JP2011120677A - 超音波診断装置 - Google Patents

超音波診断装置 Download PDF

Info

Publication number
JP2011120677A
JP2011120677A JP2009279261A JP2009279261A JP2011120677A JP 2011120677 A JP2011120677 A JP 2011120677A JP 2009279261 A JP2009279261 A JP 2009279261A JP 2009279261 A JP2009279261 A JP 2009279261A JP 2011120677 A JP2011120677 A JP 2011120677A
Authority
JP
Japan
Prior art keywords
distribution
integrated projection
frequency distribution
information
dimensional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009279261A
Other languages
English (en)
Other versions
JP5409311B2 (ja
Inventor
Koichi Miyasaka
好一 宮坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Aloka Medical Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Aloka Medical Ltd filed Critical Hitachi Aloka Medical Ltd
Priority to JP2009279261A priority Critical patent/JP5409311B2/ja
Publication of JP2011120677A publication Critical patent/JP2011120677A/ja
Application granted granted Critical
Publication of JP5409311B2 publication Critical patent/JP5409311B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

【課題】超音波診断装置において、走査面上に存在する血流部に応じて最適な送受信条件等が設定されるようにする。
【解決手段】複数のフレームに亘って走査面上における各座標毎に血流が存在した回数を計数することにより頻度分布46が生成される。頻度分布46に対しては、ビームアドレス軸上及び深さアドレス軸上への積算投影処理が施され、これにより第1及び第2の積算投影分布が生成される。これらの積算投影分布に基づいて走査面上における関心領域が自動的に設定され、あるいは送信フォーカス点の深さが自動的に設定される。2次元の頻度分布に代えて3次元の頻度分布を生成するようにしてもよい。
【選択図】図2

