JP2011121918A - Vegetable component neutralizing antigenicity of virus - Google Patents

Vegetable component neutralizing antigenicity of virus Download PDF

Info

Publication number
JP2011121918A
JP2011121918A JP2009282328A JP2009282328A JP2011121918A JP 2011121918 A JP2011121918 A JP 2011121918A JP 2009282328 A JP2009282328 A JP 2009282328A JP 2009282328 A JP2009282328 A JP 2009282328A JP 2011121918 A JP2011121918 A JP 2011121918A
Authority
JP
Japan
Prior art keywords
virus
iga
phyto
extracted
plant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009282328A
Other languages
Japanese (ja)
Inventor
Hideo Hasegawa
秀夫 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHOYAKU HAKKO KENKYUSHO KK
Original Assignee
SHOYAKU HAKKO KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHOYAKU HAKKO KENKYUSHO KK filed Critical SHOYAKU HAKKO KENKYUSHO KK
Priority to JP2009282328A priority Critical patent/JP2011121918A/en
Publication of JP2011121918A publication Critical patent/JP2011121918A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicines Containing Plant Substances (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To clarify a vegetable component effective for neutralizing antigenicity of a virus and provide the vegetable component having immunoglobulin-like activity. <P>SOLUTION: A vegetable eaten by human as a food is defatted with ethanol and extracted with a weakly alkaline water. The extracted liquid is treated with a centrifugal concentration filter to extract a component having a molecular weight of 150,000-180,000. The skin of the vegetable eaten by human is potato skin, rice bran, adzuki bean skin or squeezed cake of Panax ginseng. Viral infection through mucosa can be prevented by including the component in candy, chewing gum, troche, etc. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、ウイルスの抗原性を中和し,イムノグロブリン様の働きを有する植物成分に関するものである。   The present invention relates to a plant component that neutralizes the antigenicity of a virus and has an immunoglobulin-like function.

動物の免疫細胞が作り出すタンパク質である「イムノグロブリン」は,植物には存在しないというのが定説である。
特開平10−67669号公報
The theory is that "immunoglobulin", a protein produced by animal immune cells, does not exist in plants.
JP 10-67669 A

本願発明者は,これまでの研究によって,植物が産生する感染防御成分の存在を解明した。本発明が解決しようとする課題は,ウイルスの抗原性を中和する植物成分を明らかにし,イムノグロブリン様の働きを有する植物成分を提供することにある。   The inventor of the present application has clarified the existence of an infection-protecting component produced by a plant by previous studies. The problem to be solved by the present invention is to clarify a plant component that neutralizes the antigenicity of a virus and to provide a plant component having an immunoglobulin-like action.

ヒトの食歴のある植物の皮から,分子量15万から18万の間であって,水溶性であり,エタノール不溶性の成分を抽出する。ヒトの食歴のある植物の皮は,じゃがいもの皮,米ぬか,小豆の皮,朝鮮人参の絞りかすを用いることができる。   From the skin of a plant with a human history, a water-soluble and ethanol-insoluble component having a molecular weight of between 150,000 and 180,000 is extracted. Plant skin with a human history can use potato skin, rice bran, red bean skin, ginseng ginseng.

粘膜感染を引き起こすロタウイルス,ポリオウイルス,インフルエンザウイルス,A型肝炎ウイルス,B型肝炎ウイルス,ヘルペスウイルス,ノロウイルス等について抗原性を中和し,ウイルスの感染力を中和する。毒性をもたない範囲の濃度でウイルスを95パーセント以上抑制する有効濃度を特定できる。   It neutralizes the antigenicity of rotavirus, poliovirus, influenza virus, hepatitis A virus, hepatitis B virus, herpes virus, norovirus, etc. that cause mucosal infection, and neutralizes the infectivity of the virus. It is possible to specify an effective concentration that suppresses the virus by 95% or more in a concentration range having no toxicity.

