JP2011125825A - Lypolytic bacteria and lipolytic agent - Google Patents

Lypolytic bacteria and lipolytic agent Download PDF

Info

Publication number
JP2011125825A
JP2011125825A JP2009289107A JP2009289107A JP2011125825A JP 2011125825 A JP2011125825 A JP 2011125825A JP 2009289107 A JP2009289107 A JP 2009289107A JP 2009289107 A JP2009289107 A JP 2009289107A JP 2011125825 A JP2011125825 A JP 2011125825A
Authority
JP
Japan
Prior art keywords
oil
assimilation
activity
fat
nature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009289107A
Other languages
Japanese (ja)
Other versions
JP5219050B2 (en
Inventor
Yoshiko Shishido
美子 宍戸
Noriyuki Fujimoto
典之 藤本
Daisuke Sugimori
大助 杉森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Fukushima University NUC
Original Assignee
Sumitomo Heavy Industries Ltd
Fukushima University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd, Fukushima University NUC filed Critical Sumitomo Heavy Industries Ltd
Priority to JP2009289107A priority Critical patent/JP5219050B2/en
Publication of JP2011125825A publication Critical patent/JP2011125825A/en
Application granted granted Critical
Publication of JP5219050B2 publication Critical patent/JP5219050B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide lypolytic bacteria with high propagation rate and lypolytic rate, when optimum lypolytic conditions (temperature, pH, etc.) are out of the scope of optimum growth conditions (temperatures, pH, etc.) of BOD degrading bacteria. <P>SOLUTION: The lipolytic bacteria belongs to Pseudmonas group and indicates the following mycologic characteristics, for example: growth + at 37°C, growth + at 45°C, growth - under an anaerobic condition, nitrate reduction activity +, indole production activity -, arginine dihydrolase activity +, urease activity -, gelatin hydrolysis activity +, β-galactosidase activity -, cytochrome oxidase activity +, dextrose assimilation nature +, L-arabinose assimilation nature, D-mannose assimilation nature -, D-mannitol assimilation nature -, N-acetyl-D-Glucosamine assimilation nature +, maltose assimilation nature -, and potassium gluconate assimilation nature +, where "+" is positivity and "-" is negative. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、油脂分解菌及び油脂分解剤に関する。   The present invention relates to an oil-degrading bacterium and an oil-degrading agent.

微生物を利用した排水処理方法として、一般に、好気性微生物による活性汚泥法(好気性処理法)及び嫌気性微生物によるメタン発酵法(嫌気性処理法)が知られている。好気性処理法では曝気するためのエネルギーを要するのに対し、嫌気性処理法は消費エネルギーが少なく、またメタンなどを主成分とするバイオガスを得ることもできる。このため、嫌気性処理法は、好気性処理法よりもエネルギー効率の点で有利であるといわれている。   As a wastewater treatment method using microorganisms, an activated sludge method using an aerobic microorganism (aerobic treatment method) and a methane fermentation method using an anaerobic microorganism (anaerobic treatment method) are generally known. The aerobic treatment method requires energy for aeration, whereas the anaerobic treatment method consumes less energy and can also obtain biogas mainly composed of methane. For this reason, it is said that the anaerobic processing method is more advantageous in terms of energy efficiency than the aerobic processing method.

溶解性有機物を高濃度に含む高負荷排水をメタン発酵法で処理するための、種々のタイプの上向流式嫌気性処理槽が開発されている。例えば、UASB(Upflow Anaerobic Sludge Blanket)法やこれを改良したEGSB(Expanded Glanular Sludge Bed)法を利用した処理槽が知られている。これらの上向流式嫌気性処理槽は、グラニュール汚泥と呼ばれる粒状の汚泥を槽内に収容することができ、被処理水がグラニュール汚泥と接触しながら上方に流れることによって、有機物が効率的に分解される。   Various types of upflow anaerobic treatment tanks have been developed for treating high-load wastewater containing a high concentration of soluble organic matter by methane fermentation. For example, a processing tank using a UASB (Upflow Anaerobic Sludge Blanket) method or an improved EGSB (Expanded Granular Sludge Bed) method is known. These upward-flow anaerobic treatment tanks can store granular sludge called granular sludge in the tank, and the organic matter is made efficient by flowing the treated water upward while in contact with the granular sludge. Is broken down.

ところで、製造工程で油脂を扱う食品工場の排水など、油脂を多く含む有機性排水をグラニュール汚泥で処理する場合、油脂がグラニュール汚泥に付着し、これによって排水とグラニュール汚泥との接触効率が低下して有機物の処理が不十分となりやすい。このような問題を解決する手段として、特許文献1には上向流式嫌気性処理槽に被処理水を導入するに先立ち、被処理水から油分を分離し、これをリパーゼ生成菌によって分解する油脂分解槽を備えた嫌気性処理装置が記載されている。   By the way, when treating organic wastewater containing a large amount of fats and oils, such as wastewater from food factories that handle fats and oils in the manufacturing process, with the granular sludge, the fats and oils adhere to the granule sludge, and thereby the contact efficiency between the wastewater and the granular sludge. The organic matter is likely to be insufficiently processed due to the decrease. As means for solving such a problem, in Patent Document 1, prior to introducing the water to be treated into the upward flow type anaerobic treatment tank, oil is separated from the water to be treated, and this is decomposed by lipase producing bacteria. An anaerobic treatment apparatus equipped with an oil and fat decomposition tank is described.

また、油脂分解性を有するPseudomonas属菌が開示されている(特許文献2及び特許文献3)。   Moreover, Pseudomonas genus microbe which has oil and fat degradability is disclosed (patent document 2 and patent document 3).

特開2005−270862号公報JP 2005-270862 A 特開2008−220225号公報JP 2008-220225 A 特開平6−153922号公報JP-A-6-153922

しかしながら、従来知られている油脂分解菌は、その至適油脂分解条件(温度、pH等)が、油脂分解菌よりも増殖速度の速い溶解性有機物分解菌(以下、BOD分解菌という。)の至適生育条件(温度、pH等)の範囲内に入ってしまう。そのため、BOD分解菌が油脂分解槽の汚泥中で優勢となり、油脂の分解効率低下に加えて溶解性有機物(以下、BOD成分という。)の分解により大量の余剰汚泥が生じる問題があった。また、BOD分解菌が油脂分解槽の汚泥中で優占的となり、油脂分解菌が存在しなくなるという問題もあった。   However, conventionally known oil-degrading bacteria are soluble organic matter-degrading bacteria (hereinafter referred to as BOD-degrading bacteria) whose optimum oil-degrading conditions (temperature, pH, etc.) have a faster growth rate than oil-degrading bacteria. It falls within the range of optimal growth conditions (temperature, pH, etc.). For this reason, BOD-degrading bacteria are dominant in the sludge of the fat and oil decomposition tank, and there is a problem that a large amount of excess sludge is generated due to decomposition of soluble organic matter (hereinafter referred to as BOD component) in addition to a decrease in the decomposition efficiency of fat and oil. In addition, BOD degrading bacteria become dominant in the sludge of the oil decomposing tank, and there is also a problem that the oil decomposing bacteria are not present.

そこで、本発明は、至適油脂分解条件(温度、pH等)がBOD分解菌の至適生育条件(温度、pH等)の範囲内に入らず、十分な増殖速度及び油脂分解速度を有する油脂分解菌の提供を目的とする。本発明はまた、上記油脂分解菌を含む油脂分解剤の提供も目的とする。   Accordingly, the present invention provides an oil and fat having a sufficient growth rate and an oil-and-oil decomposition rate because the optimum oil-and-oil decomposition conditions (temperature and pH, etc.) do not fall within the optimum growth conditions (temperature, pH, etc.) of BOD-degrading bacteria. The purpose is to provide degrading bacteria. Another object of the present invention is to provide an oil decomposing agent containing the above oil decomposing bacteria.

本発明は、Pseudmonas属に属し、以下の菌学的性質を示す、油脂分解菌。
細胞形態 桿菌
細胞の直径 0.6〜0.7×1.0〜1.5μm
胞子の有無 −
グラム染色性 −
運動性 +
37℃での生育 +
45℃での生育 +
嫌気性条件下での生育 −
カタラーゼ +
オキシダーゼ +
グルコースからの酸/ガス産生 −/−
グルコースの酸化/発酵 +/−
硝酸塩還元活性 +
インドール産生活性 −
ブドウ糖酸性化活性 −
アルギニンジヒドロラーゼ活性 +
ウレアーゼ活性 −
エスクリン加水分解活性 −
ゼラチン加水分解活性 +
β−ガラクトシダーゼ活性 −
チトクロームオキシダーゼ活性 +
ブドウ糖資化性 +
L−アラビノース資化性 −
D−マンノース資化性 −
D−マンニトール資化性 −
N−アセチル−D−グルコサミン資化性 +
マルトース資化性 −
グルコン酸カリウム資化性 +
n−カプリン酸資化性 +
アジピン酸資化性 +
dl−リンゴ酸資化性 +
クエン酸ナトリウム資化性 +
酢酸フェニル資化性 −
なお、「+」は陽性であること、「−」は陰性であることを示す。
The present invention is an oil-degrading bacterium belonging to the genus Pseudomonas and exhibiting the following mycological properties.
Cell morphology Neisseria gonorrhoeae cell diameter 0.6-0.7 × 1.0-1.5 μm
Presence or absence of spores −
Gram staining −
Motility +
Growth at 37 ° C +
Growth at 45 ° C +
Growth under anaerobic conditions −
Catalase +
Oxidase +
Acid / gas production from glucose-/-
Glucose oxidation / fermentation +/-
Nitrate reduction activity +
Indole production activity −
Glucose acidification activity −
Arginine dihydrolase activity +
Urease activity −
Esculin hydrolysis activity −
Gelatin hydrolysis activity +
β-galactosidase activity −
Cytochrome oxidase activity +
Glucose utilization +
L-arabinose assimilation-
D-Mannose assimilation-
D-mannitol assimilation-
N-acetyl-D-glucosamine assimilation +
Maltose utilization-
Potassium gluconate assimilation +
n-Capric acid assimilation +
Adipic acid utilization +
dl-Assimilation of malic acid +
Sodium citrate assimilation +
Utilization of phenyl acetate-
In addition, “+” indicates positive and “−” indicates negative.

上記油脂分解菌は、寒天培地上において、30℃、24時間培養で直径2〜3mmの周縁波状の円形、表面がスムーズ、扁平状で、不透明な緑色コロニーを形成することが好ましい。   It is preferable that the fat-and-oil degrading bacteria form an opaque green colony having a peripheral wavy circular shape with a diameter of 2 to 3 mm, a smooth surface, and a flat shape when cultured on an agar medium at 30 ° C. for 24 hours.

また、上記油脂分解菌は、配列番号1で示される16S rDNA塩基配列を有することが好ましい。   In addition, the oil-degrading bacterium preferably has a 16S rDNA base sequence represented by SEQ ID NO: 1.

上記油脂分解菌として、独立行政法人製品評価技術基盤機構特許微生物寄託センター(郵便番号292−0818、日本国千葉県木更津市かずさ鎌足2丁目5番地8号 NITEバイオテクノロジー本部)に受託番号NITE P−847で2009年11月25日に受託されているPseudmonas aeruginosa SS−219株とすることができる。   As the above-mentioned oil-degrading bacteria, the number of the NITE P at the National Institute of Technology and Evaluation Microorganisms (National Biotechnology Headquarters, postal number 292-0818; -847 and Pseudomonas aeruginosa SS-219 strain entrusted on November 25, 2009.

本発明はまた、上述の油脂分解菌を含む油脂分解剤を提供する。   The present invention also provides an oil decomposing agent comprising the above-described oil decomposing bacteria.

上記油脂分解菌は、アルカリ条件及び高温条件下で効率よく増殖及び油脂分解が可能であるため、BOD分解菌の増殖を抑制しながら油脂を分解することができる。また、上記油脂分解菌は従来の油脂分解菌と比べて油脂分解速度が速いため、高濃度の油脂を含む排水の処理に好適に利用することができる。   Since the above oil-degrading bacteria can be efficiently grown and decomposed under alkaline conditions and high-temperature conditions, the fats and oils can be decomposed while suppressing the growth of BOD-degrading bacteria. Moreover, since the said fat-and-oil decomposing bacteria have a fat-and-oil decomposition rate quick compared with the conventional fat-and-oil decomposing bacteria, it can utilize suitably for the process of the waste_water | drain containing high concentration fats and oils.

本発明の油脂分解菌は、油脂分解条件を高アルカリ及び高温とすることができるため、BOD分解菌の増殖を抑え、油脂分解菌を優勢又は優占的にすることができる。また、本発明の油脂分解菌は、増殖速度及び油脂分解速度が速いため、高濃度の油脂を含む排水の処理が可能である。さらに、油脂分解過程でBOD成分の分解が生じにくくなるため、高濃度の油脂分解生成物を得ることが可能となり、BOD成分濃度を高く維持した油脂分解排水を得ることができる。これは、油脂分解排水を後段で嫌気処理する場合に有利である。   Since the oil-and-oil decomposing bacteria of the present invention can make the oil-and-oil decomposing conditions high alkali and high temperature, the growth of BOD-decomposing bacteria can be suppressed and the oil-and-oil degrading bacteria can be dominant or dominant. Moreover, since the fat-and-oil decomposing bacteria of this invention have a quick growth rate and fat-and-oil decomposition rate, the process of the waste_water | drain containing high concentration fats and oils is possible. Furthermore, since it is difficult for the BOD component to be decomposed during the oil and fat decomposition process, it is possible to obtain a high-concentration oil and fat decomposition product, and to obtain a fat and oil decomposition wastewater that maintains a high BOD component concentration. This is advantageous when the fat and oil decomposition wastewater is anaerobically treated at a later stage.

油脂分解生成物のTLC(薄層クロマトグラフィー)分析結果を示す写真である。図1中、TG、DG、MG、FAは、それぞれ、トリグリセリド、ジグリセリド、モノグリセリド、脂肪酸を表し、OA、O、S、W、Cは、それぞれ、オレイン酸、オリーブ油、混合油脂(サラダ油/ラード/牛脂、質量比1:1:1)、抽出後の水層、抽出後のクロロホルム層を表す。It is a photograph which shows the TLC (thin layer chromatography) analysis result of fat and oil decomposition product. In FIG. 1, TG, DG, MG, and FA represent triglyceride, diglyceride, monoglyceride, and fatty acid, respectively, and OA, O, S, W, and C represent oleic acid, olive oil, and mixed fat (salad oil / lard / Beef tallow, mass ratio 1: 1: 1), water layer after extraction, chloroform layer after extraction. Pseudmonas aeruginosa SS−219株(NITE P−847)のコロニー形態を示す写真である。It is a photograph which shows the colony form of Pseudomonas aeruginosa SS-219 strain (NITE P-847). (a)培養液のpH変動又は(b)培養温度の変動に対する油脂分解率を示すグラフである。It is a graph which shows the fat and oil decomposition rate with respect to (a) pH fluctuation of a culture solution or (b) fluctuation | variation of culture temperature. NITE P−847(Pseudmonas aeruginosa SS−219株)を油脂乳化プレートで生育させた様子を示す写真である。It is a photograph which shows a mode that NITE P-847 (Pseudomonas aeruginosa SS-219 strain) was grown on the fat emulsified plate. 試験管培養したNITE P−847(Pseudmonas aeruginosa SS−219株)を示す写真である。(a)培養日数1日目(A)及び3日目(B)、(b)培養日数12日目(C)の写真である。It is a photograph showing NITE P-847 (Pseudomonas aeruginosa SS-219 strain) cultured in a test tube. (A) Photographs of culture days 1 (A) and 3 (B), (b) culture days 12 (C).

以下、本発明を実施形態に基づいて詳細に説明する。   Hereinafter, the present invention will be described in detail based on embodiments.