Description

本発明は超音波診断装置に関し、特に、生体内からのドプラ情報を処理する超音波診断装置に関する。
超音波診断装置は、生体内における血流を二次元画像として表示する機能を備える。実際には、背景となる二次元白黒断層画像上にカラーの二次元血流画像が合成され、そのような合成画像が動画像として表示される。この機能はカラードプラ機能あるいはカラーフローマッピング機能と称されている。二次元血流画像としては、二次元血流速度画像及び二次元血流パワー画像が知られている。前者の二次元血流速度画像は走査面上の各点における速度(正確にはビーム方向の平均速度成分)を正負の向きも含めて表示した画像である。後者の二次元血流パワー画像は走査面上の各点におけるドプラ情報のパワーを表示した画像である。速度やパワーは、受信信号に含まれるドプラ情報を演算処理することにより求められるものである。近時、三次元のボリュームデータを処理することにより、三次元血流速度画像や三次元血流パワー画像を生成することも提案されている。
特許文献1には、ドプラ情報を得るビーム走査範囲を可変設定する技術が開示されている。この技術では、各ビーム上における血流データのドット数がカウントされており、そのカウント結果に基づいて血流の存在範囲が特定されている。特許文献2には、血流像情報に基づいて血流信号が存在しない領域を特定して当該領域について送受信回数を減らす技術が開示されている。いずれの文献にも送受波空間に相当する計測空間において頻度分布を生成するような考え方は示されていない。
特開平2−172453号公報 特開平4−250148号公報
例えば心臓の超音波診断において、血流の観測や表示を適切に行うためには、あるいは、ユーザーの操作上の負担を軽減するには、フレームレート(あるいはボリュームレート)や送信フォーカス点の深さ等の送受信条件が適切にかつ自動的に設定されることが望まれる。そのためには、送受波空間内における血流存在領域(血流部)を特定する必要があるが、単にある時相の情報を観測するだけで血流部を特定するのは困難である。血流が存在する範囲や程度が動的に変化するからである。
本発明の目的は、超音波診断装置において、動的に変化する血流を観測するための適切な装置動作条件が設定されるようにすることにある。
本発明の他の目的は、ビーム走査範囲の大きさを動的に変化する血流に応じて自動的かつ適切に設定できるようにすることにある。
本発明の他の目的は、送信フォーカス点の深さを動的に変化する血流に応じて自動的かつ適切に設定できるようにすることにある。
本発明に係る超音波診断装置は、二次元又は三次元のビーム走査空間を繰り返し形成し、ビーム走査空間内の各座標ごとに互いに時間的に異なる関係にある複数のドプラ情報を取得する送受波手段と、前記各ドプラ情報に基づいて当該ドプラ情報が血流情報であるのか否かを判別する判別手段と、前記ビーム走査空間に対応する計測空間において各座標ごとに血流情報が判別された頻度を個別的に計数することにより二次元又は三次元の頻度分布を生成する計数手段と、前記頻度分布に基づいて超音波の送受波条件又は画像処理条件を設定する条件設定手段と、を含むことを特徴とする。
上記構成によれば、ビーム走査空間内における各座標ごとに血流情報の発生回数(存在回数)が計数されて二次元又は三次元の頻度分布が生成される。そのような頻度分布はビーム走査空間内における血流領域の一般的傾向(空間的存在確率)を表すものであるから、それを装置動作条件(送受波条件、画像処理条件、等)の設定に役立てることが可能となる。特に望ましくは、複数のフレームデータに基づいて頻度分布が作成され、その頻度分布の空間的処理による解析結果から、その後の送受波領域(関心領域)や送信フォーカス点の深さ等が定められる。頻度分布の解析に際しては、次元を落とす処理を適用するのが望ましく、例えば二次元分布を一次元分布に投影する処理が実行される。異なる二方向からそのような投影を行えば、各方向において血流部の存在範囲や分布傾向を容易に特定することが可能となる。血流情報か否かを判断するためには、1種類の情報ではなく複数種類の情報を参照するのが望ましい。例えば、運動体についての速度(あるいは速度の絶対値)とパワーの組み合わせから血流情報を選別するようにしてもよい。逆に、そのような組み合わせからクラッタ(不要信号)を特定してそれ以外を血流情報であるとみなすようにしてもよい。少なくともドプラ情報が用いられるのが望ましいが、更に輝度情報を参酌するようにしてもよい。
