JP2011117145A - Method for attaching viscoelastic damper, and building - Google Patents

Method for attaching viscoelastic damper, and building Download PDF

Info

Publication number
JP2011117145A
JP2011117145A JP2009273740A JP2009273740A JP2011117145A JP 2011117145 A JP2011117145 A JP 2011117145A JP 2009273740 A JP2009273740 A JP 2009273740A JP 2009273740 A JP2009273740 A JP 2009273740A JP 2011117145 A JP2011117145 A JP 2011117145A
Authority
JP
Japan
Prior art keywords
steel
wall
steel beam
viscoelastic damper
earthquake
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009273740A
Other languages
Japanese (ja)
Other versions
JP5486278B2 (en
Inventor
Naoyuki Takayama
直行 高山
Hitoshi Shimizu
斉 清水
Hiroshi Une
博志 畝
Hiroyuki Ueda
博之 上田
Shunji Yamamoto
俊司 山本
Motomu Sakai
求 酒井
Yasuaki Takada
泰彰 高田
Toshiaki Yude
俊明 弓手
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Komuten Co Ltd
Original Assignee
Takenaka Komuten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Komuten Co Ltd filed Critical Takenaka Komuten Co Ltd
Priority to JP2009273740A priority Critical patent/JP5486278B2/en
Publication of JP2011117145A publication Critical patent/JP2011117145A/en
Application granted granted Critical
Publication of JP5486278B2 publication Critical patent/JP5486278B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for attaching a viscoelastic damper, which can reduce a fluctuation in clearance while suppressing a deterioration in the performance of the viscoelastic damper. <P>SOLUTION: Ends of an upper steel-frame beam 22 are welded to steel-frame columns 18 and 20 in a state in which the upper steel-frame beam 22 and a corrugated steel plate earthquake-resisting wall 14 are coupled together by means of a temporary member 68, respectively. In other words, the ends of the upper steel-frame beam 22 are welded to the steel-frame columns 18 and 20 in the state in which the upper steel-frame beam 22 and the corrugated steel plate earthquake-resisting wall 14 are coupled together by means of the temporary member 68 in place of the viscoelastic damper 16, respectively. After that, the temporary member 68 is removed, and the viscoelastic damper 16 is attached between the upper steel-frame beam 22 and the corrugated steel plate earthquake-resisting wall 14. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、粘弾性ダンパの取付方法、及び建物に関する。   The present invention relates to a viscoelastic damper mounting method and a building.

架構に設けられる鋼材ダンパとしては、鋼板を用いた鋼製耐震壁や、波形鋼板を用いた鋼製耐震壁(例えば、特許文献1)が知られている。   As a steel damper provided in a frame, a steel earthquake resistant wall using a steel plate and a steel earthquake resistant wall using a corrugated steel plate (for example, Patent Document 1) are known.

また、粘弾性ダンパと鋼材ダンパを直列に連結した複合型ダンパが提案されている(例えば、特許文献2)。この複合型ダンパには、粘弾性ダンパの変形量が所定値以上になったときに、粘弾性ダンパの変形量を制限して鋼材ダンパに外力を伝達するストッパが設けられている。従って、風や交通振動等の小振幅振動を粘弾性ダンパで効率的に吸収できる一方で、大地震等の大振幅振動に対しては高剛性の鋼材ダンパに外力を伝達することにより、架構の過大変形を抑制することができる。   A composite damper in which a viscoelastic damper and a steel damper are connected in series has been proposed (for example, Patent Document 2). This composite damper is provided with a stopper that restricts the deformation amount of the viscoelastic damper and transmits an external force to the steel damper when the deformation amount of the viscoelastic damper exceeds a predetermined value. Therefore, small-amplitude vibrations such as wind and traffic vibrations can be efficiently absorbed by the viscoelastic damper, while large-amplitude vibrations such as large earthquakes can be absorbed by transmitting external force to a highly rigid steel damper. Excessive deformation can be suppressed.

ここで、特許文献2には、ストッパの一例としてストッパピンが開示されている。このストッパピンは、当該ストッパピンよりも直径が大きいピン孔を貫通しており、ストッパピンの外壁とピン孔の内壁との間に形成された隙間(クリアランス)の範囲内で粘弾性体が変形可能となっている。このクリアランスは数ミリ程度に設定されるのが一般的であり、施工誤差等によるクリアランスの変動が問題視されている。例えば、鉄骨梁と鉄骨柱とを溶接接合して架構を構築する場合、溶接熱によって鉄骨梁に軸縮みが生じた結果、粘弾性ダンパの取付位置に誤差が生じて、上記したクリアランスが変動する場合がある。この対策として、鉄骨梁と鉄骨柱とを溶接する際に、一時的にクリアランスにスペーサを設けることが考えられる。これにより、クリアランスの変動がスペーサで抑制され、また、溶接熱による鉄骨梁の軸縮みに対して高剛性の鋼材ダンパが抵抗するため、鉄骨梁の軸縮みが抑制される。しかしながら、この対策では以下の問題を解決することができない。即ち、鉄骨梁と鉄骨柱との溶接時に発生する溶接熱が粘弾性ダンパに伝わり、粘弾性体が変形したり、劣化したりする恐れがあり、粘弾性ダンパの性能が低下してしまう。   Here, Patent Document 2 discloses a stopper pin as an example of a stopper. This stopper pin passes through a pin hole having a diameter larger than that of the stopper pin, and the viscoelastic body is deformed within a clearance (clearance) formed between the outer wall of the stopper pin and the inner wall of the pin hole. It is possible. This clearance is generally set to several millimeters, and the fluctuation of the clearance due to construction error or the like is regarded as a problem. For example, when a frame is constructed by welding a steel beam and a steel column to each other, an axial shrinkage occurs in the steel beam due to welding heat, resulting in an error in the mounting position of the viscoelastic damper and the above-described clearance fluctuates. There is a case. As a countermeasure, it is conceivable to temporarily provide a spacer in the clearance when welding the steel beam and the steel column. Thereby, the fluctuation | variation of a clearance is suppressed by a spacer, and since a highly rigid steel damper resists the axial contraction of the steel beam by welding heat, the axial contraction of a steel beam is suppressed. However, this measure cannot solve the following problems. That is, welding heat generated during welding between the steel beam and the steel column is transmitted to the viscoelastic damper, and the viscoelastic body may be deformed or deteriorated, so that the performance of the viscoelastic damper is lowered.

特開2004−19271号公報JP 2004-19271 A 特開2005−264713号公報JP 2005-264713 A

本発明は、上記の事実を考慮し、粘弾性ダンパの性能低下を抑制しつつ、ストッパ手段が鋼製耐震壁に外力を伝達するタイミングの変動を低減することを目的とする。   An object of the present invention is to reduce fluctuations in timing at which the stopper means transmits an external force to the steel seismic wall while suppressing the performance degradation of the viscoelastic damper in consideration of the above facts.

請求項1に記載の粘弾性ダンパの取付方法は、第1部材と、第2部材と、前記第1部材と前記第2部材との間で保持される粘弾性体と、前記第1部材と前記第2部材との水平方向の相対変位量が所定値以上になったときに、前記第1部材と前記第2部材との水平方向の相対変位を規制するストッパ手段と、を有する粘弾性ダンパを架構に取り付ける粘弾性ダンパの取付方法であって、上部鉄骨梁と鋼製耐震壁との間に設けられた仮部材で、該上部鉄骨梁と該鋼製耐震壁とを連結する仮部材連結工程と、前記鋼製耐震壁が連結された前記上部鉄骨梁を鉄骨柱の間に配置し、該鉄骨柱に前記上部鉄骨梁の端部をそれぞれ溶接すると共に、前記鉄骨柱の間に架設された下部鉄骨梁に前記鋼製耐震壁を接合して前記架構を構築する架構構築工程と、前記仮部材を撤去すると共に、前記上部鉄骨梁と前記鋼製耐震壁との間に前記粘弾性ダンパを配置し、前記第1部材及び前記第2部材をそれぞれ前記上部鉄骨梁及び前記鋼製耐震壁に固定する粘弾性ダンパ取付工程と、を備えている。   The attachment method of the viscoelastic damper according to claim 1 includes a first member, a second member, a viscoelastic body held between the first member and the second member, and the first member. A viscoelastic damper having stopper means for restricting the relative displacement in the horizontal direction between the first member and the second member when the horizontal relative displacement with the second member is equal to or greater than a predetermined value. A viscoelastic damper is attached to a frame by a temporary member provided between the upper steel beam and the steel earthquake-resistant wall, and connecting the upper steel beam and the steel earthquake-resistant wall. And placing the upper steel beam to which the steel seismic wall is connected between steel columns, welding the ends of the upper steel beams to the steel columns, respectively, and spanning between the steel columns A frame construction process for constructing the frame by joining the steel seismic wall to the lower steel beam The temporary member is removed, and the viscoelastic damper is disposed between the upper steel beam and the steel shear wall, and the first member and the second member are respectively the upper steel beam and the steel earthquake wall. And a viscoelastic damper mounting step for fixing to the base plate.

上記の構成によれば、上部鉄骨梁と鋼製耐震壁とを仮部材で連結した状態で、上部鉄骨梁の端部を鉄骨柱にそれぞれ溶接する。即ち、先ず、粘弾性ダンパの替わりに仮部材で上部鉄骨梁と鋼製耐震壁とを連結した状態で、上部鉄骨梁の端部を鉄骨柱にそれぞれ溶接する。その後、仮部材を撤去し、上部鉄骨梁と鋼製耐震の間に弾性ダンパを配置して第1部材及び第2部材を上部鉄骨梁及び鋼製耐震壁にそれぞれ固定する。従って、溶接熱が粘弾性ダンパに伝わることがなく、粘弾性体の変形や劣化が防止される。   According to said structure, the edge part of an upper steel beam is each welded to a steel column in the state which connected the upper steel beam and the steel earthquake-resistant wall with the temporary member. That is, first, in place of the viscoelastic damper, the end of the upper steel beam is welded to the steel column in a state where the upper steel beam and the steel seismic wall are connected by a temporary member. Thereafter, the temporary member is removed, and an elastic damper is disposed between the upper steel beam and the steel seismic resistance to fix the first member and the second member to the upper steel beam and the steel seismic wall, respectively. Therefore, welding heat is not transmitted to the viscoelastic damper, and deformation and deterioration of the viscoelastic body are prevented.

また、上部鉄骨梁と鋼製耐震壁とを仮部材で連結した状態で、上部鉄骨梁の端部を鉄骨柱にそれぞれ溶接するため、溶接熱による上部鉄骨梁の軸縮みが抑制される。即ち、仮部材によって、溶接熱による上部鉄骨梁と鋼製耐震壁との水平方向の相対変位が抑制されるため、第1部材及び第2部材を所定の位置関係で上部鉄骨梁及び鋼製耐震壁に固定することができる。   Further, since the end of the upper steel beam is welded to the steel column in a state where the upper steel beam and the steel seismic wall are connected by a temporary member, axial contraction of the upper steel beam due to welding heat is suppressed. That is, the temporary member suppresses the relative displacement in the horizontal direction between the upper steel beam and the steel seismic wall due to the welding heat, so the first member and the second member are placed in a predetermined positional relationship with the upper steel beam and the steel seismic wall. Can be fixed on the wall.

ここで、粘弾性ダンパでは、第1部材と第2部材の水平方向の相対変位が所定値以上になったときに、ストッパ手段によって第1部材と第2部材との相対変位が規制され、鋼製耐震壁に外力が伝達されるように構成されている。従って、第1部材及び第2部材を上部鉄骨梁及び鋼製耐震壁にそれぞれ固定したときに、第1部材と第2部材との位置関係がずれると、ストッパ手段が水平方向の相対変位を規制する第1部材と第2部材との相対変位量(所定値)が変動し、鋼製耐震壁に外力を伝達するタイミングがずれてしまう。これに対して、本発明は前述したように、第1部材及び第2部材を所定の位置関係で上部鉄骨梁及び鋼製耐震壁に固定することができる。従って、ストッパ手段が水平方向の相対変位を規制する第1部材と第2部材との相対変位量(所定値)の変動を低減することができ、所定範囲内のタイミングで鋼製耐震壁に外力を伝達することができる。   Here, in the viscoelastic damper, when the horizontal relative displacement between the first member and the second member becomes a predetermined value or more, the relative displacement between the first member and the second member is restricted by the stopper means, and the steel An external force is transmitted to the seismic wall. Therefore, when the first member and the second member are fixed to the upper steel beam and the steel shear wall, if the positional relationship between the first member and the second member is shifted, the stopper means restricts the relative displacement in the horizontal direction. The relative displacement amount (predetermined value) between the first member and the second member to be changed fluctuates, and the timing for transmitting the external force to the steel earthquake resistant wall is shifted. On the other hand, as described above, according to the present invention, the first member and the second member can be fixed to the upper steel beam and the steel earthquake resistant wall in a predetermined positional relationship. Therefore, the fluctuation of the relative displacement amount (predetermined value) between the first member and the second member for which the stopper means regulates the relative displacement in the horizontal direction can be reduced, and the external force is applied to the steel earthquake resistant wall at a timing within the predetermined range. Can be transmitted.

請求項2に記載の粘弾性ダンパの取付方法は、請求項1に記載の粘弾性ダンパの取付方法において、前記上部鉄骨梁の上にスラブが構築された後に、前記粘弾性ダンパ取付工程を行う。   The viscoelastic damper mounting method according to claim 2 is the viscoelastic damper mounting method according to claim 1, wherein the viscoelastic damper mounting step is performed after a slab is constructed on the upper steel beam. .

上記の構成によれば、上部鉄骨梁の上にスラブが構築された後に、粘弾性ダンパ取付工程を行う。即ち、上部鉄骨梁と鋼製耐震壁とを仮部材で連結した状態で、上部鉄骨梁の上にスラブを構築する。   According to said structure, after a slab is constructed | assembled on an upper steel beam, a viscoelastic damper attachment process is performed. That is, the slab is constructed on the upper steel beam in a state where the upper steel beam and the steel earthquake resistant wall are connected by the temporary member.

ここで、上部鉄骨梁の上にスラブが構築されると、スラブの重量によって上部鉄骨梁が撓む結果、上部鉄骨梁の湾曲した部位が鋼製耐震壁に対して水平方向へ相対変位しようとする。しかしながら、本発明では、上部鉄骨梁と鋼製耐震壁とを仮部材で連結しているため、撓みによる上部鉄骨梁と鋼製耐震壁との水平方向の相対変位が抑制される。従って、第1部材及び第2部材を所定の位置関係で上部鉄骨梁及び鋼製耐震壁に固定することができ、ストッパ手段が水平方向の相対変位を規制する第1部材と第2部材との相対変位量(所定値)の変動を低減することができる。   Here, when the slab is built on the upper steel beam, the upper steel beam bends due to the weight of the slab. As a result, the curved part of the upper steel beam tends to be displaced relative to the steel shear wall in the horizontal direction. To do. However, in the present invention, since the upper steel beam and the steel earthquake resistant wall are connected by the temporary member, the horizontal relative displacement between the upper steel beam and the steel earthquake resistant wall due to the bending is suppressed. Therefore, the first member and the second member can be fixed to the upper steel beam and the steel shear wall in a predetermined positional relationship, and the stopper means regulates the relative displacement in the horizontal direction between the first member and the second member. Variations in the relative displacement amount (predetermined value) can be reduced.

請求項3に記載の粘弾性ダンパの取付方法は、請求項1又は請求項2に記載の粘弾性ダンパの取付方法において、前記鋼製耐震壁と前記上部鉄骨梁との間には、前記鋼製耐震壁と前記上部鉄骨梁とを連結し、該上部鉄骨梁から前記仮部材へ導入される鉛直荷重を低減する支持部材が設けられる。   The viscoelastic damper mounting method according to claim 3 is the viscoelastic damper mounting method according to claim 1 or 2, wherein the steel steel shear wall and the upper steel beam are interposed between the steel steel beams. A support member is provided for connecting the seismic resistant wall and the upper steel beam to reduce the vertical load introduced from the upper steel beam to the temporary member.

上記の構成によれば、鋼製耐震壁と上部鉄骨梁との間には、鋼製耐震壁と上部鉄骨梁とを連結する支持部材が設けられている。この支持部材によって、上部鉄骨梁から仮部材へ導入される鉛直荷重が低減されている。従って、仮部材の撤去作業が容易となるため、施工性が向上する。   According to said structure, the supporting member which connects a steel earthquake-resistant wall and an upper steel beam is provided between the steel earthquake-resistant wall and an upper steel beam. This support member reduces the vertical load introduced from the upper steel beam to the temporary member. Accordingly, the temporary member can be easily removed, so that workability is improved.

また、支持部材によって上部鉄骨梁の撓みが抑制されるため、撓みによる上部鉄骨梁と鋼製耐震壁との水平方向の相対変位が抑制されると共に、上部鉄骨梁と鋼製耐震壁との間隔(鉛直方向の相対変位)の変動が抑制される。従って、第1部材及び第2部材を所定の位置関係で上部鉄骨梁及び鋼製耐震壁に固定することができる。よって、ストッパ手段が水平方向の相対変位を規制する第1部材と第2部材との相対変位量(所定値)の変動を低減することができる。   In addition, since the deflection of the upper steel beam is suppressed by the support member, the horizontal relative displacement between the upper steel beam and the steel shear wall due to the deflection is suppressed, and the distance between the upper steel beam and the steel shear wall is suppressed. Variations in (vertical relative displacement) are suppressed. Therefore, the first member and the second member can be fixed to the upper steel beam and the steel earthquake resistant wall in a predetermined positional relationship. Therefore, the fluctuation | variation of the relative displacement amount (predetermined value) of the 1st member and 2nd member which a stopper means regulates the relative displacement of a horizontal direction can be reduced.

請求項4に記載の粘弾性ダンパの取付方法は、請求項3に記載の粘弾性ダンパの取付方法において、前記鋼製耐震壁が、鋼板と、該鋼板の上端部に設けられ前記仮部材が連結される端部フランジと、前記鋼板の板面に設けられ上下方向に延びる補剛リブと、を備え、前記支持部材が、前記補剛リブの上方に設けられる。   The attachment method of the viscoelastic damper according to claim 4 is the attachment method of the viscoelastic damper according to claim 3, wherein the steel earthquake resistant wall is provided on a steel plate and an upper end portion of the steel plate, and the temporary member is provided. An end flange to be connected and a stiffening rib provided on the plate surface of the steel plate and extending in the vertical direction are provided, and the support member is provided above the stiffening rib.

上記の構成によれば、鋼製耐震壁を構成する鋼板の板面には、上下方向に延びる補剛リブが設けられている。この補剛リブによって鋼板に面外剛性が付与され、鋼製耐震壁のせん断座屈耐力が大きくされている。   According to said structure, the stiffening rib extended in an up-down direction is provided in the plate | board surface of the steel plate which comprises a steel earthquake-resistant wall. This stiffening rib imparts out-of-plane rigidity to the steel plate, increasing the shear buckling strength of the steel earthquake resistant wall.

ここで、補剛リブの上方に支持部材を設けたことにより、即ち、補剛リブに連続するように支持部材を設けたことにより、上部鉄骨梁と鋼製耐震壁との間隔(鉛直方向の相対変位)の変動が抑制されると共に、支持部材によって補剛リブが拘束される。従って、鋼製耐震壁のせん断座屈耐力が大きくなるため、鋼製耐震壁の耐震性能、制振性能が向上する。   Here, by providing the support member above the stiffening rib, that is, by providing the support member so as to be continuous with the stiffening rib, the distance between the upper steel beam and the steel seismic wall (in the vertical direction). The fluctuation of the relative displacement is suppressed, and the stiffening rib is restrained by the support member. Therefore, since the shear buckling strength of the steel shear wall is increased, the seismic performance and damping performance of the steel shear wall are improved.

請求項5に記載の粘弾性ダンパの取付方法は、請求項1〜4の何れか1項に記載の粘弾性ダンパの取付方法において、前記第1部材及び前記第2部材が、前記架構の面外方向に対向し、前記ストッパ手段が、前記第1部材及び前記第2部材にそれぞれ形成された貫通孔に貫通されると共に、該貫通孔の内壁との間に隙間を形成するピン部材を有し、前記貫通孔の内壁には、前記第1部材と前記第2部材との水平方向の相対変位量が所定値以上になったときに前記ピン部材が当たる鉛直面が形成されている。   The viscoelastic damper mounting method according to claim 5 is the viscoelastic damper mounting method according to any one of claims 1 to 4, wherein the first member and the second member are surfaces of the frame. Opposing to the outside, the stopper means has a pin member that penetrates through a through hole formed in each of the first member and the second member, and forms a gap between the inner wall of the through hole. The inner wall of the through hole is formed with a vertical surface against which the pin member comes into contact when the horizontal relative displacement amount between the first member and the second member becomes a predetermined value or more.

上記の構成によれば、ストッパ手段が、ピン部材を有している。ピン部材は、第1部材及び第2部材にそれぞれ形成された貫通孔に貫通されている。また、ピン部材と貫通孔の内壁との間には隙間が形成されており、貫通孔内をピン部材が移動可能となっている。これにより、貫通孔が許容する範囲内で第1部材と第2部材との相対変位が許容され、第1部材と第2部材との間で保持された粘弾性体が変形可能となっている。一方、ピン部材が貫通孔の内壁に当たると、第1部材と第2部材との水平方向の相対変位が規制され、鋼製耐震壁に外力が伝達されるように構成されている。   According to said structure, the stopper means has a pin member. The pin member is penetrated by a through hole formed in each of the first member and the second member. In addition, a gap is formed between the pin member and the inner wall of the through hole, and the pin member can move within the through hole. As a result, the relative displacement between the first member and the second member is allowed within the range allowed by the through hole, and the viscoelastic body held between the first member and the second member can be deformed. . On the other hand, when the pin member hits the inner wall of the through hole, the horizontal relative displacement between the first member and the second member is restricted, and an external force is transmitted to the steel earthquake resistant wall.

ここで、貫通孔には、第1部材と第2部材との水平方向の相対変位量が所定値以上となったときに、ピン部材が当たる鉛直面が形成されている。従って、上部鉄骨梁の撓みや、鉄骨柱の軸縮みにより、ピン部材が貫通孔内を上下方向へ移動しても、鉛直面とピン部材との距離が増減しない。従って、ストッパ手段が水平方向の相対変位を規制する第1部材と第2部材との相対変位量(所定値)の変動を低減することができる。   Here, the through-hole is formed with a vertical surface against which the pin member hits when the horizontal relative displacement amount between the first member and the second member becomes a predetermined value or more. Therefore, the distance between the vertical plane and the pin member does not increase or decrease even if the pin member moves up and down in the through hole due to the deflection of the upper steel beam or the axial contraction of the steel column. Therefore, the fluctuation | variation of the relative displacement amount (predetermined value) of the 1st member and 2nd member which a stopper means regulates the relative displacement of a horizontal direction can be reduced.

請求項6に記載の粘弾性ダンパの取付方法は、請求項4に記載の粘弾性ダンパの取付方法において、前記鋼板が、波形鋼板である。   The attachment method of the viscoelastic damper according to claim 6 is the attachment method of the viscoelastic damper according to claim 4, wherein the steel plate is a corrugated steel plate.

上記の構成によれば、鋼板が波形鋼板とされている。波形鋼板は、平板状の鋼板と比較して変形性能(せん断変形性能)に優れ、せん断座屈耐力が大きいという機械的性質を有している。従って、波形鋼板のせん断座屈を抑制する補剛リブ等の板厚や数を減らすことができる。また、波形鋼板は、折り筋と直交する方向の剛性が弱いというアコーディオン効果を有している。従って、波形鋼板の折り筋を横方向にして鋼製耐震壁を架構に取り付けた場合、平板状の鋼板と比較して、上部鉄骨梁及び下部鉄骨梁の曲げ変形を拘束する拘束力が減少するため、架構の変形性能が向上する。また、上部鉄骨梁から波形鋼板へ導入される軸力が小さくなるため、鋼製耐震壁の耐震性能、制振性能が向上する。   According to said structure, the steel plate is made into the corrugated steel plate. The corrugated steel sheet has mechanical properties such as excellent deformation performance (shear deformation performance) and large shear buckling strength compared to a flat steel plate. Accordingly, it is possible to reduce the thickness and number of stiffening ribs that suppress the shear buckling of the corrugated steel sheet. Further, the corrugated steel sheet has an accordion effect that the rigidity in the direction perpendicular to the crease is weak. Therefore, when the steel earthquake resistant wall is attached to the frame with the crease of the corrugated steel sheet in the horizontal direction, the restraining force that restrains the bending deformation of the upper steel beam and the lower steel beam is reduced compared to the flat steel plate. Therefore, the deformation performance of the frame is improved. In addition, since the axial force introduced from the upper steel beam to the corrugated steel sheet is reduced, the seismic performance and damping performance of the steel seismic wall are improved.

請求項7に記載の建物は、一対の鉄骨柱と、該鉄骨柱の間に架設された上部鉄骨梁及び下部鉄骨梁とから構成された架構と、前記上部鉄骨梁と前記下部鉄骨梁の間に配置され、該下部鉄骨梁に接合された鋼製耐震壁と、請求項1〜6の何れか1項に記載の粘弾性ダンパの取付方法によって、前記上部鉄骨梁と前記鋼製耐震壁との間に取り付けられた粘弾性ダンパと、を備えている。   The building according to claim 7 is a frame composed of a pair of steel columns, an upper steel beam and a lower steel beam installed between the steel columns, and between the upper steel beam and the lower steel beam. A steel earthquake-resistant wall disposed on the lower steel beam and joined by the viscoelastic damper according to any one of claims 1 to 6, and the upper steel beam and the steel earthquake-resistant wall And a viscoelastic damper attached between the two.

上記の構成によれば、請求項1〜6の何れか1項に記載の粘弾性ダンパの取付方法によって、上部鉄骨梁と鋼製耐震壁との間に粘弾性ダンパを取り付けることにより、鉄骨柱と上部鉄骨梁の端部とを溶接する際に発生する溶接熱が、粘弾性ダンパに伝わることがなく、粘弾性体の変形や劣化が防止される。   According to said structure, a steel column is attached by attaching a viscoelastic damper between an upper steel beam and a steel earthquake-resistant wall by the attachment method of the viscoelastic damper of any one of Claims 1-6. The welding heat generated when welding the end of the upper steel beam is not transmitted to the viscoelastic damper, and deformation and deterioration of the viscoelastic body are prevented.

また、上部鉄骨梁と鋼製耐震壁とを仮部材で連結した状態で、上部鉄骨梁の端部を鉄骨柱にそれぞれ溶接するため、上部鉄骨梁と鋼製耐震壁との水平方向の相対変位が抑制される。これにより、第1部材及び第2部材を所定の位置関係で上部鉄骨梁及び鋼製耐震壁に固定することができる。従って、ストッパ手段が水平方向の相対変位を規制する第1部材と第2部材との相対変位量(所定値)の変動を低減することができる。よって、建物の耐震性能、制振性能が向上する。   In addition, the end of the upper steel beam is welded to the steel column in a state where the upper steel beam and the steel shear wall are connected with a temporary member, so that the horizontal relative displacement between the upper steel beam and the steel shear wall Is suppressed. Thereby, the first member and the second member can be fixed to the upper steel beam and the steel earthquake-resistant wall in a predetermined positional relationship. Therefore, the fluctuation | variation of the relative displacement amount (predetermined value) of the 1st member and 2nd member which a stopper means regulates the relative displacement of a horizontal direction can be reduced. Therefore, the seismic performance and damping performance of the building are improved.

本発明は、上記の構成としたので、粘弾性ダンパの性能低下を抑制しつつ、ストッパ手段が鋼製耐震壁に外力を伝達するタイミングの変動を低減できる。   Since this invention set it as said structure, the fluctuation | variation of the timing which a stopper means transmits external force to a steel earthquake-resistant wall can be reduced, suppressing the performance fall of a viscoelastic damper.

本発明の第1実施形態に係る粘弾性ダンパが取り付けられた架構を示す立面図である。It is an elevation view which shows the frame to which the viscoelastic damper which concerns on 1st Embodiment of this invention was attached. 図1の1−1線断面図である。FIG. 1 is a sectional view taken along line 1-1 of FIG. 図1の2−2線断面図である。FIG. 2 is a sectional view taken along line 2-2 of FIG. 第1実施形態に係る粘弾性ダンパの分解斜視図である。It is a disassembled perspective view of the viscoelastic damper which concerns on 1st Embodiment. 第1実施形態に係る粘弾性ダンパの作動状態を示す立面図であり、(A)は作動前の状態を示し、(B)は作動後の状態を示している。It is an elevation which shows the operation state of the viscoelastic damper concerning a 1st embodiment, (A) shows the state before an operation, and (B) shows the state after an operation. (A)は第1実施形態に係る粘弾性ダンパの取付方法を説明する図であり、倒れた波形鋼板耐震壁を上から見た図であり、(B)は第1実施形態に係る仮部材を示す斜視図である。(A) is a figure explaining the attachment method of the viscoelastic damper which concerns on 1st Embodiment, and is the figure which looked at the corrugated steel plate earthquake-resistant wall which fell, (B) is the temporary member which concerns on 1st Embodiment FIG. 第1実施形態に係る粘弾性ダンパの取付方法を説明する図であり、施工中の架構を示す立面図である。It is a figure explaining the attachment method of the viscoelastic damper which concerns on 1st Embodiment, and is an elevation view which shows the frame under construction. 第1実施形態に係る粘弾性ダンパの取付方法を説明する図であり、施工中の架構を示す立面図である。It is a figure explaining the attachment method of the viscoelastic damper which concerns on 1st Embodiment, and is an elevation view which shows the frame under construction. 第1実施形態に係る粘弾性ダンパが取り付けられた架構を示す立面図である。It is an elevation view which shows the frame with which the viscoelastic damper which concerns on 1st Embodiment was attached. 第1実施形態に係る粘弾性ダンパの取付方法の変形例を説明する図であり、施工中の架構を示す立面図である。It is a figure explaining the modification of the attachment method of the viscoelastic damper which concerns on 1st Embodiment, and is an elevation view which shows the frame under construction. 第1実施形態に係るストッパ手段の変形例の作動状態を示す立面図であり、(A)は作動前の状態を示し、(B)、(C)は作動後の状態を示している。It is an elevation which shows the operation state of the modification of the stopper means which concerns on 1st Embodiment, (A) shows the state before an operation | movement, (B), (C) has shown the state after an operation | movement. 第1実施形態に係る仮部材の変形例を示す、図1の2−2線断面図に相当する図である。It is a figure equivalent to the 2-2 line sectional view of Drawing 1 showing the modification of the temporary member concerning a 1st embodiment. 第1実施形態に係る仮部材の変形例を示す斜視図である。It is a perspective view which shows the modification of the temporary member which concerns on 1st Embodiment. 本発明の第2実施形態に係る粘弾性ダンパの取付方法を説明する図であり、施工中の架構を示す立面図である。It is a figure explaining the attachment method of the viscoelastic damper which concerns on 2nd Embodiment of this invention, and is an elevation view which shows the frame under construction. 本発明の第2実施形態に係る粘弾性ダンパが取り付けられた架構を示す立面図である。It is an elevation view which shows the frame to which the viscoelastic damper which concerns on 2nd Embodiment of this invention was attached. 本発明の第3実施形態に係る粘弾性ダンパが取り付けられた架構を示す立面図である。It is an elevation view which shows the frame to which the viscoelastic damper which concerns on 3rd Embodiment of this invention was attached. 図16の9−9線断面図である。FIG. 9 is a cross-sectional view taken along line 9-9 in FIG. 16. 本発明の第4実施形態に係る粘弾性ダンパが取り付けられた架構を示す立面図である。It is an elevation view which shows the frame to which the viscoelastic damper which concerns on 4th Embodiment of this invention was attached. 図18の8−8線断面図である。It is the 8-8 sectional view taken on the line of FIG. 第1、第2実施形態に係る波形鋼板の変形例を示す断面図である。It is sectional drawing which shows the modification of the corrugated steel plate which concerns on 1st, 2nd embodiment.

以下、図面を参照しながら、本発明の実施形態について説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

先ず、第1実施形態について説明する。   First, the first embodiment will be described.

<架構の構成>
図1には、波形鋼板耐震壁(鋼製耐震壁)14と粘弾性ダンパ16が取り付けられた建物の架構12が示されている。架構12は、左右の鉄骨柱18、20と、上下の上部鉄骨梁22、下部鉄骨梁24とから構成されたラーメン構造とされている。H形鋼からなる上部鉄骨梁22及び下部鉄骨梁24は、角形鋼管からなる鉄骨柱18、20の間に架設されており、その両端部が鉄骨柱18、20の仕口部に設けられたダイアフラム26にそれぞれ溶接で接合されている。
<Structure of frame>
FIG. 1 shows a building frame 12 to which a corrugated steel shear wall (steel shear wall) 14 and a viscoelastic damper 16 are attached. The frame 12 has a rigid frame structure including left and right steel columns 18 and 20, upper and lower upper steel beams 22, and lower steel beams 24. The upper steel beam 22 and the lower steel beam 24 made of H-shaped steel are installed between steel columns 18 and 20 made of square steel pipes, and both ends thereof are provided at the joints of the steel columns 18 and 20. Each is joined to the diaphragm 26 by welding.

なお、鉄骨柱18、20は角形鋼管に限らず、丸形鋼管、H形鋼、CFT(Concrete Filled Steel Tube)でも良い。また、上部鉄骨梁22及び下部鉄骨梁24もH形鋼に限らず、I形鋼、C形鋼、T形鋼等でも良い。   The steel columns 18 and 20 are not limited to square steel pipes, but may be round steel pipes, H-shaped steels, or CFT (Concrete Filled Steel Tubes). Further, the upper steel beam 22 and the lower steel beam 24 are not limited to H-shaped steel, but may be I-shaped steel, C-shaped steel, T-shaped steel, or the like.

<波形鋼板耐震壁の構成>
図1〜図3に示されるように、波形鋼板耐震壁14は、波形鋼板28及び枠体30を備えている。波形鋼板28は、鋼板を波形形状に折り曲げて形成されており、その折り筋を横(折り筋の向きを横方向)にして架構12の構面に配置されている。波形鋼板28の材料としては、普通鋼(例えば、SM490、SS400等)や低降伏点鋼(例えば、LY225等)等が用いられる。
<Configuration of corrugated steel shear wall>
As shown in FIGS. 1 to 3, the corrugated steel shear wall 14 includes a corrugated steel 28 and a frame 30. The corrugated steel sheet 28 is formed by bending a steel sheet into a corrugated shape, and the corrugated steel sheet 28 is disposed on the construction surface of the frame 12 with the crease being horizontal (the direction of the crease is horizontal). As the material of the corrugated steel plate 28, ordinary steel (for example, SM490, SS400, etc.), low yield point steel (for example, LY225, etc.), or the like is used.

波形鋼板28の左右の端部には、鋼製の縦フランジ32A、32Bがそれぞれ設けられている。この縦フランジ32A、32Bは板状に形成されており、波形鋼板28の左右の縦辺に沿って溶接で接合されている。また、縦フランジ32A、32Bは、波形鋼板28の上方へ延出し、その上端部が上部鉄骨梁22のフランジ22Aに溶接で接合されている。また、縦フランジ32A、32Bの延出量は、後述する仮部材68の高さよりも大きくされている。これにより、波形鋼板耐震壁14を立てたときに、上部鉄骨梁22が横フランジ34Aによって支持され、上部鉄骨梁22から仮部材68へ導入される鉛直荷重が低減されている。   Steel vertical flanges 32 </ b> A and 32 </ b> B are respectively provided at the left and right ends of the corrugated steel sheet 28. The vertical flanges 32A and 32B are formed in a plate shape, and are joined by welding along the left and right vertical sides of the corrugated steel sheet 28. The vertical flanges 32 </ b> A and 32 </ b> B extend upward of the corrugated steel plate 28, and the upper end portions thereof are joined to the flange 22 </ b> A of the upper steel beam 22 by welding. Further, the extending amounts of the vertical flanges 32A and 32B are set larger than the height of a temporary member 68 described later. Thus, when the corrugated steel shear wall 14 is erected, the upper steel beam 22 is supported by the lateral flange 34A, and the vertical load introduced from the upper steel beam 22 to the temporary member 68 is reduced.

波形鋼板28の上下の端部には、鋼製の横フランジ34A、34Bがそれぞれ設けられている。この横フランジ34A、34Bは板状に形成されており、波形鋼板28の上下の横辺に沿って溶接で接合されている。横フランジ34A、34Bの端部は縦フランジ32A、32Bに突き当てられ、溶接で接合されている。これらの横フランジ34A、34B及び縦フランジ32A、32Bによって、波形鋼板28の外周を囲む枠体30が構成されている。
なお、縦フランジ32A、32B及び横フランジ34A、34Bは板状に限らず、H形鋼、L形鋼、T形鋼、C形鋼等でも良い。
Steel horizontal flanges 34 </ b> A and 34 </ b> B are provided at upper and lower ends of the corrugated steel sheet 28, respectively. The lateral flanges 34A and 34B are formed in a plate shape, and are joined by welding along the upper and lower lateral sides of the corrugated steel sheet 28. The ends of the horizontal flanges 34A and 34B are abutted against the vertical flanges 32A and 32B and joined by welding. A frame 30 surrounding the outer periphery of the corrugated steel sheet 28 is constituted by the horizontal flanges 34A and 34B and the vertical flanges 32A and 32B.
The vertical flanges 32A and 32B and the horizontal flanges 34A and 34B are not limited to a plate shape, and may be H-shaped steel, L-shaped steel, T-shaped steel, C-shaped steel, or the like.

波形鋼板28の板面には、波形鋼板28に面外剛性を付与する一つ以上(図1では、4つ)の補剛リブ36が設けられている。これらの補剛リブ36は鋼板からなり、水平方向(波形鋼板28の折り筋方向)に間隔を空けて波形鋼板28の板面に溶接されると共に、上下方向(波形鋼板28の折り筋と直交する方向)に延びている。また、補剛リブ36の上端部及び下端部は横フランジ34A、34Bに突き当てられ、溶接で接合されている。   On the plate surface of the corrugated steel plate 28, one or more (four in FIG. 1) stiffening ribs 36 that provide the corrugated steel plate 28 with out-of-plane rigidity are provided. These stiffening ribs 36 are made of a steel plate, and are welded to the plate surface of the corrugated steel plate 28 with an interval in the horizontal direction (folding direction of the corrugated steel plate 28). Direction). Further, the upper end and the lower end of the stiffening rib 36 are abutted against the lateral flanges 34A and 34B and joined by welding.

なお、補剛リブ36は、一方の長辺が波形形状に成形された2つの板材を波形鋼板28の両板面に嵌め合わせて溶接しても良いし、所定位置で分断された波形鋼板28の間に補剛リブ36を配置し、当該補剛リブ36の両面に、分断された波形鋼板28を溶接しても良い。   The stiffening ribs 36 may be welded by fitting two plate members having one long side formed into a corrugated shape to both plate surfaces of the corrugated steel plate 28, or by cutting at a predetermined position. It is also possible to arrange the stiffening ribs 36 between them and weld the corrugated steel plates 28 to the both surfaces of the stiffening ribs 36.

図3に示されるように、波形鋼板28の下端部に接合された横フランジ34Bには、鋼製の接合プレート38が設けられている。この接合プレート38は下部鉄骨梁24に向かって突設されている。一方、下部鉄骨梁24のフランジ24Aには、鋼製の裏当てプレート40が設けられている。この裏当てプレート40は、横フランジ34Bに向かって突設されている。接合プレート38は、裏当てプレート40に重ねられると共に、下部鉄骨梁24のフランジ24Aに突き当てられ、溶接で接合されている。また、裏当てプレート40の上端部は、接合プレート38に溶接で接合されており、これにより、接合プレート38の溶接歪が低減されている。   As shown in FIG. 3, a steel joining plate 38 is provided on the lateral flange 34 </ b> B joined to the lower end portion of the corrugated steel sheet 28. The joining plate 38 protrudes toward the lower steel beam 24. On the other hand, a steel backing plate 40 is provided on the flange 24 </ b> A of the lower steel beam 24. The backing plate 40 protrudes toward the lateral flange 34B. The joining plate 38 is overlaid on the backing plate 40 and is abutted against the flange 24A of the lower steel beam 24 and joined by welding. Further, the upper end portion of the backing plate 40 is joined to the joining plate 38 by welding, whereby the welding distortion of the joining plate 38 is reduced.

なお、裏当てプレート40は適宜省略可能である。また、接合プレート38と下部鉄骨梁24のフランジ24Aとを溶接せずに、接合プレート38と裏当てプレート40とを高力ボルト等で接合しても良い。   The backing plate 40 can be omitted as appropriate. Moreover, you may join the joining plate 38 and the backing plate 40 with a high strength volt | bolt etc., without welding the joining plate 38 and the flange 24A of the lower steel beam 24. FIG.

<粘弾性ダンパの構成>
図1に示されるように、上部鉄骨梁22と波形鋼板耐震壁14との間には、一つ以上(図1では、5つ)の粘弾性ダンパ16が配置されている。図3及び図4に示されるように、粘弾性ダンパ16は、上部鉄骨梁22に固定される一対の外側アングル(第1部材)42と、波形鋼板耐震壁14に固定される一対の内側アングル(第2部材)44と、これらの外側アングル42と内側アングル44の間で保持される粘弾性体46と、を備えている。
<Configuration of viscoelastic damper>
As shown in FIG. 1, one or more (five in FIG. 1) viscoelastic dampers 16 are arranged between the upper steel beam 22 and the corrugated steel shear wall 14. As shown in FIGS. 3 and 4, the viscoelastic damper 16 includes a pair of outer angles (first members) 42 fixed to the upper steel beam 22 and a pair of inner angles fixed to the corrugated steel shear wall 14. (Second member) 44 and a viscoelastic body 46 held between the outer angle 42 and the inner angle 44 are provided.

内側アングル44はL型鋼からなり、フランジ44Bを下にして各々のウェブ44A同士を重ね合わせ、断面T形になるように溶接で接合されている。内側アングル44の両側に配置された外側アングル42はL型鋼からなり、フランジ42Bを上にして各々のウェブ42Aを内側アングル44のウェブ44Aに対向させて配置されている。   The inner angle 44 is made of L-shaped steel, and the webs 44A are overlapped with each other with the flange 44B on the bottom, and are joined by welding so as to have a T-shaped cross section. The outer angles 42 arranged on both sides of the inner angle 44 are made of L-shaped steel, and are arranged such that each web 42A faces the web 44A of the inner angle 44 with the flange 42B facing up.

外側アングル42のウェブ42Aと内側アングル44のウェブ44Aの間には、粘弾性体46がそれぞれ設けられている。即ち、ウェブ42A、44A、及び粘弾性体46が積層されている。粘弾性体46は板状に形成され、ウェブ42A、44Aに加硫接着等で固定されている。これにより、外側アングル42と内側アングル44とが相対変位したときに、粘弾性体46がせん断変形可能になっている。   A viscoelastic body 46 is provided between the web 42A of the outer angle 42 and the web 44A of the inner angle 44, respectively. That is, the webs 42A and 44A and the viscoelastic body 46 are laminated. The viscoelastic body 46 is formed in a plate shape and is fixed to the webs 42A and 44A by vulcanization adhesion or the like. Thereby, when the outer angle 42 and the inner angle 44 are relatively displaced, the viscoelastic body 46 can be subjected to shear deformation.

ウェブ42A、44A及び粘弾性体46には、それぞれ貫通孔48、50、52(図4参照)が同軸又は略同軸上に形成されている。これらの貫通孔48、50、52に貫通された円柱形のストッパピン(ストッパ手段、ピン部材)54の両端部には、ゴムシート等からなる座金56が取り付けられている。また、ストッパピン54の両端部における側周面には環状溝54Aが形成されており、この環状溝54Aに係合される抜止めリング58によってストッパピン54が貫通孔48、50、52から抜け落ちないようになっている。   Through holes 48, 50, 52 (see FIG. 4) are formed coaxially or substantially coaxially in the webs 42A, 44A and the viscoelastic body 46, respectively. A washer 56 made of a rubber sheet or the like is attached to both ends of a cylindrical stopper pin (stopper means, pin member) 54 penetrating through these through holes 48, 50, 52. Further, annular grooves 54A are formed on the side peripheral surfaces at both ends of the stopper pin 54, and the stopper pin 54 is dropped from the through holes 48, 50, 52 by the retaining ring 58 engaged with the annular groove 54A. There is no such thing.

内側アングル44のウェブ44Aに形成された貫通孔48の内径はストッパピン54の外径と同一又は略同一とされている。一方、外側アングル42及び粘弾性体46に形成された貫通孔50、52の内径は、図5に示されるように、ストッパピン54の外径よりも大きくされており、ストッパピン54の水平方向両側の外壁と貫通孔50の内壁との間に隙間D、Dがそれぞれ形成され、ストッパピン54の上下方向両側の外壁と貫通孔50の内壁との間に隙間H、Hが形成されている。これにより、貫通孔50が許容する範囲内で、外側アングル42と内側アングル44とが上下方向及び水平方向(横方向)に相対変位可能となっている。 The inner diameter of the through hole 48 formed in the web 44 </ b> A of the inner angle 44 is the same as or substantially the same as the outer diameter of the stopper pin 54. On the other hand, the inner diameters of the through holes 50 and 52 formed in the outer angle 42 and the viscoelastic body 46 are larger than the outer diameter of the stopper pin 54 as shown in FIG. Clearances D 1 and D 2 are respectively formed between the outer walls on both sides and the inner wall of the through hole 50, and the clearances H 1 and H 2 are formed between the outer walls on both sides of the stopper pin 54 in the vertical direction and the inner wall of the through hole 50. Is formed. Thus, the outer angle 42 and the inner angle 44 can be relatively displaced in the vertical direction and the horizontal direction (lateral direction) within the range allowed by the through hole 50.

なお、外側アングル42と内側アングル44とは、貫通孔50の中心にストッパピン54が位置するように組み立てられ、即ち、隙間D、D及び隙間H、Hがそれぞれ等しくなるように組み立てられる。また、隙間D、D及び隙間H、Hは、粘弾性体46の許容せん断ひずみや、波形鋼板耐震壁14に外力を伝達するタイミングを考慮して適宜設計される。 The outer angle 42 and the inner angle 44 are assembled so that the stopper pin 54 is positioned at the center of the through hole 50, that is, the gaps D 1 and D 2 and the gaps H 1 and H 2 are equal to each other. Assembled. The gaps D 1 and D 2 and the gaps H 1 and H 2 are appropriately designed in consideration of the allowable shear strain of the viscoelastic body 46 and the timing of transmitting external force to the corrugated steel shear wall 14.

また、本実施形態では、外側アングル42に形成された貫通孔50の内径をストッパピン54の外径よりも大きくしたが、外側アングル42及び内側アングル44に形成された貫通孔48、50(図4参照)の少なくとも一方の内径が、ストッパピン54の外径よりも大きければ良い。更に、貫通孔50は、少なくともストッパピン54の水平移動を許容できれば良い。即ち、貫通孔50は円形に限らず、水平方向へ延びる長孔としても良い。   In the present embodiment, the inner diameter of the through hole 50 formed in the outer angle 42 is larger than the outer diameter of the stopper pin 54, but the through holes 48 and 50 formed in the outer angle 42 and the inner angle 44 (see FIG. 4) is sufficient if the inner diameter of at least one of them is larger than the outer diameter of the stopper pin 54. Further, the through hole 50 only needs to allow at least the horizontal movement of the stopper pin 54. That is, the through hole 50 is not limited to a circular shape, and may be a long hole extending in the horizontal direction.

上記のように構成された粘弾性ダンパ16は、外側アングル42のウェブ42Aと内側アングル44のウェブ44Aとが架構12の面外方向(図3において、矢印A方向)に対向するように、上部鉄骨梁22と波形鋼板耐震壁14との間に配置されている。換言すると、外側アングル42及び内側アングル44のウェブ42A、44Aと粘弾性体46の積層方向が、波形鋼板28の面外方向(矢印A方向)になるように、上部鉄骨梁22と波形鋼板耐震壁14との間に配置されている。   The viscoelastic damper 16 configured as described above is arranged so that the web 42A of the outer angle 42 and the web 44A of the inner angle 44 face each other in the out-of-plane direction of the frame 12 (the direction of arrow A in FIG. 3). It arrange | positions between the steel beam 22 and the corrugated steel earthquake-resistant wall 14. In other words, the upper steel beam 22 and the corrugated steel plate are earthquake-proof so that the laminating direction of the webs 42A and 44A of the outer angle 42 and the inner angle 44 and the viscoelastic body 46 is the out-of-plane direction (arrow A direction) of the corrugated steel plate 28. It is arranged between the wall 14.

上部鉄骨梁22のフランジ22A、及び外側アングル42のフランジ42Bには複数のボルト孔61、63(図3参照)がそれぞれ形成されており、これらのボルト孔61、63に貫通されるボルト60及びナット62によって、上部鉄骨梁22に外側アングル42が固定されている。また、波形鋼板耐震壁14の横フランジ34A、及び内側アングル44のフランジ44Bには、複数のボルト孔65、67がそれぞれ形成されており、これらのボルト孔65、67を貫通するボルト64及びナット66によって波形鋼板耐震壁14に内側アングル44が固定されている。なお、上部鉄骨梁22のフランジ22A、及び波形鋼板耐震壁14の横フランジ34Aに形成されたボルト孔61、65は、後述する仮部材68を仮固定するためにも用いられる。   A plurality of bolt holes 61, 63 (see FIG. 3) are formed in the flange 22A of the upper steel beam 22 and the flange 42B of the outer angle 42, respectively. The outer angle 42 is fixed to the upper steel beam 22 by the nut 62. A plurality of bolt holes 65 and 67 are formed in the lateral flange 34A of the corrugated steel shear wall 14 and the flange 44B of the inner angle 44, respectively, and a bolt 64 and a nut passing through these bolt holes 65 and 67 are formed. 66, the inner angle 44 is fixed to the corrugated steel shear wall 14. In addition, the bolt holes 61 and 65 formed in the flange 22A of the upper steel beam 22 and the horizontal flange 34A of the corrugated steel shear wall 14 are also used for temporarily fixing a temporary member 68 described later.

次に、波形鋼板耐震壁、及び粘弾性ダンパの作用について説明する。   Next, the operation of the corrugated steel shear wall and the viscoelastic damper will be described.

図5(A)及び図5(B)に示されるように、風や地震等によって架構12に層間変形が生じると、波形鋼板耐震壁14に対して上部鉄骨梁22が水平方向に相対変位する。この結果、上部鉄骨梁22の固定された外側アングル42と波形鋼板耐震壁14に固定された内側アングル44とが水平方向(矢印B方向)に相対変位する。これにより、外側アングル42のウェブ42Aと内側アングル44のウェブ44Aとの間で保持された粘弾性体46がせん断変形し、振動エネルギーが熱エネルギーに変換されて、架構12の振動が低減される。   As shown in FIGS. 5 (A) and 5 (B), when interlaminar deformation occurs in the frame 12 due to wind, earthquake, or the like, the upper steel beam 22 is relatively displaced in the horizontal direction with respect to the corrugated steel shear wall 14. . As a result, the outer angle 42 fixed to the upper steel beam 22 and the inner angle 44 fixed to the corrugated steel shear wall 14 are relatively displaced in the horizontal direction (arrow B direction). Thereby, the viscoelastic body 46 held between the web 42A of the outer angle 42 and the web 44A of the inner angle 44 undergoes shear deformation, the vibration energy is converted into heat energy, and the vibration of the frame 12 is reduced. .

一方、外側アングル42と内側アングル44の水平方向の相対変位量が大きくなり、ストッパピン54の水平移動量が隙間D又は隙間D(所定値)を越えると、貫通孔50の内壁にストッパピン54の外壁が当たり、外側アングル42と内側アングル44との水平方向の相対変位が規制される。この結果、粘弾性体46のせん断変形が規制されると共に、ストッパピン54を介して内側アングル44、波形鋼板耐震壁14に外力が伝達され、波形鋼板耐震壁14がせん断変形する。これにより、波形鋼板耐震壁14が外力に対して抵抗し、耐震性能を発揮する。また、外力に対して波形鋼板28が降伏するように設計することで、鋼材の履歴エネルギーによって振動エネルギーが吸収され、波形鋼板耐震壁14が制振性能を発揮する。 On the other hand, when the amount of relative displacement in the horizontal direction between the outer angle 42 and the inner angle 44 increases and the horizontal movement amount of the stopper pin 54 exceeds the gap D 1 or the gap D 2 (predetermined value), a stopper is formed on the inner wall of the through hole 50. The outer wall of the pin 54 hits, and the horizontal relative displacement between the outer angle 42 and the inner angle 44 is restricted. As a result, the shear deformation of the viscoelastic body 46 is restricted, and an external force is transmitted to the inner angle 44 and the corrugated steel shear wall 14 via the stopper pin 54, so that the corrugated steel earthquake resistant wall 14 undergoes shear deformation. Thereby, the corrugated steel earthquake resistant wall 14 resists an external force and exhibits earthquake resistance performance. Further, by designing the corrugated steel sheet 28 to yield with respect to the external force, the vibration energy is absorbed by the hysteresis energy of the steel material, and the corrugated steel shear wall 14 exhibits the damping performance.

従って、風や交通振動等の微小振動を粘弾性ダンパ16で吸収、低減する一方で、大地震時に、波形鋼板耐震壁14に外力を伝達して、耐震性能、制振性能を発揮させることができる。よって、耐震性能、制振性能を確保しつつ、居住性能を向上することができる。また、ストッパピン54によって、粘弾性体46のせん断変形が規制されるため、粘弾性体46の破損、損傷が抑制される。従って、粘弾性ダンパ16の長寿命化を図ることができる。   Therefore, while absorbing and reducing minute vibrations such as wind and traffic vibrations by the viscoelastic damper 16, it is possible to transmit the external force to the corrugated steel shear wall 14 in the event of a large earthquake so that the seismic performance and damping performance can be exhibited. it can. Therefore, it is possible to improve the living performance while ensuring the seismic performance and vibration control performance. Further, since the shear deformation of the viscoelastic body 46 is restricted by the stopper pin 54, breakage and damage of the viscoelastic body 46 are suppressed. Therefore, the life of the viscoelastic damper 16 can be extended.

また、ストッパピン54の上下方向両側に形成された隙間H、Hにより、ストッパピン54が上下方向へ移動可能になっている。従って、高層建物において、風や地震等により高層建物に曲げ変形が生じた場合、外側アングル42と内側アングル44とが上下方向に相対変位する。これにより、外側アングル42と内側アングル44との間で保持された粘弾性体46がせん断変形し、振動エネルギーが熱エネルギーに変換されて、架構12の振動が低減される。 Further, the stopper pins 54 are movable in the vertical direction by gaps H 1 and H 2 formed on both sides of the stopper pins 54 in the vertical direction. Accordingly, in a high-rise building, when bending deformation occurs in the high-rise building due to wind, earthquake, or the like, the outer angle 42 and the inner angle 44 are relatively displaced in the vertical direction. As a result, the viscoelastic body 46 held between the outer angle 42 and the inner angle 44 undergoes shear deformation, and vibration energy is converted into thermal energy, and vibration of the frame 12 is reduced.

更に、クリープ変形等の上部鉄骨梁22の撓みや鉄骨柱18、20の軸縮みに起因する外側アングル42と内側アングル44との上下方向の相対変位が、隙間H又は隙間Hで吸収される。従って、外側アングル42と内側アングル44の水平方向の相対変位が阻害されず、即ち、粘弾性体46のせん断変形が阻害されず、粘弾性ダンパ16の振動低減効果の低下が抑制される。 Furthermore, the relative displacement in the vertical direction between the outer angle 42 and the inner angle 44 due to the deflection of the upper steel beam 22 such as creep deformation and the axial contraction of the steel columns 18 and 20 is absorbed by the gap H 1 or the gap H 2. The Therefore, the relative displacement in the horizontal direction between the outer angle 42 and the inner angle 44 is not inhibited, that is, the shear deformation of the viscoelastic body 46 is not inhibited, and the decrease in the vibration reducing effect of the viscoelastic damper 16 is suppressed.

一方、外側アングル42と内側アングル44の上下方向の相対変位量が大きくなり、ストッパピン54の上下移動量が隙間H又は隙間Hを越えると、貫通孔50の内壁にストッパピン54の外壁が当たり、外側アングル42と内側アングル44との上下方向の相対変位が規制される。これにより、粘弾性体46のせん断変形が規制される。従って、粘弾性体46の破損、損傷が抑制され、粘弾性ダンパ16の長寿命化を図ることができる。 On the other hand, when the amount of relative displacement in the vertical direction between the outer angle 42 and the inner angle 44 increases and the amount of vertical movement of the stopper pin 54 exceeds the gap H 1 or the gap H 2 , the outer wall of the stopper pin 54 is added to the inner wall of the through hole 50. And the relative displacement in the vertical direction between the outer angle 42 and the inner angle 44 is restricted. Thereby, the shear deformation of the viscoelastic body 46 is regulated. Therefore, breakage and damage of the viscoelastic body 46 are suppressed, and the life of the viscoelastic damper 16 can be extended.

また、波形鋼板28は、平板状の鋼板と比較して変形性能(せん断変形性能)に優れ、せん断座屈耐力が大きいという機械的性質を有している。従って、波形鋼板28のせん断座屈を抑制する補剛リブ等の板厚や数を減らすことができる。また、波形鋼板28は、折り筋と直交する方向の剛性が弱いというアコーディオン効果を有している。従って、波形鋼板28の折り筋を横方向にして波形鋼板耐震壁14を架構12に取り付けた場合、平板状の鋼板と比較して、上部鉄骨梁22及び下部鉄骨梁24の曲げ変形を拘束する拘束力が減少するため、架構12の変形性能が向上する。また、上部鉄骨梁22から波形鋼板28へ導入される軸力が小さくなるため、波形鋼板耐震壁14の耐震性能、制振性能が向上する。   Further, the corrugated steel sheet 28 has mechanical properties such as excellent deformation performance (shear deformation performance) and large shear buckling strength compared to a flat steel sheet. Therefore, it is possible to reduce the thickness and number of stiffening ribs and the like that suppress the shear buckling of the corrugated steel sheet 28. Further, the corrugated steel sheet 28 has an accordion effect that the rigidity in the direction orthogonal to the folding line is weak. Therefore, when the corrugated steel plate earthquake-resistant wall 14 is attached to the frame 12 with the crease line of the corrugated steel plate 28 in the lateral direction, the bending deformation of the upper steel beam 22 and the lower steel beam 24 is constrained compared to the flat steel plate. Since the restraining force is reduced, the deformation performance of the frame 12 is improved. In addition, since the axial force introduced from the upper steel beam 22 to the corrugated steel sheet 28 is reduced, the seismic performance and damping performance of the corrugated steel earthquake resistant wall 14 are improved.

次に、粘弾性ダンパの取付方法の一例について説明する。   Next, an example of a method for attaching the viscoelastic damper will be described.

先ず、図6(A)に示されるように、上部鉄骨梁22と、波形鋼板耐震壁14と、粘弾性ダンパ16の替わりに一時的に設けられる仮部材68と、を地組みする。具体的には、図示せぬ架台上に、上部鉄骨梁22及び波形鋼板耐震壁14を倒した状態で並べ、上部鉄骨梁22と波形鋼板耐震壁14との間に設けられた一つ以上の(図6(A)では、3つ)の仮部材68で、上部鉄骨梁22と波形鋼板耐震壁14とを連結する(仮部材連結工程)。   First, as shown in FIG. 6A, the upper steel beam 22, the corrugated steel earthquake resistant wall 14, and the temporary member 68 temporarily provided instead of the viscoelastic damper 16 are grounded. Specifically, the upper steel beam 22 and the corrugated steel shear wall 14 are arranged in a tilted manner on a gantry (not shown), and one or more provided between the upper steel beam 22 and the corrugated steel shear wall 14. The upper steel beam 22 and the corrugated steel shear wall 14 are connected by the temporary members 68 (three in FIG. 6A) (temporary member connecting step).

仮部材68は、図6(B)に示されるように所定長さのH形鋼であり、ウェブ68Aと、当該ウェブ68Aの上下の端部に設けられたフランジ68Bと、を備えている。上下のフランジ68Bには複数のボルト孔70、72がそれぞれ形成されている。これらのフランジ68Bは、上部鉄骨梁22のフランジ22A及び波形鋼板耐震壁14の横フランジ34Aにそれぞれ重ねられ、ボルト60、64及びナット62、66により固定される。これにより、上部鉄骨梁22と波形鋼板耐震壁14とが連結され、水平方向の相対変位が規制される。従って、粘弾性ダンパ16を取り付けるための、上部鉄骨梁22のフランジ22Aに形成されたボルト孔61(図3参照)と、波形鋼板耐震壁14の横フランジ34Aに形成されたボルト孔65(図3参照)との水平方向の位置ずれが抑制される。   As shown in FIG. 6B, the temporary member 68 is a H-shaped steel having a predetermined length, and includes a web 68A and flanges 68B provided at upper and lower ends of the web 68A. A plurality of bolt holes 70 and 72 are formed in the upper and lower flanges 68B, respectively. These flanges 68 </ b> B are overlaid on the flange 22 </ b> A of the upper steel beam 22 and the lateral flange 34 </ b> A of the corrugated steel shear wall 14, and are fixed by bolts 60 and 64 and nuts 62 and 66. Thereby, the upper steel beam 22 and the corrugated steel shear wall 14 are connected, and the relative displacement in the horizontal direction is restricted. Therefore, the bolt hole 61 (see FIG. 3) formed in the flange 22A of the upper steel beam 22 and the bolt hole 65 (see FIG. 3) formed in the lateral flange 34A of the corrugated steel shear wall 14 for attaching the viscoelastic damper 16. 3) is suppressed.

なお、仮部材68は、上部鉄骨梁22と波形鋼板耐震壁14の水平方向の相対変位を規制できれば良く、上部鉄骨梁22を支持する必要はない。また、本実施形態では、上部鉄骨梁22の材軸方向の中央部に3つの仮部材68を取り付けたがこれに限らない。仮部材68の数は適宜変更可能である。   The temporary member 68 only needs to be able to regulate the horizontal relative displacement between the upper steel beam 22 and the corrugated steel shear wall 14, and does not need to support the upper steel beam 22. Moreover, in this embodiment, although the three temporary members 68 were attached to the center part of the material axis direction of the upper steel beam 22, it is not restricted to this. The number of temporary members 68 can be changed as appropriate.

また、波形鋼板28の上方へ延出する縦フランジ32A、32Bの端部を、上部鉄骨梁22にそれぞれ溶接する。この縦フランジ32A、32Bによって上部鉄骨梁22が支持され、上部鉄骨梁22から仮部材68へ導入される鉛直荷重が低減される。従って、後述する仮部材68の撤去作業が容易となる。
なお、縦フランジ32A、32Bと上部鉄骨梁22との接合時期は特に制限がなく、必ずしも上部鉄骨梁22と波形鋼板耐震壁14とを地組みする際に接合する必要はない。
Further, the end portions of the vertical flanges 32 </ b> A and 32 </ b> B extending upward of the corrugated steel plate 28 are welded to the upper steel beam 22, respectively. The upper steel beam 22 is supported by the vertical flanges 32A and 32B, and the vertical load introduced from the upper steel beam 22 to the temporary member 68 is reduced. Therefore, the removal work of the temporary member 68 described later becomes easy.
The joining timing of the vertical flanges 32A and 32B and the upper steel beam 22 is not particularly limited, and it is not always necessary to join the upper steel beam 22 and the corrugated steel seismic wall 14 together.

次に、図7及び図8に示されるように、地組みした上部鉄骨梁22、波形鋼板耐震壁14、及び仮部材68を、図示せぬ揚重機等を用いて立てた状態で鉄骨柱18、20の間に配置する。そして、上部鉄骨梁22の両端部をそれぞれ鉄骨柱18、20の仕口部に設けられたダイアフラム26に溶接し、架構12を構築する。更に、波形鋼板耐震壁14の下端部に設けられた横フランジ34Bから突出する接合プレート38を、下部鉄骨梁24に溶接する(架構構築工程)。なお、本実施形態では、接合プレート38に発生する溶接歪を低減するために、接合プレート38を下部鉄骨梁24から突出する裏当てプレート40に重ね合わせて溶接等により仮止めしているが、裏当てプレート40は適宜省略可能である。また、図8中の点線は、溶接箇所を示している。   Next, as shown in FIG. 7 and FIG. 8, the steel column 18 in a state where the grounded upper steel beam 22, the corrugated steel shear wall 14, and the temporary member 68 are stood using a lifting machine (not shown). , 20. Then, both ends of the upper steel beam 22 are welded to diaphragms 26 provided at the joints of the steel columns 18 and 20, respectively, and the frame 12 is constructed. Furthermore, the joining plate 38 which protrudes from the horizontal flange 34B provided in the lower end part of the corrugated steel shear wall 14 is welded to the lower steel beam 24 (frame construction process). In this embodiment, in order to reduce the welding distortion generated in the joining plate 38, the joining plate 38 is superimposed on the backing plate 40 protruding from the lower steel beam 24 and temporarily fixed by welding or the like. The backing plate 40 can be omitted as appropriate. Moreover, the dotted line in FIG. 8 has shown the welding location.

なお、図7に示されるように、鉄骨柱18、20の間には、予め下部鉄骨梁24を架設し、下部鉄骨梁24の両端部をそれぞれ鉄骨柱18、20の仕口部に設けられたダイアフラム26に溶接等で接合しておく。   As shown in FIG. 7, a lower steel beam 24 is installed in advance between the steel columns 18 and 20, and both ends of the lower steel beam 24 are provided at the joints of the steel columns 18 and 20, respectively. The diaphragm 26 is joined by welding or the like.

次に、図9に示されるように、ボルト60及びナット62を取り外して仮部材68を撤去し、上部鉄骨梁22と波形鋼板耐震壁14との間に一つ以上(図9では、5つ)の粘弾性ダンパ16を配置する。そして、粘弾性ダンパ16の外側アングル42を上部鉄骨梁22にボルト60及びナット62で固定すると共に、内側アングル44を波形鋼板耐震壁14にボルト64及びナット66で固定する(粘弾性ダンパ取付工程)。この際、全て(本実施形態では、3つ)の仮部材68を撤去してから粘弾性ダンパ16を配置しても良いし、仮部材68と粘弾性ダンパ16とを順次交換しても良い。また、上部鉄骨梁22と粘弾性ダンパ16との間に隙間ができる場合、当該隙間に隙間部材(フィラープレート)等を入れて適宜調整すれば良い。   Next, as shown in FIG. 9, the bolt 60 and the nut 62 are removed and the temporary member 68 is removed, and one or more (five in FIG. 9, between the upper steel beam 22 and the corrugated steel shear wall 14). The viscoelastic damper 16) is disposed. Then, the outer angle 42 of the viscoelastic damper 16 is fixed to the upper steel beam 22 with bolts 60 and nuts 62, and the inner angle 44 is fixed to the corrugated steel shear wall 14 with bolts 64 and nuts 66 (viscoelastic damper mounting step). ). At this time, the viscoelastic damper 16 may be disposed after removing all (three in the present embodiment) temporary members 68, or the temporary member 68 and the viscoelastic damper 16 may be sequentially replaced. . Further, when a gap is formed between the upper steel beam 22 and the viscoelastic damper 16, a gap member (filler plate) or the like may be appropriately adjusted in the gap.

ここで、本実施形態では、波形鋼板耐震壁14、上部鉄骨梁22、及び仮部材68を地組みするため、即ち、倒した状態で波形鋼板耐震壁14と上部鉄骨梁22とを仮部材68で連結するため、自重による各部材の変形が抑制される。従って、波形鋼板耐震壁14、上部鉄骨梁22、及び仮部材68の位置決めが容易となる。更に、転倒防止用のサポートが不要となるため、施工性が向上する。   Here, in this embodiment, in order to lay the corrugated steel shear wall 14, the upper steel beam 22, and the temporary member 68, that is, the corrugated steel earthquake resistant wall 14 and the upper steel beam 22 in the tilted state, the temporary member 68. Therefore, deformation of each member due to its own weight is suppressed. Therefore, positioning of the corrugated steel shear wall 14, the upper steel beam 22, and the temporary member 68 is facilitated. Furthermore, since the support for preventing the fall is unnecessary, the workability is improved.

また、上部鉄骨梁22と波形鋼板耐震壁14とを仮部材68で連結した状態で、上部鉄骨梁22の両端部を鉄骨柱18、20の仕口部に設けられたダイアフラム26にそれぞれ溶接する。即ち、先ず、粘弾性ダンパ16の替わりに仮部材68で上部鉄骨梁22と波形鋼板耐震壁14とを連結した状態で、上部鉄骨梁22の端部を鉄骨柱18、20の仕口に設けられたダイアフラム26にそれぞれ溶接する。その後、仮部材68を撤去し、上部鉄骨梁22と波形鋼板耐震壁14との間に粘弾性ダンパ16を取り付ける。従って、溶接熱が粘弾性体46に伝わることがなく、粘弾性体46の変形や劣化が防止される。   Further, in a state where the upper steel beam 22 and the corrugated steel shear wall 14 are connected by the temporary member 68, both ends of the upper steel beam 22 are welded to the diaphragms 26 provided at the joint portions of the steel columns 18 and 20, respectively. . That is, first, the upper steel beam 22 and the corrugated steel shear wall 14 are connected by the temporary member 68 instead of the viscoelastic damper 16, and the end of the upper steel beam 22 is provided at the joint of the steel columns 18 and 20. Each diaphragm 26 is welded. Thereafter, the temporary member 68 is removed, and the viscoelastic damper 16 is attached between the upper steel beam 22 and the corrugated steel shear wall 14. Therefore, welding heat is not transmitted to the viscoelastic body 46, and deformation and deterioration of the viscoelastic body 46 are prevented.

また、図8に示されるように、上部鉄骨梁22と波形鋼板耐震壁14とが仮部材68で連結されているため、溶接熱による上部鉄骨梁22の軸縮みが抑制される。これにより、粘弾性ダンパ16を取り付けるための、上部鉄骨梁22のフランジ22Aに形成されたボルト孔61(図3参照)と、波形鋼板耐震壁14の横フランジ34Aに形成されたボルト孔65(図3参照)との水平方向の位置ずれが抑制されるため、外側アングル42と内側アングル44とを所定の位置関係で上部鉄骨梁22及び波形鋼板耐震壁14に固定することができる。従って、隙間D、Dの変動が低減される。 Further, as shown in FIG. 8, since the upper steel beam 22 and the corrugated steel shear wall 14 are connected by the temporary member 68, axial contraction of the upper steel beam 22 due to welding heat is suppressed. Thereby, the bolt hole 61 (see FIG. 3) formed in the flange 22A of the upper steel beam 22 and the bolt hole 65 (formed in the lateral flange 34A of the corrugated steel earthquake-resistant wall 14 for attaching the viscoelastic damper 16 to each other. 3), the outer angle 42 and the inner angle 44 can be fixed to the upper steel beam 22 and the corrugated steel shear wall 14 in a predetermined positional relationship. Therefore, fluctuations in the gaps D 1 and D 2 are reduced.

ここで、隙間D、Dに差異が生じると、減少した隙間D、D側では粘弾性体46のせん断変形量が小さくなるため、粘弾性ダンパ16の振動低減効果の低下や、振動低減効果を得られる振動周波数帯域幅(レンジ)が縮小する。また、ストッパピン54から貫通孔50の内壁に想定外の繰り返し応力が作用し、貫通孔50又はストッパピン54が疲労破壊したりする恐れがある。一方、増加した隙間D、D側では、粘弾性体46のせん断変形量が大きくなるため、ハードニング劣化等により粘弾性体46の性能が低下する恐れがある。また、ストッパピン54を介して波形鋼板耐震壁14に外力が伝達されるタイミングが遅くなり、地震時に波形鋼板耐震壁14が耐震性能、制振性能を発揮するタイミングが遅くなる。本実施形態では、隙間D、Dの変動を低減することにより、このような問題を解消することができ、所定範囲内のタイミングで波形鋼板耐震壁14に外力を伝達することができる。従って、粘弾性ダンパ16の制振性能、及び波形鋼板耐震壁14の耐震性能、制振性能の低下が抑制される。 Here, the discrepancies in the gap D 1, D 2, since the shearing deformation of the viscoelastic material 46 is small at a reduced gap D 1, D 2 side, decrease in vibration reducing effect of the viscoelastic damper 16, The vibration frequency bandwidth (range) at which the vibration reduction effect can be obtained is reduced. Further, unexpected repeated stress may act on the inner wall of the through hole 50 from the stopper pin 54, and the through hole 50 or the stopper pin 54 may be fatigued. On the other hand, on the increased gaps D 1 and D 2 side, since the amount of shear deformation of the viscoelastic body 46 becomes large, the performance of the viscoelastic body 46 may be deteriorated due to hardening deterioration or the like. Moreover, the timing at which an external force is transmitted to the corrugated steel shear wall 14 through the stopper pin 54 is delayed, and the timing at which the corrugated steel earthquake resistant wall 14 exhibits seismic performance and damping performance during an earthquake is delayed. In this embodiment, such a problem can be solved by reducing fluctuations in the gaps D 1 and D 2 , and an external force can be transmitted to the corrugated steel shear wall 14 at a timing within a predetermined range. Therefore, the damping performance of the viscoelastic damper 16 and the seismic performance and damping performance of the corrugated steel shear wall 14 are suppressed.

なお、本実施形態では、地組みした上部鉄骨梁22、波形鋼板耐震壁14、及び仮部材68を鉄骨柱18、20の間に配置したが、鉄骨柱18、20の間で上部鉄骨梁22、波形鋼板耐震壁14、及び仮部材68を組み立てても良い。   In this embodiment, the grounded upper steel beam 22, the corrugated steel shear wall 14 and the temporary member 68 are disposed between the steel columns 18 and 20, but the upper steel beam 22 is interposed between the steel columns 18 and 20. The corrugated steel shear wall 14 and the temporary member 68 may be assembled.

また、図10に示されるように、上部鉄骨梁22の上にコンクリート製のスラブ74を構築した後に仮部材68を撤去し、上部鉄骨梁22と波形鋼板耐震壁14との間に粘弾性ダンパ16を配置しても良い。具体的には、上部鉄骨梁22と波形鋼板耐震壁14とを仮部材68で連結した状態で、上部鉄骨梁22の上にコンクリート製のスラブ74を構築する。これにより、スラブ74の重量によって上部鉄骨梁22が撓んでも、仮部材68によって上部鉄骨梁22と波形鋼板耐震壁14との水平方向へ相対変位が抑制されるため、外側アングル42と内側アングル44とを所定の位置関係で上部鉄骨梁22及び波形鋼板耐震壁14に固定することができる。従って、隙間D、Dの変動を更に低減することができる。 Further, as shown in FIG. 10, after a concrete slab 74 is constructed on the upper steel beam 22, the temporary member 68 is removed, and a viscoelastic damper is provided between the upper steel beam 22 and the corrugated steel shear wall 14. 16 may be arranged. Specifically, a concrete slab 74 is constructed on the upper steel beam 22 in a state where the upper steel beam 22 and the corrugated steel seismic wall 14 are connected by a temporary member 68. Thereby, even if the upper steel beam 22 is bent due to the weight of the slab 74, the relative displacement between the upper steel beam 22 and the corrugated steel shear wall 14 is suppressed by the temporary member 68 in the horizontal direction. 44 can be fixed to the upper steel beam 22 and the corrugated steel shear wall 14 in a predetermined positional relationship. Therefore, fluctuations in the gaps D 1 and D 2 can be further reduced.

なお、上部鉄骨梁22の上に構築されるスラブ74に限らず、種々の積載荷重を考慮して、仮部材68を撤去する時期を設定することが望ましい。   In addition, it is desirable to set the time to remove the temporary member 68 in consideration of various loading loads, not limited to the slab 74 constructed on the upper steel beam 22.

また、図11(A)及び図11(B)に示されるように、粘弾性ダンパ16を構成する外側アングル42のウェブ42Aに形成された貫通孔50に鉛直面50Aを設けても良い。この鉛直面50Aは、貫通孔50の水平方向両側の内壁に形成されており、ストッパピン54の水平移動量が隙間D又は隙間D(所定値)を超えたときに、ストッパピン54の外壁が当たるようになっている。この鉛直面50Aにより、図11(B)に示されるように、ストッパピン54が貫通孔50内を上下方向(矢印Y方向)へ移動しても、鉛直面50Aとストッパピン54との間の隙間D、Dが増減しない。従って、施工誤差やクリープ変形等の上部鉄骨梁22の撓み、鉄骨柱18、20の軸縮みによる隙間D、Dの変動が低減される。 Further, as shown in FIGS. 11A and 11B, a vertical surface 50 </ b> A may be provided in the through hole 50 formed in the web 42 </ b> A of the outer angle 42 constituting the viscoelastic damper 16. The vertical plane 50A is formed in the horizontal direction on both sides of the inner wall of the through hole 50, when the horizontal movement of the stopper pin 54 exceeds a gap D 1 or the gap D 2 (predetermined value), the stopper pin 54 The outer wall is hit. 11B, even if the stopper pin 54 moves in the up and down direction (in the arrow Y direction), the vertical surface 50A is provided between the vertical surface 50A and the stopper pin 54. The gaps D 1 and D 2 do not increase or decrease. Therefore, fluctuations in the gaps D 1 and D 2 due to bending of the upper steel beam 22 such as construction errors and creep deformation and axial contraction of the steel columns 18 and 20 are reduced.

また、鉛直面50Aと同様に、貫通孔50に水平面50Bを設けても良い。この水平面50Bは、貫通孔50の上下方向両側の内壁に形成されており、ストッパピン54の鉛直移動量が隙間H又は隙間Hを超えたときに、ストッパピン54の外壁が当たるようになっている。この水平面50Bにより、図11(C)に示されるように、ストッパピン54が貫通孔50内を水平方向(矢印X方向)へ移動しても、水平面50Bとストッパピン54の外壁との間の隙間H、Hが増減しない。従って、施工誤差やクリープ変形等の上部鉄骨梁22の撓み、鉄骨柱18、20の軸縮みによる隙間H、Hの変動が低減される。なお、貫通孔50の形状を四角形や八角形等の多角形にして、鉛直面50A及び水平面50Bを設けても良い。 Further, the horizontal surface 50B may be provided in the through hole 50 in the same manner as the vertical surface 50A. The horizontal surface 50B is formed vertically on both sides of the inner wall of the through hole 50, when the vertical movement of the stopper pin 54 is greater than the clearance H 1 or gaps H 2, to strike the outer wall of the stopper pin 54 It has become. Even if the stopper pin 54 moves in the through hole 50 in the horizontal direction (arrow X direction), as shown in FIG. 11C, the horizontal plane 50B is formed between the horizontal plane 50B and the outer wall of the stopper pin 54. The gaps H 1 and H 2 do not increase or decrease. Therefore, fluctuations in the gaps H 1 and H 2 due to bending of the upper steel beam 22 such as construction errors and creep deformation and axial contraction of the steel columns 18 and 20 are reduced. In addition, you may make the shape of the through-hole 50 into polygons, such as a rectangle and an octagon, and provide 50 A of vertical surfaces and the horizontal surface 50B.

更に、仮部材68を構成するフランジ68Bの上部鉄骨梁22との接触面、又は波形鋼板耐震壁14との接触面に滑り手段(不図示)を設けても良い。これにより、仮部材68と上部鉄骨梁22及び波形鋼板耐震壁14との間に発生する摩擦力が減少するため、上部鉄骨梁22と波形鋼板耐震壁14との間から仮部材68を撤去し易くなる。従って、施工性が向上する。滑り手段としては、例えば、四フッ化エチレン(PTFE)、ポリアミド、ポリエチレン、ステンレス、テフロン(登録商標)を用いても良いし、また、フランジ68Bの接触面を鏡面仕上げしても良い。   Further, sliding means (not shown) may be provided on the contact surface of the flange 68B constituting the temporary member 68 with the upper steel beam 22 or the contact surface with the corrugated steel shear wall 14. Thereby, since the frictional force generated between the temporary member 68 and the upper steel beam 22 and the corrugated steel shear wall 14 is reduced, the temporary member 68 is removed from between the upper steel beam 22 and the corrugated steel earthquake resistant wall 14. It becomes easy. Therefore, the workability is improved. As the sliding means, for example, tetrafluoroethylene (PTFE), polyamide, polyethylene, stainless steel, Teflon (registered trademark) may be used, and the contact surface of the flange 68B may be mirror-finished.

更に、図12及び図13に示されるように、2つのT形鋼76を連結した仮部材78を用いても良い。2つのT形鋼76は上下を逆にし、ウェブ76A同士を重ねて配置されている。各ウェブ76Aには貫通孔が形成されており、この貫通孔に貫通される連結ピン80によって2つのT形鋼76が連結され、水平方向の相対変位が拘束されている。これと同様に、2つのL型鋼、2つのC形鋼、若しくはこれらのT形鋼、L形鋼、C形鋼等を適宜組み合わせて仮部材を構成しても良い。   Furthermore, as shown in FIGS. 12 and 13, a temporary member 78 in which two T-sections 76 are connected may be used. The two T-shaped steels 76 are arranged upside down and the webs 76A are overlapped with each other. Each web 76A is formed with a through hole, and two T-shaped steels 76 are connected by a connecting pin 80 penetrating through the through hole, and the relative displacement in the horizontal direction is restricted. Similarly, two L-shaped steels, two C-shaped steels, or these T-shaped steels, L-shaped steels, C-shaped steels, and the like may be appropriately combined to constitute a temporary member.

仮部材78は、ウェブ76Aの積層方向が波形鋼板28の面外方向(図12において、矢印A方向)になるように、上部鉄骨梁22と波形鋼板耐震壁14との間に配置される。2つのT形鋼76のフランジ76Bにはボルト孔81がそれぞれ形成されており、ボルト60及びナット62によって上部鉄骨梁22及び波形鋼板耐震壁14にそれぞれ固定されている。   The temporary member 78 is disposed between the upper steel beam 22 and the corrugated steel shear wall 14 so that the laminating direction of the web 76A is the out-of-plane direction of the corrugated steel sheet 28 (the direction of arrow A in FIG. 12). Bolt holes 81 are respectively formed in the flanges 76B of the two T-shaped steels 76, and are fixed to the upper steel beam 22 and the corrugated steel shear wall 14 by bolts 60 and nuts 62, respectively.

この仮部材78を撤去する際は、連結ピン80の端部をハンマー等で打ち込むことにより、仮部材78から連結ピン80を抜き、2つのT形鋼76の連結を解除する。これにより、2つのT形鋼76を別々に取り外すことができるため、仮部材78の撤去が容易となる。   When the temporary member 78 is removed, the connection pin 80 is removed from the temporary member 78 by driving the end of the connection pin 80 with a hammer or the like to release the connection between the two T-shaped steels 76. Thereby, since the two T-shaped steels 76 can be removed separately, the temporary member 78 can be easily removed.

次に、第2実施形態について説明する。なお、第1実施形態と同じ構成のものは同符号を付すると共に、適宜省略して説明する。   Next, a second embodiment will be described. In addition, the thing of the same structure as 1st Embodiment attaches | subjects the same code | symbol, and abbreviate | omits suitably and demonstrates.

第2実施形態では、複数ピースに分割された波形鋼板耐震壁を用いる。図14には、仮部材68で連結された上部鉄骨梁92と波形鋼板耐震壁84が示されており、図15には、粘弾性ダンパ16で連結された上部鉄骨梁92と波形鋼板耐震壁84が示されている。   In the second embodiment, a corrugated steel earthquake resistant wall divided into a plurality of pieces is used. FIG. 14 shows the upper steel beam 92 and the corrugated steel earthquake resistant wall 84 connected by the temporary member 68, and FIG. 15 shows the upper steel beam 92 and the corrugated steel earthquake resistant wall connected by the viscoelastic damper 16. 84 is shown.

<波形鋼板耐震壁の構成>
波形鋼板耐震壁84は、3つの壁部材84A、84B、84Cに分割されている。各壁部材84A、84B、84Cは、波形鋼板28と枠体30(図1参照)を備えている。隣接する壁部材84A、84B、84Cは、重ねられた縦フランジ32A、32B同士を貫通する高力ボルト86及びナット88によってせん断力を伝達可能に接合されている。これらの縦フランジ32A、32Bは、波形鋼板28に面外剛性を付与する補剛リブとして機能する。これにより、波形鋼板耐震壁84のせん断座屈耐力が大きくされている。
<Configuration of corrugated steel shear wall>
The corrugated steel earthquake resistant wall 84 is divided into three wall members 84A, 84B, and 84C. Each of the wall members 84A, 84B, 84C includes a corrugated steel plate 28 and a frame body 30 (see FIG. 1). Adjacent wall members 84A, 84B, and 84C are joined so as to be able to transmit a shearing force by high-strength bolts 86 and nuts 88 that pass through the stacked vertical flanges 32A and 32B. These vertical flanges 32 </ b> A and 32 </ b> B function as stiffening ribs that give the corrugated steel sheet 28 out-of-plane rigidity. Thereby, the shear buckling strength of the corrugated steel shear wall 84 is increased.

また、各壁部材84A、84B、84Cの下端部に設けられた横フランジ34Bから突出する接合プレート38(図2参照)は、下部鉄骨梁94に溶接される。なお、本実施形態では、第1実施形態と同様に、接合プレート38の溶接歪を低減するために、接合プレート38と裏当てプレート40とを溶接しているが、裏当てプレート40は適宜省略可能である。   Further, the joining plate 38 (see FIG. 2) protruding from the lateral flange 34B provided at the lower end of each wall member 84A, 84B, 84C is welded to the lower steel beam 94. In the present embodiment, as in the first embodiment, the joining plate 38 and the backing plate 40 are welded to reduce the welding distortion of the joining plate 38, but the backing plate 40 is omitted as appropriate. Is possible.

各壁部材84A、84Cの縦フランジ32A、32Bのうち、波形鋼板耐震壁84の水平方向端部に位置する壁部材84A、84Cの縦フランジ32A、32Bは、波形鋼板28の上方へ延出し、その上端部が上部鉄骨梁92のフランジ92Aに溶接等で接合されている。   Of the vertical flanges 32A, 32B of the wall members 84A, 84C, the vertical flanges 32A, 32B of the wall members 84A, 84C located at the horizontal end of the corrugated steel earthquake resistant wall 84 extend upward of the corrugated steel sheet 28, The upper end portion is joined to the flange 92A of the upper steel beam 92 by welding or the like.

これらの上部鉄骨梁92、各壁部材84A、84B、84C、及び仮部材68は地組みされ、若しくは鉄骨柱18、20の間で組み立てられる。鉄骨柱18、20の間に配置された上部鉄骨梁92は、その両端部が鉄骨柱18、20の仕口部に設けられたダイアフラム26にそれぞれ溶接される。その後、仮部材68が撤去され、図15に示されるように、上部鉄骨梁92と波形鋼板耐震壁84との間に粘弾性ダンパ16が取り付けられる。この粘弾性ダンパ16を介して、地震時等に各波形鋼板28に発生するせん断力が上部鉄骨梁92に伝達される。   The upper steel beam 92, the wall members 84A, 84B, 84C, and the temporary member 68 are grounded or assembled between the steel columns 18 and 20. Both ends of the upper steel beam 92 disposed between the steel columns 18 and 20 are welded to the diaphragms 26 provided at the joints of the steel columns 18 and 20, respectively. Thereafter, the temporary member 68 is removed, and the viscoelastic damper 16 is attached between the upper steel beam 92 and the corrugated steel shear wall 84, as shown in FIG. Through this viscoelastic damper 16, the shear force generated in each corrugated steel sheet 28 during an earthquake or the like is transmitted to the upper steel beam 92.

<支持部材の構成>
図14及び図15に示されるように、上部鉄骨梁92と波形鋼板耐震壁84との間には、上部鉄骨梁22を支持する一つ以上(図14及び図15では、2つ)の支持部材90が設けられている。この支持部材90は鋼板からなり、高力ボルト86及びナット88で接合された縦フランジ32A、32Bの上方に設けられ、即ち、補剛リブとしての縦フランジ32A、32Bと連続するように設けられている。支持部材90の高さは、仮部材68よりも高くされており、その上下の端部がそれぞれ上部鉄骨梁92及び波形鋼板耐震壁84に溶接で接合されている。これにより、上部鉄骨梁92から仮部材68へ導入される鉛直荷重が低減されている。なお、支持部材90に替えて、ジャッキ等を用いても良い。
<Configuration of support member>
As shown in FIGS. 14 and 15, one or more (two in FIGS. 14 and 15) supporting the upper steel beam 22 is supported between the upper steel beam 92 and the corrugated steel shear wall 84. A member 90 is provided. The support member 90 is made of a steel plate and is provided above the vertical flanges 32A and 32B joined by high-strength bolts 86 and nuts 88, that is, provided so as to be continuous with the vertical flanges 32A and 32B as stiffening ribs. ing. The height of the support member 90 is higher than that of the temporary member 68, and the upper and lower ends thereof are joined to the upper steel beam 92 and the corrugated steel earthquake resistant wall 84 by welding. Thereby, the vertical load introduced from the upper steel beam 92 to the temporary member 68 is reduced. Note that a jack or the like may be used instead of the support member 90.

この支持部材90は、上部鉄骨梁92、各壁部材84A、84B、84C、及び仮部材68と共に地組みしても良いし、上部鉄骨梁92、各壁部材84A、84B、84C、及び仮部材68を鉄骨柱18、20の間に配置した後に、上部鉄骨梁92と波形鋼板耐震壁84との間に設けても良い。また、縦フランジ32A、32Bを波形鋼板28の上方へ延出させ、支持部材として利用することも可能である。   The support member 90 may be ground together with the upper steel beam 92, the wall members 84A, 84B, 84C, and the temporary member 68, or the upper steel beam 92, the wall members 84A, 84B, 84C, and the temporary member. 68 may be provided between the upper steel beam 92 and the corrugated steel quake-resistant wall 84 after the 68 is arranged between the steel columns 18 and 20. Further, the vertical flanges 32A and 32B can be extended upward of the corrugated steel plate 28 and used as a support member.

次に、第2実施形態の作用について説明する。   Next, the operation of the second embodiment will be described.

波形鋼板耐震壁84を複数の壁部材84A、84B、84Cに分割したことにより、これらの壁部材84A、84B、84Cを別々に運搬、揚重することができるため、運搬性、揚重性が向上する。   Since the corrugated steel earthquake resistant wall 84 is divided into a plurality of wall members 84A, 84B, and 84C, these wall members 84A, 84B, and 84C can be separately transported and lifted. improves.

また、上部鉄骨梁92と波形鋼板耐震壁84との間に支持部材90を設けたことにより、上部鉄骨梁92が支持部材90及び縦フランジ32A、32Bによって支持されるため、上部鉄骨梁92の撓みが抑制される。従って、撓みによる上部鉄骨梁92と波形鋼板耐震壁84との水平方向及び上下方向の相対変位が抑制されるため、外側アングル42及び内側アングル44を所定の位置関係で上部鉄骨梁92及び波形鋼板耐震壁84に固定することができる。従って、隙間D、D及び隙間H、Hの変動が抑制される。また、上部鉄骨梁92から仮部材68へ導入される鉛直力が低減されるため、仮部材68の撤去が容易となる。従って、施工性が向上する。更に、上部鉄骨梁22と縦フランジ32A、32Bとが支持部材90で連結され、縦フランジ32A、32Bが拘束されるため、波形鋼板耐震壁84のせん断座屈耐力が大きくなる。従って、波形鋼板耐震壁84の耐震性能、制振性能向上する。 Further, by providing the support member 90 between the upper steel beam 92 and the corrugated steel shear wall 84, the upper steel beam 92 is supported by the support member 90 and the vertical flanges 32A and 32B. Deflection is suppressed. Accordingly, since the relative displacement in the horizontal direction and the vertical direction between the upper steel beam 92 and the corrugated steel shear wall 84 due to the bending is suppressed, the upper steel beam 92 and the corrugated steel plate are placed in a predetermined positional relationship between the outer angle 42 and the inner angle 44. It can be fixed to the seismic wall 84. Therefore, fluctuations in the gaps D 1 and D 2 and the gaps H 1 and H 2 are suppressed. Further, since the vertical force introduced from the upper steel beam 92 to the temporary member 68 is reduced, the temporary member 68 can be easily removed. Therefore, the workability is improved. Furthermore, since the upper steel beam 22 and the vertical flanges 32A and 32B are connected by the support member 90 and the vertical flanges 32A and 32B are constrained, the shear buckling strength of the corrugated steel shear wall 84 is increased. Therefore, the seismic performance and damping performance of the corrugated steel shear wall 84 are improved.

なお、支持部材90は適宜省略可能であるが、ロングスパンの架構96に対しては適宜設けることが望ましい。また、本実施形態では、縦フランジ32A、32Bの上方に支持部材90を設けたが、補剛リブ36の上方に設けても良い。   The support member 90 can be omitted as appropriate, but it is desirable to provide it appropriately for the long span frame 96. In the present embodiment, the support member 90 is provided above the vertical flanges 32 </ b> A and 32 </ b> B, but may be provided above the stiffening rib 36.

次に、第3実施形態について説明する。なお、第1、第2実施形態と同じ構成のものは同符号を付すると共に、適宜省略して説明する。   Next, a third embodiment will be described. The same components as those in the first and second embodiments are denoted by the same reference numerals and will be appropriately omitted.

<鋼材ブロック耐震壁の構成>
第3実施形態では、波形鋼板耐震壁に替えて鋼材ブロック耐震壁(鋼製耐震壁)104を用いる。図16に示されるように、鋼材ブロック耐震壁104は、複数のブロック鋼材106を上下左右に配列し、隣接するブロック鋼材106同士を接合して構成されている。これらのブロック鋼材106には、普通鋼(例えば、SM490、SS400等)や低降伏点鋼(例えば、LY225等)等が用いられる。
<Structure of steel block earthquake resistant wall>
In the third embodiment, a steel block earthquake resistant wall (steel earthquake resistant wall) 104 is used instead of the corrugated steel earthquake resistant wall. As shown in FIG. 16, the steel block seismic wall 104 is configured by arranging a plurality of block steel materials 106 vertically and horizontally and joining adjacent block steel materials 106. For these block steel materials 106, ordinary steel (for example, SM490, SS400, etc.), low yield point steel (for example, LY225, etc.), or the like is used.

図17に示されるように、ブロック鋼材106はC形鋼からなり、ウェブ106Aと、ウェブ106Aの上下の端部に設けられたフランジ106Bと、を備えている。上下方向に隣接するブロック鋼材106は各々のフランジ106B同士を重ね合わせ、これらのフランジ106B同士を貫通する高力ボルト108及びナット110でせん断力を伝達可能に接合されている。   As shown in FIG. 17, the block steel material 106 is made of C-shaped steel, and includes a web 106A and flanges 106B provided at upper and lower ends of the web 106A. The block steel materials 106 adjacent to each other in the vertical direction are overlapped with each other and joined with a high-strength bolt 108 and a nut 110 that pass through the flanges 106B so as to transmit shearing force.

図16に示されるように、水平方向に隣接するブロック鋼材106は、連結部材112(補剛リブ)で連結されている。連結部材112はT形鋼からなり、長手方向を上下方向(鉛直方向)としてブロック鋼材106の裏面側に配置されている。連結部材112のフランジ112Bは、水平方向に隣接するブロック鋼材106のウェブ106Aにそれぞれ重ねられ、これらのフランジ112B及びウェブ106Aを貫通する高力ボルト114及びナット116により、ブロック鋼材106と連結部材112とがせん断力を伝達可能に接合されている。また、連結部材112のウェブ112Aは、ブロック鋼材106の面外方向へ突出しており、当該ウェブ112Aによってブロック鋼材106に面外剛性が付与されている。即ち、連結部材112のウェブ112Aは補剛リブとして機能する。なお、連結部材112は、T形鋼に限らず、L型鋼、C形鋼、H形鋼、I形鋼でも良いし、平板状の鋼板を用いても良い。   As shown in FIG. 16, the block steel members 106 adjacent in the horizontal direction are connected by a connecting member 112 (stiffening rib). The connecting member 112 is made of T-shaped steel, and is arranged on the back surface side of the block steel material 106 with the longitudinal direction being the vertical direction (vertical direction). The flange 112B of the connecting member 112 is overlapped with the web 106A of the block steel material 106 adjacent to each other in the horizontal direction, and the block steel material 106 and the connecting member 112 are fastened by a high-strength bolt 114 and a nut 116 that penetrate the flange 112B and the web 106A. And are joined so as to transmit shearing force. Further, the web 112A of the connecting member 112 projects in the out-of-plane direction of the block steel material 106, and the out-of-plane rigidity is imparted to the block steel material 106 by the web 112A. That is, the web 112A of the connecting member 112 functions as a stiffening rib. The connecting member 112 is not limited to the T-shaped steel, but may be an L-shaped steel, a C-shaped steel, an H-shaped steel, an I-shaped steel, or a flat steel plate.

各鉄骨柱18、20の側面には板状の取付部材118が突設されており、ブロック鋼材106のウェブ106Aが重ねられている。これらの取付部材118とウェブ106Aを貫通する高力ボルト114及びナット(不図示)によって、鋼材ブロック耐震壁104と鉄骨柱18、20とがせん断力を伝達可能に接合されている。また、鋼材ブロック耐震壁104と下部鉄骨梁94とは、下部鉄骨梁94のフランジ94Aとブロック鋼材106のフランジ106Bとを貫通する高力ボルト108及びナット110によってせん断力を伝達可能に接合されている。   A plate-like mounting member 118 is projected on the side surface of each steel column 18, 20, and a web 106 </ b> A of a block steel material 106 is overlaid. The steel block seismic wall 104 and the steel columns 18 and 20 are joined to each other so as to be able to transmit a shearing force by a high-strength bolt 114 and a nut (not shown) penetrating the attachment member 118 and the web 106A. Further, the steel block seismic wall 104 and the lower steel beam 94 are joined so as to transmit shearing force by a high-strength bolt 108 and a nut 110 that pass through the flange 94A of the lower steel beam 94 and the flange 106B of the block steel material 106. Yes.

なお、ブロック鋼材106を上下方向に積み上げる段数や水平方向に並べる列数は、必要に応じて適宜変更可能である。また、水平方向及び上下方向に隣接するブロック鋼材106は、せん断力を伝達可能に接合されていれば良く、溶接やエポキシ樹脂等の接着剤で接合しても良い。これと同様に、鋼材ブロック耐震壁104と鉄骨柱18、20及び下部鉄骨梁94とは、せん断力を伝達可能に接合されていれば良く、溶接やエポキシ樹脂等の接着剤で接合しても良い。また、鋼材ブロック耐震壁104と鉄骨柱18、20とは、必ずしも接合しなくても良い。なお、第1実施形態における波形鋼板耐震壁14と周辺の下部鉄骨梁24とを溶接やエポキシ樹脂等の接着剤で接合することも可能である。   It should be noted that the number of stages in which the block steel materials 106 are stacked in the vertical direction and the number of columns arranged in the horizontal direction can be appropriately changed as necessary. Moreover, the block steel materials 106 adjacent to each other in the horizontal direction and the vertical direction only need to be joined so as to transmit shearing force, and may be joined by an adhesive such as welding or epoxy resin. Similarly, the steel block seismic wall 104, the steel columns 18, 20 and the lower steel beam 94 need only be joined so as to transmit shearing force, and may be joined by an adhesive such as welding or epoxy resin. good. Further, the steel block seismic wall 104 and the steel columns 18 and 20 do not necessarily have to be joined. In addition, it is also possible to join the corrugated steel shear wall 14 and the surrounding lower steel beam 24 in the first embodiment with an adhesive such as welding or epoxy resin.

上部鉄骨梁92と鋼材ブロック耐震壁104との間には粘弾性ダンパ16が配置されている。粘弾性ダンパ16の内側アングル44(図3参照)は、ブロック鋼材106の上に載置され、フランジ44B、フランジ106B(端部フランジ)を貫通する高力ボルト114及びナット116によって鋼材ブロック耐震壁104に固定されている。   A viscoelastic damper 16 is disposed between the upper steel beam 92 and the steel block earthquake resistant wall 104. The inner angle 44 (see FIG. 3) of the viscoelastic damper 16 is placed on the block steel material 106, and the steel block earthquake-resistant wall is formed by the flange 44B, the high-strength bolt 114 passing through the flange 106B (end flange), and the nut 116. 104 is fixed.

なお、粘弾性ダンパ16の取付方法は、第1実施形態と同様であるため説明を省略する。   In addition, since the attachment method of the viscoelastic damper 16 is the same as that of 1st Embodiment, description is abbreviate | omitted.

次に、第3実施形態の作用について説明する。なお、粘弾性ダンパ16の作用は第1実施形態と同様であるため、鋼材ブロック耐震壁104の作用についてのみ説明する。   Next, the operation of the third embodiment will be described. In addition, since the effect | action of the viscoelastic damper 16 is the same as that of 1st Embodiment, only the effect | action of the steel block earthquake-resistant wall 104 is demonstrated.

風や地震等によって架構12に層間変形が生じ、粘弾性ダンパ16の外側アングル42(図3(B)参照)と内側アングル44との水平方向の相対変位が大きくなり、ストッパピン54の水平移動量が隙間D又は隙間D(所定値)を超えると、外側アングル42に形成された貫通孔50の内壁にストッパピン54の外壁が当たる。この結果、鋼材ブロック耐震壁104に外力が伝達され、各ブロック鋼材106がせん断変形する。これにより、各ブロック鋼材106が外力に対して抵抗し、鋼材ブロック耐震壁104が耐震性能を発揮する。また、外力に対して各ブロック鋼材106が降伏するように設計することで、鋼材の履歴エネルギーによって振動エネルギーが吸収され、鋼材ブロック耐震壁104が制振性能を発揮する。 Interlayer deformation occurs in the frame 12 due to wind or earthquake, and the horizontal relative displacement between the outer angle 42 (see FIG. 3B) of the viscoelastic damper 16 and the inner angle 44 increases, and the stopper pin 54 moves horizontally. When the amount exceeds the gap D 1 or the gap D 2 (predetermined value), the outer wall of the stopper pin 54 hits the inner wall of the through hole 50 formed in the outer angle 42. As a result, an external force is transmitted to the steel block earthquake resistant wall 104, and each block steel material 106 undergoes shear deformation. Thereby, each block steel material 106 resists external force, and the steel material block earthquake-resistant wall 104 exhibits earthquake-resistant performance. Moreover, by designing so that each block steel material 106 yields with respect to external force, vibration energy is absorbed by the hysteresis energy of steel materials, and the steel material block earthquake-resistant wall 104 exhibits damping performance.

従って、風や交通振動等の微小振動を粘弾性ダンパ16で吸収する一方で、大地震時に、鋼材ブロック耐震壁104に外力を伝達して、耐震性能、制振性能を発揮させることができる。よって、耐震性能、制振性能を確保しつつ、居住性能を向上することができる。   Therefore, while the micro-vibration such as wind and traffic vibration is absorbed by the viscoelastic damper 16, an external force can be transmitted to the steel block seismic wall 104 in the event of a large earthquake to exhibit seismic performance and vibration control performance. Therefore, it is possible to improve the living performance while ensuring the seismic performance and vibration control performance.

また、鋼材ブロック耐震壁104は、複数のブロック鋼材106を接合して構成されている。従って、各ブロック鋼材106を別々に運搬、揚重することができるため、運搬性、揚重製が向上する。   The steel block earthquake-resistant wall 104 is configured by joining a plurality of block steel materials 106. Therefore, since each block steel material 106 can be conveyed and lifted separately, the transportability and lifting are improved.

次に、第4実施形態について説明する。なお、第1〜第3実施形態と同じ構成のものは同符号を付すると共に、適宜省略して説明する。   Next, a fourth embodiment will be described. In addition, the thing of the same structure as 1st-3rd embodiment attaches | subjects the same code | symbol, and abbreviate | omits suitably and demonstrates.

第4実施形態では、波形鋼板耐震壁に替えて鋼板耐震壁(鋼製耐震壁)120を用いる。図18及び図19に示されるように、鋼板耐震壁120は、水平方向に間隔を空けて配列された複数の縦リブ126A(補剛リブ)と、上下方向に間隔を空けて配列された複数の横リブ126Bと、を格子状に接合した格子体126を備えている。縦リブ126A及び横リブ126Bで区画された格子枠内には、鋼板128が上下左右に一つ置きに嵌め込まれ、鋼板128と開口部130とが市松模様を呈している。なお、縦リブ126A、横リブ126B、及び鋼板128とは溶接やエポキシ樹脂等の接着剤でそれぞれ接合されている。また、鋼板128の材料としては、普通鋼(例えば、SM490、SS400等)や低降伏点鋼(例えば、LY225等)等が用いられる。   In the fourth embodiment, a steel plate earthquake resistant wall (steel earthquake resistant wall) 120 is used instead of the corrugated steel earthquake resistant wall. As shown in FIGS. 18 and 19, the steel plate seismic wall 120 includes a plurality of vertical ribs 126 </ b> A (stiffening ribs) arranged at intervals in the horizontal direction and a plurality of plates arranged at intervals in the vertical direction. The horizontal rib 126B and a lattice body 126 joined in a lattice shape are provided. In the lattice frame defined by the vertical ribs 126A and the horizontal ribs 126B, the steel plates 128 are fitted into the top, bottom, left and right, and the steel plates 128 and the openings 130 have a checkered pattern. Note that the longitudinal rib 126A, the transverse rib 126B, and the steel plate 128 are joined to each other by an adhesive such as welding or epoxy resin. Moreover, as a material of the steel plate 128, ordinary steel (for example, SM490, SS400, etc.), low yield point steel (for example, LY225, etc.), etc. are used.

格子体126の外周には枠体132が設けられている。枠体132は、格子体126の左右の端部に設けられる縦フランジ134A、134Bと、格子体126の上下の端部に設けられる横フランジ136A、136Bとを枠状に接合して構成されている。格子体126の上端部に設けられた横フランジ136A(端部フランジ)には粘弾性ダンパ16が取り付けられており、当該粘弾性ダンパ16を介して格子体126が上部鉄骨梁22にせん断力を伝達可能に接合されている。また、格子体126の下端部に設けられた横フランジ136Bには接合プレート38が突設されており、当該接合プレート38を介して下部鉄骨梁24に格子体126がせん断力を伝達可能に接合されている。   A frame body 132 is provided on the outer periphery of the lattice body 126. The frame body 132 is configured by joining vertical flanges 134A and 134B provided at the left and right end portions of the lattice body 126 and horizontal flanges 136A and 136B provided at the upper and lower end portions of the lattice body 126 in a frame shape. Yes. A viscoelastic damper 16 is attached to a lateral flange 136A (end flange) provided at the upper end of the lattice body 126, and the lattice body 126 applies a shearing force to the upper steel beam 22 via the viscoelastic damper 16. It is joined so that it can be transmitted. Further, a joining plate 38 projects from a lateral flange 136B provided at the lower end of the lattice body 126, and the lattice body 126 is joined to the lower steel beam 24 via the joining plate 38 so that shear force can be transmitted. Has been.

次に、第4実施形態の作用について説明する。なお、粘弾性ダンパ16の作用は第1実施形態と同様であるため、鋼板耐震壁120の作用についてのみ説明する。   Next, the operation of the fourth embodiment will be described. In addition, since the effect | action of the viscoelastic damper 16 is the same as that of 1st Embodiment, only the effect | action of the steel plate earthquake-resistant wall 120 is demonstrated.

風や地震等によって架構12に層間変形が生じ、粘弾性ダンパ16の外側アングル42(図5(B)参照)と内側アングル44との水平方向の相対変位が大きくなり、ストッパピン54の水平移動量が隙間D又は隙間D(所定値)を超えると、外側アングル42に形成された貫通孔50の内壁にストッパピン54の外壁が当たる。この結果、鋼板耐震壁120に外力が伝達され、格子体126が変形すると共に、格子枠内に設けられた鋼板128がせん断変形する。これにより、鋼板128が外力に対して抵抗し、鋼板耐震壁120が耐震性能を発揮する。また、外力に対して各鋼板128が降伏するように設計することで、鋼材の履歴エネルギーによって振動エネルギーが吸収され、鋼板耐震壁120が制振性能を発揮する。 Interlayer deformation occurs in the frame 12 due to wind, earthquake, etc., and the horizontal relative displacement between the outer angle 42 (see FIG. 5B) of the viscoelastic damper 16 and the inner angle 44 increases, and the stopper pin 54 moves horizontally. When the amount exceeds the gap D 1 or the gap D 2 (predetermined value), the outer wall of the stopper pin 54 hits the inner wall of the through hole 50 formed in the outer angle 42. As a result, an external force is transmitted to the steel plate earthquake resistant wall 120, the lattice body 126 is deformed, and the steel plate 128 provided in the lattice frame is shear-deformed. Thereby, the steel plate 128 resists external force, and the steel plate seismic wall 120 exhibits seismic performance. Moreover, by designing so that each steel plate 128 yields with respect to external force, vibration energy is absorbed by the hysteresis energy of steel materials, and the steel plate earthquake-resistant wall 120 exhibits damping performance.

従って、風や交通振動等の微小振動を粘弾性ダンパ16で吸収する一方で、大地震時に、鋼板耐震壁120に外力を伝達して、耐震性能、制振性能を発揮させることができる。よって、耐震性能、制振性能を確保しつつ、居住性能を向上することができる。   Therefore, while the micro-vibration such as wind and traffic vibration is absorbed by the viscoelastic damper 16, an external force can be transmitted to the steel plate earthquake-resistant wall 120 in the event of a large earthquake, and the seismic performance and damping performance can be exhibited. Therefore, it is possible to improve the living performance while ensuring the seismic performance and vibration control performance.

また、鋼板耐震壁120には、格子枠内に鋼板128が設けられていない開口部130が設けられている。従って、採光性、通風性、開放性、意匠性が向上する。また、開口部130は、設備の配線・配管等の設備開口としても利用することができため、設計自由度が向上する。   Further, the steel plate earthquake resistant wall 120 is provided with an opening 130 where the steel plate 128 is not provided in the lattice frame. Therefore, daylighting, ventilation, openness, and design are improved. Moreover, since the opening part 130 can be utilized also as equipment opening, such as wiring and piping of equipment, a design freedom improves.

なお、本実施形態では、市松模様となるように格子枠内に鋼板128を上下左右に一つ置きに設けたが、これに限らない。鋼板耐震壁120には、少なくとも1つの開口部130があれば良く、鋼板128の数、配置は適宜変更可能である。例えば、隣接する格子枠内に鋼板128を連続して設けても良いし、開口部130を連結して設けても良い。また、列ごとに鋼板128と開口部130を交互に設けても良いし、行ごとに鋼板128と開口部130を交互に設けても良い。   In the present embodiment, the steel plates 128 are alternately provided in the lattice frame so as to have a checkered pattern, but the present invention is not limited to this. The steel plate seismic wall 120 only needs to have at least one opening 130, and the number and arrangement of the steel plates 128 can be changed as appropriate. For example, the steel plates 128 may be continuously provided in adjacent lattice frames, or the openings 130 may be connected and provided. Further, the steel plates 128 and the openings 130 may be alternately provided for each column, or the steel plates 128 and the openings 130 may be alternately provided for each row.

なお、上記第1〜第4実施形態では、鋼製耐震壁として波形形状の鋼板を用いた波形鋼板耐震壁14、84や、C形鋼等を用いた鋼材ブロック耐震壁104等を例に説明したが、これに限らない。例えば、平板状の鋼板の外周に枠体を設けた鋼板耐震壁を用いても良い。即ち、鋼製耐震壁を構成する鋼板には、平板状の鋼板に限らず、波形鋼板、形鋼のウェブ等が含まれる。また、波形鋼板28には、図20(A)〜(D)に示すような断面形状をした波形鋼板を用いることができる。更に、波形鋼板耐震壁14、84は、波形鋼板28の折り筋を上下方向にして架構12、96に取り付けても良い。これらの鋼製耐震壁には補剛リブを適宜設けることができる。   In the first to fourth embodiments, the corrugated steel plate earthquake resistant walls 14 and 84 using corrugated steel plates as steel earthquake resistant walls, the steel block earthquake resistant wall 104 using C-shaped steel, and the like are described as examples. However, it is not limited to this. For example, you may use the steel plate earthquake resistant wall which provided the frame on the outer periphery of the flat steel plate. That is, the steel plate constituting the steel earthquake-resistant wall is not limited to a flat steel plate, but includes a corrugated steel plate, a shaped steel web, and the like. Moreover, the corrugated steel plate 28 having a cross-sectional shape as shown in FIGS. Furthermore, the corrugated steel earthquake resistant walls 14 and 84 may be attached to the frames 12 and 96 with the crease of the corrugated steel sheet 28 in the vertical direction. These steel shear walls can be appropriately provided with stiffening ribs.

また、第1〜第4実施形態に係る波形鋼板耐震壁14、84及び鋼材ブロック耐震壁104は建物の一部に用いても、全てに用いても良い。また、耐震構造、免震構造等の種々の構造の新築建物、改築建物に適用することができる。これらの波形鋼板耐震壁14、84、鋼材ブロック耐震壁104、及び鋼板耐震壁120を設置することにより、建物の耐震性能、制振性能、居住性能等を向上することができる。   Further, the corrugated steel shear walls 14 and 84 and the steel block earthquake resistant walls 104 according to the first to fourth embodiments may be used for a part of the building or for all of them. In addition, the present invention can be applied to new buildings and renovated buildings having various structures such as seismic structures and seismic isolation structures. By installing these corrugated steel plate earthquake resistant walls 14, 84, steel block earthquake resistant wall 104, and steel plate earthquake resistant wall 120, it is possible to improve the earthquake resistance performance, vibration control performance, living performance, etc. of the building.

以上、本発明の第1〜第4の実施形態について説明したが、本発明はこうした実施形態に限定されるものでなく、第1〜第4の実施形態を組み合わせて用いてもよいし、本発明の要旨を逸脱しない範囲において、種々なる態様で実施し得ることは勿論である。   The first to fourth embodiments of the present invention have been described above. However, the present invention is not limited to such embodiments, and the first to fourth embodiments may be used in combination. Of course, various embodiments can be implemented without departing from the scope of the invention.

12 架構
14 波形鋼板耐震壁(鋼製耐震壁)
16 粘弾性ダンパ
18 鉄骨柱
20 鉄骨柱
22 上部鉄骨梁
24 下部鉄骨梁
28 波形鋼板(鋼板)
34A 横フランジ(端部フランジ)
34B 横フランジ
36 補剛リブ
42 外側アングル(第1部材)
44 内側アングル(第2部材)
46 粘弾性体
50 貫通孔(ストッパ手段)
50A 鉛直面
50B 水平面
54 ストッパピン(ストッパ手段、ピン部材)
68 仮部材
78 仮部材
84 波形鋼板耐震壁(鋼製耐震壁)
90 支持部材
92 上部鉄骨梁
94 下部鉄骨梁
96 架構
104 鋼材ブロック耐震壁(鋼製耐震壁)
106B フランジ(端部フランジ)
106 ブロック鋼材(鋼板)
112 連結部材(補剛リブ)
120 鋼板耐震壁(鋼製耐震壁)
122 縦リブ(補剛リブ)
128 鋼板
136A 横フランジ(端部フランジ)
136B 横フランジ
隙間(所定値)
隙間(所定値)
隙間
隙間
12 frame 14 corrugated steel shear wall (steel shear wall)
16 Viscoelastic damper 18 Steel column 20 Steel column 22 Upper steel beam 24 Lower steel beam 28 Corrugated steel plate (steel plate)
34A Horizontal flange (end flange)
34B Horizontal flange 36 Stiffening rib 42 Outside angle (first member)
44 Inner angle (second member)
46 Viscoelastic body 50 Through hole (stopper means)
50A Vertical surface 50B Horizontal surface 54 Stopper pin (stopper means, pin member)
68 Temporary member 78 Temporary member 84 Corrugated steel seismic wall (steel seismic wall)
90 Support member 92 Upper steel beam 94 Lower steel beam 96 Frame 104 Steel block earthquake resistant wall (steel earthquake resistant wall)
106B Flange (End flange)
106 Block steel (steel plate)
112 Connecting member (stiffening rib)
120 Steel plate shear wall (steel shear wall)
122 Vertical rib (stiffening rib)
128 Steel plate 136A Horizontal flange (end flange)
136B Horizontal flange D 1 clearance (predetermined value)
D 2 gap (predetermined value)
H 1 gap H 2 gap

Claims (7)

第1部材と、第2部材と、前記第1部材と前記第2部材との間で保持される粘弾性体と、前記第1部材と前記第2部材との水平方向の相対変位量が所定値以上になったときに、前記第1部材と前記第2部材との水平方向の相対変位を規制するストッパ手段と、を有する粘弾性ダンパを架構に取り付ける粘弾性ダンパの取付方法であって、
上部鉄骨梁と鋼製耐震壁との間に設けられた仮部材で、該上部鉄骨梁と該鋼製耐震壁とを連結する仮部材連結工程と、
前記鋼製耐震壁が連結された前記上部鉄骨梁を鉄骨柱の間に配置し、該鉄骨柱に前記上部鉄骨梁の端部をそれぞれ溶接すると共に、前記鉄骨柱の間に架設された下部鉄骨梁に前記鋼製耐震壁を接合して前記架構を構築する架構構築工程と、
前記仮部材を撤去すると共に、前記上部鉄骨梁と前記鋼製耐震壁との間に前記粘弾性ダンパを配置し、前記第1部材及び前記第2部材をそれぞれ前記上部鉄骨梁及び前記鋼製耐震壁に固定する粘弾性ダンパ取付工程と、
を備える粘弾性ダンパの取付方法。
The horizontal displacement of the first member, the second member, the viscoelastic body held between the first member and the second member, and the horizontal direction of the first member and the second member is predetermined. A viscoelastic damper mounting method for mounting a viscoelastic damper to a frame having a stopper means for restricting relative displacement in the horizontal direction between the first member and the second member when the value is equal to or greater than a value,
A temporary member provided between the upper steel beam and the steel earthquake-resistant wall, and a temporary member connecting step for connecting the upper steel beam and the steel earthquake-resistant wall;
The upper steel beam to which the steel seismic wall is connected is disposed between steel columns, the ends of the upper steel beam are welded to the steel columns, respectively, and the lower steel frame constructed between the steel columns A frame construction process for constructing the frame by joining the steel shear wall to a beam;
The temporary member is removed, and the viscoelastic damper is disposed between the upper steel beam and the steel earthquake-resistant wall, and the first member and the second member are respectively the upper steel beam and the steel earthquake-resistant material. A viscoelastic damper mounting process for fixing to a wall;
A viscoelastic damper mounting method comprising:
前記上部鉄骨梁の上にスラブが構築された後に、前記粘弾性ダンパ取付工程を行う請求項1に記載の粘弾性ダンパの取付方法。   The viscoelastic damper attachment method according to claim 1, wherein the viscoelastic damper attachment step is performed after a slab is constructed on the upper steel beam. 前記鋼製耐震壁と前記上部鉄骨梁との間には、前記鋼製耐震壁と前記上部鉄骨梁とを連結し、該上部鉄骨梁から前記仮部材へ導入される鉛直荷重を低減する支持部材が設けられる請求項1又は請求項2に記載の粘弾性ダンパの取付方法。   A support member that connects the steel earthquake resistant wall and the upper steel beam between the steel earthquake resistant wall and the upper steel beam, and reduces a vertical load introduced from the upper steel beam to the temporary member. The attachment method of the viscoelastic damper of Claim 1 or Claim 2 with which is provided. 前記鋼製耐震壁が、鋼板と、該鋼板の上端部に設けられ前記仮部材が連結される端部フランジと、前記鋼板の板面に設けられ上下方向に延びる補剛リブと、を備え、
前記支持部材が、前記補剛リブの上方に設けられる請求項3に記載の粘弾性ダンパの取付方法。
The steel earthquake resistant wall includes a steel plate, an end flange provided at an upper end portion of the steel plate and connected to the temporary member, and a stiffening rib provided on a plate surface of the steel plate and extending in the vertical direction.
The method for attaching a viscoelastic damper according to claim 3, wherein the support member is provided above the stiffening rib.
前記第1部材及び前記第2部材が、前記架構の面外方向に対向し、
前記ストッパ手段が、前記第1部材及び前記第2部材にそれぞれ形成された貫通孔に貫通されると共に、該貫通孔の内壁との間に隙間を形成するピン部材を有し、
前記貫通孔の内壁には、前記第1部材と前記第2部材との水平方向の相対変位量が所定値以上になったときに前記ピン部材が当たる鉛直面が形成されている請求項1〜4の何れか1項に記載の粘弾性ダンパの取付方法。
The first member and the second member are opposed in the out-of-plane direction of the frame;
The stopper means has a pin member that penetrates through a through-hole formed in each of the first member and the second member, and forms a gap with an inner wall of the through-hole,
The vertical surface which the said pin member contacts is formed in the inner wall of the said through-hole when the horizontal relative displacement amount of the said 1st member and the said 2nd member becomes more than predetermined value. 5. A method for attaching a viscoelastic damper according to any one of 4 above.
前記鋼板が、波形鋼板である請求項4に記載の粘弾性ダンパの取付方法。   The method for attaching a viscoelastic damper according to claim 4, wherein the steel plate is a corrugated steel plate. 一対の鉄骨柱と、該鉄骨柱の間に架設された上部鉄骨梁及び下部鉄骨梁とから構成された架構と、
前記上部鉄骨梁と前記下部鉄骨梁の間に配置され、該下部鉄骨梁に接合された鋼製耐震壁と、
請求項1〜6の何れか1項に記載の粘弾性ダンパの取付方法によって、前記上部鉄骨梁と前記鋼製耐震壁との間に取り付けられた粘弾性ダンパと、
を備える建物。
A frame composed of a pair of steel columns, and an upper steel beam and a lower steel beam installed between the steel columns;
A steel earthquake resistant wall disposed between the upper steel beam and the lower steel beam and joined to the lower steel beam;
A viscoelastic damper attached between the upper steel beam and the steel earthquake resistant wall by the viscoelastic damper attachment method according to any one of claims 1 to 6,
Building with.
JP2009273740A 2009-12-01 2009-12-01 How to install the viscoelastic damper Active JP5486278B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009273740A JP5486278B2 (en) 2009-12-01 2009-12-01 How to install the viscoelastic damper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009273740A JP5486278B2 (en) 2009-12-01 2009-12-01 How to install the viscoelastic damper

Publications (2)

Publication Number Publication Date
JP2011117145A true JP2011117145A (en) 2011-06-16
JP5486278B2 JP5486278B2 (en) 2014-05-07

Family

ID=44282781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009273740A Active JP5486278B2 (en) 2009-12-01 2009-12-01 How to install the viscoelastic damper

Country Status (1)

Country Link
JP (1) JP5486278B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102839769A (en) * 2012-08-31 2012-12-26 清华大学 Corrugated steel plate composite shear wall
KR101403125B1 (en) 2013-01-08 2014-06-03 한국기술교육대학교 산학협력단 Seismic control device and strengthen method for steel frame structure using thereof
JP2017089266A (en) * 2015-11-11 2017-05-25 株式会社竹中工務店 Fireproof structure of steel earthquake-resisting wall
JP2017172263A (en) * 2016-03-25 2017-09-28 前田建設工業株式会社 Installation method of viscoelastic damper
CN107299697A (en) * 2017-06-22 2017-10-27 同济大学 Novel energy-consumption type shear wall foundation
KR101916297B1 (en) * 2017-10-20 2018-11-07 우아진 Method of aseismic reinforcement for existing building structure
CN109763584A (en) * 2019-03-22 2019-05-17 华东建筑设计研究院有限公司 A kind of energy-consuming shock absorber that steel plate damper is replaceable
KR101980550B1 (en) * 2018-12-20 2019-08-28 (주)성광엔지니어링건축사사무소 Method of aseismic reinforcement for reinforcing columns of building
CN112144688A (en) * 2020-10-30 2020-12-29 中国地震局工程力学研究所 Double-sided shearing type square steel tube damper and manufacturing method
JP7097589B1 (en) 2021-03-18 2022-07-08 株式会社ムーサ研究所 Reinforcing panel mounting structure
CN115405009A (en) * 2022-09-30 2022-11-29 中铁二局集团建筑有限公司 Oblique corrugated steel plate shear wall
CN115492272A (en) * 2022-09-30 2022-12-20 中铁二局集团建筑有限公司 Dual energy dissipation type corrugated plate mild steel damping wall

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0571239A (en) * 1991-06-13 1993-03-23 Mitsui Constr Co Ltd Vibration control apparatus built in frame
JPH1082205A (en) * 1996-09-05 1998-03-31 Maeda Corp Earthquake-resisting frame structure
JP2005264713A (en) * 2004-02-19 2005-09-29 Takenaka Komuten Co Ltd Earthquake-proof building wall and structure
JP2009250254A (en) * 2008-04-01 2009-10-29 Daiwa House Industry Co Ltd Vibration control device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0571239A (en) * 1991-06-13 1993-03-23 Mitsui Constr Co Ltd Vibration control apparatus built in frame
JPH1082205A (en) * 1996-09-05 1998-03-31 Maeda Corp Earthquake-resisting frame structure
JP2005264713A (en) * 2004-02-19 2005-09-29 Takenaka Komuten Co Ltd Earthquake-proof building wall and structure
JP2009250254A (en) * 2008-04-01 2009-10-29 Daiwa House Industry Co Ltd Vibration control device

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102839769A (en) * 2012-08-31 2012-12-26 清华大学 Corrugated steel plate composite shear wall
KR101403125B1 (en) 2013-01-08 2014-06-03 한국기술교육대학교 산학협력단 Seismic control device and strengthen method for steel frame structure using thereof
JP2017089266A (en) * 2015-11-11 2017-05-25 株式会社竹中工務店 Fireproof structure of steel earthquake-resisting wall
JP2017172263A (en) * 2016-03-25 2017-09-28 前田建設工業株式会社 Installation method of viscoelastic damper
CN107299697A (en) * 2017-06-22 2017-10-27 同济大学 Novel energy-consumption type shear wall foundation
KR101916297B1 (en) * 2017-10-20 2018-11-07 우아진 Method of aseismic reinforcement for existing building structure
KR101980550B1 (en) * 2018-12-20 2019-08-28 (주)성광엔지니어링건축사사무소 Method of aseismic reinforcement for reinforcing columns of building
CN109763584A (en) * 2019-03-22 2019-05-17 华东建筑设计研究院有限公司 A kind of energy-consuming shock absorber that steel plate damper is replaceable
CN109763584B (en) * 2019-03-22 2024-06-07 华东建筑设计研究院有限公司 Replaceable energy dissipation and shock absorption device of steel plate damper
CN112144688A (en) * 2020-10-30 2020-12-29 中国地震局工程力学研究所 Double-sided shearing type square steel tube damper and manufacturing method
CN112144688B (en) * 2020-10-30 2023-04-14 中国地震局工程力学研究所 Double-sided shearing type square steel tube damper and manufacturing method
JP7097589B1 (en) 2021-03-18 2022-07-08 株式会社ムーサ研究所 Reinforcing panel mounting structure
JP2022143704A (en) * 2021-03-18 2022-10-03 株式会社ムーサ研究所 Reinforcement panel mounting structure
CN115405009A (en) * 2022-09-30 2022-11-29 中铁二局集团建筑有限公司 Oblique corrugated steel plate shear wall
CN115492272A (en) * 2022-09-30 2022-12-20 中铁二局集团建筑有限公司 Dual energy dissipation type corrugated plate mild steel damping wall

Also Published As

Publication number Publication date
JP5486278B2 (en) 2014-05-07

Similar Documents

Publication Publication Date Title
JP5486278B2 (en) How to install the viscoelastic damper
KR101263078B1 (en) Connection metal fitting and building with the same
JP2006045776A (en) Construction method of shear wall
JP5601882B2 (en) Steel seismic wall and building with the same
JP2009047193A (en) Damper device and structure
JP4664997B2 (en) Buildings with joint hardware
JP4414833B2 (en) Seismic walls using corrugated steel
JP2020007842A (en) Joint structure of reinforced concrete skeleton and brace
JP2006336378A (en) Earthquake resisting wall
JP5251933B2 (en) Buildings with joint hardware
JPH10159379A (en) Vibration control structure of building, and vibration damper
JP2006037585A (en) Earthquake-resisting wall using corrugated steel plate with opening
JP2013002032A (en) Earthquake-resisting wall of corrugated steel plate and calculation method of initial elastic shear stiffness thereof
JP5254767B2 (en) Seismic structure, building with seismic structure, and repair method.
JP2010070989A (en) Earthquake-resistant structure, method for designing earthquake-resistant structure, and building
JP5305756B2 (en) Damping wall using corrugated steel
JP2009161984A (en) Corrugated steel plate earthquake-resisting wall
JP6414877B2 (en) Reinforcement structure and building
JP2018091081A (en) Reinforcement structure of beam-column joint
JP2009257079A (en) Aseismatic structure
JP2011032677A (en) Steel member joining structure, earthquake-resisting steel wall, structure with earthquake-resisting steel wall, and construction method of earthquake-resisting steel wall
JP5421236B2 (en) Building wall damping structure construction method
JP5478131B2 (en) Brace structure and building having the brace structure
JP5674338B2 (en) Steel shear wall
JP2010127037A (en) Boundary beam, method for designing boundary beam, method for constructing boundary beam, and building

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120921

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130509

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130514

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140221

R150 Certificate of patent or registration of utility model

Ref document number: 5486278

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150