図1はPhyto-IgAの分子量分布を示すHPCLチャートである。FIG. 1 is an HPCL chart showing the molecular weight distribution of Phyto-IgA. 図2はじゃがいもの皮から抽出したPhyto-IgAがインフルエンザウイルスの増殖を抑制する様を示す。イヌ腎臓由来細胞株MDCKを宿主細胞として,インフルエンザウイルスH1N1の非感染あるいは感染下で,種々の濃度のPhyto-IgAと混合培養するin vitroモデルを用いた。FIG. 2 shows that Phyto-IgA extracted from potato skin suppresses the growth of influenza virus. An in vitro model was used in which the canine kidney-derived cell line MDCK was used as a host cell and mixed and cultured with various concentrations of Phyto-IgA under or without influenza virus H1N1 infection. 図3は米ぬかから抽出したPhyto-IgAがインフルエンザウイルスの増殖を抑制する様を示す。イヌ腎臓由来細胞株MDCKを宿主細胞として,インフルエンザウイルスH1N1の非感染あるいは感染下で,種々の濃度のPhyto-IgAと混合培養するin vitroモデルを用いた。FIG. 3 shows that Phyto-IgA extracted from rice bran suppresses the growth of influenza virus. An in vitro model was used in which the canine kidney-derived cell line MDCK was used as a host cell and mixed and cultured with various concentrations of Phyto-IgA under or without influenza virus H1N1 infection. 図4は小豆皮から抽出したPhyto-IgAがインフルエンザウイルスの増殖を抑制する様を示す。イヌ腎臓由来細胞株MDCKを宿主細胞として,インフルエンザウイルスH1N1の非感染あるいは感染下で,種々の濃度のPhyto-IgAと混合培養するin vitroモデルを用いた。FIG. 4 shows that Phyto-IgA extracted from red bean peel suppresses the growth of influenza virus. An in vitro model was used in which the canine kidney-derived cell line MDCK was used as a host cell and mixed and cultured with various concentrations of Phyto-IgA under or without influenza virus H1N1 infection. 図5は朝鮮人参滓から抽出したPhyto-IgAがインフルエンザウイルスの増殖を抑制する様を示す。イヌ腎臓由来細胞株MDCKを宿主細胞として,インフルエンザウイルスH1N1の非感染あるいは感染下で,種々の濃度のPhyto-IgAと混合培養するin vitroモデルを用いた。FIG. 5 shows that Phyto-IgA extracted from ginseng suppresses the growth of influenza virus. An in vitro model was used in which the canine kidney-derived cell line MDCK was used as a host cell and mixed and cultured with various concentrations of Phyto-IgA under or without influenza virus H1N1 infection. 図6はPhyto-IgAが致死量のインフルエンザウイルスを感染させられたネズミを助命する様を示すグラフである。FIG. 6 is a graph showing that Phyto-IgA saves mice infected with lethal doses of influenza virus. 図7はPhyto-IgAがウイルスの抗原性を中和する様を示すグラフである。FIG. 7 is a graph showing that Phyto-IgA neutralizes the antigenicity of the virus. 図8はPhyto-IgA Candy の抗ウイルス活性有効時間に関する実験結果を表すグラフである。FIG. 8 is a graph showing experimental results on the antiviral activity effective time of Phyto-IgA Candy.

以下,図面を参照しつつ,本発明の実施形態について説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

本発明の植物成分は,後述するように免疫グロブリン様の働きを有すること,そして,粘膜感染を起こすウイルスの感染力を中和する効果をもつことからその機能がIgAに類似する。そこで,本発明の発明者は,本願発明に係る植物成分を植物性イムノグロブリンA(Phytoimmunoglobulin A, Phyto-IgA)と名づけた。本願発明者の造語である。なお,IgAの分子量は,約16万である。   Since the plant component of the present invention has an immunoglobulin-like action as described later, and has an effect of neutralizing the infectivity of a virus that causes mucosal infection, its function is similar to IgA. Therefore, the inventor of the present invention named the plant component according to the present invention as plant immunoglobulin A (Phytoimmunoglobulin A, Phyto-IgA). It is coined by the inventor of the present application. In addition, the molecular weight of IgA is about 160,000.

Phyto-IgAを製造するには,ヒトの食歴のある植物をエタノールで脱脂後、弱アルカリ水で抽出し,その後,該抽出液を遠心濃縮フィルターにかけることにより,分子量15万から18万の間の成分を得ることによる。ヒトの食歴のある植物は,じゃがいもの皮,米ぬか,小豆の皮,朝鮮人参の絞りかすを用いることができる。ヒトの食歴は,人類が有史以来,食物としたことのあるものをいう。   In order to produce Phyto-IgA, a plant with a human dietary history is degreased with ethanol, extracted with weak alkaline water, and then the extract is applied to a centrifugal concentration filter to obtain a molecular weight of 150,000 to 180,000. By getting the ingredients in between. Plants with a human history can use potato skin, rice bran, red bean skin, ginseng ginseng. The human dietary history refers to what human beings have eaten since history.

〔Phyto-IgAの製造〕Phyto-IgAは、原料となるヒトの食歴のある植物をエタノールで脱脂後、10倍量の2.5%炭酸水素水(NaHCO3)で90℃1時間加熱抽出する。該抽出液を0.45ミクロンのメンブランフィルター(株式会社ミリポア製)でろ過し、株式会社ハイテックの提供するタンパク濃縮・脱塩用遠心ろ過ユニット(ビバスピン4,製品番号VS0443,分画分子量100,000 MWCO)を用いて濃縮分画した。 [Production of Phyto-IgA] Phyto-IgA is a material with a human dietary history, defatted with ethanol, and extracted with 10 times 2.5% aqueous bicarbonate (NaHCO3) at 90 ° C for 1 hour. . The extract is filtered through a 0.45 micron membrane filter (Millipore Co., Ltd.), and a centrifugal filtration unit for protein concentration and desalting provided by Hitech Co., Ltd. (Vivapin 4, product number VS0443, molecular weight cut off 100,000 MWCO) And concentrated fractionation.