望ましくは、前記計数手段が生成した頻度分布に対する積算投影処理により当該頻度分布の空間的傾向を表す積算投影分布を生成する解析手段を含み、前記条件設定手段は、前記頻度分布の空間的傾向を表す積算投影分布に基づいて条件設定を行う。積算投影処理によれば、n次元分布を例えば(n−1)次元分布に変換することができるから、特定方向について頻度分布の空間的傾向を認識し易くなる。複数の方向について複数の積算投影処理が施されるのが望ましい。二次元処理の場合にはビームアドレス方向及び深さアドレス方向の両方向に積算投影処理が実行されるのが望ましく、三次元処理の場合には三次元分布を二次元分布又は一次元分布に投影する処理が実行されるのが望ましい。空間的探索を行って各方向における血流部存在範囲を特定することも上記の積算投影処理に相当する。積算投影処理によれば血流の有無のみならず存在量あるいは存在割合も評価できる。
望ましくは、前記ビーム走査空間は二次元の走査面であり、前記頻度分布は前記走査面上の各座標において血流情報が判別された頻度を表すものであり、前記解析手段は、前記頻度分布に対して深さ方向及びビーム走査方向の少なくとも一方に対して積算投影処理を施すことにより前記積算投影分布を生成する。望ましくは、前記解析手段は、前記頻度分布に対してビーム走査方向に第1積算投影処理を施すことにより深さ方向に沿った第1の積算投影分布を生成する第1解析手段と、前記頻度分布に対して深さ方向に第2積算投影処理を施すことによりビーム走査方向に沿った第2の積算投影分布を生成する第2解析手段と、を含み、前記条件設定手段は、前記第1の積算投影分布及び前記第2の積算投影分布に基づいて条件設定を行う。望ましくは、前記条件設定手段は、前記第1の積算投影分布及び前記第2の積算投影分布に基づいて関心領域を設定し、当該関心領域に基づいて新しいビーム走査空間が設定される。望ましくは、前記解析手段は、前記頻度分布に対してビーム走査方向に積算投影処理を施すことにより深さ方向に沿った前記積算投影分布を生成し、前記条件設定手段は、前記積算投影分布に基づいて送信フォーカス点を定める。
望ましくは、前記解析手段は、前記頻度分布に対してビーム走査方向に複数の区間を設定し、各区間ごとに前記積算投影分布を生成し、前記条件設定手段は、前記各区間ごとに当該区間に対応する積算投影分布に基づいて当該区間に対して送信フォーカス点の深さを定める。望ましくは、前記各ドプラ情報は、速度情報及びパワー情報を含み、前記判別手段は、前記速度情報が速度閾値よりも小さく、且つ、前記パワー情報がパワー閾値よりも大きい場合にはそれを非血流情報であると判別する。
本発明によれば、超音波診断装置において、動的に変化する血流を観測するための適切な装置動作条件を設定できる。あるいは、ビーム走査範囲の大きさ、送信フォーカス点の深さ、その他を自動的かつ適切に設定できる。
本発明に係る超音波診断装置の全体構成を示すブロック図である。 計測空間内に生成される頻度分布を説明するための図である。 頻度分布の生成プロセスを説明するための概念図である。 ビームアドレス軸上に生成された積算投影分布を示す図である。 深さアドレス軸上に生成された積算投影分布を示す図である。 走査面上に設定される関心領域を示す図である。 各区間毎の送信フォーカス点の深さの個別的な設定を説明するための図である。 関心領域内における送信フォーカス点の個別的な設定を説明するための図である。
以下、本発明の好適な実施形態を図面に基づいて説明する。
図1には、本発明に係る超音波診断装置の構成がブロック図として示されている。この超音波診断装置は、医療の分野において用いられ、生体に対して超音波の送受波を行って超音波画像を形成する装置である。超音波画像としては、Bモード断層画像(白黒断層画像)及び2次元血流画像(血流速度画像、血流パワー画像)等があげられる。もちろん、本発明は3次元情報を処理する超音波診断装置に対しても適用することが可能である。
プローブ10は、本実施形態において1Dアレイ振動子を有している。1Dアレイ振動子は複数の振動素子を直線状あるいは円弧状に配列してなるものである。1Dアレイ振動子により超音波ビームが形成され、その超音波ビームは電子的に走査される。電子走査方式としては、電子セクタ走査、電子リニア走査等が知られている。
