JP2011122176A - Method for separating palladium from chloride solution containing arsenic - Google Patents

Method for separating palladium from chloride solution containing arsenic Download PDF

Info

Publication number
JP2011122176A
JP2011122176A JP2009278205A JP2009278205A JP2011122176A JP 2011122176 A JP2011122176 A JP 2011122176A JP 2009278205 A JP2009278205 A JP 2009278205A JP 2009278205 A JP2009278205 A JP 2009278205A JP 2011122176 A JP2011122176 A JP 2011122176A
Authority
JP
Japan
Prior art keywords
palladium
adsorbent
primary
arsenic
exchange resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009278205A
Other languages
Japanese (ja)
Other versions
JP5440137B2 (en
Inventor
Satoshi Asano
聡 浅野
Yasushi Isshiki
靖志 一色
Hideaki Sato
英明 佐藤
Hidemasa Nagai
秀昌 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2009278205A priority Critical patent/JP5440137B2/en
Publication of JP2011122176A publication Critical patent/JP2011122176A/en
Application granted granted Critical
Publication of JP5440137B2 publication Critical patent/JP5440137B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method in which palladium can selectively be separated from chloride solution containing arsenic and the palladium at a low cost, and even in the case that the arsenic concentration varies, the palladium can stably and efficiently be separated. <P>SOLUTION: After adsorbing the palladium while a primary adsorbent composed of an anion exchange resin having amine or polyamine as a functional group, is brought into contact with the chloride solution containing the palladium and the arsenic, at least one secondary adsorbent selected from an active carbon, quaternary ammonium salt type anion exchange resin, pyridine type anion exchange resin and dithiocarbamic acid-based chelate resin, is brought into contact with liquid after primary adsorption containing the remained palladium which is not adsorbed with the primary adsorbent, to adsorb the palladium in the liquid after the primary adsorption. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、ヒ素を不純物として含む塩化物溶液から貴金属のパラジウムを分離する方法、例えば銅製錬工程で生成するヒ素とパラジウムを含有する塩化物溶液から、イオン交換法によりパラジウムを高効率で分離する方法に関する。   The present invention is a method for separating palladium as a noble metal from a chloride solution containing arsenic as an impurity, for example, from a chloride solution containing arsenic and palladium produced in a copper smelting process, and separating palladium with high efficiency by an ion exchange method. Regarding the method.

銅製錬工程の原料である銅精鉱や廃触媒などの各種のリサイクル原料等には、金、銀、パラジウムなどの貴金属が含有される場合がある。これらの銅精鉱やリサイクル原料等に含有される貴金属は、銅精鉱の場合は銅製錬工程と銅電解精製工程での処理により、また、リサイクル原料の場合には金属回収工程での処理により分離回収され、更に貴金属製錬工程において精製され資源化されてきた。   Various recycle raw materials such as copper concentrate and waste catalyst which are raw materials for the copper smelting process may contain precious metals such as gold, silver and palladium. In the case of copper concentrate, the precious metals contained in these copper concentrates and recycled raw materials are treated by the copper smelting process and the copper electrolytic refining process. In the case of recycled raw materials, the precious metals are treated by the metal recovery process. It has been separated and recovered, and further refined and recycled as a precious metal smelting process.

上記貴金属の精製工程では湿式処理が一般的であり、貴金属を分離・回収する様々なプロセスが知られている。例えば、銅電解精製工程で発生する銅電解スライムなどの原料を塩酸などの塩化物イオンを含有する水溶液と混合し、塩素ガスなどの酸化剤の存在下で銅や貴金属を塩化物水溶液中に浸出した後、得られた浸出液をイオン交換樹脂で処理する湿式プロセスが多く用いられている。   In the precious metal refining step, wet processing is generally used, and various processes for separating and recovering precious metals are known. For example, raw materials such as copper electrolytic slime generated in the copper electrolytic purification process are mixed with an aqueous solution containing chloride ions such as hydrochloric acid, and copper and noble metals are leached into the aqueous chloride solution in the presence of an oxidizing agent such as chlorine gas. After that, a wet process is often used in which the obtained leachate is treated with an ion exchange resin.

例えば、特許文献1には、白金族元素を含む塩化物水溶液とポリアミン型イオン交換樹脂からなる吸着剤とを、銀塩化銀電極を参照電極として測定した酸化還元電位が700〜1100mVの条件下で接触させることにより白金族元素を樹脂に吸着し、吸着後の樹脂を塩酸溶液や水で洗浄した後、液温60〜90℃のチオ尿素を含有する水溶液を洗浄後の樹脂に接触させて白金族元素を溶離する方法が記載されている。   For example, in Patent Document 1, an aqueous solution of chloride containing a platinum group element and an adsorbent composed of a polyamine type ion exchange resin are measured under a condition where the oxidation-reduction potential measured with a silver-silver chloride electrode as a reference electrode is 700 to 1100 mV. The platinum group element is adsorbed on the resin by contacting it, and the adsorbed resin is washed with hydrochloric acid solution or water, and then an aqueous solution containing thiourea at a liquid temperature of 60 to 90 ° C. is brought into contact with the washed resin to form platinum. A method for eluting group elements is described.

上記特許文献1の方法によれば、塩化物水溶液に含有される白金族元素、例えばパラジウムの99%以上を吸着剤に吸着し、吸着されたパラジウムの99.7%をチオ尿素含有水溶液中に溶離することが可能とされている。尚、パラジウムは高価であるため、例えば含有する溶液から10mg/l未満となるような低濃度まで回収することが好ましいと考えられ、採算的には少なくとも95%以上の回収率が求められてきた。   According to the method of Patent Document 1, 99% or more of a platinum group element contained in an aqueous chloride solution, for example, 99% of palladium is adsorbed on the adsorbent, and 99.7% of the adsorbed palladium is adsorbed in the thiourea-containing aqueous solution. It is possible to elute. In addition, since palladium is expensive, for example, it is considered preferable to recover from a contained solution to a low concentration such that it is less than 10 mg / l. For profitability, a recovery rate of at least 95% has been required. .

しかしながら、特許文献1に記載の方法は、銅製錬工程で生じた銅電解スライムなどのように不純物としてヒ素を含む原料に適用した場合、共存するヒ酸イオン濃度が上昇するとイオン交換樹脂へのパラジウムの吸着率が低下してしまう。このため、カラムにイオン交換樹脂を充填して使用する工業的な操業では、早期に破過が始まり、イオン交換樹脂からの溶離作業の頻度が増加したり、イオン交換樹脂を早期に取り替えることを余儀なくされるという問題があった。   However, when the method described in Patent Document 1 is applied to a raw material containing arsenic as an impurity, such as a copper electrolytic slime produced in a copper smelting process, when the concentration of coexisting arsenate ions increases, palladium on an ion exchange resin The adsorption rate of will decrease. For this reason, in industrial operations where the column is packed with ion exchange resin, breakthrough begins early, the frequency of elution from the ion exchange resin increases, and ion exchange resin must be replaced early. There was a problem of being forced.

しかも、近年では銅製錬原料として良質の鉱石を入手することが困難になりつつあり、特に不純物として含まれるヒ素の品位が上昇している。このような鉱石を選鉱してもヒ素を有効に分離することは難しいため、銅精鉱中のヒ素品位は上昇傾向にある。また、銅精鉱中に含有されるヒ素は多くが貴金属と同じ分配をするので、貴金属精製工程ではパラジウムなどの貴金属と共に不純物のヒ素を含んだ溶液を処理することが必要となる。このため、上記特許文献1の方法では、パラジウムの吸着率の低下がますます大きな問題となりつつあった。   Moreover, in recent years, it has become difficult to obtain high-quality ore as a copper smelting raw material, and in particular, the quality of arsenic contained as an impurity has increased. Since it is difficult to effectively separate arsenic even if such ore is selected, the arsenic quality in the copper concentrate is on the rise. In addition, since most of the arsenic contained in the copper concentrate is distributed in the same manner as the noble metal, it is necessary to treat a solution containing arsenic as an impurity together with a noble metal such as palladium in the noble metal purification step. For this reason, in the method of Patent Document 1 described above, a decrease in the adsorption rate of palladium has become an increasingly serious problem.

上記以外のパラジウムを含有する水溶液からパラジウムを分離回収する方法としては、例えば特許文献2には、パラジウムを含む温泉水を、アミドキシム基、リン酸基、アミン基、イミノジ酢酸基、リン酸にジルコニウム又は鉄を担持したキレート形成基を有する吸着剤と接触させ、パラジウムを吸着する方法が記載されている。しかし、この方法では液中に共存する金属イオンの大部分を吸着してしまうため、パラジウムと共にヒ素なども同時に吸着され、選択的にパラジウムだけを濃縮して分離することはできない。   As a method for separating and recovering palladium from an aqueous solution containing palladium other than the above, for example, Patent Document 2 discloses hot spring water containing palladium, amidoxime group, phosphate group, amine group, iminodiacetic acid group, phosphoric acid with zirconium. Alternatively, a method of adsorbing palladium by contacting with an adsorbent having a chelate-forming group carrying iron is described. However, since most of the metal ions coexisting in the liquid are adsorbed by this method, arsenic and the like are adsorbed together with palladium, and it is not possible to selectively concentrate and separate only palladium.

また、特許文献3には、無電解めっき廃液から回収したパラジウムスラッジを酸化状態の下で鉱酸に溶解し、この溶解液をハイドロキノン誘導体などの還元剤を担持させた活性炭と接触させることにより、パラジウムを吸着する方法が開示されている。この方法によれば、活性炭と還元剤の相乗作用を利用することによって、パラジウムを高効率で吸着できるという特徴がある。   Patent Document 3 discloses that palladium sludge recovered from electroless plating waste solution is dissolved in mineral acid under an oxidized state, and this solution is brought into contact with activated carbon supporting a reducing agent such as a hydroquinone derivative. A method for adsorbing palladium is disclosed. This method is characterized in that palladium can be adsorbed with high efficiency by utilizing the synergistic action of the activated carbon and the reducing agent.

しかしながら、パラジウムと活性炭との結合力が強すぎるため、活性炭に吸着したパラジウムを効率よく溶離することは難しかった。溶離できずに残ったパラジウムは焙焼などの手段で活性炭を分解して回収する必要があるため、パラジウムが高濃度且つ多量に含まれる溶液を処理する場合には、分解する活性炭の量も増大してしまい、コスト的に著しく不利であるという欠点があった。   However, since the binding force between palladium and activated carbon is too strong, it was difficult to efficiently elute palladium adsorbed on the activated carbon. Palladium remaining without being eluted needs to be recovered by decomposing activated carbon by means of roasting or the like, so when processing a solution containing a high concentration and a large amount of palladium, the amount of activated carbon that decomposes also increases. Therefore, there is a disadvantage that it is extremely disadvantageous in terms of cost.

更に、上述したように銅製錬の原料事情の変化等に起因して、実操業において処理すべきパラジウム含有溶液中のヒ素濃度が変動することは容易に想定される。しかし、上記した各方法の実操業においては、一般的に装置や操業条件を頻繁且つ臨機応変に変更するのは容易ではない。そのため、処理すべきパラジウム含有溶液中のヒ素濃度が変動した場合でも、常に一定の吸着率が安定して得られる方法の要望がますます高まっている。   Furthermore, as described above, it is easily assumed that the concentration of arsenic in the palladium-containing solution to be treated in actual operation varies due to changes in the raw material situation of copper smelting. However, in actual operation of each method described above, it is generally not easy to change the apparatus and operating conditions frequently and flexibly. For this reason, even when the arsenic concentration in the palladium-containing solution to be treated fluctuates, there is an increasing demand for a method that can always obtain a constant adsorption rate stably.

特開2004−131745号公報JP 2004-131745 A 特開2006−026588号公報Japanese Patent Laid-Open No. 2006-026588 特開2001−303148号公報JP 2001-303148 A

本発明は、上記した従来の問題点に鑑み、ヒ素とパラジウムを含有する塩化物溶液からパラジウムを選択的に且つ低コストで分離することができ、ヒ素濃度が変動した場合でも安定して効率よくパラジウムを分離することが可能な方法を提供することを目的とする。   In view of the conventional problems described above, the present invention can selectively separate palladium from a chloride solution containing arsenic and palladium at a low cost, and is stable and efficient even when the arsenic concentration fluctuates. An object is to provide a method capable of separating palladium.

上記目的を達成するため、本発明者らは、塩化物溶液中におけるパラジウムあるいはヒ素の形態について検討した。まず、塩化物溶液中のパラジウムは、主に塩素イオンと錯体を形成し、例えば[PdCl2−で示されるクロロ錯体の形態で存在しているものと考えられている。また、塩化物溶液中のヒ素は、後述するパラジウムとの錯体としての形態のほか、主としてヒ酸イオンとして存在しているものと考えられている。 In order to achieve the above object, the present inventors examined the form of palladium or arsenic in a chloride solution. First, it is considered that palladium in a chloride solution mainly forms a complex with a chloride ion and exists in the form of a chloro complex represented by, for example, [PdCl 6 ] 2− . Further, arsenic in the chloride solution is considered to exist mainly as arsenate ions in addition to the form of complex with palladium described later.

一方、塩化物溶液中においてパラジウムとヒ酸とが共存する場合、両者によって形成される錯体の形態はよく判っていない。しかし、ヒ酸イオンと化学的性質が酷似している燐酸イオンは、パラジウムイオンとの錯体として、例えば[Pd(PO3−あるいは[Pd(PO(HPO)]2−などの強固な錯体を形成することが知られている。このため、ヒ酸の場合も同様に、例えば[Pd(AsO3−あるいは[Pd(ASO(HAsO)]2−のような形態の強固な錯体が形成されるものと考えられる。 On the other hand, when palladium and arsenic acid coexist in a chloride solution, the form of the complex formed by both is not well understood. However, a phosphate ion having a chemical property very similar to that of an arsenate ion is, for example, [Pd 6 (PO 4 ) 5 ] 3− or [Pd 6 (PO 4 ) 4 (HPO 4 ) as a complex with a palladium ion. It is known to form strong complexes such as 2- . Therefore, in the case of arsenic acid as well, a strong complex of a form such as [Pd 6 (AsO 4 ) 5 ] 3− or [Pd 6 (ASO 4 ) 4 (HAsO 4 )] 2− is formed. It is thought that.

上記した形態のパラジウムとヒ酸の錯体は、上述のクロロ錯体よりも優先して形成され、その結果、塩化物溶液中にクロロ錯体として存在するパラジウムの比率は減少するものと考えられる。また、パラジウムとヒ酸の錯体は、上述の燐酸イオンとヒ素の錯体と同様にクロロ錯体とは錯形成力などの化学的性質が著しく異なり、ポリアミン型などの弱塩基性イオン交換樹脂に容易に吸着しないことから、上記特許文献1のごとくポリアミン型イオン交換樹脂単独により分離・回収する方法の適用は難いと考えた。   The above-mentioned complex of palladium and arsenic acid is formed in preference to the above-mentioned chloro complex, and as a result, the ratio of palladium existing as a chloro complex in the chloride solution is considered to decrease. In addition, the complex of palladium and arsenic acid differs from the chloro complex in the same manner as the phosphate ion and arsenic complex described above in terms of chemical properties such as complexing ability, and can easily be used as a weakly basic ion exchange resin such as a polyamine type. Since it is not adsorbed, it was considered difficult to apply a method of separating and recovering with a polyamine type ion exchange resin alone as in Patent Document 1.