分画したPhyto-IgAの分子量分布を図1に示す。図より、米ぬか(B)、小豆皮(C)、じゃがいも皮(D)、朝鮮人参滓(E)から、分子量マーカーとして用いたγイムノグロブリン(A)と同程度の分子量分布を有するPhyto-IgAを分画できたことを見て取ることができる。なお、分子量の測定は、サイズ排除クロマトグラフィ(SEC)カラム(昭和電工製)を用いて、HPLC法(溶媒:水、流速:1ml/min,カラム温度:30℃)で行った。   The molecular weight distribution of the fractionated Phyto-IgA is shown in FIG. From the figure, rice bran (B), red bean peel (C), potato peel (D), ginseng (E), Phyto-IgA having a molecular weight distribution similar to that of γ immunoglobulin (A) used as a molecular weight marker You can see that it was fractionated. The molecular weight was measured by a HPLC method (solvent: water, flow rate: 1 ml / min, column temperature: 30 ° C.) using a size exclusion chromatography (SEC) column (manufactured by Showa Denko).

次に,Phyto-IgAがインフルエンザウイルスの増殖を抑制することを示す。この試験には,イヌ腎臓由来細胞株MDCKを宿主細胞として,インフルエンザウイルス(H1N1)の非感染あるいは感染下で,種々の濃度(0.15〜2.5mg/ml)のPhyto-IgAと混合培養するin vitroモデルを用いた。その結果を表1及び図2に示す。ここでは,じゃがいもの皮から抽出したPhyto-IgAを用いた。   Next, we show that Phyto-IgA suppresses the growth of influenza virus. In this test, the canine kidney-derived cell line MDCK is used as a host cell in vitro with various concentrations (0.15-2.5 mg / ml) of Phyto-IgA, either uninfected or infected with influenza virus (H1N1). A model was used. The results are shown in Table 1 and FIG. Here, Phyto-IgA extracted from potato skin was used.

Figure 2011121918
Figure 2011121918

[試験方法]MDCK細胞を2×104/mlに調製し10%FCS添加EMEM培地にて96穴マイクロカルチャープレートに100μLづつ播種した。37℃,5%CO2条件下で2日間培養した。培養液を除去し,PBSで洗浄した後,インフルエンザウイルス(Inf/A H1N1)液と試料を含む培地をMDCK細胞へ接種し,34.5℃で3日間培養した。培養液を除去後100μLのEMEM培地(FCS非添加)を加えた。34.5℃にて2日間培養後上清を除去しMTT法で測定した(生存細胞をブランクと比較し細胞生存率を算出した)。 [Test Method] MDCK cells were prepared at 2 × 10 4 / ml and seeded in 100 μL each in a 96-well microculture plate in an EMEM medium supplemented with 10% FCS. The cells were cultured at 37 ° C. and 5% CO 2 for 2 days. After removing the culture solution and washing with PBS, a medium containing influenza virus (Inf / A H1N1) solution and a sample was inoculated into MDCK cells and cultured at 34.5 ° C. for 3 days. After removing the culture solution, 100 μL of EMEM medium (no FCS added) was added. After culturing at 34.5 ° C. for 2 days, the supernatant was removed and measured by the MTT method (viable cells were calculated by comparing viable cells with blanks).

表1の結果をグラフに描いたのが図2である。図2の横軸はPyhto-IgAの添加濃度を,縦軸は宿主の生存率を示す。インフルエンザウイルスの非感染(図2の白抜きの縦棒,virus non-infected)下においては,宿主細胞の死滅は全く観察されなかった。このことは,Phyto-IgAは0.15〜2.5mg/mlの濃度では宿主細胞に毒性がないことを示すものである。   FIG. 2 is a graph showing the results of Table 1. The horizontal axis of FIG. 2 shows the added concentration of Pyhto-IgA, and the vertical axis shows the survival rate of the host. Under influenza virus non-infection (open vertical bars in FIG. 2, virus non-infected), no host cell death was observed. This indicates that Phyto-IgA is not toxic to host cells at concentrations of 0.15 to 2.5 mg / ml.

一方,インフルエンザウイルスの感染(図2の黒色の縦棒,virus infected)下においては,Phyto-IgAが無添加では宿主細胞は100パーセント死滅したことを見て取れる。しかし,Phyto-IgAの添加濃度が高くなるにつれて宿主細胞の生存率が増加した。すなわち,Phyto-IgAが濃度依存的にウイルス感染を抑制したことを示している。   On the other hand, under influenza virus infection (black vertical bar in FIG. 2, virus infected), it can be seen that 100% of the host cells were killed without the addition of Phyto-IgA. However, the survival rate of the host cells increased with increasing concentration of Phyto-IgA. In other words, Phyto-IgA suppressed virus infection in a concentration-dependent manner.

濃度313の値と,濃度625の値とから,補間法(内挿法)の計算により,ウイルス感染を95パーセント抑制する有効濃度及び99.9パーセント抑制する有効濃度を求めることができる。その補間法の計算を表2に示す。   From the value of the concentration 313 and the value of the concentration 625, an effective concentration that suppresses virus infection by 95 percent and an effective concentration that suppresses 99.9 percent can be obtained by calculation of an interpolation method (interpolation method). Table 2 shows the calculation of the interpolation method.

Figure 2011121918
Figure 2011121918

実施例2と同様の実験を米ぬかから抽出したPhyto-IgAについて行ったものを表3及び図3に示す。試験方法は実施例2と同じである。   Table 3 and FIG. 3 show the same experiment as in Example 2 performed on Phyto-IgA extracted from rice bran. The test method is the same as in Example 2.