図1においては、複数の超音波ビームBが概念的に示されている。それらは全体として走査面Sを構成するものである。走査面Sは2次元データ取込領域である。プローブ10に対して2Dアレイ振動子を設け、これによって超音波ビームを2次元走査し、3次元エコーデータ取込領域を形成するようにしてもよい。
送信部12は送信ビームフォーマーである。すなわち、送信部12は送信時において所定の遅延関係を有する複数の送信信号を1Dアレイ振動子へ供給する。これにより送信ビームが形成される。受信時において、生体内からの反射波が1Dアレイ振動子にて受波され、1Dアレイ振動子から複数の受信信号が受信部14へ出力される。受信部14は受信ビームフォーマーであり、複数の受信信号に対して整相加算処理を実行する。これにより電子的に受信ビームが形成され、その受信ビームに相当する受信信号はビームデータである。整相加算後の受信信号すなわちビームデータは輝度信号処理部16及びドプラ信号処理部22へ出力される。
輝度信号処理部16は、検波器、対数圧縮回路等のBモード画像形成用の信号処理回路を備えている。信号処理後の受信信号はデジタルスキャンコンバータ(DSC)18へ出力される。DSC18は座標変換機能、補間機能等を具備し、複数のビームデータに基づいてBモード断層画像を形成し、その画像情報を表示処理部20へ出力するものである。後述するDSC28,30も基本的に同様の機能を有している。
ドプラ信号処理部22は、本実施形態において直交検波回路、ウォールフィルタ、自己相関回路等の構成を有している。すなわち、ドプラ信号処理部22は、受信信号に含まれるドプラ情報を抽出する回路である。ドプラ信号処理部22から複素信号が速度演算部24及びパワー演算部26へ出力されている。速度演算部24は公知の回路構成を有し、自己相関結果に基づいて速度を計算する。この速度はビームの走査面上における各座標の速度情報である。同じく、パワー演算部26は各座標毎にパワーを演算する。なお、更に分散情報等が演算されてもよい。DSC28は、入力される各座標に対応した速度情報に基づいて2次元血流速度画像を生成し、その画像データを表示処理部20へ出力する。また、DSC30は、入力される各座標のパワー情報に基づき2次元パワー画像を生成し、その画像データを表示処理部20へ出力する。
表示処理部20は画像合成機能等を具備し、表示処理部20においてカラードプラ画像及びカラーパワー画像が生成される。すなわち背景としての2次元輝度画像上にカラードプラ画像あるいはカラーパワー画像が合成され、そのように合成された画像のデータが表示部32へ出力される。以上の信号処理は公知のものである。
本実施形態における超音波診断装置は以下に説明する特徴的な構成を具備している。すなわち、制御部34が、判別部36、頻度分布生成部38、解析部40、送受信制御部42等を備えている。ちなみに制御部34はCPU及び動作プログラムによって構成されるものであり、制御部34は図1に示される各構成の動作制御を行っている。判別部36から送受信制御部42までの各構成は基本的にソフトウェアの機能として実現することが可能である。ただし、ハードウェアモジュールによって実現してもよい。入力部44は操作パネルにより構成され、その操作パネルはキーボードやトラックボールなどを有するものである。
判別部36は、走査面上における各座標について演算された速度及びパワーの組み合せ情報に基づいて、各座標のドプラ情報が血流であるか非血流であるかを判別するものである。それがクラッタであれば、速度が低く且つパワーが大きくなるので、そのような組み合わせ条件を満たした場合にはクラッタであると判定し、それ以外の場合には血流であると判定している。もちろん、判定条件については各種のものを採用することができ、少なくとも複数の情報を基礎として血流であるか否かを判断するのが望ましい。例えば輝度情報を更に利用して判別精度を高めるようにしてもよい。いずれにしても、判別部36においては走査面上における各座標毎に血流であるか否かが判定される。
