A JP2011126217A (en) 2009-12-21 2009-12-21 Plate-like sound absorbing material and soundproof panel using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009288736A JP2011126217A (en) 2009-12-21 2009-12-21 Plate-like sound absorbing material and soundproof panel using the same

Publications (1)

Publication Number Publication Date
JP2011126217A true JP2011126217A (en) 2011-06-30

Family

ID=44289334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009288736A Pending JP2011126217A (en) 2009-12-21 2009-12-21 Plate-like sound absorbing material and soundproof panel using the same

Country Status (1)

Country Link
JP (1) JP2011126217A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02112929A (en) * 1988-10-22 1990-04-25 Japan Synthetic Rubber Co Ltd Formed molding and manufacture thereof
JPH0375130A (en) * 1989-08-18 1991-03-29 Asahi Chem Ind Co Ltd Hot press-molded body of thermoplastic synthetic resin non-crosslinked open-cell foam and preparation thereof
JPH07286380A (en) * 1994-04-18 1995-10-31 Kawai Musical Instr Mfg Co Ltd Soundproofing sheet
JP3147955U (en) * 2008-11-10 2009-01-29 株式会社ジェイエスピー Sound absorbing material and partition material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02112929A (en) * 1988-10-22 1990-04-25 Japan Synthetic Rubber Co Ltd Formed molding and manufacture thereof
JPH0375130A (en) * 1989-08-18 1991-03-29 Asahi Chem Ind Co Ltd Hot press-molded body of thermoplastic synthetic resin non-crosslinked open-cell foam and preparation thereof
JPH07286380A (en) * 1994-04-18 1995-10-31 Kawai Musical Instr Mfg Co Ltd Soundproofing sheet
JP3147955U (en) * 2008-11-10 2009-01-29 株式会社ジェイエスピー Sound absorbing material and partition material

Similar Documents

Publication Publication Date Title
JP4461172B2 (en) Foam molded body having voids
JP4971793B2 (en) Method for producing polypropylene resin foam molding
US20050158536A1 (en) Molded body of thermoplastic resin having sound absorption characteristics
JP5375613B2 (en) Polypropylene resin pre-expanded particles and method for producing the same
JP6628374B1 (en) Laminate
JP4835002B2 (en) Polypropylene resin pre-expanded particles and foam-molded article obtained from the pre-expanded particles
JP2007308583A (en) Sound absorbing material
JP2011126217A (en) Plate-like sound absorbing material and soundproof panel using the same
JP6026814B2 (en) Polyolefin resin expanded particles and molded articles thereof
JPH11247322A (en) Plastic-made radio wave obstruction prevention sound insulation wall
US11732101B2 (en) Polypropylene-based resin expanded beads and polypropylene-based resin expanded beads molded article
JP2006297807A (en) Polypropylene-based resin in-mold foam-molding body
WO2014155521A1 (en) Polyolefin resin foam sheet, sound absorbing material, and automotive parts, and method for producing polyolefin resin foam sheet
JP5234169B2 (en) Thermoplastic resin foam molding and method for producing the same
JP2018070735A (en) Foamed particle and method for producing foamed particle molding
EP1016511B1 (en) Molded body of thermoplastic resin having sound absorption characteristics
JP2008207763A (en) Sound absorption material and its molding method
JP4984482B2 (en) Thermoplastic resin foam molding
JP2007044877A (en) Polyethylenic resin prefoamed particle foamed molded product obtained therefrom
JP7324725B2 (en) Laminated foam sheet and molded product thereof
JP2018146745A (en) Composite sound absorbing material and method for manufacturing the same, and method for improving sound absorbency
JP2006255993A (en) Manufacturing method of polypropylene resin foamed product
JP2006240284A (en) Thermoplastic resin in-mold foamed molded product
JP2009203417A (en) Modified polystyrene-based resin pre-expanded particles, and acoustic modified polystyrene-based resin expansion-molded body
JP4979353B2 (en) Composite foam molding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121019

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130910

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140318