Figure 2011121918
Figure 2011121918

実施例2と同様に,濃度313の値と,濃度625の値とから,補間法(内挿法)の計算により,ウイルス感染を90パーセント抑制する有効濃度及び99.9パーセント抑制する有効濃度を求めることができる。その補間法の計算を表4に示す。   As in Example 2, the effective concentration that suppresses viral infection by 90 percent and the effective concentration that suppresses 99.9 percent are calculated from the value of concentration 313 and the value of concentration 625 by the calculation of the interpolation method (interpolation method). Can be sought. Table 4 shows the calculation of the interpolation method.

Figure 2011121918
Figure 2011121918

実施例2,3と同様の実験を小豆皮から抽出したPhyto-IgAについて行ったものを表5及び図4に示す。試験方法は実施例2,3と同じである。   Table 5 and FIG. 4 show the same experiment as in Examples 2 and 3 performed on Phyto-IgA extracted from red bean skin. The test method is the same as in Examples 2 and 3.

Figure 2011121918
Figure 2011121918

実施例2,3と同様に,濃度313の値と,濃度625の値とから,補間法(内挿法)の計算により,ウイルス感染を90パーセント抑制する有効濃度及び99.9パーセント抑制する有効濃度を求めることができる。その補間法の計算を表6に示す。   As in Examples 2 and 3, the effective concentration of suppressing virus infection by 90% and the effective of suppressing 99.9% by calculation of the interpolation method (interpolation method) from the value of concentration 313 and the value of concentration 625. The concentration can be determined. Table 6 shows the calculation of the interpolation method.

Figure 2011121918
Figure 2011121918

実施例2,3と同様の実験を朝鮮人参滓から抽出したPhyto-IgAについて行ったものを表7及び図5に示す。試験方法は実施例2,3,4と同じである。   Table 7 and FIG. 5 show the same experiment as in Examples 2 and 3 performed on Phyto-IgA extracted from ginseng. The test method is the same as in Examples 2, 3, and 4.

Figure 2011121918
Figure 2011121918

実施例2,3と同様に,濃度313の値と,濃度625の値とから,補間法(内挿法)の計算により,ウイルス感染を90パーセント抑制する有効濃度及び99.9パーセント抑制する有効濃度を求めることができる。その補間法の計算を表8に示す。   As in Examples 2 and 3, the effective concentration of suppressing virus infection by 90% and the effective of suppressing 99.9% by calculation of the interpolation method (interpolation method) from the value of concentration 313 and the value of concentration 625. The concentration can be determined. Table 8 shows the calculation of the interpolation method.

Figure 2011121918
Figure 2011121918

図5は,Phyto-IgAが致死量のインフルエンザウイルスを感染させられたネズミを助命する様を示すグラフである。試験には,ネズミに致死量のインフルエンザウイルス(H1N1)を,Phyto-IgAの非存在あるいは存在下で脳内に感染させ,その後の延命率を日毎に観察するというin vivoモデルを用いた。図5で横軸は感染後の経過日数を,縦軸は宿主動物の生存率を示す。   FIG. 5 is a graph showing that Phyto-IgA saves mice infected with lethal doses of influenza virus. The test used an in vivo model in which mice were infected with a lethal influenza virus (H1N1) in the brain in the absence or presence of Phyto-IgA, and the survival rate thereafter was observed daily. In FIG. 5, the horizontal axis represents the number of days elapsed after infection, and the vertical axis represents the survival rate of the host animal.

Phyto-IgAの非存在(白丸)下においては,ウイルス感染6日以降宿主動物は死滅し,最終的に感染から逃れたものは30パーセントに過ぎなかった。一方,Phyto-IgAの存在(黒丸)下においては,ウイルス感染6日以降死滅する宿主動物は1匹も発生せず,最終的に感染から逃れたものは全例(100パーセント)であった。これは,Phyto-IgAがウイルス感染を抑制したことを示している。この結果から,Phyto-IgAがインフルエンザウイルス感染から宿主動物を助命することが明らかとなった。これは実施例1から3までの試験管レベルの結果を動物レベルで証明したものといえる。なお,この実験では米ぬかから抽出したPhyto-IgAを用いた。   In the absence of Phyto-IgA (open circles), the host animals died after 6 days of virus infection, and only 30 percent finally escaped infection. On the other hand, in the presence of Phyto-IgA (black circle), no host animal died after 6 days from virus infection, and all (100 percent) finally escaped from the infection. This indicates that Phyto-IgA suppressed viral infection. These results indicate that Phyto-IgA saves host animals from influenza virus infection. This can be said to prove the test tube level results of Examples 1 to 3 at the animal level. In this experiment, Phyto-IgA extracted from rice bran was used.

近年,H5N1ウイルスにより誘導される過剰免疫反応(サイトカインストーム:cytokine storms)が問題とされ,さらにSARSのときにも問題とされたが,本願発明に係るPhyto-IgAがサイトカインストームを回避する手段となりえるか否かを検討した。   In recent years, the hyperimmune reaction (cytokine storms) induced by the H5N1 virus has been a problem, and it has also been a problem with SARS, but Phyto-IgA according to the present invention provides a means to avoid the cytokine storm. We examined whether or not.

試験には,IgA抗体産生細胞としてマウス脾臓細胞を用い,それを種々の濃度のPhyto-IgAと混合培養し,インフルエンザウイルスを感作させた場合と,感作させない場合とで,IgA抗体産生量を比較するというin vitroモデルを用いた。サイトカインストームを回避できるかどうかは,免疫反応の結果として誘導されるIgA抗体産生を抑制するかどうかで評価できる。   In the test, mouse spleen cells were used as IgA antibody-producing cells, mixed with various concentrations of Phyto-IgA, and sensitized with influenza virus or not. We used an in vitro model to compare Whether cytokine storms can be avoided can be evaluated by suppressing IgA antibody production induced as a result of immune responses.

ウイルス不活体の調製は,インフルエンザH1N1ウイルスを宿主細胞で増殖後,ウイルス液をホルマリンで不活化することにより行う。脾臓細胞の調整は,ノーマルマウスから脾臓を取り出し(Day 14),脾臓細胞を調整し,5パーセント牛胎児血清(FBS)を含むRPMI1640を用い,平底96well plateにて細胞培養を行う。検体はリグニンPBS溶液(5mg/ml)。試験スケジュールは,各リグニンPBS溶液(濃度:100,200,400μg/ml)及び不活化インフルエンザウイルスを混和し,1時間インキュベーション後,脾臓細胞(1×106/well)を添加し,摂氏37度,5パーセントCO2存在下で培養する(n=2)。陰性対照として,ウイルスフリー及びリグニンフリーを設定する。IgA測定は,マウスの脾臓細胞培養7日目の培養上清中のインフルエンザウイルス特異的IgAをELISAにて測定する。 The virus inactivator is prepared by incubating the influenza H1N1 virus in host cells and then inactivating the virus solution with formalin. Spleen cells are prepared by removing the spleen from normal mice (Day 14), adjusting the spleen cells, and using RPMI1640 containing 5% fetal bovine serum (FBS) and culturing the cells in a flat-bottom 96-well plate. The specimen is a lignin PBS solution (5 mg / ml). The test schedule was as follows: Each lignin PBS solution (concentration: 100, 200, 400 μg / ml) and inactivated influenza virus were mixed, and after 1 hour incubation, spleen cells (1 × 10 6 / well) were added and the temperature was 37 degrees Celsius. Incubate in the presence of 5 percent CO 2 (n = 2). Set virus-free and lignin-free as negative controls. For IgA measurement, influenza virus-specific IgA in the culture supernatant of mouse spleen cell culture day 7 is measured by ELISA.

図7はPhyto-IgAがウイルスの抗原性を中和することで、サイトカインストームを回避する様を示すグラフである。図中の横軸はPhyto-IgAの添加濃度を,縦軸はIgA抗体産生量を示す。Phyto-IgA無添加(0.0μg/ml)時におけるIgA抗体の産生量は,ウイルス存在(黒丸,Influenza virus +)下で約930pg/ml,ウイルス非存在(白丸,Influenza virus -)下で約130pg/mlで,その間約800pg/mlの違いが認められた。この産生量の違いは,ウイルス刺激が原因となって生合成された抗体量を指すといえる。この抗体産生には必ずサイトカインが関与し,ウイルス刺激が致死的になると,それを防衛しようとして急激な免疫反応が誘発され,サイトカインの大量放出,すなわちサイトカインストームが発生するものと考えられる。   FIG. 7 is a graph showing that Phyto-IgA avoids cytokine storms by neutralizing the antigenicity of the virus. In the figure, the horizontal axis represents the added concentration of Phyto-IgA, and the vertical axis represents IgA antibody production. When Phyto-IgA is not added (0.0 μg / ml), the amount of IgA antibody produced is about 930 pg / ml in the presence of virus (black circle, Influenza virus +), and about 130 pg in the absence of virus (white circle, Influenza virus −). A difference of about 800 pg / ml was observed. This difference in the amount of production can be said to refer to the amount of antibody biosynthesized due to virus stimulation. It is thought that cytokine production is always involved in this antibody production, and if the virus stimulation becomes lethal, a rapid immune reaction is induced to defend it, and a large amount of cytokine is released, that is, a cytokine storm is generated.

このような条件で,ウイルス存在(黒丸,Influenza virus +)下で誘導されるIgA抗体の産生量は,Phyto-IgAの添加濃度が高くなるにつれて減少し,200μg/ml(200ppm)以上の濃度ではウイルス非存在のレベルにまで減少させられることが明らかとなった。すなわち,Phyto-IgAがウイルスの抗原性を中和し,ウイルス刺激で誘導されるIgA抗体産生を100パーセント抑制したことを示している。これは,Phyto-IgA自身がIgA様の働きをすることで,脾臓細胞がIgA抗体を産生する必要がなくなったことを意味している。すなわち,Phyto-IgAによって過剰免疫反応(サイトカインストーム)の発生を回避できることが明らかとなった。Phyto-IgAは,ウイルスと非特異的に吸着し,その働きを失活させるため,ウイルスの種類に関係なく感染防御に奏功することが期待される。   Under these conditions, the production of IgA antibody induced in the presence of virus (black circle, Influenza virus +) decreases as the concentration of Phyto-IgA added increases, and at concentrations above 200 μg / ml (200 ppm) It was found that it was reduced to the level of no virus. That is, it is shown that Phyto-IgA neutralized the antigenicity of the virus and suppressed IgA antibody production induced by virus stimulation by 100 percent. This means that Phyto-IgA itself acts like IgA, so that spleen cells no longer need to produce IgA antibodies. In other words, it was clarified that Phyto-IgA can avoid the occurrence of hyperimmune reaction (cytokine storm). Phyto-IgA adsorbs non-specifically with viruses and deactivates its function, so it is expected to succeed in preventing infection regardless of the type of virus.