頻度分布生成部38は後に図2を用いて説明するように、走査面と同一の次元数をもった計測空間(2次元データ処理空間)上において各座標毎に血流であると判別された回数を求めることにより頻度分布を生成するものである。本実施形態においては、例えば3心拍分に相当する複数のフレーム情報に基づいて頻度分布が生成されている。ここで1つのフレーム情報は1つの走査面に対応するものである。もちろん、頻度分布を生成するための計測期間については任意に定めることができる。一般的には、少なくとも1心拍分の情報を基礎として頻度分布を作成した方が望ましく、かかる構成によれば時間軸上における血流の変化を全て考慮して血流部を空間的に確率的に特定することが可能となる。
解析部34は、生成された頻度分布を解析するものである。具体的には、後に説明するように、2次元の頻度分布を第1方向に積算投影することにより第1の積算投影分布を生成し、また、頻度分布を第2の方向に積算投影することにより第2の積算投影分布を生成している。このような積算投影処理によればある方向における頻度分布の全体的傾向あるいは空間的傾向を捉えることが可能となり、送受信制御において有用となる参照情報を得ることが可能となる。すなわち送受信制御部42は解析部40による解析結果、具体的には1又は複数の積算投影分布に基づいて送受信の制御を行っている。後に説明する例においては、解析結果に基づいて関心領域(新しいドプラビーム走査領域)が設定されており、また送信ビームのフォーカス点深さが設定されている。本実施形態の手法によれば、そのような送受信条件を自動的にしかも適用的に設定することが可能である。
ちなみに、上述した説明においては頻度分布に基づいて送受信制御が実行されていたが、超音波診断装置における他の動作条件を頻度分布に基づいて適用的に設定するようにしてもよい。そのような動作条件としては画像処理条件を挙げることができる。すなわち血流部が存在している領域に対しては特別な画像処理の適用をしたり血流部のBモード画像の輝度を落としたりすることが可能である。送受信条件の更新タイミングすなわち頻度分布を生成するタイミングはユーザーによる明示的な指示に基づいて決定されてもよいし、あるいはある条件の充足を判定してそのタイミングが自動的に決定されてもよい。ドプラモードに切り替わった時点において上記のような処理が自動的に実行されてもよい。
図2には、頻度分布46が概念的に示されている。図2においては3つの軸が示されている。第1の軸はビームアドレスを示しており、第2の軸は深さアドレスを示しており、第3の軸は頻度を表している。ここで、ビームアドレスとして1〜aまでのアドレスが例示されており、深さアドレスとして1〜bまでのアドレスが例示されている。ビームアドレスと深さアドレスで特定される各座標すなわち図2における各交点毎にその座標において取得された受信信号すなわちドプラ情報が解析されて、ドプラ血流情報であると判断された回数が頻度として管理される。その頻度は血流情報があったフレーム数に相当するものである。例えば3心拍分に亘る複数のフレームを処理した場合、各座標における血流の存在確率が頻度として表されることになる。
図3には、頻度分布を生成する処理が概念図として示されている。S101で示されるように、例えば、(a,b)で特定される座標の速度データvが与えられると、あるいはその速度データの絶対値が与えられると、その速度データ(あるいはその絶対値)が所定の閾値α以下であるか否かが判断される。一方、S102で示されるように、当該座標(a,b)のパワーPが与えられ、そのパワーが所定の閾値β以上であるか否かが判断される。速度データがα以下であり且つパワーデータがβ以上であればそれはクラッタであると判定され、頻度の計算から除外される(S105)。一方、クラッタではないと判断された場合、すなわち血流であると判断された場合(S103)、S104において計測空間内のアドレス(a,b)のカウント値が1つインクリメントされる。このような処理をフレーム内における各座標において実行し、それを各フレーム毎に実行するならば図2に示した頻度分布を生成することが可能となる。ちなみに、図3において、符号48は血流判定において他の情報を参照してもよいことが示されている。例えばBモード画像を合成するエコーの輝度を参照し、それを判定条件に含めてもよい。図3に示される処理の内容は基本的に3次元に容易に拡張し得るものである。すなわちそのような3次元処理によれば3次元の頻度分布を生成可能である。
以上のように生成された2次元の頻度分布をそのまま使って送受信制御を行うことも可能であるが、そのままの頻度分布ではその全体的傾向あるいは空間的な傾向を捉えることができないので、本実施形態においては上述したように積算投影処理が実行されている。それを図4及び図5を用いて説明する。
図4には第1積算投影分布50が示されている。すなわち、図2に示した頻度分布をビームアドレス軸上へ積算投影することによりこの積算投影分布50が生成される。あるビームアドレスに着目した場合、当該ビームアドレス上の全ての深さにおいて存在する頻度値が積算され、その積算値が当該ビームアドレスに対応する位置にマッピングされる。この積算投影分布50に基づき、例えばそれを所定の閾値k1と比較することにより、一定値以上の頻度を有する区間を包含する区間として後に説明する関心領域のビーム走査方向の幅Wを定義することが可能となる。
図5には第2の積算投影分布52が示されている。これは図2に示した頻度分布を深さアドレス軸上に積算投影することにより生成されるものである。各深さ位置に着目した場合当該深さ位置に存在する複数の頻度値が積算されて、それが当該深さアドレスに対応する地点にマッピングされる。このような積算投影分布52に対して所定の閾値k2と比較することにより、その閾値k2を超える範囲として有効な範囲を特定でき、その有効な範囲を包含する区間として関心領域についての深さ方向の幅Dを定義することが可能となる。また、積算投影分布52における重心あるいは範囲D内における積算投影分布の重心を演算することにより、当該重心を送信ビームフォーカス点の深さとして定めることが可能である。
以上のような処理結果に基づいて送受信制御を行う場合の制御内容が図6に示されている。ここでは電子セクタ走査によって生成された走査面が表されている。この走査面においてはθ1〜θ2までの範囲且つr1〜r2までの範囲として関心領域54が自動的に設定される。この関心領域54はドプラ情報を取得するための部分領域であり当該領域内においてのみドプラ用の超音波の送受信が実行される。すなわちこのような関心領域54の設定によりドプラ情報を取得するためのフレームレートを向上することが可能である。ちなみに走査面全体はBモード画像を形成するための送受信領域に相当する。上述した処理によればこのような関心領域54の自動設定に加えて、関心領域54についてのあるいは走査面全体についての送信フォーカス点の深さFを自動的に決定することが可能である。関心領域の設定及び送信フォーカス点の深さの設定にあたってユーザーの負担が大幅に軽減され、またそのような条件を血流部の存在に応じて自動的に且つ適切に設定できるから、計測条件を最適化できるという利点が得られる。図7及び図8を用いて変形例について説明する。それらの例は電子リニア走査を前提としている。
図7においてはビームアドレス走査面に相当する2次元空間がビームアドレス方向に複数の区間56〜64に区分されている。図7に示す例では、各区間56〜64毎に深さアドレス軸上の積算投影分布が生成されており、当該分布の重心を求めることにより送信フォーカス点の深さF1〜F5が求められている。このように複数の区間設定を行えば走査面全体に亘って送信フォーカス点の深さをきめ細やかに適切に設定できるという利点が得られる。ちなみに区間の間において送信フォーカス点の深さの不連続による問題が生じるのであれば全体の深さ位置をスプライン補間演算等により繋げて滑らかに送信フォーカス点の深さを変化させるようにしてもよい。
図8に示す例においては、関心領域66内におけるビームアドレス方向の範囲68が複数の区間70〜74によって区分されており、各区間毎に深さアドレス軸上における積算投影分布が生成され、それらに基づいて各区間毎に送信フォーカス点の深さF6〜F8が設定されている。このように走査面全体ではなく関心領域内において複数の区間を設定することも可能である。いずれにしても本実施形態の構成によれば、2次元あるいは3次元の実空間内において存在する血流部の時間的な変化を捉えてそれを送受信制御の基礎とすることができ、しかも存在確率をも考慮することができるので、送受信条件あるいは画像処理条件を自動的に最適化することが可能となる。これは、換言すればユーザーの負担を大幅に軽減できるものであると言える。
10 プローブ、24 速度演算部、26 パワー演算部、34 制御部、36 判別部、38 輝度分布生成部、40 解析部、42 送受信制御部。

Claims (8)

  1. 二次元又は三次元のビーム走査空間を繰り返し形成し、ビーム走査空間内の各座標ごとに互いに時間的に異なる関係にある複数のドプラ情報を取得する送受波手段と、
    前記各ドプラ情報に基づいて当該ドプラ情報が血流情報であるのか否かを判別する判別手段と、
    前記ビーム走査空間に対応する計測空間において各座標ごとに血流情報が判別された頻度を個別的に計数することにより二次元又は三次元の頻度分布を生成する計数手段と、
    前記頻度分布に基づいて超音波の送受波条件又は画像処理条件を設定する条件設定手段と、
    を含むことを特徴とする超音波診断装置。
  2. 請求項1記載の装置において、
    前記計数手段が生成した頻度分布に対する積算投影処理により当該頻度分布の空間的傾向を表す積算投影分布を生成する解析手段を含み、
    前記条件設定手段は、前記頻度分布の空間的傾向を表す積算投影分布に基づいて条件設定を行う、ことを特徴とする超音波診断装置。
  3. 請求項2記載の装置において、
    前記ビーム走査空間は二次元の走査面であり、
    前記頻度分布は前記走査面上の各座標において血流情報が判別された頻度を表すものであり、
    前記解析手段は、前記頻度分布に対して深さ方向及びビーム走査方向の少なくとも一方に対して積算投影処理を施すことにより前記積算投影分布を生成する、
    ことを特徴とする超音波診断装置。
  4. 請求項3記載の装置において、
    前記解析手段は、
    前記頻度分布に対してビーム走査方向に第1積算投影処理を施すことにより深さ方向に沿った第1の積算投影分布を生成する第1解析手段と、
    前記頻度分布に対して深さ方向に第2積算投影処理を施すことによりビーム走査方向に沿った第2の積算投影分布を生成する第2解析手段と、
    を含み、
    前記条件設定手段は、前記第1の積算投影分布及び前記第2の積算投影分布に基づいて条件設定を行う、ことを特徴とする超音波診断装置。
  5. 請求項4記載の装置において、
    前記条件設定手段は、前記第1の積算投影分布及び前記第2の積算投影分布に基づいて関心領域を設定し、当該関心領域に基づいて新しいビーム走査空間が設定される、ことを特徴とする超音波診断装置。
  6. 請求項3記載の装置において、
    前記解析手段は、前記頻度分布に対してビーム走査方向に積算投影処理を施すことにより深さ方向に沿った前記積算投影分布を生成し、
    前記条件設定手段は、前記積算投影分布に基づいて送信フォーカス点の深さを定める、ことを特徴とする超音波診断装置。
  7. 請求項6記載の装置において、
    前記解析手段は、前記頻度分布に対してビーム走査方向に複数の区間を設定し、各区間ごとに前記積算投影分布を生成し、
    前記条件設定手段は、前記各区間ごとに当該区間に対応する積算投影分布に基づいて当該区間に対して送信フォーカス点の深さを定める、ことを特徴とする超音波診断装置。
  8. 請求項1乃至7のいずれか1項に記載の装置において、
    前記各ドプラ情報は、速度情報及びパワー情報を含み、
    前記判別手段は、前記速度情報が速度閾値よりも小さく、且つ、前記パワー情報がパワー閾値よりも大きい場合にはそれを非血流情報であると判別する、ことを特徴とする超音波診断装置。
JP2009279261A 2009-12-09 2009-12-09 超音波診断装置 Expired - Fee Related JP5409311B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009279261A JP5409311B2 (ja) 2009-12-09 2009-12-09 超音波診断装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009279261A JP5409311B2 (ja) 2009-12-09 2009-12-09 超音波診断装置

Publications (2)

Publication Number Publication Date
JP2011120677A true JP2011120677A (ja) 2011-06-23
JP5409311B2 JP5409311B2 (ja) 2014-02-05

Family

ID=44285236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009279261A Expired - Fee Related JP5409311B2 (ja) 2009-12-09 2009-12-09 超音波診断装置

Country Status (1)

Country Link
JP (1) JP5409311B2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013223673A (ja) * 2012-04-23 2013-10-31 Panasonic Corp 超音波送信ビーム形成制御に用いられる方法、装置、およびソフトウェアプログラム
JP2014528266A (ja) * 2011-09-30 2014-10-27 コーニンクレッカ フィリップス エヌ ヴェ 自動ドップラ血流設定を持つ超音波システム
JP2014528267A (ja) * 2011-09-30 2014-10-27 コーニンクレッカ フィリップス エヌ ヴェ サンプルボリュームが移動されるとき、動的に自動化されたドップラーフロー設定を用いる超音波システム
JP2018192117A (ja) * 2017-05-19 2018-12-06 オリンパス株式会社 超音波観測装置、超音波観測装置の作動方法および超音波観測装置の作動プログラム

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02172453A (ja) * 1988-12-26 1990-07-04 Shimadzu Corp 超音波診断装置
JPH05277111A (ja) * 1992-04-02 1993-10-26 Toshiba Corp 超音波血流イメージング装置
JPH06269453A (ja) * 1993-03-23 1994-09-27 Aloka Co Ltd 超音波診断装置
JPH09108222A (ja) * 1995-10-18 1997-04-28 Aloka Co Ltd 超音波ドプラ診断装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02172453A (ja) * 1988-12-26 1990-07-04 Shimadzu Corp 超音波診断装置
JPH05277111A (ja) * 1992-04-02 1993-10-26 Toshiba Corp 超音波血流イメージング装置
JPH06269453A (ja) * 1993-03-23 1994-09-27 Aloka Co Ltd 超音波診断装置
JPH09108222A (ja) * 1995-10-18 1997-04-28 Aloka Co Ltd 超音波ドプラ診断装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014528266A (ja) * 2011-09-30 2014-10-27 コーニンクレッカ フィリップス エヌ ヴェ 自動ドップラ血流設定を持つ超音波システム
JP2014528267A (ja) * 2011-09-30 2014-10-27 コーニンクレッカ フィリップス エヌ ヴェ サンプルボリュームが移動されるとき、動的に自動化されたドップラーフロー設定を用いる超音波システム
JP2013223673A (ja) * 2012-04-23 2013-10-31 Panasonic Corp 超音波送信ビーム形成制御に用いられる方法、装置、およびソフトウェアプログラム
JP2018192117A (ja) * 2017-05-19 2018-12-06 オリンパス株式会社 超音波観測装置、超音波観測装置の作動方法および超音波観測装置の作動プログラム

Also Published As

Publication number Publication date
JP5409311B2 (ja) 2014-02-05

Similar Documents

Publication Publication Date Title
US8684934B2 (en) Adaptively performing clutter filtering in an ultrasound system
JP6305699B2 (ja) 超音波診断装置及び超音波イメージングプログラム
JP6222811B2 (ja) 超音波診断装置及び画像処理装置
JP6188594B2 (ja) 超音波診断装置、画像処理装置及び画像処理方法
JP5366678B2 (ja) 3次元超音波診断装置及びプログラム
JP6227926B2 (ja) 超音波イメージング・システム
US10835200B2 (en) Ultrasound diagnosis apparatus
JP5409311B2 (ja) 超音波診断装置
US10575823B2 (en) Medical diagnostic apparatus, medical image processing apparatus and medical image processing method
JP6687336B2 (ja) 超音波診断装置及び制御プログラム
JP5388440B2 (ja) 超音波診断装置、超音波画像処理装置、及び超音波画像処理プログラム
US11844651B2 (en) Analyzing apparatus and analyzing method using distribution information
JP6651405B2 (ja) 超音波診断装置及びプログラム
JP6193449B1 (ja) 超音波診断装置
JP2013212419A (ja) 超音波診断装置、超音波画像処理装置、及び超音波画像処理プログラム
JP5337446B2 (ja) 超音波画像診断装置、画像処理装置及び超音波画像診断支援プログラム
JP2011143141A (ja) 超音波診断装置
JP5074963B2 (ja) 超音波診断装置
JP2000316861A (ja) 3次元画像作成方法および超音波診断装置
US10709421B2 (en) Ultrasound diagnostic apparatus
JP2009112491A (ja) 超音波診断装置
JP7011399B2 (ja) 超音波診断装置およびその制御方法
JP2024034087A (ja) 超音波診断装置及び血流画像データ生成方法
JP2023104734A (ja) 超音波診断装置、及び画像処理装置
JP2010240431A (ja) カラーmモード映像および輝度mモード映像を提供する超音波システムおよび方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121101

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130927

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131029

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131105

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees