JPH10267785A - Flow visualizing method and device - Google Patents

Flow visualizing method and device

Info

Publication number
JPH10267785A
JPH10267785A JP7544097A JP7544097A JPH10267785A JP H10267785 A JPH10267785 A JP H10267785A JP 7544097 A JP7544097 A JP 7544097A JP 7544097 A JP7544097 A JP 7544097A JP H10267785 A JPH10267785 A JP H10267785A
Authority
JP
Japan
Prior art keywords
light
flow
fluid
observed
tracer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7544097A
Other languages
Japanese (ja)
Inventor
Akihiro Otomo
明宏 大友
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shibaura Machine Co Ltd
Original Assignee
Toshiba Machine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Machine Co Ltd filed Critical Toshiba Machine Co Ltd
Priority to JP7544097A priority Critical patent/JPH10267785A/en
Publication of JPH10267785A publication Critical patent/JPH10267785A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method and a device which are not affected by reflected light from the wall surface of a container and the like when visualizing and observing the flow of fluid in the container or piping. SOLUTION: An ultraviolet laser beam emitted from an ultraviolet laser beam source 1 is converted by a cylindrical lens 2 into a sheet of light 3, which is applied to a transparent cylindrical container 4 for observation. A material which fluoresces when excited by ultraviolet rays, e.g. a solid particle containing rhodamine B, is mixed in the flow of fluid in the cylindrical container 4 as a tracer 5. Therefore, reflected light from the wall surface of the cylindrical container 2 is invisible to the naked eye and so does not hinder observation, while only scattered light from the tracer can be observed by the naked eye.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は流れの可視化方法及
び装置に係り、特に、外乱因子を除去する技術に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for visualizing a flow, and more particularly to a technique for removing a disturbance factor.

【0002】[0002]

【従来の技術】図3に、従来の流れの可視化方法の一例
を示す。この方法は、レーザーライトシート法と呼ばれ
ているものである。レーザー光源31から発射された可
視波長のレーザー光は、コンデンサレンズ32、二枚の
シリンドリカルレンズ33、34、及び偏光板35など
で構成される光学系によってシート状の平行光36に変
えられる。観測対象の流体中には、予め、アルミニウム
粉末あるいはミルクなどのトレーサが混入されており、
このシート状の平行光によってスライスされた面内で、
トレーサによってレーザー光が反射される。この反射光
を、照射面の垂直方向に配置されたコリメータレンズ3
8及びカメラ39を用いて撮影することにより、流れの
観測が行われる。
2. Description of the Related Art FIG. 3 shows an example of a conventional flow visualization method. This method is called a laser light sheet method. The visible wavelength laser light emitted from the laser light source 31 is converted into sheet-like parallel light 36 by an optical system including a condenser lens 32, two cylindrical lenses 33 and 34, a polarizing plate 35, and the like. Tracer such as aluminum powder or milk is mixed in the fluid to be observed in advance,
In the plane sliced by this sheet-like parallel light,
The laser light is reflected by the tracer. The reflected light is applied to a collimator lens 3 arranged in a direction perpendicular to the irradiation surface.
By photographing using the camera 8 and the camera 39, the flow is observed.

【0003】しかし、この方法を、容器の中を流れる流
れの可視化に適用した場合、容器の壁面からも反射光が
生じるので、容器の壁面付近においてトレーサからの反
射光が十分に識別できない部分が生じるという問題があ
る。
However, when this method is applied to the visualization of a flow flowing in a container, reflected light is also generated from the wall surface of the container. Therefore, a portion where the reflected light from the tracer cannot be sufficiently identified near the wall surface of the container. There is a problem that arises.

【0004】[0004]

【発明が解決しようとする課題】本発明は、上記のよう
な問題点に鑑み成されたもので、本発明の目的は、容器
あるいは配管中の流体の流れを可視化して観察する際、
容器の壁面などからの反射光の影響を受けない方法及び
装置を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and an object of the present invention is to provide a method for visualizing and observing the flow of a fluid in a container or piping.
An object of the present invention is to provide a method and an apparatus which are not affected by light reflected from a wall surface of a container.

【0005】[0005]

【課題を解決するための手段】本発明の流れの可視化方
法は、紫外線で励起されて可視光を発生するトレーサを
観測対象流体の流れに混入し、この流れにシート状に加
工された紫外線を照射することによって、紫外線が横切
る面内での前記観測対象流体の流れを可視化することを
特徴とする。
According to the flow visualization method of the present invention, a tracer which is excited by ultraviolet rays and generates visible light is mixed into the flow of the fluid to be observed, and the ultraviolet light processed into a sheet is added to the flow. Irradiation visualizes the flow of the fluid to be observed in a plane traversed by ultraviolet rays.

【0006】また、上記方法に使用される装置は、内側
に観測対象流体が流れる透明な容器と、紫外線を発射す
る光源と、発射された紫外線をシート状の光に変えて前
記透明な容器に向けて照射する光学系とを備える。
[0006] The apparatus used in the above method includes a transparent container into which the fluid to be observed flows, a light source for emitting ultraviolet light, and a device for converting the emitted ultraviolet light into sheet-like light to form the transparent container. And an optical system for irradiating the light.

【0007】本発明の流れの可視化方法によれば、不可
視光である紫外線を光源として用いているので、容器の
壁面からの反射光は肉眼では見えない。一方、トレーサ
は、紫外線の照射によって可視光を発生するので、トレ
ーサからの反射光のみを肉眼で観察することができる。
[0007] According to the flow visualization method of the present invention, ultraviolet light which is invisible light is used as a light source, so that light reflected from the wall surface of the container is not visible to the naked eye. On the other hand, since the tracer generates visible light upon irradiation with ultraviolet light, only the reflected light from the tracer can be observed with the naked eye.

【0008】[0008]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

(例1)図1に本発明の実施の形態の一例を示す。この
例は、円筒状容器の中の気体の流れを観察する場合のも
のである。紫外線レーザー光源1から発射された紫外線
レーザーを、シリンドリカルレンズ2を用いてシート状
の光3に変え、観察用の透明な円筒容器4に照射する。
なお、シート状の光3によってスライスされる面は、円
筒容器4の軸を含む平面と一致させる。この状態で、円
筒容器4の中の気体の流れにトレーサ5を混入する。こ
こで、本発明の方法においては、トレーサ5として、紫
外線により励起されて蛍光を発する物質を含有する固体
粒子を使用する。その様な性質を備えた物質として、例
えば、下記のローダミンBが使用できる。
(Example 1) FIG. 1 shows an example of an embodiment of the present invention. This example is for observing a gas flow in a cylindrical container. The ultraviolet laser emitted from the ultraviolet laser light source 1 is changed into sheet-like light 3 by using a cylindrical lens 2 and is irradiated on a transparent cylindrical container 4 for observation.
The surface sliced by the sheet light 3 is made to coincide with the plane including the axis of the cylindrical container 4. In this state, the tracer 5 is mixed into the gas flow in the cylindrical container 4. Here, in the method of the present invention, solid particles containing a substance that emits fluorescence when excited by ultraviolet rays are used as the tracer 5. As a substance having such properties, for example, the following rhodamine B can be used.

【0009】[0009]

【化1】 Embedded image

【0010】トレーサ5は、シート状の光3でスライス
される面を通過する際に蛍光を発生する。これにより、
円筒容器4内での気体の流れが肉眼で観察可能になる。
この方法によれば、容器4の壁面からの反射光は紫外線
であるので肉眼では見えず、観察の障害にならない。
The tracer 5 generates fluorescent light when passing through a surface sliced by the sheet-like light 3. This allows
The flow of gas in the cylindrical container 4 can be visually observed.
According to this method, the reflected light from the wall surface of the container 4 is ultraviolet light, so that it cannot be seen by the naked eye and does not hinder observation.

【0011】(例2)図2に本発明の実施の形態の他の
例を示す。この例は、半導体製造用の気相成長装置の内
部における反応ガス等の流れを観察する場合のものであ
る。反応容器11の中には、回転駆動されるサセプタ1
2が配置され、サセプタ12の上に半導体ウェーハ13
がセットされる。反応ガスは、反応容器11の天井部の
中央に設けられた供給管18から供給され、半導体ウェ
ーハ13の表面に沿って流れ、反応容器11の底部に設
けられた排出管19から反応容器11の外へ排出され
る。反応容器11の側方から、反応容器11の中心軸を
含む平面でシート状のレーザー光3を照射するともに、
反応ガスの中に、トレーサとしてローダミンBを含有す
る固体粒子を混入することによって、反応容器11内に
おける反応ガスの流れの観察が可能になる。この様な観
察結果に基づいて、反応容器11の形状、反応ガスの流
量などを最適化することができる。
(Example 2) FIG. 2 shows another example of the embodiment of the present invention. This example is for observing the flow of a reaction gas or the like inside a vapor phase growth apparatus for manufacturing a semiconductor. A susceptor 1 driven in rotation is provided in a reaction vessel 11.
2 are arranged, and the semiconductor wafer 13 is placed on the susceptor 12.
Is set. The reaction gas is supplied from a supply pipe 18 provided at the center of the ceiling of the reaction vessel 11, flows along the surface of the semiconductor wafer 13, and flows from a discharge pipe 19 provided at the bottom of the reaction vessel 11 to the reaction vessel 11. It is discharged outside. While irradiating the sheet-shaped laser beam 3 from the side of the reaction vessel 11 on a plane including the central axis of the reaction vessel 11,
By mixing solid particles containing rhodamine B as a tracer into the reaction gas, the flow of the reaction gas in the reaction vessel 11 can be observed. Based on such observation results, the shape of the reaction vessel 11, the flow rate of the reaction gas, and the like can be optimized.

【0012】[0012]

【発明の効果】本発明に基づく流れの可視化方法によれ
ば、不可視光である紫外線を光源として使用するととも
に、トレーサとして紫外線により励起され可視光を発生
する物質を使用した結果、容器の壁面からの反射光は肉
眼では見えないので観察の際の障害にはならず、トレー
サからの散乱光のみを肉眼で観察することができる。
According to the flow visualization method according to the present invention, invisible ultraviolet light is used as a light source, and a substance that generates visible light when excited by ultraviolet light is used as a tracer. Since the reflected light is not visible to the naked eye, it does not hinder observation, and only the scattered light from the tracer can be observed with the naked eye.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に基づく流れの可視化方法の実施の形態
の一例を示す図。
FIG. 1 is a diagram showing an example of an embodiment of a flow visualization method according to the present invention.

【図2】本発明に基づく流れの可視化方法の実施の形態
の他の例を示す図。
FIG. 2 is a diagram showing another example of the embodiment of the flow visualization method according to the present invention.

【図3】従来の流れの可視化方法の一例を示す図。FIG. 3 is a diagram showing an example of a conventional flow visualization method.

【符号の説明】[Explanation of symbols]

1・・・紫外線レーザー光源、2・・・シリンドリカル
レンズ、3・・・シート状の光、4・・・透明な円筒状
容器、5・・・トレーサ、11・・・反応容器、12・
・・サセプタ、13・・・半導体ウェーハ、18・・・
供給管、19・・・排出管、31・・・レーザー光源、
32・・・コンデンサレンズ、33、34・・・シリン
ドリカルレンズ、35・・・偏光板、36・・・シート
状の平行光、38・・・コリメータレンズ、39・・・
カメラ。
DESCRIPTION OF SYMBOLS 1 ... Ultraviolet laser light source, 2 ... Cylindrical lens, 3 ... Sheet light, 4 ... Transparent cylindrical container, 5 ... Tracer, 11 ... Reaction container, 12
..Susceptors, 13 ... Semiconductor wafers, 18 ...
Supply pipe, 19 ... discharge pipe, 31 ... laser light source,
32: condenser lens, 33, 34: cylindrical lens, 35: polarizing plate, 36: sheet-like parallel light, 38: collimator lens, 39 ...
camera.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 紫外線で励起されて可視光を発生するト
レーサを観測対象流体の流れに混入し、この流れにシー
ト状に加工された紫外線を照射することによって、紫外
線が横切る面内での前記観測対象流体の流れを可視化す
ることを特徴とする流れの可視化方法。
1. A method according to claim 1, wherein a tracer which is excited by ultraviolet rays and generates visible light is mixed into the flow of the fluid to be observed, and the stream is irradiated with ultraviolet rays processed into a sheet, so that the ultraviolet rays cross the plane in which the ultraviolet rays cross. A flow visualization method characterized by visualizing a flow of a fluid to be observed.
【請求項2】 内側に観測対象流体が流れる透明な容器
と、 紫外線を発射する光源と、 発射された紫外線をシート状の光に変えて前記透明な容
器に向けて照射する光学系とを備え、 紫外線で励起され可視光を発生するトレーサを前記観測
対象流体に混入して、前記シート状の光が横切る面内で
の前記観測対象流体の流れを可視化することを特徴とす
る流れの可視化装置。
2. A transparent container in which a fluid to be observed flows inside, a light source that emits ultraviolet light, and an optical system that converts the emitted ultraviolet light into sheet-like light and irradiates the transparent container with the light. A flow visualization apparatus, wherein a tracer excited by ultraviolet rays and generating visible light is mixed into the fluid to be observed, and the flow of the fluid to be observed in a plane crossed by the sheet-like light is visualized. .
JP7544097A 1997-03-27 1997-03-27 Flow visualizing method and device Pending JPH10267785A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7544097A JPH10267785A (en) 1997-03-27 1997-03-27 Flow visualizing method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7544097A JPH10267785A (en) 1997-03-27 1997-03-27 Flow visualizing method and device

Publications (1)

Publication Number Publication Date
JPH10267785A true JPH10267785A (en) 1998-10-09

Family

ID=13576309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7544097A Pending JPH10267785A (en) 1997-03-27 1997-03-27 Flow visualizing method and device

Country Status (1)

Country Link
JP (1) JPH10267785A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011122992A (en) * 2009-12-14 2011-06-23 Ikutoku Gakuen Vertical wind tunnel device
CN109870288A (en) * 2019-01-25 2019-06-11 西北工业大学 A kind of air Method of flow visualization based on laser induced particle technique
CN112254925A (en) * 2020-10-16 2021-01-22 中国科学院力学研究所 Flow field display method based on melt flow tracing

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011122992A (en) * 2009-12-14 2011-06-23 Ikutoku Gakuen Vertical wind tunnel device
CN109870288A (en) * 2019-01-25 2019-06-11 西北工业大学 A kind of air Method of flow visualization based on laser induced particle technique
CN112254925A (en) * 2020-10-16 2021-01-22 中国科学院力学研究所 Flow field display method based on melt flow tracing

Similar Documents

Publication Publication Date Title
US6594009B2 (en) Flow cytometer and ultraviolet light disinfecting systems
JP4199700B2 (en) Lithographic apparatus and device manufacturing method
JP5787390B2 (en) Microorganism detection apparatus and method
US9557259B2 (en) Optical particle detector and detection method
US20120182548A1 (en) Nanofluidic cell
WO2015182334A1 (en) Measurement device and measurement method
CN105814662B (en) Radiation source, measurement equipment, lithography system and device making method
US20130015362A1 (en) Fluid purification and sensor system
US20190302025A1 (en) Defect investigation device simultaneously detecting photoluminescence and scattered light
EP1063512A3 (en) Method and apparatus for particle assessment using multiple scanning beam reflectance
JP6713598B1 (en) Fluorescent particles, inspection device for visualizing and inspecting fluid movement/movement in the presence of fluid using fluorescent particles, and visualization of fluid movement/movement in the presence of fluid using fluorescent particles Inspection method
JPH10267785A (en) Flow visualizing method and device
JP2022188187A (en) Fine bubble feeding device and fine bubble analysis system
JPWO2018100780A1 (en) Target substance detection apparatus and target substance detection method
JP2007059373A (en) Method and apparatus for supplying liquid drop
WO2018100779A1 (en) Target substance detection device and target substance detection method
WO2004031742A1 (en) Particle imaging system
WO2018110265A1 (en) Radiation detection device
JP5673211B2 (en) Optical specimen detector
NL2023657A (en) Lithographic system and method
CN106062920B (en) Calcirm-fluoride optical component, its manufacturing method, gas holding container and light supply apparatus
JPH02259515A (en) Measuring instrument for fluorescent x-rays film thickness
JPH08240529A (en) Apparatus and method for detecting minute foreign article in container containing liquid
JP2008032634A (en) Apparatus for measuring particulates
JP6996857B2 (en) Measurement method for semiconductor processing equipment and semiconductor processing fluids