次に,Phyto-IgAのヘルペスウイルス(HSV)に対する感染防御作用を検討した。HSV感染によって形成されるプラークを計数するというin vitroモデルを用いた。その結果,Phyto-IgAは,キノコなどの抗腫瘍性多糖では抑制しきれないHSVによるプラーク形成(増殖)を抑制することが明らかとなった(表9)。これは,Phyto-IgAがHSVと結合することで,ウイルスの宿主細胞への吸着/侵入/増殖,すなわち感染を阻害した結果と考えられる。   Next, we examined the protective effect of Phyto-IgA against herpes virus (HSV). An in vitro model was used in which plaques formed by HSV infection were counted. As a result, it was revealed that Phyto-IgA suppresses plaque formation (proliferation) by HSV that cannot be suppressed by antitumor polysaccharides such as mushrooms (Table 9). This is considered to be a result of Phyto-IgA binding to HSV to inhibit virus adsorption / invasion / growth, that is, infection.

Figure 2011121918
Figure 2011121918

Phyto-IgAの適応ウイルスとしては,粘膜感染を引き起こすロタウイルス,ポリオウイルス,インフルエンザウイルス,A型肝炎ウイルス,B型肝炎ウイルス,ヘルペスウイルス,ノロウイルス等が挙げられる。   Examples of adaptive viruses of Phyto-IgA include rotavirus, poliovirus, influenza virus, hepatitis A virus, hepatitis B virus, herpes virus, norovirus and the like that cause mucosal infection.

Phyto-IgAの適応剤形としては,口腔内で持続的に唾液に放出できるトローチ,あめ,ガム等が粘膜免疫を活性化する上で好ましい。   As an adaptive dosage form of Phyto-IgA, a troche, candy, gum or the like that can be continuously released into the saliva in the oral cavity is preferable for activating mucosal immunity.

Figure 2011121918
Figure 2011121918

表10は,Phyto-IgA Candyの栄養成分を示す。原材料は,砂糖,水飴,米ぬかから抽出したPhyto-IgA,いちご濃縮果汁,酸味料,香料,紫コーン色素である。この例では,飴1粒中のPhyto-IgAの含有量を0.5パーセントとした。   Table 10 shows the nutritional components of Phyto-IgA Candy. Ingredients are sugar, chickenpox, Phyto-IgA extracted from rice bran, strawberry concentrated juice, acidulant, flavor, purple corn pigment. In this example, the content of Phyto-IgA in one pod was 0.5 percent.

実験によると,ウイルス感染を99.9パーセント阻害するのに必要なPhyto-IgAの濃度は560ppmである。Phyto-IgA Candy 1粒の重量は3.5グラムなので,Phyto-IgAの含有量が0.5パーセントの場合には,1粒の飴に含有されるPhyto-IgAの量は17,5mgとなる。飴1粒が溶け終わるのに何もせずに(かんだりせずに)保持すれば約30分であった。唾液は正常であれば1分あたり1mlほど分泌されるので,30分間で分泌される唾液量は30mlとなり,Phyto-IgAの唾液中濃度は,0.583mg/ml(583ppm)となる。したがって,ウイルス感染を99.9パーセント以上阻害する持続時間は飴1粒30分間程度ということになる。   According to experiments, the concentration of Phyto-IgA required to inhibit viral infection by 99.9 percent is 560 ppm. Since the weight of one Phyto-IgA Candy is 3.5 grams, when the Phyto-IgA content is 0.5 percent, the amount of Phyto-IgA contained in one candy is 17.5 mg . It took about 30 minutes to hold one pod after it had melted without doing anything (without biting). If saliva is normal, about 1 ml is secreted per minute, so the amount of saliva secreted in 30 minutes is 30 ml, and the concentration of Phyto-IgA in saliva is 0.583 mg / ml (583 ppm). Therefore, the duration of inhibiting virus infection by 99.9% or more is about 30 minutes per pod.

適応摂取量は,0.5パーセントから1.5パーセントの添加が好ましい。表12及び図9は,抗ウイルス活性有効時間についての実験結果を示す。米ぬかから抽出したPhyto-IgAを0.5パーセント含む飴と,1.5パーセント含む飴とについてなめ始めてから1分,5分,10分,20分,30分,40分,50分,60分の唾液を採取して,Phyto-IgAの濃度を調べたものである。   The adaptive intake is preferably 0.5% to 1.5%. Table 12 and FIG. 9 show the experimental results on the antiviral activity effective time. 1 minute, 5 minutes, 10 minutes, 20 minutes, 30 minutes, 40 minutes, 50 minutes, 60 minutes after starting to lick the cocoon containing 0.5 percent Phyto-IgA extracted from rice bran and 1.5 percent The saliva sample was collected and the concentration of Phyto-IgA was examined.

Figure 2011121918
Figure 2011121918

この実験結果から99.9パーセントウイルス感染を阻害する有効時間を補間法(内挿法)により計算して求めると,表13に示すように,0.5パーセントの飴の場合は54分,1.5パーセントの飴の場合は68分と求まる。   From this experimental result, the effective time for inhibiting 99.9% virus infection was calculated by interpolation (interpolation). As shown in Table 13, in the case of 0.5% wrinkle, 54 minutes, 1 In the case of 5% wrinkle, 68 minutes is obtained.

Figure 2011121918
Figure 2011121918

飴,チューインガム,トローチなどに含有させることで,粘膜からのウイルス感染を防御することができる。適応動物としては,ヒト以外に,家畜,養鶏,競走馬,養魚等が挙げられる。   Viral infection from the mucous membrane can be protected by including it in sputum, chewing gum, troche and the like. In addition to humans, examples of adaptive animals include livestock, poultry farming, racehorses, and fish farming.

Claims (5)

ヒトの食歴のある植物から抽出した分子量が15万から18万の間の成分であって,ウイルスの抗原性を中和する植物成分。   A plant component having a molecular weight between 150,000 and 180,000 extracted from a plant with a human dietary history, which neutralizes the antigenicity of the virus. ヒトの食歴のある植物から抽出した分子量が15万から18万の間の成分であって,ウイルスの感染力を中和する植物成分。   A plant component that has a molecular weight of between 150,000 and 180,000 extracted from plants with a human dietary history and neutralizes the infectivity of viruses. ヒトの食歴のある植物から抽出した分子量が15万から18万の間の成分であって,毒性をもたない範囲の濃度でウイルスを95パーセント以上抑制する有効濃度を特定できる植物成分。   A plant component with a molecular weight of between 150,000 and 180,000 extracted from a plant with a human dietary history, which can specify an effective concentration that suppresses the virus by 95% or more in a non-toxic range. 請求項1,2又は3のいずれか一に記載した植物成分であって,前記植物が,じゃがいもの皮,米ぬか,小豆の皮,朝鮮人参の絞りかすからなる群のうちのいずれか一であることを特徴とする植物成分。   The plant component according to any one of claims 1, 2, and 3, wherein the plant is one of the group consisting of potato skin, rice bran, red bean skin, ginseng ginseng. A plant component characterized by that. 請求項1,2又は3のいずれか一に記載した植物成分であって,前記ウイルスが,ロタウイルス,ポリオウイルス,インフルエンザウイルス,A型肝炎ウイルス,B型肝炎ウイルス,ヘルペスウイルス,ノロウイルスからなる群のうちのいずれか一であることを特徴とする植物成分。   The plant component according to any one of claims 1, 2, and 3, wherein the virus comprises rotavirus, poliovirus, influenza virus, hepatitis A virus, hepatitis B virus, herpes virus, norovirus. A plant component which is any one of the above.
JP2009282328A 2009-12-13 2009-12-13 Vegetable component neutralizing antigenicity of virus Pending JP2011121918A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009282328A JP2011121918A (en) 2009-12-13 2009-12-13 Vegetable component neutralizing antigenicity of virus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009282328A JP2011121918A (en) 2009-12-13 2009-12-13 Vegetable component neutralizing antigenicity of virus

Publications (1)

Publication Number Publication Date
JP2011121918A true JP2011121918A (en) 2011-06-23

Family

ID=44286176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009282328A Pending JP2011121918A (en) 2009-12-13 2009-12-13 Vegetable component neutralizing antigenicity of virus

Country Status (1)

Country Link
JP (1) JP2011121918A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102335365A (en) * 2011-10-11 2012-02-01 张庆强 Liver-nourishing toxin-expelling powder
CN104127842A (en) * 2014-07-24 2014-11-05 王浩 Traditional Chinese medicinal composition for curing kidney-yang deficiency
CN104338003A (en) * 2013-07-29 2015-02-11 刘庆山 Preparation method and application for medicine with liver-protecting kidney-protecting efficacy and good mouthfeel
CN104491752A (en) * 2015-01-12 2015-04-08 白忠可 Liver-soothing and heat-clearing agent for treating chronic persistent hepatitis and preparation method thereof
CN104523998A (en) * 2015-01-12 2015-04-22 白忠可 Chinese medicine for treating acute jaundice hepatitis A and preparation method
CN104689234A (en) * 2015-02-17 2015-06-10 聂玮 Traditional Chinese medicine composition for treating liver cirrhosis and preparation method of traditional Chinese medicine composition
CN104689172A (en) * 2015-02-28 2015-06-10 李宗海 Traditional Chinese medicine for treating chronic hepatitis B
CN104740411A (en) * 2015-04-18 2015-07-01 于巧媛 Traditional Chinese medicine composition for treating renal deficiency and blood stasis type renal cyst
CN104784542A (en) * 2015-04-24 2015-07-22 冯小平 Medicine for treating alcoholic renal injury
CN104800820A (en) * 2015-05-19 2015-07-29 李汶峰 Traditional Chinese medicine for treating acute nephritis
CN104940825A (en) * 2015-06-29 2015-09-30 兰毅 Pharmaceutical composition for treating chronic renal failure and application of pharmaceutical composition
CN104984062A (en) * 2015-06-30 2015-10-21 秦文官 Traditional Chinese medicine capsule for treating chronic orchitis
CN104984061A (en) * 2015-06-30 2015-10-21 秦文官 Traditional Chinese medicine decoction for treating chronic orchitis
CN105168858A (en) * 2015-09-17 2015-12-23 王庆玲 Traditional Chinese medicine preparation for treating hepatitis
CN105250966A (en) * 2015-11-10 2016-01-20 北京市祖国红医疗科技中心(有限合伙) Foot bath medicine for treatment of yang deficiency and preparation method and application thereof
CN105343438A (en) * 2015-12-15 2016-02-24 齐鲁工业大学 Pill capable of nourishing kidney and enriching qi

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102335365A (en) * 2011-10-11 2012-02-01 张庆强 Liver-nourishing toxin-expelling powder
CN104338003A (en) * 2013-07-29 2015-02-11 刘庆山 Preparation method and application for medicine with liver-protecting kidney-protecting efficacy and good mouthfeel
CN104127842A (en) * 2014-07-24 2014-11-05 王浩 Traditional Chinese medicinal composition for curing kidney-yang deficiency
CN104491752A (en) * 2015-01-12 2015-04-08 白忠可 Liver-soothing and heat-clearing agent for treating chronic persistent hepatitis and preparation method thereof
CN104523998A (en) * 2015-01-12 2015-04-22 白忠可 Chinese medicine for treating acute jaundice hepatitis A and preparation method
CN104689234A (en) * 2015-02-17 2015-06-10 聂玮 Traditional Chinese medicine composition for treating liver cirrhosis and preparation method of traditional Chinese medicine composition
CN104689172A (en) * 2015-02-28 2015-06-10 李宗海 Traditional Chinese medicine for treating chronic hepatitis B
CN104740411A (en) * 2015-04-18 2015-07-01 于巧媛 Traditional Chinese medicine composition for treating renal deficiency and blood stasis type renal cyst
CN104784542A (en) * 2015-04-24 2015-07-22 冯小平 Medicine for treating alcoholic renal injury
CN104800820A (en) * 2015-05-19 2015-07-29 李汶峰 Traditional Chinese medicine for treating acute nephritis
CN104940825A (en) * 2015-06-29 2015-09-30 兰毅 Pharmaceutical composition for treating chronic renal failure and application of pharmaceutical composition
CN104984062A (en) * 2015-06-30 2015-10-21 秦文官 Traditional Chinese medicine capsule for treating chronic orchitis
CN104984061A (en) * 2015-06-30 2015-10-21 秦文官 Traditional Chinese medicine decoction for treating chronic orchitis
CN105168858A (en) * 2015-09-17 2015-12-23 王庆玲 Traditional Chinese medicine preparation for treating hepatitis
CN105250966A (en) * 2015-11-10 2016-01-20 北京市祖国红医疗科技中心(有限合伙) Foot bath medicine for treatment of yang deficiency and preparation method and application thereof
CN105343438A (en) * 2015-12-15 2016-02-24 齐鲁工业大学 Pill capable of nourishing kidney and enriching qi

Similar Documents

Publication Publication Date Title
JP2011121918A (en) Vegetable component neutralizing antigenicity of virus
US20100189827A1 (en) Antiviral composition comprising alnus japonica extracts
NZ731308A (en) Methods and compositions for attenuating allergenicity in protein products
JP5507718B2 (en) Disinfection method against avian influenza virus
KR100769050B1 (en) Antiviral composition comprising alnus japonic extracts
KR102232733B1 (en) Composition antivirus comprising extract echinacea
JP2010222344A (en) Influenza virus suppressing composition and application thereof
WO2010005010A1 (en) Anti-influenza virus agent, anti-rs virus agent, and anti-immunodeficiency virus agent
Kim et al. Antioxidative ability of ethanol extract from the leaves of Leucaena leucocephala (Lam.) de Wit
JP6049533B2 (en) Antiviral agents and pharmaceuticals containing them
CN103313612B (en) An edible composition
US20190083563A1 (en) Anti-influenza virus composition containing poncirus trifoliata extract as active ingredient
AU2017354540B2 (en) Feed and method for manufacturing same
KR100736159B1 (en) Antiviral composition comprising lycoris squamigera extracts
JP2007254319A (en) Influenza-preventing/treating agent
JP2017178913A (en) Antiviral agents and antiviral foods
KR100757712B1 (en) Antiviral composition comprising alnus pendula extracts
CN102018194B (en) Condiment special for cooking fish on basis of Mosla chinensis maxim
KR100792626B1 (en) Agent for preventing and treating infectious disease by influenza virus comprising cathechin derivative compounds
JP5236339B2 (en) Avian influenza virus inactivator
JP5550734B2 (en) An antiviral composition comprising an extract of Sina brachigiri or pepper, or a fraction thereof as an active ingredient
JP2011088881A (en) Anti-influenza viral agent and food and drink or drug including the same substance
CN105852105B (en) Remove the chewable tablets and preparation method thereof of garlic smell in oral cavity
CN106561557A (en) Method for improving broiler edible flavor
CN104738615A (en) Odorless garlic powder technology