そこで、本発明者らは更に実験と検討を重ねた結果、最初に、吸着されやすいクロロ錯体の形態で存在するパラジウムを、吸着力は比較的弱いが溶離が容易な吸着剤を用いて吸着し、その後、ヒ酸と強固な錯体を形成して溶液中に残存するパラジウムを、吸着力は強いが溶離が困難な吸着剤を用いて回収する2段階の吸着方法を用いることによって、ヒ素を含有する塩化物溶液中のパラジウムを経済的且つ効率的に分離できることを見出した。   Therefore, as a result of repeated experiments and examinations, the present inventors first adsorbed palladium existing in the form of a chloro complex that is easily adsorbed using an adsorbent that has a relatively weak adsorption force but is easy to elute. Then, arsenic is contained by using a two-stage adsorption method that forms a strong complex with arsenic acid and recovers palladium remaining in the solution using an adsorbent that has a strong adsorption force but is difficult to elute. It has been found that palladium in chloride solution can be separated economically and efficiently.

即ち、本発明が提供するパラジウムとヒ素を含有する塩化物溶液からのパラジウムの分離方法は、該塩化物溶液に、官能基としてアミン又はポリアミンを有する陰イオン交換樹脂からなる1次吸着剤を接触させて、パラジウムを1次吸着剤に吸着させた後、1次吸着剤に吸着されずに残ったパラジウムを含む1次吸着後液に、活性炭、第四アンモニウム塩型陰イオン交換樹脂、ピリジン型陰イオン交換樹脂、ジチオカルバミン酸系キレート樹脂から選ばれた少なくとも1種の2次吸着剤を接触させて、1次吸着後液中のパラジウムを2次吸着剤に吸着させることを特徴とする。   That is, in the method for separating palladium from a chloride solution containing palladium and arsenic provided by the present invention, a primary adsorbent comprising an anion exchange resin having amine or polyamine as a functional group is contacted with the chloride solution. Then, after adsorbing palladium on the primary adsorbent, activated carbon, quaternary ammonium salt type anion exchange resin, pyridine type are added to the post-primary adsorbed solution containing palladium remaining without being adsorbed on the primary adsorbent. It is characterized in that at least one secondary adsorbent selected from an anion exchange resin and a dithiocarbamic acid chelate resin is brought into contact to adsorb palladium in the liquid after the primary adsorption to the secondary adsorbent.

本発明によれば、ヒ素を含有する塩化物溶液からパラジウムを選択的に分離することができ、ヒ素濃度が変動した場合でも安定して高効率で分離を続けることができる。また、1次吸着剤のイオン交換樹脂は再利用することができ、2次吸着剤は溶離困難のため最終的に分解する場合でも使用量が少なくて済み、全体としてコストを抑制した操業が可能である。しかも、特別な試薬や特別な吸着剤等を使用する必要がないので、排水処理など環境への負荷を最小限に抑えることができる。   According to the present invention, palladium can be selectively separated from a chloride solution containing arsenic, and the separation can be continued stably and highly efficiently even when the arsenic concentration varies. In addition, the ion exchange resin of the primary adsorbent can be reused, and the secondary adsorbent is difficult to elute, so even when it is finally decomposed, the amount used can be reduced, and the operation can be performed with reduced costs as a whole. It is. In addition, since it is not necessary to use a special reagent or a special adsorbent, it is possible to minimize the environmental load such as waste water treatment.

本発明によるパラジウムの分離方法は、パラジウムとヒ素を含有する塩化物溶液からパラジウムを吸着剤で吸着して分離する際に、官能基としてアミン又はポリアミンを有する陰イオン交換樹脂からなる1次吸着剤を用いる1次吸着工程と、活性炭、第四アンモニウム塩型陰イオン交換樹脂、ピリジン型陰イオン交換樹脂、ジチオカルバミン酸系キレート樹脂から選ばれた少なくとも1種の2次吸着剤を用いる2次吸着工程とを備えている。   The method for separating palladium according to the present invention is a primary adsorbent comprising an anion exchange resin having an amine or polyamine as a functional group when adsorbing and separating palladium from a chloride solution containing palladium and arsenic with an adsorbent. And a secondary adsorption process using at least one secondary adsorbent selected from activated carbon, a quaternary ammonium salt type anion exchange resin, a pyridine type anion exchange resin, and a dithiocarbamic acid chelate resin. And.

上記1次吸着工程では、塩化物溶液中に上述した複数の形態で存在するパラジウムのうち、その大部分であるクロロ錯体として存在するパラジウムを1次吸着剤で吸着する。この1次吸着工程で用いる1次吸着剤は、吸着力は比較的弱く且つ溶離が容易であり、パラジウムとのキレート結合力が弱い吸着剤であればよく、具体的には官能基としてアミン又はポリアミンを有する陰イオン交換樹脂が好適である。   In the primary adsorption step, palladium present as a chloro complex, which is the majority of palladium present in a plurality of forms described above in the chloride solution, is adsorbed by the primary adsorbent. The primary adsorbent used in the primary adsorption step may be any adsorbent that has a relatively weak adsorptive power and is easy to elute and has a weak chelate binding force with palladium. An anion exchange resin having a polyamine is preferred.

1次吸着剤である陰イオン交換樹脂としては、例えば、官能基として一級、二級、または三級のアミンを有するアミン型か、もしくはポリアミンを有するポリアミン型の陰イオン交換樹脂が適しており、特に工業的に入手が容易なポリアミン型陰イオン交換樹脂が最も適している。この1次吸着剤である陰イオン交換樹脂に吸着されたパラジウムは、例えばチオ尿素又は塩酸の水溶液などの溶離液と接触させることによって容易に溶離され、回収することができる。   As the anion exchange resin as the primary adsorbent, for example, an amine type having a primary, secondary, or tertiary amine as a functional group, or a polyamine type anion exchange resin having a polyamine is suitable. In particular, polyamine type anion exchange resins which are easily available industrially are most suitable. Palladium adsorbed on the anion exchange resin as the primary adsorbent can be easily eluted and recovered by contacting with an eluent such as an aqueous solution of thiourea or hydrochloric acid.

上記1次吸着工程での通液条件は、塩化物溶液の濃度や組成などによって異なるが、一般的な陰イオン交換樹脂をカラムに充填して連続で通液する操業の場合、例えば1時間に樹脂量の2.5倍の体積となる流速(SV2.5)で通液する場合、樹脂量の15倍程度の体積(BV15)を通液することができる。通液する塩化物溶液の温度は40℃程度が好ましい。尚、樹脂交換の目安としては概ね90%以上の吸着率が得られた時点、具体的には1次吸着後液中のパラジウム濃度が約0.02g/l以上に上昇した時点とすればよい。   The liquid passing conditions in the primary adsorption step vary depending on the concentration and composition of the chloride solution, but in the case of an operation in which a general anion exchange resin is packed in a column and continuously passed, for example, in one hour. When passing at a flow rate (SV2.5) that is 2.5 times the volume of the resin, a volume (BV15) that is about 15 times the amount of the resin can be passed. The temperature of the chloride solution to be passed is preferably about 40 ° C. In addition, as a guideline for resin exchange, it may be a time when an adsorption rate of 90% or more is obtained, specifically, a time when the palladium concentration in the liquid after the primary adsorption is increased to about 0.02 g / l or more. .

上記した陰イオン交換樹脂を用いる1次吸着工程では、ヒ素を含有する塩化物溶液中のパラジウムを全て吸着分離することはできない。即ち、例えば[Pd(AsO3−あるいは[Pd(ASO(HAsO)]2−のような形態でヒ素と錯体を形成しているパラジウムは、1次吸着剤の陰イオン交換樹脂には吸着されず、1次吸着後液中に残っている。 In the primary adsorption step using the above-described anion exchange resin, it is not possible to adsorb and separate all palladium in a chloride solution containing arsenic. That is, for example, palladium that forms a complex with arsenic in a form such as [Pd 6 (AsO 4 ) 5 ] 3− or [Pd 6 (ASO 4 ) 4 (HAsO 4 )] 2− is a primary adsorbent. The anion exchange resin is not adsorbed and remains in the liquid after the primary adsorption.

そこで、本発明では、次の2次吸着工程において、上記形態を有するヒ素との錯体として1次吸着工程で得た1次吸着後液中に残っているパラジウムを、2次吸着剤を用いて吸着することにより分離する。   Therefore, in the present invention, in the next secondary adsorption step, palladium remaining in the post-primary adsorption solution obtained in the primary adsorption step as a complex with arsenic having the above form is used using the secondary adsorbent. Separation by adsorption.

2次吸着剤としては、吸着力が強く且つ溶離が困難な吸着剤が必要であり、活性炭、第四アンモニウム塩型陰イオン交換樹脂、ピリジン型陰イオン交換樹脂、ジチオカルバミン酸系キレート樹脂から選ばれた少なくとも1種を好適に使用することができる。尚、上記活性炭とは、上記特許文献3に記載のハイドロキノン誘導体などの有機キレート形成剤を含む活性炭を用いる必要はなく、一般的な活性炭を意味する。   As the secondary adsorbent, an adsorbent that has a strong adsorbing power and is difficult to elute is required, and is selected from activated carbon, quaternary ammonium salt type anion exchange resin, pyridine type anion exchange resin, and dithiocarbamic acid chelate resin. At least one of these can be used preferably. In addition, the said activated carbon does not need to use the activated carbon containing organic chelate formation agents, such as the hydroquinone derivative of the said patent document 3, and means general activated carbon.

上記2次吸着工程においては、1次吸着剤として用いたアミン型やポリアミン型の陰イオン交換樹脂には吸着され難いヒ素とパラジウムの錯体を吸着するため、吸着力の強い2次吸着剤を使用している。そのため、2次吸着剤に吸着されたパラジウムは強力に吸着され、2次吸着剤を再利用できる形でパラジウムを溶離することは難しい。そのため、最終的には2次吸着剤を焙焼などの手段で分解して、パラジウムを回収する必要がある。   In the secondary adsorption process, a secondary adsorbent with strong adsorptive power is used to adsorb the complex of arsenic and palladium that is difficult to be adsorbed on the amine-type or polyamine-type anion exchange resin used as the primary adsorbent. is doing. Therefore, the palladium adsorbed on the secondary adsorbent is strongly adsorbed, and it is difficult to elute palladium in a form that can reuse the secondary adsorbent. Therefore, finally, it is necessary to decompose the secondary adsorbent by means such as roasting and recover palladium.

しかしながら、本発明では塩化物溶液中の大部分のパラジウムが既に上記1次吸着工程で分離されているため、使用する2次吸着剤の量は、同じ吸着剤を用いて塩化物溶液中の全てのパラジウムを単一の吸着工程で分離する場合に比べて遥かに少なくなる。しかも、2次吸着剤は1次吸着剤よりも構造が単純で且つ安価であるため、焙焼などによる分解を行ってもコストの増加を最小限に抑えることができるなど、経済的な操業を行うことが可能である。   However, in the present invention, since most of the palladium in the chloride solution has already been separated in the primary adsorption step, the amount of secondary adsorbent used is the same as that in the chloride solution using the same adsorbent. The amount of palladium is much less than when separated in a single adsorption step. In addition, since the secondary adsorbent has a simpler structure and is cheaper than the primary adsorbent, it is possible to minimize the increase in cost even if it is decomposed by roasting or the like. Is possible.

[実施例1]
銅精鉱を銅製錬工程で製錬し、電解精製で電気銅を分離した後、電解槽の槽底に沈殿した銅電解スライムを回収した。この銅電解スライムを水で洗浄して脱水し、次いで濃度1モル/lの塩酸溶液中に混合してスラリーとし、塩素ガスを用いて浸出した。得られた浸出液から銅を分離し、塩酸濃度を調整して、パラジウム濃度0.14g/l、ヒ素濃度6.6g/l、遊離塩酸濃度1モル/lの組成からなる塩化物溶液を得た。
[Example 1]
After copper concentrate was smelted in a copper smelting process and electrolytic copper was separated by electrolytic purification, copper electrolytic slime precipitated at the bottom of the electrolytic cell was recovered. This copper electrolytic slime was washed with water and dehydrated, then mixed in a hydrochloric acid solution having a concentration of 1 mol / l to form a slurry, and leached using chlorine gas. Copper was separated from the obtained leachate, and the hydrochloric acid concentration was adjusted to obtain a chloride solution having a composition of palladium concentration of 0.14 g / l, arsenic concentration of 6.6 g / l, and free hydrochloric acid concentration of 1 mol / l. .

上記塩化物溶液を原液とし、この原液1000mlに、1次吸着剤として住友化学(株)製のポリアミン型陰イオン交換樹脂(商品名:Purolite A−830)100mlを加え、25℃に維持した。次に、NaClOの25%水溶液を添加しながら、銀−塩化銀電極を参照電極とする酸化還元電位(ORP)を900〜1100mVの範囲に維持した。電位調整後、スターラーで30分間撹拌混合した(1次吸着工程)。 The above chloride solution was used as a stock solution, and 100 ml of a polyamine type anion exchange resin (trade name: Purolite A-830) manufactured by Sumitomo Chemical Co., Ltd. was added as a primary adsorbent to 1000 ml of this stock solution and maintained at 25 ° C. Then, while adding a 25% aqueous solution of NaClO 2, silver - maintaining the redox potential to a silver chloride electrode reference electrode (ORP) in the range of 900~1100MV. After potential adjustment, the mixture was stirred and mixed with a stirrer for 30 minutes (primary adsorption step).

撹拌終了後、濾紙とヌッチェと濾瓶を用い濾過して固液分離した。濾液(1次吸着後液)をICPで分析した結果、パラジウム濃度は0.010g/l、ヒ素濃度は6.0g/lであり、原液に含有されたパラジウムの93%、ヒ素の9%がイオン交換樹脂に吸着されたたことが分った。しかし、上記1次吸着後液のパラジウム濃度からみて、充分にパラジウムが回収されたとは言い難い。   After the stirring, the mixture was filtered using a filter paper, Nutsche and a filter bottle to separate into solid and liquid. As a result of analyzing the filtrate (liquid after primary adsorption) by ICP, the palladium concentration was 0.010 g / l, the arsenic concentration was 6.0 g / l, and 93% of the palladium contained in the stock solution and 9% of the arsenic were It was found that it was adsorbed on the ion exchange resin. However, it is difficult to say that the palladium has been sufficiently recovered in view of the palladium concentration in the post-primary adsorption solution.

そこで、上記1次吸着工程で得た1次吸着後液を100mlづつ分取して、それぞれに下記2次吸着剤を1.0g混合し、25℃にてスターラーで30分間撹拌した(2次吸着工程)。その後、上記と同様に濾過して固液分離し、得られた濾液(2次吸着後液)をICPで分析し、パラジウムとヒ素の濃度を測定した。   Therefore, 100 ml each of the post-primary adsorption solution obtained in the primary adsorption step was taken, and 1.0 g of the following secondary adsorbent was mixed with each, and stirred with a stirrer at 25 ° C. for 30 minutes (secondary Adsorption process). Thereafter, filtration and solid-liquid separation were performed in the same manner as described above, and the obtained filtrate (secondary adsorbed solution) was analyzed by ICP to measure the concentrations of palladium and arsenic.

上記2次吸着工程で使用した2次吸着剤は、試料1が(株)クラレ製の椰子殻活性炭(商品名:クラレコールGW)、試料2が住友化学(株)製のピリジン系陰イオン交換樹脂(商品名:スミキレートCR−2)、試料3が住友化学(株)製のジチオカルバミン酸系キレート樹脂(商品名:スミキレートQ−10)、試料4が住友化学(株)製の第四アンモニウムI型陰イオン交換樹脂(商品名:デュオライトA−113)である。   As for the secondary adsorbent used in the secondary adsorption step, sample 1 is coconut shell activated carbon (trade name: Kuraray Coal GW) manufactured by Kuraray Co., Ltd., and sample 2 is a pyridine-based anion exchange manufactured by Sumitomo Chemical Co., Ltd. Resin (trade name: Sumichel CR-2), sample 3 is a dithiocarbamic acid chelate resin (trade name: Sumichelate Q-10) manufactured by Sumitomo Chemical Co., Ltd., and sample 4 is quaternary ammonium I manufactured by Sumitomo Chemical Co., Ltd. It is a type anion exchange resin (trade name: Duolite A-113).

2次吸着剤の種類、2次吸着後液中のパラジウムとヒ素の濃度、及び原液からのパラジウムと砒素の吸着率を、下記表1に示す。比較例として、上記2次吸着工程を行わず、上記1次吸着工程のみで得られた1次吸着後液中のパラジウムとヒ素の濃度、及び原液からのパラジウムと砒素の吸着率についても、下記表1に併せて示した。   Table 1 below shows the types of secondary adsorbents, the concentrations of palladium and arsenic in the secondary adsorbed solution, and the adsorption rates of palladium and arsenic from the stock solution. As a comparative example, the concentration of palladium and arsenic in the post-primary adsorption solution obtained only by the primary adsorption step without performing the secondary adsorption step, and the adsorption rate of palladium and arsenic from the stock solution are as follows. The results are also shown in Table 1.

Figure 2011122176
Figure 2011122176

比較例となるポリアミン型陰イオン交換樹脂を用いた1次吸着工程のみでは、原液中のパラジウムの93%が分離されたに過ぎない。一方、同じ1次吸着工程に2次吸着工程を組み合わせた本発明の実施例では、2次吸着剤として活性炭を用いた試料1で96%、ピリジン系陰イオン交換樹脂を用いた試料2及びジチオカルバミン酸系キレート樹脂を用いた試料3で99%、第四アンモニウムI型陰イオン交換樹脂を用いた試料4で98%の吸着率であった。即ち、原液中に0.14g/l含まれていたパラジウムを、5mg/l以下となるまで分離することができた。   Only in the primary adsorption process using the polyamine type anion exchange resin as a comparative example, 93% of palladium in the stock solution was separated. On the other hand, in the Example of the present invention in which the same primary adsorption process is combined with the secondary adsorption process, 96% of sample 1 using activated carbon as the secondary adsorbent, sample 2 using pyridine anion exchange resin, and dithiocarbamine The adsorption rate was 99% in sample 3 using an acid-based chelate resin and 98% in sample 4 using a quaternary ammonium type I anion exchange resin. That is, palladium contained in 0.14 g / l in the stock solution could be separated until it became 5 mg / l or less.

[実施例2]
上記実施例1においてポリアミン型陰イオン交換樹脂(商品名:Purolite A−830)を用いた1次吸着工程により得られた1次吸着後液を100ml分取した。この1次吸着後液を、(株)クラレ製の椰子殻活性炭(商品名:クラレコールGW)を充填したカラム(活性炭部分5ml、内径12mm×高さ45mm)に通液した。
[Example 2]
100 ml of the primary post-adsorption liquid obtained by the primary adsorption step using a polyamine type anion exchange resin (trade name: Purolite A-830) in Example 1 was collected. This post-primary adsorption solution was passed through a column (activated carbon 5 ml, inner diameter 12 mm × height 45 mm) filled with Kuraray Co., Ltd. coconut shell activated carbon (trade name: Kuraray Coal GW).

その際、通液速度は毎時イオン交換樹脂容量の2倍となる流速(SV2)とした。カラム排出部分からの流出液量(BV)がイオン交換樹脂の4〜150倍の体積となった時点で、その前に採取した後に最初に排出された液を採取し、ICPを用いてパラジウムとヒ素の濃度を分析した。得られた結果を、原液の濃度と共に、流出液量(BV)のサンプリング範囲ごとに下記表2に示す。   At that time, the liquid flow rate was a flow rate (SV2) that is twice the ion exchange resin capacity per hour. When the amount of the effluent (BV) from the column discharge part becomes 4 to 150 times the volume of the ion exchange resin, the liquid discharged first after the previous collection is collected, and the ICP is used to collect palladium and The concentration of arsenic was analyzed. The obtained results are shown in Table 2 below for each sampling range of the effluent volume (BV) together with the concentration of the stock solution.

Figure 2011122176
Figure 2011122176

この結果から分るように、カラムを用いて通液することにより、パラジウムの吸着率は99%以上と上記実施例1よりも更に向上した。一方、砒素の吸着率も通液と共に徐々に減少し、選択性もより改善されることが確認された。   As can be seen from this result, the adsorption rate of palladium was 99% or more, which was further improved as compared with Example 1, by passing the liquid through a column. On the other hand, it was confirmed that the adsorption rate of arsenic gradually decreased with the passage of liquid and the selectivity was further improved.

Claims (1)

パラジウムとヒ素を含有する塩化物溶液からパラジウムを分離する方法において、該塩化物溶液に、官能基としてアミン又はポリアミンを有する陰イオン交換樹脂からなる1次吸着剤を接触させて、パラジウムを1次吸着剤に吸着させた後、1次吸着剤に吸着されずに残ったパラジウムを含む1次吸着後液に、活性炭、第四アンモニウム塩型陰イオン交換樹脂、ピリジン型陰イオン交換樹脂、ジチオカルバミン酸系キレート樹脂から選ばれた少なくとも1種の2次吸着剤を接触させて、1次吸着後液中のパラジウムを2次吸着剤に吸着させることを特徴とするパラジウムの分離方法。   In the method for separating palladium from a chloride solution containing palladium and arsenic, the primary adsorbent composed of an anion exchange resin having an amine or polyamine as a functional group is brought into contact with the chloride solution to obtain primary palladium. After adsorbing to the adsorbent, activated carbon, a quaternary ammonium salt type anion exchange resin, a pyridine type anion exchange resin, dithiocarbamic acid is added to the post-primary adsorption solution containing palladium remaining without being adsorbed by the primary adsorbent. A method for separating palladium, comprising bringing a secondary adsorbent to adsorb palladium in a solution after primary adsorption by contacting at least one secondary adsorbent selected from a system chelate resin.
JP2009278205A 2009-12-08 2009-12-08 Method for separating palladium from chloride solutions containing arsenic Active JP5440137B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009278205A JP5440137B2 (en) 2009-12-08 2009-12-08 Method for separating palladium from chloride solutions containing arsenic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009278205A JP5440137B2 (en) 2009-12-08 2009-12-08 Method for separating palladium from chloride solutions containing arsenic

Publications (2)

Publication Number Publication Date
JP2011122176A true JP2011122176A (en) 2011-06-23
JP5440137B2 JP5440137B2 (en) 2014-03-12

Family

ID=44286346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009278205A Active JP5440137B2 (en) 2009-12-08 2009-12-08 Method for separating palladium from chloride solutions containing arsenic

Country Status (1)

Country Link
JP (1) JP5440137B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5319130A (en) * 1976-08-07 1978-02-22 Nissan Motor Co Ltd Recovering and separating method of noble metals
JPH07310129A (en) * 1994-05-13 1995-11-28 Sumitomo Metal Mining Co Ltd Recovering method of platinum group element
JP2002275555A (en) * 2001-01-11 2002-09-25 Sumitomo Metal Mining Co Ltd Method for removing osmium and ruthenium from nickel chloride solution
JP2003241355A (en) * 2002-02-18 2003-08-27 Konica Corp Photo network system managing resource collection information based upon resource code, and image input device and center server used therefor
JP2004502036A (en) * 2000-06-30 2004-01-22 ハネウェル・インターナショナル・インコーポレーテッド Method and apparatus for processing metal, and metal manufactured by processing
JP2004131745A (en) * 2002-10-08 2004-04-30 Sumitomo Metal Mining Co Ltd Method of separating and recovering platinum group element

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5319130A (en) * 1976-08-07 1978-02-22 Nissan Motor Co Ltd Recovering and separating method of noble metals
JPH07310129A (en) * 1994-05-13 1995-11-28 Sumitomo Metal Mining Co Ltd Recovering method of platinum group element
JP2004502036A (en) * 2000-06-30 2004-01-22 ハネウェル・インターナショナル・インコーポレーテッド Method and apparatus for processing metal, and metal manufactured by processing
JP2002275555A (en) * 2001-01-11 2002-09-25 Sumitomo Metal Mining Co Ltd Method for removing osmium and ruthenium from nickel chloride solution
JP2003241355A (en) * 2002-02-18 2003-08-27 Konica Corp Photo network system managing resource collection information based upon resource code, and image input device and center server used therefor
JP2004131745A (en) * 2002-10-08 2004-04-30 Sumitomo Metal Mining Co Ltd Method of separating and recovering platinum group element

Also Published As

Publication number Publication date
JP5440137B2 (en) 2014-03-12

Similar Documents

Publication Publication Date Title
JP4144311B2 (en) Methods for separating and recovering platinum group elements
Grosse et al. Leaching and recovery of gold using ammoniacal thiosulfate leach liquors (a review)
US4732609A (en) Recovery of cyanide from waste waters by an ion exchange process
AU2014272804B2 (en) Method for arsenic oxidation and removal from process and waste solutions
AU2011201167B2 (en) Method of leaching copper sulfide ore
RU2386709C1 (en) Separation and exrtaction method of precious metals
RU2674272C2 (en) Method of extracting gold
JP2014055311A (en) Recovery method of gold
Xie et al. Studies on solvent extraction of copper and cyanide from waste cyanide solution
CA2865721C (en) Method of recovering gold adsorbed on activated carbon and method of manufacturing gold using the same
WO2015102865A1 (en) Process for dissolving or extracting at least one precious metal from a source material containing the same
Mohebbi et al. Ion exchange resin technology in recovery of precious and noble metals
JP2014181393A (en) Method for separating and recovering platinum group elements
JP5004104B2 (en) Method for recovering Ru and / or Ir from platinum group-containing solution
JP5440137B2 (en) Method for separating palladium from chloride solutions containing arsenic
JP3975901B2 (en) Iridium separation and purification method
JP4124071B2 (en) Purification method of nickel chloride aqueous solution
MSUMANGE et al. The effectiveness of adsorbents for selective recovery of gold from copper-bearing cyanide leach solutions
JP5696688B2 (en) Rhenium recovery method
JP5786661B2 (en) Methods for separating and recovering platinum group elements
JP4726496B2 (en) Method for separating and recovering precious metals
JP2008038236A (en) Method of separating zinc from aqueous nickel chloride solution
JP5553646B2 (en) Purification method of ammonium tungstate solution
JP7007905B2 (en) Copper recovery method and electrolytic copper manufacturing method
JP4506041B2 (en) Methods for removing osmium and ruthenium from nickel chloride solutions.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130702

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131202

R150 Certificate of patent or registration of utility model

Ref document number: 5440137

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150