JP2011122992A - Vertical wind tunnel device - Google Patents

Vertical wind tunnel device Download PDF

Info

Publication number
JP2011122992A
JP2011122992A JP2009282380A JP2009282380A JP2011122992A JP 2011122992 A JP2011122992 A JP 2011122992A JP 2009282380 A JP2009282380 A JP 2009282380A JP 2009282380 A JP2009282380 A JP 2009282380A JP 2011122992 A JP2011122992 A JP 2011122992A
Authority
JP
Japan
Prior art keywords
wind tunnel
vertical wind
tunnel device
vertical
visualization test
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009282380A
Other languages
Japanese (ja)
Other versions
JP5816864B2 (en
Inventor
Masahiro Iwanaga
正裕 岩永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ikutoku Gakuen School Corp
Original Assignee
Ikutoku Gakuen School Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ikutoku Gakuen School Corp filed Critical Ikutoku Gakuen School Corp
Priority to JP2009282380A priority Critical patent/JP5816864B2/en
Publication of JP2011122992A publication Critical patent/JP2011122992A/en
Application granted granted Critical
Publication of JP5816864B2 publication Critical patent/JP5816864B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a simplified wind tunnel device that facilitates dismantling, assembling and conveying. <P>SOLUTION: The vertical wind tunnel device includes an air introduction part, a first flow straightening part, a flow contraction part, a transparent cylindrical visualization test part, a second flow straightening part, and an air flow generation part. The device is formed by piling and bonding in the vertical direction, each part constituted separably and bondably. The visualization test part has a cylindrical shape, so that disturbance is hardly generated from an inner wall of the wind tunnel. Also, the device is installed vertically so as to make air flow in the vertical downward direction, thereby deviation between a tracer locus and a streamline of the air flow can be suppressed minimally. Further, the device can be assembled, dismantled and operated very easily, so that it is most suitable for an experimental device used in a physical/chemical education field for school students. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、気流の流れを可視化する風洞装置に関し、より詳細には、分解、組み立て、搬送が容易な簡易型風洞装置に関する。   The present invention relates to a wind tunnel device that visualizes the flow of airflow, and more particularly to a simple wind tunnel device that is easy to disassemble, assemble, and transport.

従来、人工的に発生させた気体の流れの中に縮小模型などの供試物体を置き、気体の流れを可視化して観測する風洞実験が種々の目的のために行なわれている。一般に風洞実験おいては、気体の流れを可視化するためにトレーサを用いるが、トレーサの比重は、通常、流体のそれと異なるため、トレーサの軌跡と実際の気体の流線がずれてしまうことがある。   Conventionally, wind tunnel experiments have been performed for various purposes in which a test object such as a reduced model is placed in an artificially generated gas flow, and the gas flow is visualized and observed. Generally, in a wind tunnel experiment, a tracer is used to visualize the gas flow. However, since the specific gravity of the tracer is usually different from that of the fluid, the tracer trajectory and the actual gas stream line may be misaligned. .

この点につき、特開平5−264397号公報(特許文献1)は、風洞内に加熱しした気体を導入することによって、流入気体の密度とトレーサ(煙)の密度をほぼ等しくし、トレーサが自身の浮力によって浮き上がることを防止した流線観測用風洞を開示するものの、特許文献1の装置では、その構成が複雑にならざるをえなかった。   In this regard, Japanese Patent Laid-Open No. 5-264297 (Patent Document 1) introduces a heated gas into the wind tunnel, thereby making the density of the inflowing gas and the density of the tracer (smoke) substantially equal, and the tracer itself Although the streamline observing wind tunnel that is prevented from being lifted by the buoyancy of the air is disclosed, the configuration of the device of Patent Document 1 must be complicated.

また、従来の風洞は、一般に、空間断面が四角に形成されていたため、内壁の四隅から気流の乱れが発生しやすいという問題があり、さらに、従来の風洞実験装置は、その多くは大がかりなものであったため、教室などの日常空間で気軽に風洞実験を行なうことは困難であった。   In addition, the conventional wind tunnel generally has a square cross section, so there is a problem that air flow is likely to be disturbed from the four corners of the inner wall, and many of the conventional wind tunnel experimental devices are large-scale. Therefore, it was difficult to conduct wind tunnel experiments casually in everyday spaces such as classrooms.

特開平5−264397号公報Japanese Patent Laid-Open No. 5-264497

本発明は、上記従来技術における課題に鑑みてなされたものであり、本発明は、分解、組み立て、搬送が容易な簡易型風洞装置を提供することを目的とする。   The present invention has been made in view of the above problems in the prior art, and an object of the present invention is to provide a simple wind tunnel device that can be easily disassembled, assembled, and transported.

本発明者は、分解、組み立て、搬送が容易な簡易型風洞装置につき鋭意検討した結果、可視化供試部を透明な円筒状部材で構成し、且つ、これを縦置きに設置して気流の流れ方向を鉛直下方向にとることによって、風洞内壁から発生する乱れを抑制するとともに、トレーサの軌跡と気流の流線のずれを最小限に抑えることができることを見出し、本発明に至ったのである。   As a result of intensive studies on a simple wind tunnel device that can be easily disassembled, assembled, and transported, the inventor has configured the visualization test section as a transparent cylindrical member and installed it vertically to allow the flow of airflow. The present inventors have found that by making the direction vertically downward, it is possible to suppress the turbulence generated from the inner wall of the wind tunnel and to minimize the deviation between the tracer trace and the streamline of the air flow.

すなわち、本発明によれば、縦置きに設置される透明な円筒状の可視化供試部を備え、該可視化供試部内の気流の流れ方向を鉛直下方向とすることを特徴とする縦型風洞装置が提供される。また、本発明によれば、空気導入部と、第1の整流部と、縮流部と、透明な円筒状の可視化供試部と、第2の整流部と、気流生成部とを備える縦型風洞装置であって、分離・接合自在に構成された前記各部を鉛直方向に積み上げて接合することによって形成され、前記可視化供試部は、気流の流れ方向が鉛直下方向となるように縦置きに設置されることを特徴とする縦型風洞装置が提供される。本発明においては、前記各部間が嵌め合いによってボルトレスで接合することができる。また、本発明においては、前記可視化供試部がアクリルパイプによって形成することができ、前記可視化供試部の内部空間には供試物体を固定するための支持柱を突設し、該支持柱を回転自在に構成することができる。さらに、本発明においては、前記整流部をハニカム部材によって形成することができる。   That is, according to the present invention, the vertical wind tunnel is provided with a transparent cylindrical visualization test unit installed vertically, and the flow direction of the air flow in the visualization test unit is set vertically downward An apparatus is provided. Further, according to the present invention, a longitudinal section including an air introduction section, a first rectification section, a contracted flow section, a transparent cylindrical visualization test section, a second rectification section, and an airflow generation section. This type of wind tunnel device is formed by stacking and joining the parts configured to be separable and joinable in the vertical direction, and the visualization test part is vertically arranged so that the airflow direction is vertically downward. A vertical wind tunnel device is provided that is installed at a stand. In the present invention, the above-mentioned portions can be joined without being bolted by fitting. Further, in the present invention, the visualization test part can be formed by an acrylic pipe, and a support column for fixing a test object is provided in an internal space of the visualization test part, and the support column Can be configured to be rotatable. Furthermore, in the present invention, the rectifying portion can be formed of a honeycomb member.

上述したように、本発明によれば、分解、組み立て、搬送が容易な縦型風洞装置が提供される。本発明の縦型風洞装置においては、風洞内壁から発生する乱れを抑制するとともに、トレーサの軌跡と気流の流線のずれを最小限に抑えることができる。   As described above, according to the present invention, a vertical wind tunnel device that can be easily disassembled, assembled, and transported is provided. In the vertical wind tunnel device of the present invention, it is possible to suppress the turbulence generated from the inner wall of the wind tunnel and to minimize the deviation between the tracer trace and the stream line of the air flow.

本実施形態の縦型風洞装置を示す図。The figure which shows the vertical wind tunnel apparatus of this embodiment. 気流の流れ方向とトレーサの軌跡の関係を示す図。The figure which shows the relationship between the flow direction of an airflow, and the trace of a tracer. 本実施形態の縦型風洞装置の断面図を示す図。The figure which shows sectional drawing of the vertical wind tunnel apparatus of this embodiment. 供試物体の入れ替えの様子を示す概念図。The conceptual diagram which shows the mode of replacement of a test object. 本実施形態の縦型風洞装置の分解・収納の様子を示す概念図。The conceptual diagram which shows the mode of decomposition | disassembly and accommodation of the vertical wind tunnel apparatus of this embodiment. 本実施形態の縦型風洞装置の光学系を示す図。The figure which shows the optical system of the vertical wind tunnel apparatus of this embodiment. 縦型風洞装置の実機による風洞実験の結果を示す図。The figure which shows the result of the wind tunnel experiment by the real machine of a vertical wind tunnel apparatus.

以下、本発明を図面に示した実施の形態をもって説明するが、本発明は、図面に示した実施の形態に限定されるものではない。なお、以下に参照する各図においては、共通する要素について同じ符号を用い、適宜、その説明を省略するものとする。   Hereinafter, the present invention will be described with reference to embodiments shown in the drawings, but the present invention is not limited to the embodiments shown in the drawings. In the drawings referred to below, the same reference numerals are used for common elements, and the description thereof is omitted as appropriate.

図1は、本発明の実施形態である縦型風洞装置10を示す。縦型風洞装置10は、空気導入部12と、第1の整流部13と、縮流部14と、可視化供試部16と、第2の整流部18と、気流生成部20とを含んで構成される。本実施形態においては、空気導入部12は、円錐台形筒状のフードで構成され、第1の整流部13ならびに第2の整流部18は、いずれも直方体状のハニカム部材で構成されている。また、気流生成部20は、プロペラファン22と、プロペラファン22の回転制御を行なうためのスライダック24と、プロペラファン22を載置するための台座26を含んで構成されている。   FIG. 1 shows a vertical wind tunnel device 10 according to an embodiment of the present invention. The vertical wind tunnel device 10 includes an air introduction unit 12, a first rectification unit 13, a contraction unit 14, a visualization test unit 16, a second rectification unit 18, and an airflow generation unit 20. Composed. In this embodiment, the air introduction part 12 is comprised by the truncated cone-shaped cylindrical hood, and all the 1st rectification | straightening parts 13 and the 2nd rectification | straightening part 18 are comprised by the rectangular parallelepiped honeycomb member. The airflow generation unit 20 includes a propeller fan 22, a slidac 24 for controlling the rotation of the propeller fan 22, and a pedestal 26 for placing the propeller fan 22.

本実施形態における整流部13,18は、十分な整流効果が得られるように、適切な目の細かさと厚みを有するハニカムで構成することが好ましい。また、整流部13,18をアルミ製のハニカムで構成すれば、上流側の整流部13(ハニカム)の上に火のついた線香(トレーサ)を直接置くことができるため好都合である。仮に火のついた線香や供試物体が落下した場合であっても、下流側の整流部18(ハニカム)の存在により、これらがプロペラファン22に直撃することが防止される。また、本実施形態においては、空気導入部12や縮流部14をプラスチックやブリキ等の軽い材料で形成して縦型風洞装置10の上部を軽量化することが好ましい。本実施形態においては、重量のある気流生成部20が最下部に配置されているので、上部を軽量化することによって装置全体が安定化し、その結果、供試物体の着脱に伴う分解組み立てが容易になる。   The rectifying units 13 and 18 in the present embodiment are preferably composed of a honeycomb having appropriate fineness and thickness so that a sufficient rectifying effect can be obtained. Further, if the rectifying sections 13 and 18 are made of an aluminum honeycomb, it is advantageous because a fired incense stick (tracer) can be placed directly on the upstream rectifying section 13 (honeycomb). Even if a burned incense stick or a test object falls, the presence of the rectifying unit 18 (honeycomb) on the downstream side prevents them from hitting the propeller fan 22 directly. Further, in the present embodiment, it is preferable to reduce the upper part of the vertical wind tunnel device 10 by forming the air introduction part 12 and the contracted flow part 14 with a light material such as plastic or tinplate. In the present embodiment, since the heavy airflow generating unit 20 is disposed at the lowermost part, the entire apparatus is stabilized by reducing the weight of the upper part, and as a result, disassembly and assembly accompanying the attachment / detachment of the test object is easy. become.

本実施形態における可視化供試部16は、透明な円筒状部材によって構成されている。使用できる透明な円筒状部材としては、汎用部材であるアクリルパイプを挙げることができる。可視化供試部16の内部空間には供試物体を固定するための供試体支持柱30が突設されており、供試体支持柱30はモータ等の回転駆動手段32によって回転自在に構成されている。なお、本実施形態においては、プロペラファン22と第2の整流部18の間に円筒状の渦伝播防止部17を配置することによって、プロペラファン22の回転によって生じる流れの回転の影響が可視化供試部16に及ばないように担保されている。なお、渦伝播防止部17を可視化供試部16と同様の部材(アクリルパイプ)で作製することもできる。   The visualization specimen 16 in the present embodiment is configured by a transparent cylindrical member. Examples of the transparent cylindrical member that can be used include an acrylic pipe that is a general-purpose member. A specimen support column 30 for fixing the specimen is projected in the internal space of the visualization specimen 16, and the specimen support column 30 is configured to be rotatable by a rotation driving means 32 such as a motor. Yes. In the present embodiment, by arranging the cylindrical vortex propagation preventing portion 17 between the propeller fan 22 and the second rectifying portion 18, the effect of the rotation of the flow caused by the rotation of the propeller fan 22 is visualized. It is guaranteed not to reach the test part 16. The vortex propagation preventing part 17 can also be made of the same member (acrylic pipe) as the visualization test part 16.

以上、本実施形態の縦型風洞装置10の構成要素について説明してきたが、上述した空気導入部12、整流部13,18、縮流部14、および気流生成部20を構成する材料・形状・部品等については、従来の風洞装置におけるそれが果たす機能と同等の機能を果たすものであればよく、各部の詳細な構成については、種々の設計変更が可能であることはいうまでもないので、これ以上の説明は省略する。   As mentioned above, although the component of the vertical wind tunnel apparatus 10 of this embodiment has been described, the materials, shapes, and components that constitute the air introduction unit 12, the rectification units 13 and 18, the current reduction unit 14, and the airflow generation unit 20 described above. About parts etc., what is necessary is just to perform the function equivalent to the function which it performs in the conventional wind tunnel device, and it cannot be overemphasized that various design changes are possible about the detailed composition of each part. Further explanation is omitted.

本実施形態の縦型風洞装置10は、可視化供試部16が円筒状に構成されている点を特徴とする。従来の風洞装置の多くは、直方体状の可視化供試部を採用していたため、内壁の四隅から気流の乱れが発生しやすかった。その点、本実施形態においては、円筒状の可視化供試部を採用したため、風洞の内壁面から発生する乱れを最小限に抑えることができる。   The vertical wind tunnel device 10 of the present embodiment is characterized in that the visualization specimen 16 is configured in a cylindrical shape. Many of the conventional wind tunnel devices employ a rectangular parallelepiped visualization test section, so that air currents are likely to be disturbed from the four corners of the inner wall. In that respect, in this embodiment, since the cylindrical visualization test part is employed, the disturbance generated from the inner wall surface of the wind tunnel can be minimized.

また、本実施形態の縦型風洞装置10は、気流の流れ方向を鉛直下方向とすることを特徴とする。本実施形態においては、図1に示すように、各構成要素が鉛直方向に積み上げられ、可視化供試部16が縦置きに設置されている。このように積み上げられた縦型風洞装置10においては、可視化供試部16内を気流が鉛直下方向に流下する。空気導入部12内に配置された図示しないトレーサ発生源から発生したトレーサTは、この鉛直下方向に流下する気流に追従して可視化供試部16内を流下する。このとき、可視化供試部16に対して図示しない光源から光を照射することによって、気流の流線をトレーサTの軌跡として観測することができる。   Further, the vertical wind tunnel device 10 of the present embodiment is characterized in that the flow direction of the airflow is a vertically downward direction. In this embodiment, as shown in FIG. 1, each component is piled up in the vertical direction, and the visualization test part 16 is installed vertically. In the vertical wind tunnel device 10 stacked in this manner, the airflow flows down vertically in the visualization test section 16. The tracer T generated from a tracer generation source (not shown) arranged in the air introduction unit 12 flows down in the visualization test unit 16 following the airflow flowing down in the vertical direction. At this time, the streamline of the airflow can be observed as the trace of the tracer T by irradiating the visualization test unit 16 with light from a light source (not shown).

ここで、気流の流れ方向を鉛直下方向とする意義について、図2を参照して以下説明する。なお、図2においては、気流の流れ方向を白抜き矢線で示し、トレーサの軌跡を破線矢線で示す。従来の風洞装置における可視化供試部は、気流の流れ方向を水平にとっているため、以下のような問題が生じる。例えば、線香の煙のように空気より比重が小さいトレーサTを使用した場合、図2(a)に示すように、下流に向う程、トレーサTが流線からずれ、鉛直上方向に浮き上がってしまう一方で、ドライアイスの煙(二酸化炭素)のように空気より比重が大きいトレーサTを使用した場合、図2(b)に示すように、下流に向う程、トレーサTが流線からずれ、鉛直下方向に沈んでしまうといったことが起こり、いずれの場合も、流線を正確に可視化することができないという問題が生じる。 Here, the significance of setting the airflow direction as the vertically downward direction will be described below with reference to FIG. In FIG. 2, the flow direction of the airflow is indicated by a white arrow, and the tracer trace is indicated by a broken arrow. Since the visualization test part in the conventional wind tunnel device keeps the flow direction of the air flow horizontal, the following problems occur. For example, when a tracer T L having a specific gravity smaller than that of air such as incense smoke is used, the tracer T L is displaced from the streamline as it goes downstream as shown in FIG. while thus, when using the tracer T H specific gravity than air is large as in the dry ice smoke (carbon dioxide), as shown in FIG. 2 (b), as toward the downstream, the tracer T H is streamlined In any case, there is a problem that the streamline cannot be accurately visualized.

この点につき、本実施形態の縦型風洞装置10は、可視化供試部を縦置きに設置することによって、気流の流れ方向と重力の作用方向を一致させている。その結果、図2(c)に示すように、トレーサの比重が空気より軽い場合および重い場合のいずれであっても、トレーサの軌跡と流線のずれを最小限に抑えることができるので、流線の正確な可視化が可能になる。また、装置を縦置きにすることによって、設置面積が小さくなることも好都合である。以上、本実施形態の縦型風洞装置10の2つの特徴について説明してきたが、次に、本実施形態の縦型風洞装置10の第3の特徴である、使用上の簡便性について、図3〜図5を参照して、以下説明する。   About this point, the vertical wind tunnel apparatus 10 of this embodiment makes the flow direction of an air flow and the action direction of gravity correspond by installing a visualization test part vertically. As a result, as shown in FIG. 2C, the deviation between the tracer trajectory and the streamline can be minimized regardless of whether the specific gravity of the tracer is lighter or heavier than air. Enables accurate visualization of lines. It is also advantageous to reduce the installation area by placing the device vertically. The two features of the vertical wind tunnel device 10 of the present embodiment have been described above. Next, FIG. 3 illustrates the third feature of the vertical wind tunnel device 10 of the present embodiment, which is the convenience in use. Hereinafter, description will be made with reference to FIG.

図3は、本実施形態の縦型風洞装置10の断面図を示す。なお、図3においては、気流の流れ方向を白抜き矢線で示す。図3に示す例においては、縦型風洞装置10の内部にプロペラファン22の回転によって負圧が生じており、空気が空気導入部12から装置内部に流入する。空気導入部12から流入した空気は、第1の整流部13および縮流部14を経て整流・縮流された後、可視化供試部16に導入される。可視化供試部16に導入された空気は、鉛直下方向に流下し、第2の整流部18・渦伝播防止部17を経て、台座26に設けられた開口から排気される。本実施形態の縦型風洞装置10においては、可視化供試部16の下流側にプロペラファン22を設ける、いわゆる吸い込み型を採用し、さらに、可視化供試部16の下流側に第2の整流部18を設けているので、可視化供試部16がプロペラファン22による乱れを受けにくい構造となっている。また、空気導入部12から流入した外気は、可視化供試部16の上流側に設けた第1の整流部13によってその乱れが抑えられ、縮流部14を経て、可視化供試部16に乱れのない一様流として導入される。   FIG. 3 shows a cross-sectional view of the vertical wind tunnel device 10 of the present embodiment. In addition, in FIG. 3, the flow direction of airflow is shown by the white arrow line. In the example shown in FIG. 3, negative pressure is generated in the vertical wind tunnel device 10 by the rotation of the propeller fan 22, and air flows into the device from the air introduction unit 12. The air flowing in from the air introduction unit 12 is rectified and contracted through the first rectification unit 13 and the contraction unit 14 and then introduced into the visualization test unit 16. The air introduced into the visualization test section 16 flows downward in the vertical direction, passes through the second rectification section 18 and the vortex propagation prevention section 17, and is exhausted from the opening provided in the base 26. In the vertical wind tunnel device 10 of the present embodiment, a so-called suction type in which a propeller fan 22 is provided on the downstream side of the visualization test unit 16 is employed, and further, a second rectification unit is provided on the downstream side of the visualization test unit 16. 18 is provided, the visualization test part 16 has a structure that is not easily disturbed by the propeller fan 22. Moreover, the disturbance of the outside air that has flowed in from the air introduction unit 12 is suppressed by the first rectification unit 13 provided on the upstream side of the visualization test unit 16, and is disturbed by the visualization test unit 16 via the contraction unit 14. It is introduced as a uniform flow without any.

ここで、本発明においては、縦型風洞装置10の各構成部材間をボルト等によって固着するように構成することも当然できるが、本実施形態においては、各構成部材が鉛直方向に積み上げられることを利用して、ボルトレスで接合する構成を採用する。図3に示す例においては、縦型風洞装置10の各構成部材間は、破線で囲んで示すように、嵌め合いによってボルトレスで接合されている。本実施形態においては、各構成部材を鉛直方向に積み上げるため、それぞれの自重が各接合部に作用する。したがって、各構成部材間を単に緩く嵌合するだけでも、装置全体として風洞試験に支障の無い程度の安定性が得られる。このように、装置をボルトレスで構成することによって、簡便な組立て・分解が可能になる。なお、整流部13,18にハニカム部材を採用する場合、ハニカム部材を穴の開いた二枚の板(13a,bならびに18a,b)で挟持することによって、加工が難しいハニカム部材を切削することなく、各構成部材が嵌合するための凹部を形成することができる。   Here, in the present invention, it is of course possible to configure the components of the vertical wind tunnel device 10 to be fixed with bolts or the like, but in the present embodiment, the components are stacked in the vertical direction. Adopting a boltless joining structure. In the example shown in FIG. 3, the constituent members of the vertical wind tunnel device 10 are joined to each other in a boltless manner by fitting as shown by being surrounded by a broken line. In this embodiment, since each component member is piled up in the perpendicular direction, each weight acts on each joint. Therefore, even if the components are simply loosely fitted, the overall stability of the device can be obtained without any problem in the wind tunnel test. In this way, by constructing the apparatus without bolts, simple assembly and disassembly are possible. In addition, when adopting a honeycomb member for the rectifying units 13 and 18, the honeycomb member that is difficult to be processed is cut by sandwiching the honeycomb member with two plates (13a and b and 18a and b) having holes. However, it is possible to form a recess for fitting each component member.

ボルトレスであることは、例えば、供試物体の入れ替えをする際に便利である。すなわち、本実施形態の縦型風洞装置10においては、供試物体の入れ替えをする場合(●→★)、図4に示すように、上から、空気導入部12、第1の整流部13、縮流部14の順に嵌合を解くだけで可視化供試部16内に手を入れて供試物体を入れ替えることができ、入れ替えが終った後は、縮流部14、第1の整流部13、空気導入部12の順に再び嵌合してすぐに次の風洞実験を行なうことができるので便利である。   Being boltless is convenient, for example, when replacing the test object. That is, in the vertical wind tunnel device 10 of the present embodiment, when replacing the test object (● → ★), as shown in FIG. 4, from the top, the air introduction unit 12, the first rectification unit 13, It is possible to replace the test object by placing the hand in the visualization test section 16 simply by releasing the fitting in the order of the contraction section 14, and after the replacement, the contraction section 14 and the first rectification section 13 are replaced. This is convenient because the next wind tunnel experiment can be carried out immediately after re-fitting in the order of the air introduction part 12.

さらに、本実施形態の縦型風洞装置10は、使用しないときは、図5に示すように、ただちに分解して所定の専用ケース50に収納することができるので、置き場所に困ることがなく、また、これを搬送することも容易である。   Furthermore, when not in use, the vertical wind tunnel device 10 of the present embodiment can be immediately disassembled and stored in a predetermined dedicated case 50, as shown in FIG. It is also easy to transport it.

次に、本実施形態の縦型風洞装置10に適用可能な光学系の実施形態について、図6を参照して説明する。市販の投光器60(例えば、ハロゲンランプ)のガラス面に対し、適当な幅(例えば、約30mm)のスリットを残して板62,62を貼り付けたものを用意する。これに対し、円筒状の透明容器64(たとえば、アクリル容器)に水を満たしたものを集光レンズとして機能させ、上記スリットから出射した光を透明容器64を通して縦型風洞装置10の可視化供試部16に照射する。このような手順で光学系を構成することによって、装置の製造コストを安価に抑えることができる。さらに、透明容器64に貯留した水は、線香(トレーサ)に起因する不測の出火に対する備えとして、防火に役立てることができる。   Next, an embodiment of an optical system applicable to the vertical wind tunnel device 10 of the present embodiment will be described with reference to FIG. Prepare a glass surface of a commercially available projector 60 (for example, a halogen lamp) by attaching plates 62 and 62 with a slit having an appropriate width (for example, about 30 mm) left. On the other hand, a cylindrical transparent container 64 (for example, an acrylic container) filled with water is made to function as a condensing lens, and the light emitted from the slit is visualized through the transparent container 64 as a visualization test of the vertical wind tunnel device 10. Irradiate the part 16. By constructing the optical system according to such a procedure, the manufacturing cost of the apparatus can be reduced. Furthermore, the water stored in the transparent container 64 can be used for fire prevention as a preparation for an unexpected fire caused by an incense stick (tracer).

加えて、空気導入部12や縮流部14については市販のプラスチック製植木鉢などを流用し、気流生成部20(プロペラファン22)については家庭用換気扇を流用したり、スライダックの代わりに市販のファン用回転制御装置を用いたりすれば、本実施形態の縦型風洞装置10全体を安価に作製することができる。   In addition, a commercially available plastic flower pot or the like is used for the air introduction section 12 or the contraction section 14, and a household ventilation fan is used for the airflow generation section 20 (propeller fan 22), or a commercially available fan instead of the slidac. If the rotation control device is used, the entire vertical wind tunnel device 10 of the present embodiment can be manufactured at low cost.

以上、説明したように、本発明の縦型風洞装置は、既存の汎用材料を使用して安価なコストで簡単に作製することができるだけでなく、本格的な流線観察を可能にする。また、本発明の縦型風洞装置は、その組立て・分解・操作も至って容易であるため、小中高生対象の理化学教育現場で用いる実験装置に最適である。また、教育目的以外にも、低コストで簡易形式の風洞実験を行ないたいユーザにとって、本発明の縦型風洞装置は非常に有用であろう。   As described above, the vertical wind tunnel device of the present invention can be easily manufactured at low cost using an existing general-purpose material, and enables full-scale streamline observation. In addition, the vertical wind tunnel device of the present invention is easy to assemble, disassemble, and operate, so it is optimal for an experimental device used in physical and chemical education for elementary, middle and high school students. In addition to educational purposes, the vertical wind tunnel device of the present invention will be very useful for users who want to conduct simple wind tunnel experiments at low cost.

以上、本発明について実施形態をもって説明してきたが、本発明は、上述した実施形態に限定されるものではなく、その他、当業者が推考しうる実施態様の範囲内において、本発明の作用・効果を奏する限り、本発明の範囲に含まれるものである。   As described above, the present invention has been described with the embodiment. However, the present invention is not limited to the above-described embodiment, and other functions and effects of the present invention are within the scope of embodiments that can be considered by those skilled in the art. As long as the above is achieved, it is included in the scope of the present invention.

以下、本発明の縦型風洞装置について、実施例を用いてより具体的に説明を行なうが、本発明は、後述する実施例に限定されるものではない。   Hereinafter, although the vertical wind tunnel apparatus of the present invention will be described more specifically with reference to examples, the present invention is not limited to the examples described later.

図1に示したのと同等の縦型風洞装置の実機を作製した。なお、本実施例においては、整流部として、セルサイズ1/8インチ、厚さ80mmのアルミニウムハニカムを使用した。さらに、可視化供試部については、3種類の直径(80 mm、190 mm、250 mm)の透明のアクリル製円筒を用いて3種類の実機を作製した。作製した各実機を使用して風洞実験を実施した。具体的には、棒状の円柱70を供試物体とし、円柱70の軸に垂直にスリット光源から平行光線をあてて、円柱70の軸に垂直な平面内の流れ模様を、線香の煙を用いて可視化した。なお、上記風洞実験はプロペラファンの回転数を360 rpm〜600 rpm(気流の流速=0.25 m/s 〜 0.6 m/s )に制御して行なった。その結果、上述した3種類の実機の全てにおいて、明瞭な流線を観測することができた。   An actual vertical wind tunnel device equivalent to that shown in FIG. 1 was produced. In this example, an aluminum honeycomb having a cell size of 1/8 inch and a thickness of 80 mm was used as the rectifying unit. Further, for the visualization test part, three types of actual machines were prepared using transparent acrylic cylinders with three types of diameters (80 mm, 190 mm, 250 mm). A wind tunnel experiment was carried out using each of the produced actual machines. Specifically, a rod-shaped cylinder 70 is used as a test object, a parallel light beam is applied from a slit light source perpendicular to the axis of the cylinder 70, and a flow pattern in a plane perpendicular to the axis of the cylinder 70 is used as incense smoke. And visualized. Note that the wind tunnel experiment was performed by controlling the rotation speed of the propeller fan to 360 rpm to 600 rpm (air flow velocity = 0.25 m / s to 0.6 m / s). As a result, clear streamlines could be observed in all of the above three types of actual machines.

図7は、実験結果を示す写真である。円柱70が静止している場合、図7(a)に示すように、明瞭なカルマン渦列を観測することができた。一方、円柱70を回転させた場合には、図7(b)に示すように、回転円柱周りのポテンシャル流れに類似した流れ模様を明瞭に観測することができた。   FIG. 7 is a photograph showing the experimental results. When the cylinder 70 was stationary, a clear Karman vortex street could be observed as shown in FIG. On the other hand, when the cylinder 70 was rotated, a flow pattern similar to the potential flow around the rotating cylinder could be clearly observed as shown in FIG. 7B.

以上、説明したように、本発明によれば、分解、組み立て、搬送が容易な縦型風洞装置が提供される。本発明の縦型風洞装置は、学校教育現場をはじめ広汎な分野で利用されることが期待される。   As described above, according to the present invention, a vertical wind tunnel device that can be easily disassembled, assembled, and transported is provided. The vertical wind tunnel apparatus of the present invention is expected to be used in a wide range of fields including school education.

10…縦型風洞装置、12…空気導入部、13…第1の整流部、14…縮流部、16…可視化供試部、17…渦伝播防止部、18…第2の整流部、20…気流生成部、22…プロペラファン、24…スライダック、26…台座、30…供試体支持柱、32…回転駆動手段、50…専用ケース、60…投光器、62…板、64…透明容器、70…円柱 DESCRIPTION OF SYMBOLS 10 ... Vertical wind tunnel apparatus, 12 ... Air introduction part, 13 ... 1st rectification | straightening part, 14 ... Shrinkage part, 16 ... Visualization test part, 17 ... Eddy propagation prevention part, 18 ... 2nd rectification | straightening part, 20 ... Airflow generation part, 22 ... Propeller fan, 24 ... Slidac, 26 ... Pedestal, 30 ... Sample support column, 32 ... Rotation drive means, 50 ... Special case, 60 ... Light projector, 62 ... Plate, 64 ... Transparent container, 70 ... Cylinder

Claims (7)

縦置きに設置される透明な円筒状の可視化供試部を備え、該可視化供試部内の気流の流れ方向を鉛直下方向とすることを特徴とする縦型風洞装置。   A vertical wind tunnel device comprising a transparent cylindrical visualization test unit installed in a vertical orientation, wherein the flow direction of the air flow in the visualization test unit is a vertically downward direction. 空気導入部と、第1の整流部と、縮流部と、透明な円筒状の可視化供試部と、第2の整流部と、気流生成部とを備える縦型風洞装置であって、分離・接合自在に構成された前記各部を鉛直方向に積み上げて接合することによって形成され、前記可視化供試部は、気流の流れ方向が鉛直下方向となるように縦置きに設置されることを特徴とする縦型風洞装置。   A vertical wind tunnel device comprising an air introduction part, a first rectification part, a contraction part, a transparent cylindrical visualization test part, a second rectification part, and an airflow generation part, -Formed by stacking and joining the parts configured to be freely joined in the vertical direction, and the visualization test part is installed vertically so that the flow direction of the airflow is vertically downward A vertical wind tunnel device. 前記各部間が嵌め合いによってボルトレスで接合されることを特徴とする、請求項2に記載の縦型風洞装置。   The vertical wind tunnel device according to claim 2, wherein the parts are joined to each other without being bolted by fitting. 前記可視化供試部がアクリルパイプによって形成される、請求項2または3に記載の縦型風洞装置。   The vertical wind tunnel device according to claim 2 or 3, wherein the visualization test part is formed of an acrylic pipe. 前記可視化供試部の内部空間には供試物体を固定するための支持柱が突設されており、該支持柱が回転自在に構成されている、請求項2〜4のいずれか1項に記載の縦型風洞装置。   The support column for fixing a test object is protrudingly provided in the internal space of the said visualization test part, This support column is comprised so that rotation is possible, Any one of Claims 2-4 The vertical wind tunnel device described. 前記整流部がハニカム部材によって形成される、請求項2〜5のいずれか1項に記載の縦型風洞装置。   The vertical wind tunnel device according to any one of claims 2 to 5, wherein the rectifying portion is formed of a honeycomb member. スリットを有する投光器に対して水を満たした円筒状の透明容器を集光レンズとして機能させた光学系をさらに備える、請求項2〜6のいずれか1項に記載の縦型風洞装置。   The vertical wind tunnel device according to any one of claims 2 to 6, further comprising an optical system in which a cylindrical transparent container filled with water functions as a condenser lens with respect to a projector having a slit.
JP2009282380A 2009-12-14 2009-12-14 Vertical wind tunnel device Active JP5816864B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009282380A JP5816864B2 (en) 2009-12-14 2009-12-14 Vertical wind tunnel device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009282380A JP5816864B2 (en) 2009-12-14 2009-12-14 Vertical wind tunnel device

Publications (2)

Publication Number Publication Date
JP2011122992A true JP2011122992A (en) 2011-06-23
JP5816864B2 JP5816864B2 (en) 2015-11-18

Family

ID=44287010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009282380A Active JP5816864B2 (en) 2009-12-14 2009-12-14 Vertical wind tunnel device

Country Status (1)

Country Link
JP (1) JP5816864B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103900786A (en) * 2014-04-04 2014-07-02 中国科学院寒区旱区环境与工程研究所 Sand wind environment wind tunnel experiment model device for simulating different field wind directions
CN105806584A (en) * 2016-05-09 2016-07-27 兰州大学 Portable earth's surface sand-dust release observation instrument
JP2017037005A (en) * 2015-08-11 2017-02-16 学校法人幾徳学園 Lift and drag measurement device
WO2019142018A1 (en) * 2018-01-19 2019-07-25 Beitans Ivars A connecting element for vertical wind tunnel
KR20210003409A (en) * 2019-07-02 2021-01-12 이기덕 Wind tunnel testing apparatus comprising changable module
JP2021032694A (en) * 2019-08-23 2021-03-01 正裕 岩永 System, method and program
CN113188749A (en) * 2021-05-07 2021-07-30 中国民航大学 Integrated adjustable smoke generating device of smoke wind tunnel
KR102325901B1 (en) * 2021-04-08 2021-11-12 주식회사 이노사이언스 Module type wind tunnel testing apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60205230A (en) * 1984-03-30 1985-10-16 Mitsubishi Heavy Ind Ltd Smoke diffusion testing method
JPH10267785A (en) * 1997-03-27 1998-10-09 Toshiba Mach Co Ltd Flow visualizing method and device
JP3013516B2 (en) * 1991-07-12 2000-02-28 株式会社デンソー Smoke generator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60205230A (en) * 1984-03-30 1985-10-16 Mitsubishi Heavy Ind Ltd Smoke diffusion testing method
JP3013516B2 (en) * 1991-07-12 2000-02-28 株式会社デンソー Smoke generator
JPH10267785A (en) * 1997-03-27 1998-10-09 Toshiba Mach Co Ltd Flow visualizing method and device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103900786A (en) * 2014-04-04 2014-07-02 中国科学院寒区旱区环境与工程研究所 Sand wind environment wind tunnel experiment model device for simulating different field wind directions
JP2017037005A (en) * 2015-08-11 2017-02-16 学校法人幾徳学園 Lift and drag measurement device
CN105806584A (en) * 2016-05-09 2016-07-27 兰州大学 Portable earth's surface sand-dust release observation instrument
WO2019142018A1 (en) * 2018-01-19 2019-07-25 Beitans Ivars A connecting element for vertical wind tunnel
KR20210003409A (en) * 2019-07-02 2021-01-12 이기덕 Wind tunnel testing apparatus comprising changable module
KR102241635B1 (en) * 2019-07-02 2021-04-16 이기덕 Wind tunnel testing apparatus comprising changable module
JP2021032694A (en) * 2019-08-23 2021-03-01 正裕 岩永 System, method and program
JP7299613B2 (en) 2019-08-23 2023-06-28 正裕 岩永 System, method and program
KR102325901B1 (en) * 2021-04-08 2021-11-12 주식회사 이노사이언스 Module type wind tunnel testing apparatus
CN113188749A (en) * 2021-05-07 2021-07-30 中国民航大学 Integrated adjustable smoke generating device of smoke wind tunnel

Also Published As

Publication number Publication date
JP5816864B2 (en) 2015-11-18

Similar Documents

Publication Publication Date Title
JP5816864B2 (en) Vertical wind tunnel device
CN207215423U (en) A kind of subsonic wind tunnel
ITUD940178A1 (en) IMPROVEMENTS TO MODULAR DEVICES ALLOWING THE ASSEMBLY OF EQUIPMENT FOR THE EXTRACTION OF FUMES OR THE AERATION OF
JP5152724B2 (en) Spherical screen and screen device
CN107402113A (en) A kind of low-speed wind tunnel experimental bench based on Particle Image Velocimetry
CN215220021U (en) Airflow suspension demonstration device
CN106875789A (en) A kind of hydrodynamics teaching experiment device
WO2021246159A1 (en) Droplet collector
JP5071715B2 (en) Tornado phenomenon generator, its deflection system and jet shape
KR101316599B1 (en) Double Column Combined Power Generation System
US5971765A (en) Method and system for generating artificial tornadoes and related vortex phenomena
CN106875835A (en) A kind of new city can remove haze place-name
JP2008002447A6 (en) Tornado generating propeller, tornado generator and tornado demonstration device
CN207493709U (en) High speed oscillation incubator
CN206881315U (en) A kind of special cross guide support of water conservancy diversion filter cylinder
JP6276059B2 (en) Smoke collector
JP6188893B1 (en) Air diffuser system including air diffuser and operation method thereof
JP2006258309A (en) Fan filter unit
KR102333680B1 (en) High ceiling air purifier
CN209765885U (en) Tornado demonstration equipment
KR20140060395A (en) A device to install light-weight chimneys to circulate inside and outside air for convection within buildings.
KR102157047B1 (en) Air cleaning tower using string filter
JP2010078290A (en) Ventilation device
JP2012160307A (en) Ion generator
JP2006242549A (en) Artificial tornado generator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150512

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20150527

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150527

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150528

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150626

R150 Certificate of patent or registration of utility model

Ref document number: 5816864

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250