本発明の油脂分解菌は、上述したとおり上記菌学的性質等を有するものである。上記油脂分解菌は、例えば、培養温度が30〜40℃、培養液のpHが8.5〜9.5という高アルカリ及び高温条件下で高い油脂分解活性を発揮することができる。また、増殖速度及び油脂分解速度が速く、サラダ油、ラード、牛脂等の食用油脂を24時間で82.8〜90.9%分解できる。従来の油脂分解菌によりこの程度の油脂分解率を達成するには48時間以上要するのが通常であり、本発明の油脂分解菌による油脂分解速度の速さがわかる。   The oil-degrading bacterium of the present invention has the above-mentioned mycological properties as described above. The above oil-degrading bacteria can exhibit high oil-degrading activity under high alkali and high-temperature conditions, for example, a culture temperature of 30 to 40 ° C. and a culture solution pH of 8.5 to 9.5. Moreover, the growth rate and the fat and oil decomposition rate are high, and edible fats and oils such as salad oil, lard, and beef tallow can be decomposed by 82.8 to 90.9% in 24 hours. In order to achieve such a degree of fat degradation by conventional fat-degrading bacteria, it usually takes 48 hours or more, and it can be seen that the oil-degrading speed of the present invention is high.

また、本実施形態に係る油脂分解菌としては、Pseudmonas aeruginosa SS−219株(NITE P−847)とすることが好ましい。Pseudmonas aeruginosa SS−219株は上述の菌学的性質等を全て備える油脂分解菌の具体例である。好アルカリ性菌として知られるAlcaligene属、Achromobacter属ではないものの、高アルカリ性条件下で増殖でき、油脂分解速度が速い。   Moreover, it is preferable to use Pseudomonas aeruginosa SS-219 strain (NITE P-847) as the oil-degrading bacterium according to the present embodiment. Pseudomonas aeruginosa SS-219 strain is a specific example of an oil-degrading bacterium having all the above-mentioned mycological properties. Although it is not Alcaligene genus or Achromobacter genus known as an alkalophilic bacterium, it can grow under highly alkaline conditions and has a high fat degradation rate.

本発明に係る油脂分解菌が分解する対象となる油脂は、主として、動植物由来の油脂であるが、それらに限られるものではなく、種々の合成化学的手法を含む方法で得られた人工油脂、その誘導体をも含むものである。具体的には、排水に含まれる食用油脂、工業用油脂等とすることができ、特に、サラダ油、コーン油、大豆油、乳脂、バター、ラード、牛脂等の食用油脂とすることができる。   The fats and oils to be decomposed by the oil-degrading bacteria according to the present invention are mainly fats and oils derived from animals and plants, but are not limited to them, artificial fats and oils obtained by methods including various synthetic chemical methods, The derivatives are also included. Specifically, it can be edible fats and oils, industrial fats and oils, etc. contained in waste water, and in particular, edible fats and oils such as salad oil, corn oil, soybean oil, milk fat, butter, lard, beef tallow and the like.

本発明に係る油脂分解菌は、様々な環境から採取した細菌群を、油脂を含むアルカリ性の培地中で培養し、油脂分解能を指標としたスクリーニングにより単離することができる。   The oil-degrading bacterium according to the present invention can be isolated by culturing a group of bacteria collected from various environments in an alkaline medium containing oil and fat, and screening using the oil and fat resolution as an index.

具体的な方法は、例えば、以下のとおりである。油脂又は混合油脂を含むアルカリ性培地(例えば、pH8〜10)を試験管に添加し、さらに様々な環境(例えば、土壌、砂、泥、海水、湖沼など)から採取したサンプルを少量添加する。アルミホイル等で試験管にふたをし、震盪培養器中で適切な条件下(例えば、37℃、170回/分、24時間)で震盪培養した後、油脂分解が生じているサンプルを選定する。   A specific method is, for example, as follows. An alkaline medium (for example, pH 8 to 10) containing oil or mixed fat is added to the test tube, and a small amount of sample collected from various environments (for example, soil, sand, mud, seawater, lakes, etc.) is added. Cover the test tube with aluminum foil, etc., and after shaking culture in a shaking incubator under appropriate conditions (for example, 37 ° C., 170 times / min, 24 hours), select a sample in which fat and oil decomposition has occurred. .

震盪培養した後に油脂分解が生じているサンプルの分析は、目視により残存油脂分が存在するかどうかの判定によることもできるが、例えば、JIS規格に基づくn−ヘキサン抽出による残存油脂分の定量又は参考文献(Journal of Bioscience and Bioengineering,2007年,103(4),325−330頁)に記載の方法によることもできる。   Analysis of a sample in which fat and oil decomposition has occurred after shaking culture can be made by visual determination of whether or not there is residual fat or oil. For example, the determination of residual fat or oil by n-hexane extraction based on JIS standards or It can also be carried out by the method described in a reference (Journal of Bioscience and Bioengineering, 2007, 103 (4), pages 325-330).

油脂分解が生じていることを確認したサンプルから、純粋分離により、油脂分解菌を単離することができる。純粋分離は当業者によく知られた方法で実施することが可能であり、例えば、寒天培地上に接種して培養することにより、純粋分離されたコロニーを形成させることができ、そのコロニーをピックアップすることで目的とする油脂分解菌を単離することができる。   The oil-degrading bacteria can be isolated from the sample that has confirmed that the oil-degradation has occurred by pure separation. Pure isolation can be performed by methods well known to those skilled in the art. For example, a pure isolated colony can be formed by inoculating and culturing on an agar medium, and the colony is picked up. By doing so, the target oil-degrading bacteria can be isolated.

また、油脂分解が生じているサンプルを選定した後、そのサンプルの一部を、新鮮な油脂又は混合油脂を含むアルカリ性培地(例えば、pH8〜10)を添加した試験管に再度接種して、再度震盪培養を行うこともできる。この震盪培養後に油脂分解を生じているサンプルを選定する。選定したサンプルに対し、上述の純粋分離を行うこともできるし、再びこの震盪培養サイクルを繰り返すこともできる。震盪培養サイクルを増やすことにより、目的とする油脂分解菌を集積させることができる。   In addition, after selecting a sample in which fat and oil decomposition has occurred, a part of the sample is again inoculated into a test tube to which an alkaline medium (for example, pH 8 to 10) containing fresh fat or mixed fat is added, and again. Shaking culture can also be performed. A sample that has undergone fat and oil degradation after this shaking culture is selected. The pure separation described above can be performed on the selected sample, or this shaking culture cycle can be repeated again. By increasing the shaking culture cycle, the target oil-degrading bacteria can be accumulated.

上述のようにして環境から採取したサンプルより単離した油脂分解菌の同定、性状及び性質等の解析は、公知の種々の同定試験方法又は市販されている同定キットを用いて行うことができる。また、16S rDNA塩基配列をシークエンスし、相同性検索、分子系統解析により、油脂分解菌の同定を行うこともできる。   The identification, properties and properties of the oil-degrading bacteria isolated from the sample collected from the environment as described above can be analyzed using various known identification test methods or commercially available identification kits. In addition, oil-degrading bacteria can be identified by sequencing the 16S rDNA base sequence and performing homology search and molecular phylogenetic analysis.

本発明の油脂分解剤は、本発明の油脂分解菌を製剤化して得ることができる。具体的には、例えば、「応用微生物学改訂版、村尾澤夫、荒井基夫共編、培風館、1993年」、「生物工学序論、佐田栄三ら著、講談社、1996年」、「産業用酵素、上島孝之著、丸善、1995年」などに記載の方法により、固定化製剤、液状化製剤、粉末状製剤とすることができる。   The oil and fat decomposing agent of the present invention can be obtained by formulating the oil and fat decomposing bacterium of the present invention. Specifically, for example, “Applied Microbiology Revised Edition, Sawao Murao, Motoo Arai, Bafukan, 1993”, “Introduction to Biotechnology, Eizo Sada et al., Kodansha, 1996”, “Industrial Enzyme, Takayuki Kamijima It can be made into a fixed preparation, a liquefied preparation, and a powdery preparation by the method described in “Mr. Maruzen, 1995”.

本発明の油脂分解菌及び油脂分解剤は、これに限定されるものではないが製造工程で油脂を扱う食品工場の排水等、油脂を多く含む有機性排水の処理に用いることができる。排水の処理方法については特に制限はされず、従来公知である油脂分解微生物等を用いた排水処理において、油脂分解微生物等に代えて本発明の油脂分解菌又は油脂分解剤を用いることができる。また、本発明の油脂分解菌又は油脂分解剤を用いる場合、処理する排水の温度を30〜40℃に設定し、処理する排水のpHを8.5〜9.5に設定することが好ましい。これにより、本発明の油脂分解菌が高い油脂分解能を示す条件となるばかりでなく、BOD分解菌の増殖を抑えることができるため、汚泥発生量を少なくでき、かつ油脂分解効率を更に上昇させることができる。   The oil-degrading bacterium and the oil-degrading agent of the present invention are not limited thereto, but can be used for treatment of organic wastewater containing a large amount of fats and oils, such as wastewater from food factories that handle fats and oils in the production process. The wastewater treatment method is not particularly limited, and in the conventional wastewater treatment using oil-decomposing microorganisms, the oil-decomposing bacteria or oil-decomposing agent of the present invention can be used instead of the oil-decomposing microorganisms. Moreover, when using the oil-and-oil decomposing bacteria or oil-and-oil degrading agent of this invention, it is preferable to set the temperature of the waste_water | drain to process to 30-40 degreeC, and to set the pH of the waste_water | drain to process to 8.5-9.5. As a result, the oil-degrading bacterium of the present invention is not only a condition showing high oil-and-oil degradability, but also the growth of BOD-degrading bacteria can be suppressed, so that the amount of sludge generation can be reduced and the oil-degrading efficiency can be further increased. Can do.

また、本発明の油脂分解菌及び油脂分解剤は、溶解性有機物を高濃度に含む高負荷排水をメタン発酵法で処理するための、種々のタイプの上向流式嫌気性処理槽と組合わせて使用することがより好ましい。上向流式嫌気性処理槽としては、例えば、UASB(Upflow Anaerobic Sludge Blanket)法やこれを改良したEGSB(Expanded Glanular Sludge Bed)法を利用した処理槽とすることができる。油脂を多く含む有機性排水を前処理工程で本発明の油脂分解菌及び油脂分解剤により処理して油脂を除くことにより、上向流式嫌気性処理槽による後処理工程での排水とグラニュール汚泥との接触効率の低下を防ぐことができ、効率よく排水を処理できる。また、前処理工程でBOD成分の分解が生じにくいため、後処理工程へと供給する排水中には高濃度の油脂分解生成物がBOD成分として含まれる。したがって、後処理工程で嫌気性処理を行うことによって、高濃度のBOD成分が高いエネルギーに変換されるうえ、汚泥発生量も少ないため、高い処理効率を達成することができる。   In addition, the oil-degrading bacterium and the oil-degrading agent of the present invention are combined with various types of upward flow anaerobic treatment tanks for treating high-load wastewater containing a high concentration of soluble organic matter by methane fermentation. And more preferably used. As the upward flow type anaerobic treatment tank, for example, a treatment tank using a UASB (Upflow Anaerobic Sludge Blanket) method or an improved EGSB (Expanded Granular Sludge Bed) method can be used. Wastewater and granules in the post-treatment step by an upward flow type anaerobic treatment tank by removing the fats and oils by treating organic wastewater containing a lot of fats and oils with the oil-degrading bacteria and fat-degrading agent of the present invention in the pretreatment step Reduction in contact efficiency with sludge can be prevented, and wastewater can be treated efficiently. In addition, since the decomposition of the BOD component is unlikely to occur in the pretreatment process, the wastewater supplied to the posttreatment process contains a high-concentration fat and oil decomposition product as the BOD component. Therefore, by performing anaerobic treatment in the post-treatment step, a high concentration of BOD component is converted into high energy, and a sludge generation amount is small, so that high treatment efficiency can be achieved.

以下、実施例を用いて本発明を更に具体的に説明するが、本発明はこれに限定されるものではない。   Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited thereto.

[アルカリ耐性油脂分解菌の探索]
神奈川県、福島県、愛媛県で採取した土壌を試料とし、滅菌した生理食塩水に懸濁した後、超音波洗浄器にて5分間超音波処理を行った。処理後5分間ほど静置し、上澄み液を3000ppmとなるよう混合油脂(サラダ油/ラード/牛脂、質量比1:1:1)を添加したアルカリ人工下水培地1(表1)又はアルカリ人工下水培地2(表2)各5mlが入った18φ×180mm試験管に1%(v/v)となるように接種した。
[Search for alkali-resistant oil-degrading bacteria]
The soil collected in Kanagawa, Fukushima, and Ehime was used as a sample, suspended in sterilized physiological saline, and then subjected to ultrasonic treatment with an ultrasonic cleaner for 5 minutes. After the treatment, it is allowed to stand for about 5 minutes, and an alkaline artificial sewage medium 1 (Table 1) or an alkaline artificial sewage medium to which a mixed fat (salad oil / lard / beef tallow, mass ratio 1: 1: 1) is added so that the supernatant becomes 3000 ppm. 2 (Table 2) An 18φ × 180 mm test tube containing 5 ml each was inoculated to 1% (v / v).

上記試験管にアルミホイルでフタをし、震盪培養器にて37℃、170回/分の条件で震盪培養した。微生物の生育が認められた試料については、3000ppmとなるように上記混合油脂を添加した新鮮なアルカリ人工下水培地1又はアルカリ人工下水培地2に、1%(v/v)となるように接種し、同様に震盪培養した。これを繰り返し行うことで目的微生物を集積させた。3回以上繰り返した際に生育しており、かつ油分分解が観察された試料について、フラスコ試験を実施した。   The test tube was covered with aluminum foil, and cultured with shaking in a shaking incubator at 37 ° C. and 170 times / minute. About the sample in which the growth of microorganisms was recognized, inoculate fresh alkaline artificial sewage culture medium 1 or alkaline artificial sewage culture medium 2 to which the above-mentioned mixed fats and oils were added so as to be 3000 ppm to 1% (v / v). In the same manner, shaking culture was performed. By repeating this, the target microorganism was accumulated. A flask test was performed on a sample that had grown when it was repeated three times or more and in which oil decomposition was observed.

フラスコ試験は、以下の手順に従って行った。500mlバッフルフラスコに3000ppmとなるよう上記混合油脂を添加したアルカリ人工下水培地1又はアルカリ人工下水培地2を100ml入れ、試験管培養液を1%(v/v)となるように接種し、37℃、120rpmで24時間震盪培養した。これをオートクレーブ(121℃、20分)処理した後、JIS K0101に準拠したn−ヘキサン抽出法により、残存している油脂を定量し、菌を接種しないコントロールとの差から油脂分解率を算出した。   The flask test was performed according to the following procedure. 100 ml of alkaline artificial sewage medium 1 or alkaline artificial sewage medium 2 added with the above mixed fats and oils to 3000 ppm in a 500 ml baffle flask, inoculated with a test tube culture solution to 1% (v / v), 37 ° C. And shaking culture at 120 rpm for 24 hours. After this was treated with an autoclave (121 ° C., 20 minutes), the remaining fats and oils were quantified by an n-hexane extraction method according to JIS K0101, and the fats and oils decomposition rate was calculated from the difference from the control without inoculating bacteria. .

アルカリ人工下水培地1を用いて25試料に対して、アルカリ人工下水培地2を用いて49試料に対してスクリーニングを実施した。アルカリ人工下水培地2を用いたスクリーニングの結果、78〜88%/dという高い油脂分解率を示した2種類のサンプル(サンプルNo.192及びNo.219)が得られた。サンプルNo.192は住友重機械工業株式会社横須賀製造所内レール付近の土壌から得た試料に由来し、サンプルNo.219は愛媛県内焚き火跡土壌(灰)から得た試料に由来するものであった。   Screening was performed on 25 samples using alkaline artificial sewage medium 1 and 49 samples using alkaline artificial sewage medium 2. As a result of screening using the alkaline artificial sewage medium 2, two types of samples (samples No. 192 and No. 219) showing a high oil-fat decomposition rate of 78 to 88% / d were obtained. Sample No. 192 is derived from a sample obtained from the soil near the rail in the Yokosuka Works, Sumitomo Heavy Industries, Ltd. 219 was derived from a sample obtained from bonfire fire soil (ash) in Ehime Prefecture.

これらのサンプル中に含まれる微生物を純粋分離した結果、どちらのサンプルも集積培養によって単一菌の状態になっていた。分離したコロニーからマスタープレート、グリセロール保存を作成した。マスタープレートからピックアップした各菌をアガープレート上で培養し(30℃、24時間)、同定分析用プレートを各菌それぞれ1枚ずつ作成した。   As a result of pure separation of the microorganisms contained in these samples, both samples were in a single fungus state by enrichment culture. Master plates and glycerol stocks were made from the isolated colonies. Each bacterium picked up from the master plate was cultured on an agar plate (30 ° C., 24 hours), and one plate for identification analysis was prepared for each bacterium.

[油脂分解性の測定]
サンプルNo.192及びNo.219から純粋分離した菌株の油脂分解性について、再現性の確認を行った。n−ヘキサン抽出では抽出時に中間層及びエマルション形成により、残存している油脂の抽出精度が低いと考えられたため、クロロホルム/メタノール(3:1)40mlで抽出し、遠心分離(5,000rpm、30min)した後、静かに分液ロートに移し、クロロホルム(下)層を新しい遠心管に入れ、再び遠心分離(10,000rpm、10min)した。遠心分離後、静かに分液ロートに移し、クロロホルム(下)層をフラスコに取り、無水硫酸マグネシウムにて脱水後、ろ過、エバポレートすることにより残存油分の測定を行った。その結果、両菌株は再現性良く、高い油脂分解性を示すことがわかった(表3)。
[Measurement of oil decomposability]
Sample No. 192 and No. The reproducibility of the oil and fat decomposability of the strain isolated from 219 was confirmed. In n-hexane extraction, it was thought that the extraction accuracy of the remaining fats and oils was low due to the formation of an intermediate layer and an emulsion during extraction. Therefore, extraction with 40 ml of chloroform / methanol (3: 1) and centrifugation (5,000 rpm, 30 min) After that, the mixture was gently transferred to a separatory funnel, and the chloroform (lower) layer was placed in a new centrifuge tube and centrifuged again (10,000 rpm, 10 min). After centrifugation, the mixture was gently transferred to a separatory funnel, the chloroform (lower) layer was taken in a flask, dehydrated with anhydrous magnesium sulfate, filtered, and evaporated to measure the residual oil. As a result, it was found that both strains were highly reproducible and showed high fat and oil degradability (Table 3).

[油脂分解過程のTLC分析]
油脂分解過程を把握するために、上記抽出した残存油分のTLC分析を行った。その結果を図1に示す。No.192株(左パネル)は、左レーンから順に、オレイン酸(OA)、オリーブ油(トリオレイン;O)、混合油脂(サラダ油/ラード/牛脂、質量比1:1:1;S)、抽出後の水層(W)、抽出した残存油分が含まれるクロロホルム層(C)をロードした。同様に、No.219株(右パネル)は、左レーンから順に、オレイン酸(OA)、オリーブ油(トリオレイン;O)、混合油脂(サラダ油/ラード/牛脂、質量比1:1:1;S)、抽出した残存油分が含まれるクロロホルム層(C)、抽出後の水層(W)をロードした。No.192株及びNo.219株のいずれも水層(W)からは油脂が検出されず、残存油脂は完全にクロロホルム層(C)へ抽出されたことがわかった。No.219株に比べ、No.192株の方がジグリセリド(DG)、モノグリセリド(MG)、脂肪酸(FA)存在量が多いことがわかった。これは、No.192株の油脂分解過程ではリパーゼによるトリグリセリド(TG)の分解と脂肪酸の代謝(β酸化)が律速となっていることを示唆するものである。一方、No.219株では抽出油分中にDG、MGがほとんど観察されず、FA存在量も少ないことから、グリセリドの分解が迅速であると推察される。
[TLC analysis of fat and oil decomposition process]
In order to grasp the fat and oil decomposition process, TLC analysis of the extracted residual oil was performed. The result is shown in FIG. No. The 192 strain (left panel) is, in order from the left lane, oleic acid (OA), olive oil (triolein; O), mixed fat (salad oil / lard / beef tallow, mass ratio 1: 1: 1; S), The aqueous layer (W) and the chloroform layer (C) containing the extracted residual oil were loaded. Similarly, no. 219 strains (right panel) were extracted in the order from the left lane, oleic acid (OA), olive oil (triolein; O), mixed fat (salad oil / lard / beef tallow, mass ratio 1: 1: 1; S), remaining extracted A chloroform layer (C) containing oil and an aqueous layer (W) after extraction were loaded. No. 192 strain and No. In any of the 219 strains, no fat or oil was detected from the aqueous layer (W), and it was found that the remaining fat or oil was completely extracted into the chloroform layer (C). No. Compared to 219 strains, It was found that the 192 strain had a higher amount of diglyceride (DG), monoglyceride (MG), and fatty acid (FA). This is no. This suggests that degradation of triglyceride (TG) by lipase and fatty acid metabolism (β oxidation) are rate-determining during the oil and fat decomposition process of 192 strain. On the other hand, no. In 219 strain, DG and MG are hardly observed in the extracted oil, and since the amount of FA is small, it is presumed that the degradation of glycerides is rapid.

以下、サンプルNo.219から純粋分離した菌株(No.219株)について更に詳細な解析を実施した。   Hereinafter, sample no. Further detailed analysis was performed on a strain (No. 219 strain) purely isolated from 219.

[油脂分解菌の分類学上の同定]
16S rDNAの塩基配列解析により、No.219株の同定を行った。No.219株からのDNA抽出を、InstaGene Matrix(BioRad社製、CA、USA)を用いて行った。全長16S rDNAをPCR反応により増幅した。PCR反応には、PrimeSTAR HS DNA Polymerase(タカラバイオ社製)を用いた。得られたPCR産物を鋳型とし、BigDye Terminator v3.1 Cycle Sequencing Kit(アプライドバイオシステム社製、CA、USA)を用いてサイクルシークエンスを実施した。ABI PRISM 3130x1 Genetic Analyzer System(アプライドバイオシステム社製、CA、USA)によりシークエンスを解析し、ChromasPro1.4(Technelysium Pty Ltd.,Tewantin,AUS)ソフトウェアを用いて塩基配列を決定した。決定したNo.219株の16S rDNA塩基配列を、アポロン2.0(テクノスルガ・ラボ社製)ソフトウェア及びアポロンDB−BA ver4.0(テクノスルガ・ラボ社製)データベースによる相同性検索及び簡易分子系統解析に供した。その結果、No.219株の16S rDNA塩基配列は、Pseudmonas aeruginosa ATCC10145株の16S rDNA塩基配列と99.9%の高い相同率を示した(表4)。また、国際塩基配列データベース(GenBank/DDBJ/EMBL)に対しても相同性検索を実施した結果、No.219株の16S rDNA塩基配列は、P.aeruginosa MCCB123株、MML2212株、NK2.1B−1株等の16S rDNA塩基配列と100%の相同率を示したが、基準株に由来する16S rDNAは検索されなかった。
[Taxonomy identification of oil-degrading bacteria]
Based on the nucleotide sequence analysis of 16S rDNA, no. 219 strains were identified. No. DNA extraction from strain 219 was performed using InstaGene Matrix (BioRad, CA, USA). Full length 16S rDNA was amplified by PCR reaction. PrimeSTAR HS DNA Polymerase (manufactured by Takara Bio Inc.) was used for the PCR reaction. Using the obtained PCR product as a template, cycle sequencing was performed using BigDye Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems, CA, USA). The sequence was analyzed by ABI PRISM 3130x1 Genetic Analyzer System (Applied Biosystems, CA, USA), and the nucleotide sequence was determined using ChromasPro1.4 (Technyllium Pty Ltd., Tewantin, AUS) software. The determined No. 219 strain 16S rDNA nucleotide sequences were subjected to homology search and simple molecular phylogenetic analysis using Apollon 2.0 (Techno Suruga Labs) software and Apollon DB-BA ver4.0 (Techno Suruga Labs) database. did. As a result, no. The 16S rDNA base sequence of the 219 strain showed a high homology of 99.9% with the 16S rDNA base sequence of the Pseudomonas aeruginosa ATCC 10145 strain (Table 4). In addition, as a result of homology search performed on the international base sequence database (GenBank / DDBJ / EMBL), No. The 16S rDNA nucleotide sequence of the 219 strain is described in P.A. Although it showed 100% homology with 16S rDNA nucleotide sequences of aeruginosa MCCB123 strain, MML2212 strain, NK2.1B-1 strain, etc., 16S rDNA derived from the reference strain was not searched.




No.219株の16S rDNA配列とアポロンDB−BA ver4.0に対する相同性検索上位10株の16S rDNA配列を用いて簡易分子系統解析を実施した(表5)。なお、表5中、系統枝の分岐に位置する数字はブートストラップ値を示す。   No. Simplified molecular phylogenetic analysis was performed using 16S rDNA sequences of 219 strains and 16S rDNA sequences of the top 10 homology search strains for Apollon DB-BA ver4.0 (Table 5). In Table 5, the numbers located at the branches of the system branches indicate bootstrap values.




簡易分子系統解析の結果、No.219株の16S rDNAはP.aeruginosaの16S rDNAとクラスターを形成し、同一の分子系統学的位置を示した(表5)。以上の結果から、本菌株はP.aeruginosa種に帰属する菌株であると考えられる。そこで、本菌株は、Pseudmonas aeruginosa SS−219株と命名した。   As a result of simple molecular phylogenetic analysis, no. 219 strain 16S rDNA Aeruginosa 16S rDNA was clustered and showed the same molecular phylogenetic position (Table 5). Based on the above results, this strain was isolated from P. It is considered that the strain belongs to the species Aeruginosa. Therefore, this strain was named Pseudomonas aeruginosa SS-219 strain.

[油脂分解菌の菌学的特性の分析]
Pseudmonas aeruginosa SS−219株について、光学顕微鏡(BX50F4、オリンパス社製)による形態観察、Barrowらの方法(Cowan and Steel’s Manual for the Identification of Medical Bacteria. 3rd edition. 1993年,Cambridge University Press.)に基づいて、カタラーゼ反応、オキシダーゼ反応、グラム染色性、ブドウ糖からの酸/ガス産生、ブドウ糖の酸化/発酵(O/F)等の試験を実施した。グラム染色性解析にはフェイバーG「ニッスイ」(日水製薬社製)を用いた。結果を表6に示す。また、図2にPseudmonas aeruginosa SS−219株のコロニー形態を示す。
[Analysis of mycological characteristics of oil-degrading bacteria]
For Pseudomonas aeruginosa SS-219 strain, morphological observation by optical microscope (BX50F4, Olympus), Barrow et al. (Cowan and Steel's Manual for the Identity of Medicine. Based on the above, tests such as catalase reaction, oxidase reaction, Gram stainability, acid / gas production from glucose, oxidation / fermentation (O / F) of glucose, etc. were carried out. Faber G “Nissui” (manufactured by Nissui Pharmaceutical) was used for the Gram stain analysis. The results are shown in Table 6. FIG. 2 shows the colony morphology of Pseudomonas aeruginosa SS-219 strain.




さらに、API20NEキット(ビオメリュー社製、フランス)を用い、表7に記載した各種性状の試験を行った。判定はキットに添付のマニュアルに従った。加えて、表8に記載した事項についての試験を実施した。   Further, various properties described in Table 7 were tested using an API20NE kit (Biomerieux, France). Determination was according to the manual attached to the kit. In addition, tests on matters described in Table 8 were performed.

その結果、Pseudmonas aeruginosa SS−219株は、培養温度45℃での生育が可能であり(表6)、特許文献2及び特許文献3に記載されたPseudmonas族菌と相違していた。また、L−アラビノース、D−マンノースを資化しない点において、特許文献2に記載されたPseudmonas族菌と相違していた(表7)。   As a result, the Pseudomonas aeruginosa SS-219 strain was able to grow at a culture temperature of 45 ° C. (Table 6), and was different from the Pseudomonas family described in Patent Document 2 and Patent Document 3. Further, it was different from the Pseudomonas family described in Patent Document 2 in that L-arabinose and D-mannose were not assimilated (Table 7).

[培養液pHと油脂分解率の関係]
Pseudmonas aeruginosa SS−219株の油脂分解率に対する培養液pHの影響を解析した。培地は、pH調整剤(1M Tris−HCl、pH9)以外はアルカリ人工下水培地2と同じ組成のものを用いた。この培地をベースとし、pH3〜8の培地はpH調整剤として塩酸又は水酸化ナトリウムを用い、pH9の培地はpH調整剤として1M Tris−HCl(pH9)を用い、pH10の培地はpH調整剤として1Mグリシン/水酸化ナトリウム緩衝液(pH10)を用いて、それぞれpHを調整した。これらの培地に3000ppmとなるように混合油脂(サラダ油/ラード/牛脂、質量比1:1:1)を添加したものを500mlバッフルフラスコに100ml入れ、24時間予備培養した試験管培養液を1%(v/v)となるように接種し、120rpm、37℃で24時間震盪培養した。培養後、オートクレーブ(121℃、20分)処理し、クロロホルム/メタノール(3:1)40mlで抽出し、遠心分離(5,000rpm、30min)した後、静かに分液ロートに移し、クロロホルム(下)層を新しい遠心管に入れ、再び遠心分離(10,000rpm、10min)した。遠心分離後、静かに分液ロートに移し、クロロホルム(下)層をフラスコに取り、無水硫酸マグネシウムにて脱水後、ろ過、エバポレートすることにより残存油分を定量した。菌を接種しないコントロールとの差から油脂分解率を算出した。
[Relationship between culture broth pH and oil degradation rate]
The influence of the culture solution pH on the oil degradation rate of Pseudomonas aeruginosa SS-219 strain was analyzed. A medium having the same composition as that of the alkaline artificial sewage medium 2 except for the pH adjuster (1M Tris-HCl, pH 9) was used. Based on this medium, medium of pH 3-8 uses hydrochloric acid or sodium hydroxide as a pH adjuster, medium of pH 9 uses 1M Tris-HCl (pH 9) as a pH adjuster, and medium of pH 10 serves as a pH adjuster. The pH was adjusted using 1 M glycine / sodium hydroxide buffer (pH 10). 100% of these culture mediums with mixed fats and oils (salad oil / lard / beef tallow, mass ratio 1: 1: 1) added to 3000 ppm are placed in a 500 ml baffle flask and pre-cultured for 24 hours in 1% (V / v) was inoculated and cultured with shaking at 120 rpm and 37 ° C. for 24 hours. After culturing, the mixture was treated with an autoclave (121 ° C., 20 minutes), extracted with 40 ml of chloroform / methanol (3: 1), centrifuged (5,000 rpm, 30 min), and then gently transferred to a separatory funnel. ) Layer was placed in a new centrifuge tube and centrifuged again (10,000 rpm, 10 min). After centrifugation, the mixture was gently transferred to a separating funnel, the chloroform (lower) layer was taken in a flask, dehydrated with anhydrous magnesium sulfate, filtered and evaporated to quantify the residual oil. The oil degradation rate was calculated from the difference from the control without inoculating the fungus.

結果を図3(a)に示す。培養液のpHが3、4、5、6、7、8、9、10のとき、Pseudmonas aeruginosa SS−219株の24時間培養後の油脂分解率は、それぞれ、72、58、63、80、85、80、83%であった。培地pH8.5〜9.5で高い油脂分解率を示し、最適培地pHは9付近であった。また、pH6〜8、pH3でも70%以上の油脂分解率を示した。   The results are shown in FIG. When the pH of the culture solution is 3, 4, 5, 6, 7, 8, 9, 10, the oil degradation rate after 24 hours culture of Pseudomonas aeruginosa SS-219 is 72, 58, 63, 80, respectively. 85, 80, 83%. A high oil degradation rate was exhibited at a medium pH of 8.5 to 9.5, and the optimum medium pH was around 9. In addition, even when the pH was 6 to 8 and pH 3, the oil decomposition rate was 70% or more.

[培養温度と油脂分解率の関係]
Pseudmonas aeruginosa SS−219株の油脂分解率に対する培養温度の影響を解析した。500mlバッフルフラスコに、3000ppmとなるように混合油脂(サラダ油/ラード/牛脂、質量比1:1:1)を添加したアルカリ人工下水培地2を100ml入れ、24時間予備培養した試験管培養液を1%(v/v)となるように接種した。培養温度を20、25、30、37、40、45℃にそれぞれ設定し、120rpmで24時間震盪培養した。その後、上記と同様にして残存油分を定量し、油脂分解率を算出した。
[Relationship between culture temperature and oil degradation rate]
The influence of the culture temperature on the fat and oil degradation rate of Pseudomonas aeruginosa SS-219 strain was analyzed. In a 500 ml baffle flask, 100 ml of alkaline artificial sewage medium 2 to which mixed fats and oils (salad oil / lard / beef tallow, mass ratio 1: 1: 1) were added so as to be 3000 ppm, and test tube culture solution preliminarily cultured for 24 hours was 1 % (V / v) was inoculated. The culture temperature was set to 20, 25, 30, 37, 40, and 45 ° C., respectively, and cultured with shaking at 120 rpm for 24 hours. Thereafter, the residual oil was quantified in the same manner as described above, and the oil decomposition rate was calculated.

結果を図3(b)に示す。培養温度が20、25、30、37、40、45℃のとき、Pseudmonas aeruginosa SS−219株の24時間培養後の油脂分解率は、それぞれ、17、65、75、83、70、13%であった。油脂分解率は30〜40℃で高い値を示し、最適温度は37℃付近であった。   The results are shown in FIG. When the culture temperature is 20, 25, 30, 37, 40, and 45 ° C., the degradation rate of oil and fat after 24 hours of Pseudomonas aeruginosa SS-219 is 17, 65, 75, 83, 70, and 13%, respectively. there were. The oil and fat decomposition rate showed a high value at 30 to 40 ° C., and the optimum temperature was around 37 ° C.

[その他の特徴]
抗生物質含有プレートを用いて、抗生物質感受性試験を行った。その結果、Pseudmonas aeruginosa SS−219株はアンピシリン、クロラムフェニコール抵抗性を示した。
[Other features]
Antibiotic susceptibility testing was performed using antibiotic-containing plates. As a result, the Pseudomonas aeruginosa SS-219 strain showed resistance to ampicillin and chloramphenicol.

Pseudmonas aeruginosa SS−219株を油脂乳化プレートで生育させた様子を図4に示した。Pseudmonas aeruginosa SS−219株のコロニー周囲にはクリアハローが形成されており、菌体外にリパーゼを分泌していることが示唆された。Pseudmonas aeruginosa SS−219株の試験管培養の様子を図5(a)及び(b)に示した。Pseudmonas aeruginosa SS−219株は黄色の蛍光色素を産生しており、培養日数1日目(A)、3日目(B)と、培養日数の増加とともにその色調が濃くなった。さらに、培養12日目(C)には油脂分はほぼ完全に分解されていた。また、培養液の濁度も著しく低下していたことから、溶菌が起こっているものと考えられる。   FIG. 4 shows a state in which the Pseudomonas aeruginosa SS-219 strain was grown on an oil emulsified plate. Clear halo was formed around the colony of Pseudomonas aeruginosa strain SS-219, suggesting that lipase was secreted outside the cells. The appearance of Pseudomonas aeruginosa strain SS-219 in vitro is shown in FIGS. 5 (a) and 5 (b). The Pseudomonas aeruginosa SS-219 strain produced a yellow fluorescent dye, and its color became darker with the increase in the number of culture days on the first day (A) and the third day (B). Furthermore, on the 12th day of culture (C), the fats and oils were almost completely decomposed. Moreover, since the turbidity of the culture solution was also significantly reduced, lysis is considered to have occurred.

Claims (5)

Pseudmonas属に属し、以下の菌学的性質を示す、油脂分解菌。
細胞形態 桿菌
細胞の直径 0.6〜0.7×1.0〜1.5μm
胞子の有無 −
グラム染色性 −
運動性 +
37℃での生育 +
45℃での生育 +
嫌気性条件下での生育 −
カタラーゼ +
オキシダーゼ +
グルコースからの酸/ガス産生 −/−
グルコースの酸化/発酵 +/−
硝酸塩還元活性 +
インドール産生活性 −
ブドウ糖酸性化活性 −
アルギニンジヒドロラーゼ活性 +
ウレアーゼ活性 −
エスクリン加水分解活性 −
ゼラチン加水分解活性 +
β−ガラクトシダーゼ活性 −
チトクロームオキシダーゼ活性 +
ブドウ糖資化性 +
L−アラビノース資化性 −
D−マンノース資化性 −
D−マンニトール資化性 −
N−アセチル−D−グルコサミン資化性 +
マルトース資化性 −
グルコン酸カリウム資化性 +
n−カプリン酸資化性 +
アジピン酸資化性 +
dl−リンゴ酸資化性 +
クエン酸ナトリウム資化性 +
酢酸フェニル資化性 −
なお、「+」は陽性であること、「−」は陰性であることを示す。
An oil-degrading bacterium belonging to the genus Pseudomonas and exhibiting the following mycological properties.
Cell morphology Neisseria gonorrhoeae cell diameter 0.6-0.7 × 1.0-1.5 μm
Presence or absence of spores −
Gram staining −
Motility +
Growth at 37 ° C +
Growth at 45 ° C +
Growth under anaerobic conditions −
Catalase +
Oxidase +
Acid / gas production from glucose-/-
Glucose oxidation / fermentation +/-
Nitrate reduction activity +
Indole production activity −
Glucose acidification activity −
Arginine dihydrolase activity +
Urease activity −
Esculin hydrolysis activity −
Gelatin hydrolysis activity +
β-galactosidase activity −
Cytochrome oxidase activity +
Glucose utilization +
L-arabinose assimilation-
D-Mannose assimilation-
D-mannitol assimilation-
N-acetyl-D-glucosamine assimilation +
Maltose utilization-
Potassium gluconate assimilation +
n-Capric acid assimilation +
Adipic acid utilization +
dl-Assimilation of malic acid +
Sodium citrate assimilation +
Utilization of phenyl acetate-
In addition, “+” indicates positive and “−” indicates negative.
寒天培地上において、30℃、24時間培養で直径2〜3mmの周縁波状の円形、表面がスムーズ、扁平状で、不透明な緑色コロニーを形成する、請求項1に記載の油脂分解菌。   The fat-and-oil degrading bacterium according to claim 1, which forms an opaque green colony having a peripheral corrugated circular shape having a diameter of 2 to 3 mm, a smooth surface, and a flat shape on an agar medium by culturing at 30 ° C for 24 hours. 配列番号1で示される16S rDNA塩基配列を有する、請求項1又は2に記載の油脂分解菌。   The oil- and fat-degrading bacterium according to claim 1 or 2, which has the 16S rDNA base sequence represented by SEQ ID NO: 1. 独立行政法人製品評価技術基盤機構特許微生物寄託センター 受託番号NITE P−847(Pseudmonas aeruginosa SS−219株)で特定される油脂分解菌。   An oil-degrading bacterium identified by the Patent Microorganism Deposit Center of the National Institute of Technology and Evaluation, Accession Number NITE P-847 (Pseudomonas aeruginosa SS-219). 請求項1〜4のいずれか一項に記載の油脂分解菌を含む油脂分解剤。   The fat and oil decomposition agent containing the fat-and-oil decomposing bacteria as described in any one of Claims 1-4.
JP2009289107A 2009-12-21 2009-12-21 Oil-degrading bacteria and oil-degrading agents Expired - Fee Related JP5219050B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009289107A JP5219050B2 (en) 2009-12-21 2009-12-21 Oil-degrading bacteria and oil-degrading agents

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009289107A JP5219050B2 (en) 2009-12-21 2009-12-21 Oil-degrading bacteria and oil-degrading agents

Publications (2)

Publication Number Publication Date
JP2011125825A true JP2011125825A (en) 2011-06-30
JP5219050B2 JP5219050B2 (en) 2013-06-26

Family

ID=44289008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009289107A Expired - Fee Related JP5219050B2 (en) 2009-12-21 2009-12-21 Oil-degrading bacteria and oil-degrading agents

Country Status (1)

Country Link
JP (1) JP5219050B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019208460A (en) * 2018-06-07 2019-12-12 シーシーアイホールディングス株式会社 Novel microorganisms for decomposition of oil and fat
JP2020025477A (en) * 2018-08-09 2020-02-20 シーシーアイホールディングス株式会社 Novel decomposing microorganism of oil
JP2020168604A (en) * 2019-04-03 2020-10-15 シーシーアイホールディングス株式会社 Oil decomposing agent and method of oil decomposition

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51106786A (en) * 1975-03-14 1976-09-21 Mitsubishi Petrochemical Co Tainetsuseiarufua amiraazeno seizoho
JPS58146277A (en) * 1982-02-22 1983-08-31 Unitika Ltd Lipase
JPH04322799A (en) * 1991-04-23 1992-11-12 Ebara Infilco Co Ltd Method and device for treating oil-containing waste water
JPH08197086A (en) * 1995-01-20 1996-08-06 Ebara Corp Treatment of waste water containing normalhexane extract
JPH1042864A (en) * 1996-05-28 1998-02-17 Toray Ind Inc Bacterium for decomposing terephthalic acid and aerobic treatment using the same bacterium
JPH1052289A (en) * 1996-05-16 1998-02-24 Nippon Shokubai Co Ltd Production of d-malic acid
JP2000270845A (en) * 1999-03-25 2000-10-03 Taisei Corp Microorganism having oil and fat-decomposing activity and treatment of waste water
JP2001178451A (en) * 1999-10-15 2001-07-03 Aquas Corp Oil-degrading bacterium and method for treating oil- containing effluent using the same
JP2003116526A (en) * 2001-10-12 2003-04-22 Japan Science & Technology Corp Highly functional fatty oil-decomposing bacterium and method of bioremediation using the same
JP2005117973A (en) * 2003-10-17 2005-05-12 National Institute Of Advanced Industrial & Technology Highly functional denitrifying and oil degrading bacterium, and method for purifying wastewater using the same
JP2005313159A (en) * 2004-03-31 2005-11-10 Rom:Kk Method for cleaning polluted soil or polluted water, and apparatus for cleaning polluted soil or polluted water
JP2008220225A (en) * 2007-03-09 2008-09-25 Univ Waseda Lipolytic microorganism and method for treating wastewater containing oil and fat using the same
JP2011125302A (en) * 2009-12-21 2011-06-30 Sumitomo Heavy Ind Ltd Fat degrading bacillus and fat degrading agent

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51106786A (en) * 1975-03-14 1976-09-21 Mitsubishi Petrochemical Co Tainetsuseiarufua amiraazeno seizoho
JPS58146277A (en) * 1982-02-22 1983-08-31 Unitika Ltd Lipase
JPH04322799A (en) * 1991-04-23 1992-11-12 Ebara Infilco Co Ltd Method and device for treating oil-containing waste water
JPH08197086A (en) * 1995-01-20 1996-08-06 Ebara Corp Treatment of waste water containing normalhexane extract
JPH1052289A (en) * 1996-05-16 1998-02-24 Nippon Shokubai Co Ltd Production of d-malic acid
JPH1042864A (en) * 1996-05-28 1998-02-17 Toray Ind Inc Bacterium for decomposing terephthalic acid and aerobic treatment using the same bacterium
JP2000270845A (en) * 1999-03-25 2000-10-03 Taisei Corp Microorganism having oil and fat-decomposing activity and treatment of waste water
JP2001178451A (en) * 1999-10-15 2001-07-03 Aquas Corp Oil-degrading bacterium and method for treating oil- containing effluent using the same
JP2003116526A (en) * 2001-10-12 2003-04-22 Japan Science & Technology Corp Highly functional fatty oil-decomposing bacterium and method of bioremediation using the same
JP2005117973A (en) * 2003-10-17 2005-05-12 National Institute Of Advanced Industrial & Technology Highly functional denitrifying and oil degrading bacterium, and method for purifying wastewater using the same
JP2005313159A (en) * 2004-03-31 2005-11-10 Rom:Kk Method for cleaning polluted soil or polluted water, and apparatus for cleaning polluted soil or polluted water
JP2008220225A (en) * 2007-03-09 2008-09-25 Univ Waseda Lipolytic microorganism and method for treating wastewater containing oil and fat using the same
JP2011125302A (en) * 2009-12-21 2011-06-30 Sumitomo Heavy Ind Ltd Fat degrading bacillus and fat degrading agent

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019208460A (en) * 2018-06-07 2019-12-12 シーシーアイホールディングス株式会社 Novel microorganisms for decomposition of oil and fat
JP7041010B2 (en) 2018-06-07 2022-03-23 シーシーアイホールディングス株式会社 Newly decomposing microorganisms of fats and oils
JP2020025477A (en) * 2018-08-09 2020-02-20 シーシーアイホールディングス株式会社 Novel decomposing microorganism of oil
JP7109305B2 (en) 2018-08-09 2022-07-29 シーシーアイホールディングス株式会社 New oil-degrading microorganisms
JP2020168604A (en) * 2019-04-03 2020-10-15 シーシーアイホールディングス株式会社 Oil decomposing agent and method of oil decomposition
JP7264699B2 (en) 2019-04-03 2023-04-25 シーシーアイホールディングス株式会社 Oil decomposition agent and oil decomposition method

Also Published As

Publication number Publication date
JP5219050B2 (en) 2013-06-26

Similar Documents

Publication Publication Date Title
Taskin et al. Microbial lipid production by cold‐adapted oleaginous yeast Yarrowia lipolytica B9 in non‐sterile whey medium
JP5383724B2 (en) Oil-degrading microorganism, microorganism-immobilized carrier, wastewater treatment method, and wastewater treatment system
WO2020134728A1 (en) Halophilic denitrifying bacteria yl5-2 and application thereof
JP5630855B2 (en) Oil-degrading microorganism, microorganism-immobilized carrier, wastewater treatment method, and wastewater treatment system
CN102994428B (en) One strain ocean surfactant producing bacteria strain LHOD-1 and application thereof
JP4807799B2 (en) Method for treating waste liquid containing fat, alpha starch and beta starch
CN111534449B (en) Aerobic denitrifying pseudomonas and culture method and application thereof
JP5196423B2 (en) New Enterobacter aerogenes strains and their use
AU2019303431B1 (en) LAS-degrading and/or N-removing bacterium and application thereof
CN109456926A (en) A kind of microbial bacterial agent and its application containing thermophilic salt denitrifying bacterium YL5-2
CN111647536A (en) High-temperature-resistant capsaicin degrading bacteria, application and kitchen waste treatment method
Cherni et al. Mixed culture of Lactococcus lactis and Kluyveromyces marxianus isolated from kefir grains for pollutants load removal from Jebel Chakir leachate
JP5219050B2 (en) Oil-degrading bacteria and oil-degrading agents
CN107699529B (en) Aeromonas saccharophila and application thereof
JP2010226959A (en) New microorganism, method for treating waste water with the microorganism and waste water-treating apparatus
CN109439602A (en) Halophilic vibrio YL5-2 and its microbial inoculum are degraded the application in conversion pollutant under high salt conditions
JP2009072162A (en) Method for treating lignin-containing material
CN114410508B (en) Grease degrading bacterium and screening method and application thereof
JP5521146B2 (en) Oil-degrading bacteria and oil-degrading agents
CN110184217B (en) Salt-tolerant denitrifying bacterium taking nitrite as nitrogen source and application thereof
CN111621437B (en) Otter escherichia coli LM-DK separated from oxidation pond of pig farm and application thereof
JP2012139216A (en) New microorganism, and waste water disposal method and waste water disposal apparatus using the new microorganism
JP4807800B2 (en) Treatment method for waste liquid containing β starch
JP6218264B2 (en) Degradation method of digested sludge
CN106834165A (en) Secondary coccus, cell fraction of degradable penicillin and combinations thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121002

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130226

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160315

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5219050

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees