JP2005264713A - Earthquake-proof building wall and structure - Google Patents

Earthquake-proof building wall and structure Download PDF

Info

Publication number
JP2005264713A
JP2005264713A JP2004224230A JP2004224230A JP2005264713A JP 2005264713 A JP2005264713 A JP 2005264713A JP 2004224230 A JP2004224230 A JP 2004224230A JP 2004224230 A JP2004224230 A JP 2004224230A JP 2005264713 A JP2005264713 A JP 2005264713A
Authority
JP
Japan
Prior art keywords
column
frame
corrugated steel
slab
horizontal force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004224230A
Other languages
Japanese (ja)
Other versions
JP4485876B2 (en
Inventor
Yoshihiro Ota
義弘 太田
Hirofumi Kaneko
洋文 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Komuten Co Ltd
Original Assignee
Takenaka Komuten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Komuten Co Ltd filed Critical Takenaka Komuten Co Ltd
Priority to JP2004224230A priority Critical patent/JP4485876B2/en
Publication of JP2005264713A publication Critical patent/JP2005264713A/en
Application granted granted Critical
Publication of JP4485876B2 publication Critical patent/JP4485876B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an earthquake-proof building wall constructed with corrugated steel plates, which wall has a large freedom of rigidity and strength design, since the wall resists well horizontal shearing forces but has a small resistance to vertical axial forces and the bending forces directed outward from the wall plane, and to provide an earthquake-proof building structure using this wall. <P>SOLUTION: Corrugated steel plates 4 are arranged in the plane of a column-beam or column-slab frame structure 2, 3, which can generate relative story displacement by horizontal forces, in the way that the corrugated steel plates 4's folded lines may become horizontal and that the transmission of horizontal forces may be possible between the column-beam or column-slab frame structure and the corrugated steel plates 4. The corrugated steel plates can resist horizontal shearing forces but have a small resistance to vertical axial forces and the bending forces directed outward from the wall plane. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この発明は、耐震壁及び耐震構造物の技術分野に属し、更に云うと、壁体に波形鋼板を使用して、水平剪断力には抵抗するが、鉛直軸力及び面外方向の曲げに対しては抵抗が小さく、剛性と強度の設計の自由度が大きい耐震壁、及び前記耐震壁を用いた耐震構造物、並びに構造物の転倒モーメントを負担する曲げ戻し壁又はトップビームに前記波形鋼板を採用した耐震構造物に関する。 The present invention belongs to the technical field of seismic walls and seismic structures, and more specifically, corrugated steel is used for the wall body to resist horizontal shearing force, but against vertical axial force and out-of-plane bending. The corrugated steel plate is attached to a seismic wall having a low resistance and a high degree of freedom in design of rigidity and strength, a seismic structure using the seismic wall, and a bending return wall or top beam that bears the overturning moment of the structure. It relates to the seismic structure adopted .

従来、耐震壁及び耐震構造物としては、現場打ちコンクリート造又はプレキャストコンクリート造の壁構造が一般的に採用されている。しかし、コンクリート壁は、強度と剛性の制御が難しく、所定の強度を保持しつつ変形能力を期待することが難しい。耐震壁及び耐震構造物に要求される性能は、剛性と強度を適切に設計すること、云い換えれば地震力に対する強度が大きく、しかも高耐力での変形性能(靱性)に優れた可変剛性機能を満たすことである。 Conventionally, as a shear wall and seismic structures, wall structures of cast-in-place concrete structure or Purekyasu Toco Nkurito granulation is generally adopted. However, it is difficult to control the strength and rigidity of a concrete wall, and it is difficult to expect deformation ability while maintaining a predetermined strength. The performance required for the shear walls and structures is to design the rigidity and strength appropriately, in other words, the strength against seismic force is large, and the variable stiffness function with excellent deformation performance (toughness) at high strength. To meet.

この目的を達成する手段として、従来、幾つかの技術が開示されている。
例えば、特許文献1には、耐震壁と周辺架構との間に、前記耐震壁および周辺架構のコンクリート強度より弱いモルタルを注入して、地震時には前記モルタル部分を集中的に破壊させて耐震壁本体の剪断破壊を防止する構成で構造物全体の剪断剛性、強度を制御する耐震壁が開示されている。
Conventionally, several techniques have been disclosed as means for achieving this object.
For example, Patent Document 1, between the shear wall and a peripheral Frames, said injecting shear wall and weak mortar than the concrete strength of the peripheral Frames, during an earthquake by destroying the mortar partially intensive seismic walls of controlling shear rigidity of the entire structure creation, the strength structure to prevent shear failure wall body is disclosed.

特許文献2には、RC造の耐震壁に無筋で凹状のひび割れ誘発目地部(スリット)を設け、地震時に当該目地部に破壊を集中させて剪断破壊を起こすことなくエネルギーを吸収させて、構造物全体の剪断剛性、強度を制御する鉄筋コンクリート壁構造が開示されている。 Patent Document 2, only set cracks induced joints concave in unreinforced to RC structures of Shear Walls (slit), and to absorb the energy without causing a shear failure is concentrated destruction to the joints during an earthquake A reinforced concrete wall structure for controlling the shear rigidity and strength of the entire structure is disclosed.

また、地震時等に高層建物のコア部の脚部に発生する転倒モーメントの制御を目的とした耐震技術も開示されている。
特許文献3には、構造物中央の連層RC造コア壁の頂部にトップガーダーを設置し、トップガーダーの曲げ戻し作用により転倒モーメントの一部を周辺柱梁フレーム等に軸力として伝達させ、軸力及び転倒モーメントによる変形を制御する技術が開示されている。
In addition, an earthquake resistance technique for the purpose of controlling the overturning moment generated in the leg portion of the core portion of a high-rise building during an earthquake or the like is also disclosed.
In Patent Document 3, a top girder is installed on the top of a multi- layer RC core wall in the center of the structure, and a part of the overturning moment is transmitted as an axial force to a peripheral column beam frame or the like by the bending back action of the top girder. A technique for controlling deformation due to axial force and overturning moment is disclosed.

更に下記の特許文献4には、デッキプレート(波形鋼板)をその波形の筋が水平方向となる配置で柱梁架構の面内へ組み入れ、その上縁及び左右縁を柱梁へ装着した波形板製遮災壁が開示されている。Further, in Patent Document 4 below, a corrugated plate in which a deck plate (corrugated steel plate) is incorporated in the plane of the column beam frame in such a manner that the corrugated streaks are in the horizontal direction, and the upper edge and the left and right edges are mounted on the column beam Disaster barriers are disclosed.

特公昭62−31148号公報Japanese Patent Publication No.62-31148 特許第2944050号公報Japanese Patent No. 2944050 特開平7−18918号公報Japanese Unexamined Patent Publication No. 7-18918 特開2003−176582号公報JP 2003-176582 A

上述したように、コンクリート造の耐震壁および耐震構造物の剛性と強度を制御する技術は、既に公知である。しかし、コンクリート壁は、強度を大きくするべく鉄筋量を増やしたり壁厚を大きくすると、必然的に剛性も大きくなるし、面外力に対する剛性も大きくなる性質がある。そのため上記特許文献1、2に開示されたように破壊を集中させるモルタルを使用したり、ひび割れ誘発目地部を設ける等々の面倒な製作や取付手法を要求される。それでも、面外力に対する曲げ剛性の制御は不可能である。コンクリート壁は非常に重く、構造物の躯体荷重が大きくなるという問題点も見逃せない As described above, a technique for controlling the rigidity and strength of a concrete seismic wall and a seismic structure is already known. However, concrete wall, when the wall thickness or increasing the rebar amount to increase the strength is increased, to be increased inevitably rigid, rigidity becomes nature there Ru large for Mengairyoku. Therefore, as disclosed in Patent Documents 1 and 2, a troublesome production and attachment technique such as using a mortar for concentrating destruction or providing a crack-inducing joint is required. Nevertheless, it is impossible to control the bending stiffness against the out-of-plane force. The concrete wall is very heavy, and the problem of increased structural load on the structure cannot be overlooked .

ところで、上記特許文献4には、デッキプレート(波形鋼板)をその波形の筋が水平方向となる配置で柱梁架構の面内へ組み入れ、その上縁及び左右縁を柱梁へ装着した波形板製遮災壁が開示されている。しかし、その目的は、構造物の火災時に床は下方へ大きく撓むが、梁は床ほどは撓まないので、通常の遮災壁は前記の撓み変形に追従できず破損して防火機能を果たし得ないという課題を解決することにあり(同公報の段落番号[0003]〜[0005]及び[0021]以下参照)、波形鋼板の上下方向の伸縮性に着眼したものと認められる。いずれにしても、デッキプレートは所謂スラブコンクリートを打設する床型枠(捨て型枠)に使用される用途が周知であり、その厚さは1.2mmないしせいぜい6mm程度の薄い鋼板で、とうてい本願発明が目的とする耐震壁に適用できる鋼材ではない。このような意味から言えば、壁体として波形鋼板の力学特性に着眼した耐震壁及び耐震構造物の技術的思想は未だに見当たらない。ちなみに、本願発明において言う波形鋼板は、以下に説明するように板厚が9mmないし22mm程度の極厚鋼板である。 By the way, in the above-mentioned Patent Document 4, a corrugated plate in which a deck plate (corrugated steel plate) is incorporated in a plane of a column beam frame in an arrangement in which the corrugated streaks are in the horizontal direction, and the upper edge and the left and right edges are mounted on the column beam. Disaster barriers are disclosed. However, the purpose of the structure is that the floor bends downward greatly in the event of a structural fire, but the beams do not bend as much as the floor. It is to solve the problem that it cannot be achieved (see paragraph numbers [0003] to [0005] and [0021] and below) of the same publication, and is recognized as focusing on the vertical stretchability of the corrugated steel sheet. In any case, it is well known that the deck plate is used for floor formwork (disposal formwork) on which so-called slab concrete is placed, and its thickness is as thin as 1.2 mm to 6 mm at most. It is not a steel material that can be applied to the earthquake-resistant wall intended by the present invention. From this point of view, the technical idea of the earthquake-resistant wall and the earthquake-resistant structure focusing on the mechanical characteristics of the corrugated steel sheet as the wall has not been found yet. Incidentally, the corrugated steel sheet referred to in the present invention is an extremely thick steel sheet having a thickness of about 9 mm to 22 mm as will be described below.

上記波形鋼板の力学特性としては下記する1)、2)の点を特筆できる。なお、本発明で言う波形鋼板とは、JIS規格では「鋼板製波板」と記載され、当業者間では単に折板とか波板と称されているもので、断面形状としては図15A〜Dに例示した台形波形状(図15A)、矩形波形状(図15B)、三角波形状(図15C)、円弧波形状(図15D)等のものを指している。
1)波形鋼板は図13Aに示すように折板になっている1枚1枚が剪断力に対して抵抗するだけでなく、図13Bに示すように、折板の集合としての全体剪断力に抵抗する形状効果を発揮する。折板であるため、剪断座屈長さが短く、その剪断耐力は平板と比較すると著しく大き。そして、剪断耐力及び剛性は、鋼板の材質固有の強度の他、板厚の大きさ、折板のピッチ及び波高により、自由に制御可能である。
2)軸力に対しては図14Aに示すように、折板の一枚一枚がアコーディオンの如くに自由に伸び縮みするので、平板と比較すると剛性、耐力がはるかに小さ。曲げに対しても同様に図14Bに示すようにアコーディオンの如くに自由に伸び縮みして圧縮および引っ張りを許容するので、平板と比較すると剛性、耐力が十分小さいという形状効果を有する。一方、波形の折り筋に垂直な方向の面外力(曲げ及び剪断)に対する剛性、耐力は十分に大きく、波形の折り筋に平行な方向の面外力(曲げ及び剪断)に対しては、抵抗が小さいのである
As the mechanical characteristics of the corrugated steel sheet, the following points 1) and 2) can be noted. The corrugated steel sheet referred to in the present invention is described as “steel plate corrugated sheet” in the JIS standard, and is simply referred to as a folded sheet or corrugated sheet by those skilled in the art. The trapezoidal wave shape ( FIG. 15A ), the rectangular wave shape ( FIG. 15B ), the triangular wave shape ( FIG. 15C ), the circular arc shape ( FIG. 15D), etc. illustrated in FIG .
1) corrugated steel not only one by one that is a folded plate as shown in FIG. 13A is resistance to shear forces, as shown in FIG. 13B, the entire shearing forces as a set of folding plates Demonstrate the shape effect to resist. Since a folded plate, shear seat屈長is short, the shear strength is remarkably have large when compared to the flat plate. Then, the shear strength and stiffness, other materials inherent strength of the steel sheet, the thickness of the size, the pitch and height of the folded plate is freely controllable ability.
2) As shown in FIG. 14A with respect to the axial forces, since one single folding plate is contracted freely extend in as an accordion, when compared to flat rigid, yield strength is much yet small. Similarly to bending, as shown in FIG. 14B, since it freely expands and contracts like an accordion to allow compression and tension, it has a shape effect that rigidity and proof stress are sufficiently small compared to a flat plate. On the other hand, the rigidity and strength against the out-of-plane force (bending and shearing) in the direction perpendicular to the corrugated fold line are sufficiently large, and resistance to the out-of-plane force (bending and shearing) in the direction parallel to the corrugated fold line is low. is Ino small.

本発明の目的は、上述した力学特性を有する波形鋼板を、その折り筋を水平方向の配置で構造物の壁体に使用することにより、面内の曲げ及び剪断に対する剪断耐力及び剛性が大きくて、しかも剛性及び強度設計の自由度が高く、軸力及び面外方向の曲げ力に対する抵抗が小さい力学特性を利用して、一定の強度を保持しつつも変形性能(靱性)を十分に期待でき、軽量で現場での取付けが簡単な耐震壁を提供することにある。 An object of the present invention is to use a corrugated steel sheet having the above-mentioned mechanical characteristics in a wall of a structure with its folding line arranged in a horizontal direction, thereby increasing shear resistance and rigidity against in-plane bending and shearing. , deer have high degree of freedom of stiffness and strength design utilizes axial forces and the dynamics characteristic resistance is less for bending force in the out-of-plane direction, while maintaining a constant intensity variations performance (toughness) The aim is to provide a seismic wall that can be fully expected, is lightweight and easy to install on site.

本発明の目的は、コア部の耐震壁として波形鋼板を、その折り筋水平方向となる配置でコア部の柱の相互間又は壁付柱相互間に使用した耐震構造物を提供することにある。 An object of the present invention, the corrugated steel as Shear Walls core portion, that the creases to provide a seismic structures used therebetween or between a wall pillars mutual pillars of the core portion is arranged to be horizontal is there.

本発明の更なる目的は、コア部を有する構造物の曲げ戻し壁として、又はトップビームに波形鋼板をその折り筋が鉛直方向となる配置して、構造物の曲げ剛性を高め変形を低減して転倒モーメントの発生を著しく低下させた耐震構造物を提供することにある。 A further object of the present invention, as unbending wall structure having a core portion, or a corrugated steel to the top beam and the arrangement of the crease is vertical, increasing the flexural rigidity of the structure, the deformation An object of the present invention is to provide a seismic structure that is reduced to significantly reduce the occurrence of a tipping moment.

上述した従来技術の課題を解決するための手段として、請求項1に記載した発明に係る耐震壁は、
水平力で層間変形を発生する柱梁架構2、3又は柱スラブ架構の面内に、波形鋼板4がその折り筋が水平方向となる配置で組み入れられ柱梁架構又は柱スラブ架構と波形鋼板水平力の伝達が可能に接合されており、波形鋼板4は水平剪断力に抵抗するが、鉛直軸力および面外方向の曲げに対する抵抗は小さい構成としたことを特徴とする。
As means for solving the above-mentioned problems of the prior art, the earthquake resistant wall according to the invention described in claim 1 is:
In the plane of the Column Frames 2, 3 or posts slab Frames generates interlayer deformation horizontal force, incorporated in an arrangement corrugated steel 4 that crease is horizontal, Column Frame or column slab Frames and corrugated steel 4 and are joined to enable the transmission of horizontal forces, corrugated steel 4 is to resist horizontal shear force, characterized in that the resistance is small structure with respect to the vertical axial force and out-of-plane direction of bending.

請求項2記載の発明は、請求項1に記載した耐震壁において、The invention according to claim 2 is the earthquake resistant wall according to claim 1,
波形鋼板4は、柱梁架構2、3又は柱スラブ架構の柱2とのみ水平力の伝達が可能に接合されていることを特徴とする。The corrugated steel plate 4 is characterized in that it is joined only to the column beam frames 2 and 3 or the column 2 of the column slab frame so that a horizontal force can be transmitted.

請求項3記載の発明は、請求項1に記載した耐震壁において、The invention according to claim 3 is the earthquake resistant wall according to claim 1,
波形鋼板4は、柱梁架構2、3又は柱スラブ架構の梁3又はスラブとのみ水平力の伝達が可能に接合されていることを特徴とする。The corrugated steel plate 4 is characterized in that it is joined only to the beam 3 or slab of the column beam frame 2 or 3 or the column slab frame so that a horizontal force can be transmitted.

請求項4記載の発明は、請求項1に記載した耐震壁において、The invention according to claim 4 is the earthquake resistant wall according to claim 1,
波形鋼板4は、柱梁架構2、3又は柱スラブ架構の柱2及び梁3又はスラブと水平力の伝達が可能に接合されていることを特徴とする。The corrugated steel plate 4 is characterized by being joined to the column 2 and the beam 3 or the slab of the column beam frame 2 or 3 or the column slab frame so as to be able to transmit a horizontal force.

請求項5記載の発明は、請求項1〜4のいずれか一に記載した耐震壁において、Invention of Claim 5 is the earthquake-resistant wall as described in any one of Claims 1-4,
柱梁架構2、3又は柱スラブ架構が現場打ちの鉄筋コンクリート造又は鉄骨鉄筋コンクリート造である場合、波形鋼板4はその周辺部にスタッド等の水平力伝達要素10、11を設けて柱梁架構2、3又は柱スラブ架構の面内へ嵌め込まれ、柱梁架構又は柱スラブ架構の柱2及び梁3又はスラブの現場打ちコンクリート部分の中へ埋め込まれ水平力の伝達が可能に接合されていることを特徴とする。When the column beam frames 2 and 3 or the column slab frame is made of reinforced concrete or steel reinforced concrete, the corrugated steel plate 4 is provided with horizontal force transmission elements 10 and 11 such as studs on the periphery thereof, and the column beam frame 2 3 or fitted in the plane of the column slab frame, embedded in the column 2 and column 3 of the column beam frame or column slab frame or in the cast-in-place concrete part of the slab, and joined so that transmission of horizontal force is possible Features.

請求項6記載の発明は、請求項1〜4のいずれか一に記載した耐震壁において、The invention according to claim 6 is the earthquake resistant wall according to any one of claims 1 to 4,
柱梁架構2、3又は柱スラブ架構がプレキャスト鉄筋コンクリート造又はプレキャスト鉄骨鉄筋コンクリート造である場合、柱梁架構2、3又は柱スラブ架構の内周面には予めジョイント部材10、13.14が設けられ、柱梁架構又は柱スラブ架構の架構面内へ嵌め込まれた波形鋼板4は、その周辺部が柱梁架構又は柱スラブ架構の前記ジョイント部材とボルト止め又は溶接等の手段で水平力の伝達が可能に接合されていることを特徴とする。When the column beam frame 2, 3 or the column slab frame is a precast reinforced concrete structure or a precast steel reinforced concrete structure, joint members 10, 13.14 are provided in advance on the inner peripheral surface of the column beam frame 2, 3 or the column slab frame. The corrugated steel sheet 4 fitted in the frame surface of the column beam frame or the column slab frame has a peripheral portion that can transmit a horizontal force by means of bolting or welding or the like with the joint member of the column beam frame or the column slab frame. It is characterized by being able to be joined.

請求項7記載の発明は、請求項1〜4のいずれか一に記載した耐震壁において、The invention according to claim 7 is the earthquake resistant wall according to any one of claims 1 to 4,
柱梁架構2、3又は柱スラブ架構の柱2又は梁3・スラブのいずれか一方にのみその内周面部にスタッド等の水平力伝達要素10、13、14が設けられ、前記架構面内へ嵌め込まれた波形鋼板4は、柱梁架構又は柱スラブ架構の前記水平力伝達要素と水平力の伝達が可能に接合されていることを特徴とする。Horizontal force transmission elements 10, 13, 14 such as studs are provided on the inner peripheral surface portion of only one of the column 2, the beam 3 and the slab of the column slab frame, and into the frame surface. The fitted corrugated steel sheet 4 is characterized by being joined to the horizontal force transmitting element of the column beam frame or the column slab frame so as to be able to transmit a horizontal force.

請求項8記載の発明は、請求項1〜4のいずれか一に記載した耐震壁において、The invention according to claim 8 is the earthquake resistant wall according to any one of claims 1 to 4,
波形鋼板4の外周辺に接合用フレーム11が設けられ、柱梁架構2、3又は柱スラブ架構の内周面にはスタッド等の水平力伝達要素10、13、14が設けられ、柱梁架構又は柱スラブ架構の面内へ嵌め込まれた波形鋼板4は、その接合用フレーム11が前記水平力伝達要素と水平力の伝達が可能に接合されていることを特徴とする。A joining frame 11 is provided on the outer periphery of the corrugated steel plate 4, and horizontal force transmission elements 10, 13, 14 such as studs are provided on the inner peripheral surface of the column beam frames 2, 3 or the column slab frame. Alternatively, the corrugated steel plate 4 fitted in the plane of the column slab frame is characterized in that the joining frame 11 is joined to the horizontal force transmitting element so as to be able to transmit the horizontal force.

請求項9記載の発明は、請求項1〜4のいずれか一に記載した耐震壁において、The invention according to claim 9 is the earthquake resistant wall according to any one of claims 1 to 4,
プレキャスト鉄筋コンクリート造又はプレキャスト鉄骨鉄筋コンクリート造の柱梁架構2、3又は柱スラブ架構の内周面にスタッド等の水平力伝達要素10を介して接合用プレート13、14が設けられ、波形鋼板4の外周辺には接合用フレーム11が設けられ、柱梁架構又は柱スラブ架構の架構面内へ嵌め込まれた波形鋼板4は、その接合用フレーム11が前記接合用プレート13、14とボルト止め又は溶接等の手段で水平力の伝達が可能に接合されていることを特徴とする。Plates 13 and 14 are provided on the inner peripheral surface of the precast reinforced concrete or precast steel reinforced concrete column beam frame 2 or 3 or the column slab frame via a horizontal force transmission element 10 such as a stud, The corrugated steel plate 4 fitted in the frame surface of the column beam frame or the column slab frame is provided with a bonding frame 11 in the periphery, and the bonding frame 11 is bolted or welded to the bonding plates 13 and 14. It is characterized in that it is joined so that a horizontal force can be transmitted by means of

請求項10記載の発明は、請求項1〜4のいずれか一に記載した耐震壁において、The invention according to claim 10 is the earthquake resistant wall according to any one of claims 1 to 4,
プレキャスト鉄筋コンクリート造又はプレキャスト鉄骨鉄筋コンクリート造の柱梁架構2、3又は柱スラブ架構の内周面にナット部材12が埋め込まれており、波形鋼板4の外周辺には接合用フレーム11が設けられ、柱梁架構又は柱スラブ架構の架構面内へ嵌め込まれた波形鋼板4は、その接合用フレーム11が前記ナット部材12とボルト接合により水平力の伝達が可能に接合されていることを特徴とする。  A nut member 12 is embedded in the inner peripheral surface of the precast reinforced concrete or precast steel reinforced concrete column beam frame 2, 3 or column slab frame, and a joining frame 11 is provided on the outer periphery of the corrugated steel plate 4. The corrugated steel sheet 4 fitted into the frame surface of the beam frame or the column slab frame is characterized in that the frame 11 for bonding is bonded to the nut member 12 so as to be able to transmit a horizontal force.

請求項11記載の発明に係る耐震構造物は、
構造物構面を形成する2、2相互間、又は壁付柱2bの相互間、若しくはコア柱2aの相互間に、波形鋼板4がその折り筋が水平方向となる配置で組み入れられ、柱又は壁付柱2b若しくはコア柱2a波形鋼板4とが水平力の伝達が可能に接合されており、波形鋼板4は水平剪断力には抵抗するが、鉛直軸力および面外方向の曲げに対する抵抗は小さい構成としたことを特徴とする。
The earthquake resistant structure according to the invention of claim 11 is:
Between the pillars 2, 2 each other to form a Plane of the structure 1, or between each other Kabezukehashira 2b, or between each other of the core columns 2a, incorporated in an arrangement corrugated steel 4 that crease is horizontal The column or walled column 2b or the core column 2a and the corrugated steel plate 4 are joined so as to be able to transmit the horizontal force, and the corrugated steel plate 4 resists the horizontal shearing force, but the vertical axial force and the out-of-plane direction It is characterized by having a small resistance to bending.

請求項12記載の発明は、請求項11に記載した耐震構造物において、The invention according to claim 12 is the earthquake resistant structure according to claim 11,
波形鋼板4は、構造物1の構面を形成する柱2又は付帯柱2b若しくはコア柱2aとのみ接合されていることを特徴とする。The corrugated steel plate 4 is characterized in that it is bonded only to the column 2, the incidental column 2 b or the core column 2 a that forms the surface of the structure 1.
請求項13に記載した発明は、請求項11に記載した耐震構造物において、The invention described in claim 13 is the earthquake resistant structure described in claim 11,
波形鋼板4は、構造物1の構面を形成する柱2又は付帯柱2b若しくはコア柱2a及び梁又はスラブと接合されていることを特徴とする。The corrugated steel sheet 4 is characterized in that it is joined to the pillar 2, the incidental pillar 2 b or the core pillar 2 a and the beam or slab that form the surface of the structure 1.
請求項14記載の発明は、請求項11に記載した耐震構造物において、The invention according to claim 14 is the earthquake-resistant structure according to claim 11,
構造物1のコア部Rのコア柱2aの側面にスタッド等の水平力伝達要素が設けられ、前記コア柱2a、2aの相互間に嵌め込まれた波形鋼板4の縦辺が前記水平力伝達要素と水平力の伝達が可能に接合されていることを特徴とする。A horizontal force transmission element such as a stud is provided on the side surface of the core column 2a of the core portion R of the structure 1, and the vertical side of the corrugated steel sheet 4 fitted between the core columns 2a and 2a is the horizontal force transmission element. It is characterized in that it is joined so that a horizontal force can be transmitted.

請求項15記載の発明は、請求項11又は12若しくは13に記載した耐震構造物において、
波形鋼板は、構造物1の構面を形成する柱2相互間、又は壁付柱2bの相互間、若しくはコア柱2aの相互間の全層にわたり、又は中・低層以下に、又は下層部を除く上層部に、若しくは中間層にのみ組み入れられていることを特徴とする。
The invention according to claim 15 is the earthquake resistant structure according to claim 11 or 12 or 13 ,
Corrugated steel 4, between the pillars 2 together and form a Plane of the structure 1, or between each other Kabezukehashira 2b, or over the entire thickness of the mutual core pillars 2a, or low-rise below-middle, or the lower layer at the top except for the part, or wherein the only been incorporated et al in the intermediate layer.

請求項16記載の発明に係る耐震構造物は、
構造物1の構面を形成する上下のフレーム材6、6間に、当該構造物の曲げ戻し壁としての波形鋼板5がその折り筋が垂直方向となる配置で組み入れられ、上下のフレーム材6、6と転倒モーメントの伝達が可能に接合されており、構造物の転倒モーメントの一部を外周柱2c等に分散させて当該構造物の曲げ剛性を高め変形を低減する構成としたことを特徴とする。
The seismic structure according to the invention of claim 16 is:
Between the upper and lower frame members 6, 6 forming the Plane of the structure 1, corrugated steel 5 as unbending wall of the structure 1 its creases are incorporated in an arrangement which is a vertical direction, the upper and lower frame members 6,6 and are transmitted can join the overturning moment, and configured to reduce by dispersing a part of overturning moment of the structure 1 on the outer peripheral pillar 2c or the like increases the flexural rigidity of the structure 1 variant It is characterized by that.

請求項17記載の発明に係る耐震構造物は、The seismic structure according to the invention of claim 17 is:
構造物1の構面を形成し且つ外周柱2cとコア柱2aを含む上下のフレーム材6、6間に、構造物1の曲げ戻し壁としての波形鋼板5がその折り筋が垂直方向となる配置で組み入れられ、上下のフレーム材6、6と転倒モーメントの伝達が可能に接合されており、構造物1の転倒モーメントの一部を外周柱2c及びコア柱2aに分散させて当該構造物1の曲げ剛性を高め変形を低減する構成としたことを特徴とする。Between the upper and lower frame members 6 and 6 that form the surface of the structure 1 and include the outer peripheral column 2c and the core column 2a, the corrugated steel plate 5 as a bending return wall of the structure 1 has a folding line in the vertical direction. It is incorporated in the arrangement, and is joined to the upper and lower frame members 6 and 6 so as to be able to transmit a tipping moment, and a part of the tipping moment of the structure 1 is dispersed in the outer peripheral column 2c and the core column 2a, and the structure 1 The structure is characterized in that the bending rigidity is increased and deformation is reduced.

請求項18記載の発明に係る耐震構造物
構造物1の構面を形成し、且つ構造物のトップビームを形成する上下のフレーム材7a、7a間に、波形鋼板5がその折り筋が垂直方向となる配置で組み入れ、上下のフレーム材7a、7aと転倒モーメントの伝達が可能に接合されており、構造物の転倒モーメントの一部を外周柱2c等に分散させて当該構造物の曲げ剛性を高め変形を低減する構成としたことを特徴とする。
Seismic structure according to the invention of claim 18 wherein the
The corrugated steel plate 5 is incorporated between the upper and lower frame members 7a, 7a forming the surface of the structure 1 and forming the top beam 7 of the structure 1 in such a manner that the folding line is in the vertical direction. wood 7a, 7a and are capable bonded transmission of overturning moment, a configuration for reducing the deformation increases the flexural rigidity of the structure portion are dispersed in an outer peripheral pillar 2c, etc. the structure 1 of the tipping moment 1 It is characterized by that.

請求項19記載の発明に係る耐震構造物は、
構造物1の水平力で層間変形を発生する柱梁架構2、3又は柱スラブ架構のうち、互い違いの市松模様状配置に選択した架構面内、波形鋼板で成る耐震壁が組み入れられ、水平力の伝達が可能に接合されていることを特徴とする。
The seismic structure according to the invention of claim 19 is:
Of Column Frames 2, 3 or posts slab Frames generates interlayer deformation in a horizontal force of the structure 1, the staggered Frame plane selected in a checkered pattern arrangement, the shear wall made of corrugated steel 4 incorporated, It is characterized by being joined so that transmission of horizontal force is possible .

請求項20記載の発明に係る耐震構造物は、The seismic structure according to the invention of claim 20 is
構造物1において水平力で層間変形を発生する柱梁架構2、3又は柱スラブ架構のうち、構造物1の剛性、耐力を高めるのに適切なランダム配置に選択した架構面内に、波形鋼板4で成る耐震壁が組み入れられ、水平力の伝達が可能に接合されていることを特徴とする。Corrugated steel plates in the frame surface selected in random arrangement suitable for increasing the rigidity and proof strength of the structure 1 among the column beam structures 2 and 3 or the column slab structure that generates the interlayer deformation by the horizontal force in the structure 1 It is characterized in that a seismic wall consisting of 4 is incorporated and is joined so that transmission of horizontal force is possible.

請求項1〜10に記載した発明に係る耐震壁は、波形鋼板を、その折り筋が水平方向となる配置で柱梁架構2、3又は柱スラブ架構の面内へ設置した構成なので、同架構の水平力による曲げ及び剪断に対して波形鋼板4が効果的に抵抗し剪断耐力および剛性は必要十分に大きくなる。それでいて架構の剛性及び強度の設計の自由度が高く、鉛直軸力及び面外方向の曲げ力に対する抵抗は小さい力学特性を発揮する。よって地震力に対する強度(耐力)が大きく、しかも高耐力での変形性能(靱性)に優れた可変剛性機能を期待できる。
また、本発明の耐震壁は波形鋼板4で構成されるから、既往のコンクリート造耐震壁に比較すると極めて軽量であり、柱2や基礎への荷重負担が小さいし、現場での取付作業が簡単で容易であるのみならず、剪断変形性能に優れ、剪断破壊を生じ難いので、地震後も補修する必要がなく継続使用が可能である。
更に、波形鋼板は、波形の山谷の高さ(波高)が戸境壁の壁厚寸法る程度なので、居室等の床面積を狭くするような悪影響を及ぼさない実施できる利点もある。
Walls according to the invention described in claim 1 to 10 is a corrugated steel 4, since the crease is configured to attach the camera to Column Frames 2, 3, or the plane of the pillars slab Frames in an arrangement comprising the horizontal direction, the The corrugated steel plate 4 effectively resists bending and shearing due to the horizontal force of the frame, and the shear strength and rigidity become sufficiently large . Yet the degree of freedom in designing the stiffness and strength of Frames high resistance to vertical axial force, and the out-of-plane direction of the bending force exerts have the dynamics characteristics small. Therefore, it is possible to expect a variable stiffness function that has high strength (proof strength) against seismic force and excellent deformation performance (toughness) at high strength.
Moreover, since the earthquake-resistant wall of the present invention is composed of the corrugated steel plate 4, it is extremely light compared to the existing concrete-made earthquake-resistant wall, the load on the pillar 2 and the foundation is small, and the installation work at the site is easy. It is easy . In addition, it has excellent shear deformation performance and is less likely to cause shear failure, so it can be used continuously without the need for repair after an earthquake.
Furthermore, corrugated steel 4, since peaks and valleys height of the waveform (wave height) of degree paid or Ru in wall thickness dimensions of Tosakaikabe, embodiments which do not adversely adverse influences such as a narrow floor space such as a room is There is also an advantage that can be done.

請求項11〜15に記載した発明に係る耐震構造物は、同構造物1の構面を形成する柱相互間、又は壁付柱2bの相互間、若しくはコア柱2aの相互間に、波形鋼板を、その折り筋が水平方向となる配置で組み入れ、柱又は壁付柱2b若しくはコア柱2aと水平力の伝達が可能に接合した構成なので、やはり構造物1が負担する水平力に対して波形鋼板4が効果的に抵抗し、同構造物1の剪断耐力及び剛性は必要十分に大きくなる。
それでいて架構の剛性及び強度設計の自由度は、例えば構面を形成する柱相互間等の全層に波形鋼板4を組み入れるか、又は中・低層以下に、若しくは下層部を除く上層部に、又は中間層にのみ波形鋼板4を組み入れるか等々の選択が出来るように広範である。しかも波形鋼板4は鉛直軸力及び面外方向の曲げ力に対する抵抗は小さいという力学特性も発揮する。よって地震力に対する強度(耐力)が大きく、しかも高耐力での変形性能(靱性)に優れた耐震構造物1を提供できる。
また、本発明の耐震構造物1は、波形鋼板4で構成するから、既往のコンクリート造耐震壁によるものと比較すると極めて軽量であり、柱2や基礎への荷重負担が小さいし、現場での取付作業が簡単で容易である。のみならず、波形鋼板4は剪断変形性能に優れ、剪断破壊を生じ難いので、地震後も補修する必要がなく継続使用が可能である。
The seismic structure 1 according to the invention described in claims 11 to 15 is corrugated between columns forming the construction surface of the structure 1, between the columns 2b with walls, or between the core columns 2a. the steel sheet 4, incorporated in an arrangement that crease is horizontal direction, since the transmission of the pillars or Kabezukehashira 2b or core columns 2a and horizontal force capable bonded with the structure, also the horizontal forces structures 1 be borne On the other hand, the corrugated steel plate 4 effectively resists, and the shear strength and rigidity of the structure 1 become sufficiently large.
Nevertheless, the rigidity and strength design freedom of the frame can be obtained by, for example, incorporating the corrugated steel plate 4 in all layers such as between the columns forming the structural surface, or in the middle layer or lower layer, or in the upper layer portion excluding the lower layer portion, or It is wide enough to select whether the corrugated steel sheet 4 is incorporated only in the intermediate layer. Moreover, the corrugated steel sheet 4 also exhibits a mechanical characteristic that resistance to the vertical axial force and the bending force in the out-of-plane direction is small. Therefore, it is possible to provide the earthquake-resistant structure 1 having a high strength (proof strength) against the earthquake force and excellent deformation performance (toughness) with high strength.
Moreover, since the seismic structure 1 of the present invention is composed of the corrugated steel plate 4, it is extremely light compared to the existing concrete seismic wall, and the load on the pillar 2 and the foundation is small. Installation work is simple and easy. Not only that, the corrugated steel sheet 4 has excellent shear deformation performance and is less likely to cause shear failure, so that it is not necessary to repair after an earthquake and can be used continuously.

更に、請求項16〜18に記載した発明に係る耐震構造物は、構造物の曲げ戻し壁として、又はトップビームとしてその上下のフレーム材6又は7a間に、波形鋼板その折り筋鉛直方向となる配置で設置したので、曲げ戻し壁及びトップビームの剛性を高め構造物水平力による転倒モーメントの一部を外周柱2cやコア柱2aに分散させて当該構造物1の曲げ剛性を高め、変形を効果的に抑制ないし低減することができる。
勿論、波形鋼板5自体の力学特性に起因する作用効果は、上記した各発明の場合と同様に奏される。
Furthermore, the seismic structure 1 according to the invention described in claims 16 to 18 is provided with a corrugated steel plate 5 between the upper and lower frame members 6 or 7a as the bending return wall 5 of the structure or as the top beam 7 . Since the folding lines are installed in the vertical direction, the rigidity of the bending return wall 5 and the top beam 7 is increased , and a part of the overturning moment due to the horizontal force of the structure 1 is distributed to the outer column 2c and the core column 2a. Thus, the bending rigidity of the structure 1 can be increased, and deformation can be effectively suppressed or reduced .
Of course, the effects resulting from the mechanical characteristics of the corrugated steel sheet 5 itself are exhibited in the same manner as in the above-described inventions.

平力で層間変形を発生する柱梁架構2、3又は柱スラブ架構の面内に、波形鋼板4をその折り筋が水平方向となる配置で組み入れ、柱梁架構2、3又は柱スラブ架構と波形鋼板4とを水平力の伝達が可能に接合し、波形鋼板4水平剪断力に抵抗するが、鉛直軸力および面外方向の曲げに対する抵抗は小さい構成の耐震壁とする。 In Column Frame 2, 3 or within the surface of the pillar slab Frames generates interlayer deformation in horizontal force, incorporating corrugated steel 4 in the arrangement that crease is horizontal, Column Frames 2, 3 or posts slabs Frame and a corrugated steel 4 is bonded to enable the transmission of horizontal forces, corrugated steel 4 is to resist horizontal shear force resistance to vertical axial force and out-of-plane direction of bending is the shear walls of small configuration.

構造物1の構面を形成する柱2、2相互間、又は壁付柱2bの相互間、若しくはコア柱2aの相互間に、波形鋼板4をその折り筋が水平方向となる配置で組み入れ、柱2又は壁付柱2b若しくはコア柱2aと波形鋼板4とを水平力の伝達が可能に接合し、波形鋼板4は水平剪断力に抵抗するが、鉛直軸力および面外方向の曲げに対する抵抗は小さい構成の耐震構造物とする。The corrugated steel plate 4 is incorporated between the columns 2 and 2 forming the structural surface of the structure 1, between the walled columns 2 b, or between the core columns 2 a in an arrangement in which the crease is horizontal. The column 2 or the walled column 2b or the core column 2a and the corrugated steel plate 4 are joined so as to be able to transmit a horizontal force, and the corrugated steel plate 4 resists a horizontal shearing force, but resists vertical axial force and bending in an out-of-plane direction. Is a seismic structure with a small structure.

コアRを有すると否とに拘わらず、その構造物1の構面を形成する上下のフレーム材6、6間に、又は構造物のトップビーム7を形成する上下のフレーム材7a、7a間に、構造物の曲げ戻し壁としての波形鋼板5をその折り筋が垂直方向となる配置で組み入れ、上下のフレーム材とは転倒モーメントの伝達が可能に接合し、構造物1の転倒モーメントの一部を外周柱2c等に分散させて当該構造物1の曲げ剛性を高め変形を低減する構成の耐震構造物とする。Regardless of having the core R, between the upper and lower frame members 6 and 6 forming the surface of the structure 1 or between the upper and lower frame members 7a and 7a forming the top beam 7 of the structure. The corrugated steel plate 5 as a bending return wall of the structure is incorporated in such an arrangement that the folding line is in the vertical direction, and the upper and lower frame members are joined so as to transmit the overturning moment, and a part of the overturning moment of the structure 1 Is dispersed in the outer peripheral column 2c or the like to increase the bending rigidity of the structure 1 and to reduce the deformation.

図1図2は請求項1〜10記載の発明に係る耐震壁の実施例を示す。
平力で層間変形を発生する架構の代表例として、図1に示した実施例は両側の柱2、2と上下の梁3、3とで成る柱梁架構であり、その面内に、壁体として波形鋼板4その折り筋が水平方向の配置で組み入れられ、柱梁架構2、3と波形鋼板4と水平力の伝達が可能に接合されている。異なる架構としては、図示することは省略したが、柱2、2と上下のスラブとから成る柱スラブ架構についても同様に実施できる。
1 and 2 show an embodiment of a seismic wall according to the inventions of claims 1 to 10 .
Representative examples of Frames that occur interlayer deformation in horizontal force, the embodiment shown in FIG. 1 is a Column Frames made in both sides of the pillars 2,2 and the upper and lower beams 3, 3, the surface of its within, corrugated steel 4 its crease as the wall body is incorporated in the horizontal alignment are joined to enable the transmission of horizontal forces from the beam-column Frame 2,3 and corrugated steel 4. Although the illustration of the different frames is omitted, a column slab frame composed of the columns 2 and 2 and the upper and lower slabs can be similarly implemented.

前記波形鋼板4は、図2断面形状示すように折板状になっている。その折板形状矩形波形状に形成されており、固有の力学的特性を得られる構成とされている。但し、波形鋼板4の断面形状は図2に示す例の限りではなく、図15A〜Dに示したような種々な波形状で実施できる。
固有の力学的特性としては水平剪断力に対し波形鋼板4の折板になっている一枚一枚が剪断力に対して十分に抵抗し(図13A)、その集合として全体が水平剪断力に十分に大きな抵抗する(図13B)。
The corrugated steel 4 has a folded plate shape as shown in the cross-sectional shape in FIG. Its folded plate shape is formed in a rectangular wave shape, and is configured to obtain the specific mechanical properties. However, the cross-sectional shape of the corrugated steel 4 is not as long as in the example shown in FIG. 2, can be implemented in various corrugated shown example in Figure 15a to 15d.
The intrinsic mechanical properties, to the horizontal shear force, one by one that is a folding plate of corrugated steel 4 is sufficiently resistant to shear forces (Fig. 13A), the overall horizontal shearing as the set A sufficiently large resistance to the force (FIG. 13B).

また、波形鋼板4荷重と変形の関係を図3に例示したように、RC壁と比して十分に高い剪断強度を有し、且つ高い剪断強度を保持したまま変形が進む靱性に優れた性状を発揮し、大きな変形性能を可能とする。 Further, as illustrated the relationship deformation load of the corrugated steel 4 in FIG. 3, RC walls and the ratio has a sufficiently high shear strength and compare, deformed while maintaining and high shear strength progresses no toughness properties Exhibits excellent properties and enables large deformation performance.

しかも、波形鋼板4は折板になっているので、剪断剛性及び強度は、鋼材の材質固有の強度の他に、板厚の大きさ(通例9mm〜22mm程度)、重ね合わせの枚数、ピッチ(通例500mm〜700mm程度)及び波高の大きさ(通例80mm〜150mm程度)などの設計如何により自在に設計することができる。 Moreover, since the corrugated steel plate 4 is a folded plate, the shear rigidity and strength are not only the strength inherent to the material of the steel material, but also the size of the plate (usually about 9 mm to 22 mm), the number of superimposed sheets, the pitch ( typically 500mm~700mm about) and the size of the wave height (about customary 80Mm~150mm) can be designed freely set Kei如 by any such.

また、波形鋼板4は折板になっているので、波形の筋に直角な軸力に対してはアコーディオンの如くに自由に伸び縮みし(図14A)、剛性耐力が小さい。波形面内の曲げに対しても、同様にアコーディオンの如く自由に伸び縮みして圧縮及び引っ張りを許容するので(図14B)、剛性、耐力が小さい。その荷重と変形関係は、図4に示すように、RC壁と比較して途中の剛性が小さくなっており軸力及び面外方向の曲げを十分許容することが分かる。したがって、柱梁架構2、3がRC造、SRC造等々のコンクリート構造であっても、コンクリートのクリープ、乾燥収縮によコンクリート造柱2軸力を負担せず、耐震壁として力学特性にさして変化をきたさない。そして、施工時及び供用時において付加軸力が導入されることなく、波形鋼板4の剪断座屈強度及び靱性は高く維持されるし、地震時の剪断変形に対して経年変化を生ずることなく良好な耐震機能を発揮する。 Also, since the corrugated steel 4 is in the folded plate to shrink freely extend in as an accordion for streaks perpendicular axial force of the waveform (FIG. 14A), the rigidity and strength small again. Against bending in the corrugated surface, so allowing the same accordion as freely expand and contract compression and tensile (FIG. 14B), the rigidity, strength small again. As shown in FIG. 4, the load and the deformation relationship have a smaller intermediate rigidity compared to the RC wall, and it can be seen that the axial force and the bending in the out-of-plane direction are sufficiently allowed. Thus, beam-column Frames 2 and 3 of RC, even concrete structures of SRC Concrete etc., without incurring concrete creep, the axial force of Concrete pillars 2 that due to the drying shrinkage, mechanical properties of a shear wall It wo n’t change . Then, without additional axial force is introduced at the time of the time and in service construction, to shear buckling strength and toughness of the corrugated steel 4 Ru is kept high, to produce through the year changes to shear deformation during seismic exhibit good seismic function without.

一方、波形の折り筋に垂直な方向の面外力(曲げ及び剪断)に対する剛性、耐力は、折板になっているので十分大きいが、波形の折り筋に平行な方向の面外力(曲げ及び剪断)に対しては、折板になっているが故に抵抗が小さ。したがって、耐震壁剛性や強度をそれぞれ独立的に制御することが容易に可能であり設計の自由度は極めて高
更に、波形の山谷の高さ(波高)は戸境壁の厚さ寸法内に納めことができる程度(例えば80mm〜150mm)なので、居室等の床面積に影響を及ぼさない実施できる利点もある。
On the other hand, the rigidity and proof stress against the out-of-plane force (bending and shearing) in the direction perpendicular to the corrugated folding line is sufficiently large because it is a folded plate, but the out-of-plane force (bending and shearing) in the direction parallel to the corrugating folding line. ) against, because it has become folded plate resistance is less. Accordingly, degree of freedom in independently controllable it is easily possible to design the rigidity and strength of the shear walls are not very high.
Furthermore, peaks and valleys height of the waveform (wave height) can because enough to be accommodated within the thickness dimension (e.g. 80Mm~150mm), does not exert evil influence on the floor area, such as room exemplary Tosakaikabe There are also advantages.

記波形鋼板4と柱梁架構2、3又は柱スラブ架構(以下、単に柱梁架構と総称して記載する場合がある。)との接合方法、接合構造を、以下に説明する。
上記した通り、波形鋼板4と柱梁架構2、3とは水平力の伝達が可能に接合されていれば足りるので、波形鋼板4の左右の縦辺と柱梁架構2、3の柱2とのみ接合するか、又は波形鋼板4の上下辺と柱梁架構2、3の梁3若しくは柱スラブ架構スラブ(以下、単に梁3と総称して記載する場合がある。)とのみ水平力の伝達が可能に接合して実施することができる。もちろん、波形鋼板4の四辺を柱梁架構2、3の柱2及び梁3と水平力の伝達が可能に接合して実施することもできる(以上請求項2〜4記載の発明)。
Upper Symbol corrugated steel 4 and Column Frames 2, 3 or column slab Frame (hereinafter, sometimes simply described collectively with Column Frame.) And the bonding method, the bonding structure will be described below.
As described above, it is sufficient that the corrugated steel plate 4 and the column beam frames 2 and 3 are joined to each other so that a horizontal force can be transmitted. Therefore, the left and right vertical sides of the corrugated steel plate 4 and the columns 2 of the column beam frames 2 and 3 The horizontal force is transmitted only between the upper and lower sides of the corrugated steel plate 4 and the beam 3 of the column beam frame 2, 3 or the column slab frame slab (hereinafter sometimes simply referred to as beam 3). Can be carried out by joining. Of course, the four sides of the corrugated steel plate 4 may be joined to the columns 2 and 3 of the column beam frames 2 and 3 so as to be able to transmit a horizontal force (the inventions described in claims 2 to 4 above).

更に具体的に、柱梁架構2、3又は柱スラブ架構が現場打ちの鉄筋コンクリート造又は鉄骨鉄筋コンクリート造として新たに構築される場合の接合方法を説明する。More specifically, a joining method in the case where the column beam frames 2 and 3 or the column slab frame is newly constructed as a reinforced concrete structure or a steel-framed reinforced concrete structure on site will be described.
図16A、Bに例示したように、波形鋼板4の周辺部(四辺)には、スタッド等の水平力伝達要素10を溶接等した接合用フレーム11を一体的に取り付けておく。この波形鋼板4を柱梁架構又は柱スラブ架構を形成するコンクリート型枠の面内部分へ嵌め込み、同コンクリート型枠の中へコンクリートを打設することにより、図17A、Bに示すように柱梁架構2、3の柱2及び梁3又はスラブの現場打ちコンクリート部分の中へ前記スタッド等の水平力伝達要素10を埋め込み、もって水平力の伝達が可能に接合する方法を実施することが出来る(請求項5記載の発明)。As illustrated in FIGS. 16A and 16B, a joining frame 11 in which a horizontal force transmitting element 10 such as a stud is welded is integrally attached to the peripheral portion (four sides) of the corrugated steel plate 4. By inserting this corrugated steel sheet 4 into the in-plane portion of the concrete form forming the column beam frame or the column slab frame, and placing concrete into the concrete form frame, as shown in FIGS. 17A and 17B, A method of embedding the horizontal force transmitting element 10 such as the stud in the cast-in-place concrete portion of the column 2 and the beam 3 of the frames 2 and 3 or the slab so as to be able to transmit the horizontal force can be performed ( Invention of Claim 5).

次に、柱梁架構2、3又は柱スラブ架構がプレキャスト鉄筋コンクリート造又はプレキャスト鉄骨鉄筋コンクリート造として新築され、又は既存する場合の接合方法についても説明する。Next, the joining method in the case where the column beam frame 2, 3 or the column slab frame is newly constructed as a precast reinforced concrete structure or a precast steel reinforced concrete structure, or an existing structure will be described.
例えば図17Aに例示するように、柱梁架構2、3の内周面にスタッドボルト10のごときジョイント部材を予めコンクリート工場における製造時点で埋め込むか、又は現場でホールインアンカー等の方法で設ける。一方、波形鋼板4の四周には、たとえば図16のようなスタッドを持たない接合用フレーム11を一体的に取り付けておく。そして、前記柱梁架構2、3の架構面内へ嵌め込まれた波形鋼板4は、その周辺部の接合用フレーム11を、柱梁架構の前記ジョイント部材10とボルト止め又は溶接等の手段で水平力の伝達が可能に接合する方法を実施する(請求項6記載の発明)。For example, as illustrated in FIG. 17A, a joint member such as a stud bolt 10 is embedded in the inner peripheral surfaces of the column beam frames 2 and 3 in advance at the time of manufacture in a concrete factory, or is provided on the site by a method such as a hole-in anchor. On the other hand, for example, a joining frame 11 having no stud as shown in FIG. The corrugated steel sheet 4 fitted into the frame surfaces of the column beam frames 2 and 3 is horizontally connected to the joint frame 11 of the periphery thereof by means such as bolting or welding with the joint member 10 of the column beam frame. A joining method is performed so that force can be transmitted (the invention according to claim 6).

上記実施例において、柱梁架構2、3又は柱スラブ架構の柱2又は梁3ないしスラブのいずれか一方にのみ、その内周面部にスタッド等の水平力伝達要素10及び必要に応じてジョイント部材を設け、前記架構面内へ嵌め込まれた波形鋼板4は、その接合用フレーム11を柱梁架構の前記水平力伝達要素10と水平力の伝達が可能に接合する方法を実施することができる(請求項7記載の発明)。In the above embodiment, only one of the column 2 or beam 3 of the column beam frame 2, 3 or the column slab frame or the slab has a horizontal force transmission element 10 such as a stud on the inner peripheral surface portion thereof, and a joint member as necessary. The corrugated steel sheet 4 fitted into the frame surface can be joined to the horizontal force transmission element 10 of the column beam frame so as to be able to transmit a horizontal force. (Invention of Claim 7)
同様に、波形鋼板4の外周辺に予め接合用フレーム11を設け、柱梁架構2、3又は柱スラブ架構の内周面にはスタッド10等の水平力伝達要素を設け、柱梁架構2、3の面内へ嵌め込まれた波形鋼板4は、その接合用フレーム11を前記水平力伝達要素10と全周に亘り水平力の伝達が可能に接合する方法も実施される(請求項8記載の発明)。Similarly, a welding frame 11 is provided in advance on the outer periphery of the corrugated steel plate 4, a horizontal force transmission element such as a stud 10 is provided on the inner peripheral surface of the column beam frames 2, 3 or the column slab frame, The corrugated steel sheet 4 fitted in the plane 3 is joined to the joining frame 11 so as to be able to transmit a horizontal force over the entire circumference with the horizontal force transmitting element 10 (claim 8). invention).

更に、柱梁架構2、3又は柱スラブ架構がプレキャスト鉄筋コンクリート造又はプレキャスト鉄骨鉄筋コンクリート造の場合には、同架構の内周面に、図18A、Bのようにスタッド等の水平力伝達要素10を製造時に予め埋め込むか又はホールインアンカー等の方法で設けるとともに、この水平力伝達要素10に接合用プレート13、14を取り付けておく。一方、波形鋼板4の外周辺には、上記図16Aで類推可能なようにスタッド10を持たない接合用フレーム11を設けておく。そして、柱梁架構2、3の架構面内へ嵌め込んだ波形鋼板4は、その接合用フレーム11を前記接合用プレート13、14とボルト止め又は溶接等の手段で水平力の伝達が可能に接合する方法も実施される(請求項9記載の発明)。Further, when the column beam frame 2, 3 or the column slab frame is a precast reinforced concrete structure or a precast steel reinforced concrete structure, a horizontal force transmission element 10 such as a stud is provided on the inner peripheral surface of the frame structure as shown in FIGS. 18A and 18B. At the time of manufacture, it is embedded in advance or provided by a method such as a hole-in anchor, and the joining plates 13 and 14 are attached to the horizontal force transmitting element 10. On the other hand, on the outer periphery of the corrugated steel plate 4, a bonding frame 11 having no stud 10 is provided as can be inferred from FIG. 16A. And the corrugated steel sheet 4 fitted in the frame surface of the column beam frames 2 and 3 can transmit the horizontal force of the bonding frame 11 to the bonding plates 13 and 14 by means such as bolting or welding. A joining method is also performed (the invention according to claim 9).

その他、図19に示したように、プレキャスト鉄筋コンクリート造又はプレキャスト鉄骨鉄筋コンクリート造の柱梁架構又は柱スラブ架構の内周面に予め製造段階でナット部材12を埋め込むか又は現地でホールインアンカー等の方法で設ける。一方、波形鋼板4の外周辺にはやはり図16Aから類推出来るようにスタッドを持たない接合用フレーム11を設けておく。そして、柱梁架構2、3の面内へ嵌め込んだ波形鋼板4は、その接合用フレーム11を前記ナット部材12とボルト止めにより水平力の伝達が可能に接合する方法も実施可能である(請求項10記載の発明)。In addition, as shown in FIG. 19, a nut member 12 is embedded in the inner peripheral surface of a precast reinforced concrete or precast steel reinforced concrete column beam frame or column slab frame in advance at the manufacturing stage, or a method such as a hole-in anchor in the field. Provided. On the other hand, a joining frame 11 having no studs is provided around the outer periphery of the corrugated steel plate 4 as can be inferred from FIG. 16A. The corrugated steel sheet 4 fitted in the planes of the column beam frames 2 and 3 can be joined by a method of joining the joining frame 11 to the nut member 12 so that a horizontal force can be transmitted by bolting (see FIG. (Invention of Claim 10)

勿論、本発明の実施例は上記の内容に限らない。柱梁架構又は柱スラブ架構の大変形時におけるコンクリート構造の剪断破壊等を確実に防止するために、前記柱2の内面と波形鋼板4の縦辺との間剪断変形を許容するスリットを設けたり、前記スリットに発泡スチロール成形品等の剪断吸収部材を充填すること等々実施される。 Of course , the embodiments of the present invention are not limited to the above . Hashiraharika構又in order to reliably prevent shearing destruction of concrete structures at the time of large deformation of the column slab Frames, a slit to allow shearing deformation between the vertical side of the pillar 2 of the inner surface and the corrugated steel 4 Or filling the slits with a shear absorbing member such as a polystyrene foam molded product.

上述した本発明の耐震壁は、図5に示するような建築構造物1の壁体として自由に配置して耐震構造物を実現することができる。その耐震構造物1における耐震壁の配置例としては、図5A、Bに示すように、水平力で層間変形を発生する柱梁架構2、3のうち、互い違いの市松模様状配置に選択た面内へ、上記の波形鋼板4で成る耐震壁組み入れた耐震構造物として実施することができる(請求項19記載の発明)。
或いは建築構造物1において、地震時の水平力で層間変形を発生する柱梁架構2、3又は柱スラブ架構の選択法として、上記規則性のある市松模様状配置に限らず、建築構造物1の剛性、耐力を高めるのに適切なランダム配置(不規則配置)に選択した柱梁架構の面内へ上記した波形鋼板4で成る耐震壁を組み入れ、水平力の伝達が可能に接合した耐震構造物として実施することもできる(請求項20記載の発明)。
The earthquake-resistant wall of the present invention described above can be freely arranged as a wall body of a building structure 1 as shown in FIG. 5 to realize an earthquake-resistant structure. The arrangement of shear walls in the seismic structure 1, as shown in FIG. 5A, B, of the beam-column Frames 2 and 3 for generating the interlayer deformation horizontal force were selected staggered checkerboard-like arrangement The invention can be implemented as an earthquake-resistant structure in which the earthquake- resistant wall made of the corrugated steel plate 4 is incorporated in the plane (the invention according to claim 19 ).
Alternatively, in the building structure 1, the method of selecting the column beam frames 2, 3 or the column slab frame that generates the interlayer deformation due to the horizontal force at the time of the earthquake is not limited to the regular checkered pattern arrangement, but the building structure 1 Seismic structure in which seismic wall made of corrugated steel plate 4 is incorporated in the plane of the column beam structure selected for random arrangement (irregular arrangement) suitable for enhancing the rigidity and proof stress of the joint, and the horizontal force can be transmitted. It can also be implemented as a product (the invention according to claim 20).

次に、図6A、Bは、請求項11に記載した発明の実施例を示している。
本発明に係る耐震構造物1の実施例も、上記の波形鋼板4を使用した構成を特徴とするものである。図6A、Bの実施例は上述した実施例1において説明した図1〜図5及び図13〜図18に示した耐震壁とほぼ同様の技術的思想に立脚するが、耐震構造物1の中心部に通例設けられるコア部Rの所謂コア壁として、波形鋼板4をその折り筋が水平方向の配置設置して成る点が特徴である
前記波形鋼板4は、図7Aに示したように、コア部Rのコア柱2a、2aの相互間配置した構成で、又は図7Bのように、コア部R壁付コア柱2b、2bの相互間に配した構成として実施することができる
そのいずれでも、波形鋼板4は、コア柱2a又は壁付コア柱2bと付帯梁又はスラブ等水平力の伝達が可能に接合される。その接合方法としては、実施例1で説明したと同様に、例えば波形鋼板4の周辺部コア柱2a又は壁付柱2bの面内に予め埋め込ん剪断力伝達手段により接合することができる。
Next, FIGS. 6A and 6B show an embodiment of the invention described in claim 11 .
The embodiment of the earthquake-resistant structure 1 according to the present invention is also characterized by a configuration using the corrugated steel plate 4 described above . Embodiment of Figure 6A, B is to build on substantially the same technical idea as the shear wall as shown in FIGS. 1 to 5 and 13 to 18 were Oite described in Example 1 above, seismic structure as a rule provided et the core part called core wall of R in the center of 1, the crease of the corrugated steel 4 is characterized that comprising installed in horizontal alignment.
The corrugated steel 4, as shown in FIG. 7A, the core portion core pillar 2a of R, in a configuration which is disposed between 2a each other, or as shown in FIG. 7B, a wall core pillars 2b of the core region R, 2b it can be implemented as configuration in which placed between each other.
As either, corrugated steel 4 is transmitted between the core column 2a or wall equipped core Column 2b incidental beams or slabs, etc. and the horizontal force is possible joined. As the bonding method, in the same manner as described in Example 1, for example, the peripheral portion of the corrugated steel 4 may be bonded in advance by implanted shearing force transmitting means in the plane of the core columns 2a or Kabezukehashira 2b The

更に念のため具体的実施態様を説明する。Further, a specific embodiment will be described just in case.
上記の耐震構造物1において、波形鋼板4は、その縦辺が構造物1の構面を形成する柱2又は壁付柱2b若しくはコア柱2aとのみ接合する場合(請求項12記載の発明)と、同じく構造物1の構面を形成する柱2又は壁付柱2b若しくはコア柱2a及び梁3又はスラブと波形鋼板4の縦辺及び上下辺を接合する場合(請求項13に記載した発明)等々が実施される。In the seismic structure 1, the corrugated steel plate 4 is joined only to the column 2, the walled column 2 b or the core column 2 a whose vertical side forms the surface of the structure 1 (invention according to claim 12). When the vertical side and upper and lower sides of the corrugated steel plate 4 are joined to the column 2 or the walled column 2b or the core column 2a and the beam 3 or the slab and the corrugated steel plate 4 that also form the structural surface of the structure 1 (the invention according to claim 13). ) Etc. are implemented.
また、耐震構造物1のコア部Rのコア柱2a、壁付柱2bの側面にスタッド等の水平力伝達要素を設け、前記コア柱2a等の相互間へ嵌め込まれた波形鋼板4の縦辺を前記水平力伝達要素と水平力の伝達が可能に接合して実施することもできる(請求項14に記載した発明)。Further, a horizontal force transmission element such as a stud is provided on the side surface of the core column 2a and the walled column 2b of the core portion R of the earthquake resistant structure 1, and the vertical side of the corrugated steel plate 4 fitted between the core column 2a and the like. The horizontal force transmission element and the horizontal force can be transmitted so as to be able to be transmitted (invention described in claim 14).

その他、上記した耐震構造物1における波形鋼板4は、図6A、図8A、図9A、図10Aのように、構造物1の構面を形成する柱2、2の相互間、又は壁付柱2bの相互間、若しくはコア柱2aの相互間の全層にわたり設置する場合、又は図11Aに示したように中・低層以下に設置する場合、又は図示することは省略したが逆に下層部を除く上層部にのみ、若しくは中間層にのみ組み入れて設置する実施例も、必要に応じて実施可能である(請求項15に記載した発明)。In addition, the corrugated steel plate 4 in the above-described earthquake-resistant structure 1 is, as shown in FIGS. 6A, 8A, 9A, and 10A, between the columns 2 and 2 that form the structural surface of the structure 1, or a walled column. 2b, or when installed over all layers between the core pillars 2a, or when installed below the middle / low level as shown in FIG. An embodiment in which only the upper layer portion other than the upper layer portion or only the intermediate layer is installed may be implemented as necessary (the invention described in claim 15).

この実施例3においても、波形鋼板4、当然の事ながら、地震力(水平力)に対する強度が大きく、しかも高耐力での変形性能(靱性)に優れ可変剛性機能を実現するものである。
また、本実施例の場合にも、波形鋼板4は、実施例1と同様に鋼材の材質固有の強度の他に、板厚の大きさ、重ね合わせの枚数、ピッチ及び波高の大きさなどの設計の如何によりその強度及び剛性を自在に設計することができる。
Also in this third embodiment, corrugated steel 4, of course, those strength against seismic force (horizontal force) is large and to achieve variable stiffness function excellent in deformation performance (toughness) at high yield strength .
Further, in this embodiment also, corrugated steel 4, in addition to the material inherent strength similarly steel material as in Example 1, the thickness of the size, the number of overlapping, the size of the pitch and height such Depending on the design , the strength and rigidity can be freely designed.

勿論、請求項11〜15に係る発明の実施例は、上記した実施例に限らない。図8A、Bに示すように、コア部Rが片側に2列配置された構造物1にも同様に実施できる。これに準ずる形で両側コア部形式の構造物にも同様に実施可能である。また、図9Aに示且つ先願の特開平7−18918号公報等開示されているような、頂部にトップビーム7を配置して転倒モーメントを低減させる耐震構造物1におけるコア部Rへ波形鋼板4を同様に配置して実施することができる。図9Bにトップビーム7を設置した耐震構造物1の平面図を示している
上記の場合に、コア部Rのコア壁に使用する波形鋼板4の配置は、図10A、Bに示すように、構造物1の全層に配置しても良いし、図11A〜Cに示すように、特に剪断変形が高い構造物1の中低部以下に、或いは逆に下層部を除く上層部にのみ、若しくは中間層にのみ配置しても良いことは、上述した通りである(請求項15記載の発明)。
Of course , the embodiments of the invention according to claims 11 to 15 are not limited to the above-described embodiments . As shown in FIGS. 8A and 8B, the present invention can be similarly applied to the structure 1 in which the core portions R are arranged in two rows on one side. It can be similarly applied to a structure of a double-sided core type in a similar manner. Also, it is shown in Figure 9A, and as disclosed in prior application JP-A 7-18918 Patent Publication, a core portion R in the seismic structure 1 to reduce the overturning moment by placing the top beam 7 on top to can be carried out by placing a corrugated steel 4 Similarly,. Shows a plan view of a seismic structure 1 which established the top beam 7 in FIG 9B.
In the above case, the corrugated steel plates 4 used for the core wall of the core portion R may be arranged in all layers of the structure 1 as shown in FIGS. 10A and 10B, or as shown in FIGS. as, in particular below the low layer part in the shearing deformation is high structure 1, or conversely only the upper layer portion except the lower portion, or that only may be disposed in the intermediate layer is as described above ( (Invention of Claim 15 )

次に請求項16〜18記載の発明に係る耐震構造物の実施例を説明する。
先ず図6Aおよび図8に示したようにコア部Rを有する構造物1の曲げ戻し壁として、図Aは、波形鋼板5をその折り筋が鉛直方向となる配置で、当該構造物1の構面を形成する上下の水平なフレーム6、6間へ組み入れ、同上下のフレーム6、6と転倒モーメントの伝達が可能に接合した構成とされている。その結果、構造物の転倒モーメントの一部外周柱2cとコア柱2a又は壁付柱2bに分散させて構造物の曲げ剛性を高め変形(転倒モーメント)を低減することができる。本発明の耐震構造物は、上記の構成としたので、スラブが存在すれば無梁でも実施できる。よって前記した上下フレーム材6、6に、フラットスラブを採用して実施することもできる
Next, an embodiment of the engagement Ru seismic structures to the invention of claim 16 to 18 wherein.
First, as unbending wall structure 1 having a core portion R as shown in FIGS. 6 A and FIG. 8 A, Fig. 6 A is a corrugated steel 5 in an arrangement that crease is vertical, the structure incorporated into between upper and lower horizontal frame members 6, 6 forming a 1 Plane, and is configured to transfer the overturning moment and the upper and lower frame members 6 and 6 is capable of bonding. As a result, Ru can some overturning moment of the structure 1 which is dispersed in the outer periphery column 2c and the core pole 2a or a wall pillars 2b increases the flexural rigidity of the structure 1, to reduce deformation of the (overturning moment) . Since the seismic structure 1 of the present invention has the above-described configuration, it can be carried out without a beam if a slab is present . Thus the upper and lower frame members 6 and 6 described above, can also be carried out employing a flat slab.

更に具体的に説明する。This will be described more specifically.
構造物1の構面を形成し且つ外周柱2cとコア柱2aを含む上下のフレーム材6、6の間に、構造物1の曲げ戻し壁としての波形鋼板5をその折り筋が垂直方向となる配置で組み入れ、上下のフレーム材6、6と転倒モーメントの伝達が可能に接合した構成で実施する。かくすると、構造物1の転倒モーメントの一部は外周柱2c及びコア柱2aに分散させることができ、当該構造物1の曲げ剛性を高め変形を低減することができる(請求項17に記載した発明)。Between the upper and lower frame members 6 and 6 forming the surface of the structure 1 and including the outer peripheral column 2c and the core column 2a, a corrugated steel plate 5 as a bending return wall of the structure 1 In this configuration, the upper and lower frame members 6 and 6 are joined to each other so as to be able to transmit a falling moment. Thus, a part of the overturning moment of the structure 1 can be dispersed in the outer peripheral column 2c and the core column 2a, and the bending rigidity of the structure 1 can be increased and the deformation can be reduced (described in claim 17). invention).

従来コア部Rとトップビーム7を併用して使用し、転倒モーメントを低減させる構成は既に公知である(図9Aを参照)。しかし請求項16、17に記載した発明の特徴は、前記の効果を更に向上させるためコア部Rを有する構造物1について、前記トップビーム7と同様の目的を達成する曲げ戻し壁として上記の波形鋼板5を活用した点にある。以下に詳しく説明する。 Conventionally, the configuration used in combination core unit R and the top beam 7, to reduce the overturning moment is already known (see Figure 9A). However, features of the invention described in claim 16 and 17, to further enhance the effect of the above the structure 1 having a core portion R, as unbending wall to achieve the same purpose as the top beam 7 The corrugated steel sheet 5 is utilized . This will be described in detail below.

耐震構造物1の曲げ戻し壁としての波形鋼板5の設置箇所は、例えば図6Aに示すように、コア部Rを有する構造物の途中階例えば高さが地上35階建ての構造物1における10〜20階の範囲の位置であって、図6Bに示すように前記コアRの四隅にするコア柱2a又は壁付柱2bの位置から構造物1の外周面へ向けて十字状に8カ所設けて実施することができる。前記波形鋼板5、5(曲げ戻し壁)は同一階に設ける必要はなく、図6Aに示したように異なる階層に自由に設計できる。波形鋼板5の接合方法としては、上記の実施例1、2で説明したような形式、内容で上下階のフレーム6、6と接合される。勿論、図示した実施例の限りではなく、コア柱2a又は壁付柱2bの縦辺と周辺柱2c、2cと接続しない構成の実施も考えられる。 Locations of corrugated steel 5 as unbending wall seismic structure 1, as shown in FIG. 6A For example, the middle floors of the structure 1 having a core portion R, e.g. height structure 35 storey above ground a position of 10 to 20 floors range in 1, as shown in FIG. 6B, toward the position of the core columns 2a or a wall pillars 2b to position the four corners of the core portion R to the outer peripheral surface of the structure 1 can it to implement provided eight locations in a cross shape Te. The corrugated steel plates 5 and 5 (bending walls) need not be provided on the same floor, and can be freely designed at different levels as shown in FIG. 6A . As the bonding method of the corrugated steel 5, the format as described in Examples 1 and 2 above, it is joined to the upper and lower stories of the frame members 6,6 with the contents. Of course, rather than the best of the illustrated embodiment, exemplary configurations not connected to the vertical side and the peripheral pillars 2c, 2 c of the core columns 2a or a wall pillars 2b also contemplated.

本発明で用いる波形鋼板5(曲げ戻し壁)によれば、図12A、Bに曲げモーメント図と共に比較して示したように、図12Aのように曲げ戻し壁なしの場合と比べて、図12Bの如く波形鋼板5による曲げ戻し壁場合は、構造物1の転倒モーメントM約半分ほどに低減されることが一目瞭然である。つまり、波形鋼板5(曲げ戻し壁)により構造物1におけるコア部Rの転倒モーメントの負担分、コア部Rの柱2a又は壁付柱2b、及び周辺柱2cへ分散さ圧縮又は引っ張りとして伝えられ、十分な耐力で支持さ。しかも波形鋼板5自体折り筋鉛直方向に配置されているので水平力にはさして抵抗しない構成だからである。
したがって、コア部Rの脚部に転倒モーメントが集中することを避けられるのであり、波形鋼板4、5ないし曲げ戻し壁の設計に影響を及ぼすことなく、コア柱2a又は壁付柱2b(又は柱2)の偶力を低減させることができる。
波形鋼板5はRC造の曲げ戻し壁と比べて極端に軽量化できるので上下のフレーム6、6とコア柱2a又は壁付柱2bへの軸力負担を減らし、ひいてはその強度を低減できる。波形鋼板5は、その折り筋を鉛直方向配置して使用するため高い剪断強度を期待できる。
According to the corrugated steel plate 5 (bending wall) used in the present invention , as shown in comparison with the bending moment diagrams in FIGS. 12A and 12B, as compared with the case without the bending wall as shown in FIG. 12A, FIG. If bending back wall by corrugated steel 5 as Ru Yu, overturning moment M of the structure 1 is obvious to be reduced to approximately half. In other words, share of overturning moment of the core portion R in the structure 1 by corrugated steel 5 (unbending wall) is dispersed posts 2a or Kabezukehashira 2b of the core portion R, and the surrounding pillar 2c, axial compression or transmitted as tensile axis, Ru is supported with a sufficient strength. Moreover, since the crease of corrugated steel 5 itself is arranged in a vertical direction, it is because the configuration is not terribly resistance to horizontal forces.
Therefore, there since overturning moment to the leg portion of the core portion R is avoided from being concentrated, without affecting the corrugated steel 4,5 to unbending wall design, the core columns 2a or a wall pillars 2b (or column The couple of 2) can be reduced.
Because corrugated steel 5 can extremely lightweight compared to RC structure of unbending wall, reduce the axial force load on the upper and lower frame members 6, 6 and the core pole 2a or a wall pillars 2b, thus reducing the strength of its I can . The corrugated steel sheet 5 can be expected to have a high shear strength because its crease is arranged in the vertical direction.

他の実施形態として、図8Aに示すようコアRが片側に寄っている耐震構造物1の場合には、上下方向複数階に波形鋼板5、5(曲げ戻し壁)を設けるのが良い。この場合、図8Bの断面図が示すように、波形鋼板5(曲げ戻し壁)はコア部Rの内側の2本のコア柱2a又は壁付柱2bから外周面へ向けて4カ所設け構造で実施するのが好ましい。 In another embodiment, that in the case of seismic structure 1 in which the core portion R is displaced in one direction as shown in Figure 8A, provided corrugated steel 5,5 (unbending wall) in multi-storey vertical Good . In this case, as shown in the sectional view of FIG. 8B, corrugated steel 5 (unbending wall) is provided at four locations toward the two core pillars 2a or a wall pillars 2b to the outer peripheral surface of the inner core portion R structure It is preferable to carry out with.

図9は、請求項18記載の発明に係る耐震構造物の実施例を示している。
この実施例は上述した実施例とほぼ同様技術的思想に立脚するが、コア部Rを有する構造物のトップビーム7を形成する上下のフレーム7a、7a間に、波形鋼板5をその折り筋が垂直方向となる配置で組み入れ、前記上下のフレーム7a、7aと転倒モーメントの伝達が可能に接合した構成とされている。
本実施例の場合も、構造物1の転倒モーメントの一部を外周柱2cとコア柱2a又は壁付柱2bに分散させて構造物の曲げ剛性を高め、構造物1の変形を低減させて転倒モーメントを低下させることができる。
Figure 9 shows an engagement Ru embodiment of seismic structure 1 to an invention of claim 18, wherein.
The examples are grounded in substantially the same technical idea as Embodiment 4 described above, the upper and lower frame members 7a to form the top beam 7 of the structure 1 having a core portion R, between the 7a, corrugated steel 5 incorporated in the arrangement in which the creases are perpendicular direction, said upper and lower frame members 7a, that is a structure in which joined can be transmitted 7a and overturning moment.
Also in this embodiment, by dispersing a part of overturning moment of the structure 1 on the outer peripheral column 2c and the core pole 2a or a wall pillars 2b increases the flexural rigidity of the structure, thereby reducing the deformation of the structure 1 The falling moment can be reduced.

以上に本発明を実施例に基づいて説明したが、勿論、本発明の技術的思想は上記の各実施例に限定されるものではない。本発明が立脚する思想と要旨を逸脱しない範囲で変更、応用して、種々多様な実施例があることを念のため申し添える。Although the present invention has been described above based on the embodiments, of course, the technical idea of the present invention is not limited to the above-described embodiments. It should be noted that there are various embodiments that can be modified and applied without departing from the spirit and gist of the present invention.

本発明に係る耐震壁の実施例1を示した図である。It is the figure which showed Example 1 of the earthquake-resistant wall which concerns on this invention. 図1の耐震壁の断面図である。It is sectional drawing of the earthquake-resistant wall of FIG. 波形鋼板の剪断力に対する荷重変形の関係を示した図である。It is the figure which showed the relationship between the load with respect to the shear force of a corrugated steel plate, and a deformation | transformation. 波形鋼板の軸力及び曲げに対する荷重変形の関係を示した図である。It is the figure which showed the load and deformation | transformation relationship with respect to the axial force and bending of a corrugated steel plate. Aは波形鋼板を周辺架構面内へ選択的に配置した構造物の実施例を示した立面図BはAの水平断面図である。A is an elevation view showing an embodiment of a structure in which corrugated steel plates are selectively arranged in a peripheral frame , and B is a horizontal sectional view of A. FIG. Aは本発明に係る耐震構造物の実施例を示した立面図BはAの水平断面図である。A is an elevation view showing an embodiment of the earthquake-resistant structure according to the present invention, and B is a horizontal sectional view of A. FIG. Aはコア部のコア柱相互間に波形鋼板を配置した水平断面図、Bはコア部の壁付柱の相互間に波形鋼板を配置した水平断面図である。A is a horizontal cross-sectional view in which corrugated steel plates are arranged between core pillars in the core portion , and B is a horizontal cross-sectional view in which corrugated steel plates are arranged between wall-attached columns in the core portion. Aは異なる耐震構造物を示した立面図、BはAの水平断面図である。A is an elevation view showing different seismic structures, and B is a horizontal sectional view of A. FIG . Aは更に異なる耐震構造物を示した立面図、BはAの水平断面図である。A is an elevation view showing a further different seismic structure, and B is a horizontal sectional view of A. FIG . Aは異なる耐震構造物、即ち構造物の全層に波形鋼板を設置した場合の立面図、BはAの水平断面図である。A is an elevation view when corrugated steel plates are installed in different earthquake resistant structures, that is , all layers of the structure , and B is a horizontal sectional view of A. FIG. Aは異なる耐震構造物、即ち構造物の中低層以下に波形鋼板を設置した場合の立面図、BはAの中低層部の水平断面図CはAの高層部の水平断面図である。A is an elevational view when corrugated steel sheets are installed in different earthquake resistant structures, that is, below the middle and lower layers of the structure , B is a horizontal sectional view of the middle and lower layers of A , and C is a horizontal sectional view of the upper layer of A. . Aは構造物に曲げ戻し壁を設置しない場合の立面と転倒モーメントを示した図Bは構造物に波形鋼板を曲げ戻し壁として設置した場合の立面と転倒モーメントを示した図である。A showed elevation and overturning moments if not installed the unbending wall structure FIG, B showed elevation and overturning moments in the case of Installation as a wall bent back corrugated steel in the structure diagram It is. Aは波形鋼板の折板一枚一枚が剪断力に抵抗する状態を示した斜視図Bは波形鋼板の全体が剪断力に抵抗する状態を示した斜視図である。A is a perspective view showing a state in which each folded plate of corrugated steel plates resists shearing force, and B is a perspective view showing a state in which the entire corrugated steel plate resists shearing force. Aは波形鋼板の軸圧縮の状態を示した図Bは波形鋼板の曲げ状態を示した説明図である。A is a diagram showing a state of axial compression of a corrugated steel sheet , and B is an explanatory diagram showing a bent state of the corrugated steel sheet. A〜Dは波形鋼板の異なる断面形状を示した説明図である。AD is explanatory drawing which showed the different cross-sectional shape of a corrugated steel plate. Aは外周部にスタッド等の水平力伝達要素を持つ接合用フレームを取り付けた波形鋼板の正面図、BはAの垂直断面図である。A is a front view of a corrugated steel plate with a joining frame having a horizontal force transmitting element such as a stud attached to the outer periphery, and B is a vertical sectional view of A. FIG. Aは図16の波形鋼板を使用した耐震壁の正面図、BはAの垂直断面図である。A is a front view of a seismic wall using the corrugated steel sheet of FIG. 16, and B is a vertical sectional view of A. FIG. Aは内周部にスタッド等の水平力伝達要素と接合用プレートを設けた柱梁架構の面内に波形鋼板を設置した耐震壁の正面図、BはAの垂直断面図である。A is a front view of a seismic wall in which corrugated steel plates are installed in a plane of a column beam frame provided with a horizontal force transmitting element such as a stud and a joining plate on the inner periphery, and B is a vertical sectional view of A. FIG. 内周部にナット部材を埋め込んだ柱梁架構の正面図である。It is a front view of the column beam frame which embedded the nut member in the inner circumference part.

符号の説明Explanation of symbols

1 構造物
2 柱
3 梁
4、5 波形鋼板
6、 上下のフレーム材
7 トップビーム
7a トップビームの上下のフレーム材
10 スタッド(水平力伝達要素)
11 接合用フレーム
12 ナット部材
13、14 接合用プレート
コア部
2a コア柱
2b 壁付柱
2c 外周柱
DESCRIPTION OF SYMBOLS 1 Structure 2 Column 3 Beam 4, 5 Corrugated steel plate 6, Upper and lower frame material 7 Top beam 7a Upper and lower frame material of top beam
10 studs (horizontal force transmission element)
11 Joining frame
12 nut member
13,14 plate for joining
R core
2a core pillar
Column with 2b wall
2c outer peripheral pillar

Claims (20)

水平力で層間変形を発生する柱梁架構又は柱スラブ架構の面内に、波形鋼板その折り筋が水平方向となる配置で組み入れられ柱梁架構又は柱スラブ架構と波形鋼板と水平力の伝達が可能に接合されており、波形鋼板水平剪断力に抵抗するが、軸力および面外方向の曲げに対する抵抗は小さい構成としたことを特徴とする、耐震壁。 In the plane of the Column Frames or column slab Frames generates interlayer deformation horizontal force, incorporated in an arrangement corrugated steel whose creases is horizontal, Column Frame or column slab Frames and corrugated steel and a horizontal force of being capable to conjugal transfer, although corrugated steel resists horizontal shear force, characterized in that the resistance is small configuration for axial force and out-of-plane direction of bending, shear walls. 波形鋼板は、柱梁架構又は柱スラブ架構の柱とのみ水平力の伝達が可能に接合されていることを特徴とする、請求項1に記載した耐震壁。The seismic wall according to claim 1, wherein the corrugated steel plate is joined only to a column of a column beam frame or a column slab frame so that a horizontal force can be transmitted. 波形鋼板は、柱梁架構又は柱スラブ架構の梁又はスラブとのみ水平力の伝達が可能に接合されていることを特徴とする、請求項1に記載した耐震壁。The seismic wall according to claim 1, wherein the corrugated steel plate is joined only to a beam or slab of a column beam frame or a column slab frame so that a horizontal force can be transmitted. 波形鋼板は、柱梁架構又は柱スラブ架構の柱及び梁又はスラブと水平力の伝達が可能に接合されていることを特徴とする、請求項1に記載した耐震壁。The seismic wall according to claim 1, wherein the corrugated steel sheet is joined to a column and beam or slab of a column beam frame or a column slab frame so as to be able to transmit a horizontal force. 柱梁架構又は柱スラブ架構が現場打ちの鉄筋コンクリート造又は鉄骨鉄筋コンクリート造である場合、波形鋼板はその周辺部にスタッド等の水平力伝達要素を設けて柱梁架構又は柱スラブ架構の面内へ嵌め込まれ、柱梁架構又は柱スラブ架構の柱及び梁又はスラブの現場打ちコンクリート部分の中へ埋め込まれ水平力の伝達が可能に接合されていることを特徴とする、請求項1〜4のいずれか一に記載した耐震壁。When the column beam frame or column slab frame is made of reinforced concrete or steel reinforced concrete, the corrugated steel sheet is fitted into the surface of the column beam frame or column slab frame with a horizontal force transmission element such as a stud around its periphery. 5. It is embedded in the cast-in-place concrete portion of the column and beam or slab of the column beam frame or column slab frame, and is joined so as to be able to transmit a horizontal force. Earthquake-resistant wall as described in 1. 柱梁架構又は柱スラブ架構がプレキャスト鉄筋コンクリート造又はプレキャスト鉄骨鉄筋コンクリート造である場合、柱梁架構又は柱スラブ架構の内周面には予めジョイント部材が設けられ、柱梁架構又は柱スラブ架構の架構面内へ嵌め込まれた波形鋼板は、その周辺部が柱梁架構又は柱スラブ架構の前記ジョイント部材とボルト止め又は溶接等の手段で水平力の伝達が可能に接合されていることを特徴とする、請求項1〜4のいずれか一に記載した耐震壁。When the column beam frame or the column slab frame is a precast reinforced concrete structure or a precast steel reinforced concrete structure, a joint member is provided in advance on the inner peripheral surface of the column beam frame or the column slab frame, and the frame surface of the column beam frame or the column slab frame The corrugated steel sheet fitted inside is characterized in that the peripheral part thereof is joined to the joint member of the column beam frame or the column slab frame so that horizontal force can be transmitted by means such as bolting or welding, The earthquake-resistant wall as described in any one of Claims 1-4. 柱梁架構又は柱スラブ架構の柱又は梁・スラブのいずれか一方にのみその内周面部にスタッド等の水平力伝達要素が設けられ、前記架構面内へ嵌め込まれた波形鋼板は、柱梁架構又は柱スラブ架構の前記水平力伝達要素と水平力の伝達が可能に接合されていることを特徴とする、請求項1〜4のいずれか一に記載した耐震壁。A horizontal force transmission element such as a stud is provided on the inner peripheral surface of only one of the columns or beams / slabs of the column beam frame or the column slab frame, and the corrugated steel sheet fitted into the frame surface is a column beam frame. Alternatively, the seismic wall according to any one of claims 1 to 4, wherein the horizontal force transmitting element of the column slab frame is joined so as to be able to transmit a horizontal force. 波形鋼板の外周辺に接合用フレームが設けられ、柱梁架構又は柱スラブ架構の内周面にはスタッド等の水平力伝達要素が設けられ、柱梁架構又は柱スラブ架構の面内へ嵌め込まれた波形鋼板は、その接合用フレームが前記水平力伝達要素と水平力の伝達が可能に接合されていることを特徴とする、請求項1〜4のいずれか一に記載した耐震壁。A joining frame is provided on the outer periphery of the corrugated steel sheet, and a horizontal force transmission element such as a stud is provided on the inner peripheral surface of the column beam frame or column slab frame, and is fitted into the surface of the column beam frame or column slab frame. The seismic wall according to any one of claims 1 to 4, wherein the corrugated steel sheet is joined so that the joining frame can transmit a horizontal force to the horizontal force transmitting element. プレキャスト鉄筋コンクリート造又はプレキャスト鉄骨鉄筋コンクリート造の柱梁架構又は柱スラブ架構の内周面にスタッド等の水平力伝達要素を介して接合用プレートが設けられ、波形鋼板の外周辺には接合用フレームが設けられ、柱梁架構又は柱スラブ架構の架構面内へ嵌め込まれた波形鋼板は、その接合用フレームが前記接合用プレートとボルト止め又は溶接等の手段で水平力の伝達が可能に接合されていることを特徴とする、請求項1〜4のいずれか一に記載した耐震壁。Precast reinforced concrete or precast steel reinforced concrete column beam frame or column slab frame is provided with a bonding plate on the inner peripheral surface via a horizontal force transmission element such as a stud, and a bonding frame is provided on the outer periphery of the corrugated steel sheet. The corrugated steel sheet fitted into the frame surface of the column beam frame or the column slab frame is bonded to the bonding plate so that a horizontal force can be transmitted by means such as bolting or welding. The earthquake-resistant wall according to any one of claims 1 to 4, wherein the earthquake-resistant wall is provided. プレキャスト鉄筋コンクリート造又はプレキャスト鉄骨鉄筋コンクリート造の柱梁架構又は柱スラブ架構の内周面にナット部材が埋め込まれており、波形鋼板の外周辺には接合用フレームが設けられ、柱梁架構又は柱スラブ架構の架構面内へ嵌め込まれた波形鋼板は、その接合用フレームが前記ナット部材とボルト接合により水平力の伝達が可能に接合されていることを特徴とする、請求項1〜4のいずれか一に記載した耐震壁。A nut member is embedded in the inner peripheral surface of a precast reinforced concrete or precast steel reinforced concrete column beam or column slab frame, and a welding frame is provided on the outer periphery of the corrugated steel plate. 5. The corrugated steel sheet fitted into the frame surface of the steel sheet has a joining frame joined to the nut member and a bolt so as to be able to transmit a horizontal force. 5. The earthquake-resistant wall described in 2. 構造物の構面を形成する柱相互間、又は壁付柱の相互間に、波形鋼板その折り筋が水平方向となる配置で組み入れられ、柱又は壁付柱と波形鋼板とが水平力の伝達が可能に接合されており、波形鋼板水平剪断力には抵抗するが、軸力および面外方向の曲げに対する抵抗は小さい構成としたことを特徴とする、耐震構造物。 Pillars phase互間forming the Plane of the structure, or between each other a wall pillars incorporated in the arrangement corrugated steel is its crease is a horizontal direction, pillars or walls with pillars and corrugated steel and a horizontal force of being capable to conjugal transfer, although corrugated steel resists the horizontal shear force, characterized in that the resistance is small configuration for axial force and out-of-plane direction of bending, seismic structures. 波形鋼板は、構造物の構面を形成する柱又は壁付柱とのみ接合されていることを特徴とする、請求項11に記載した耐震構造物。The seismic structure according to claim 11, wherein the corrugated steel plate is bonded only to a column or a walled column forming a structural surface of the structure. 波形鋼板は、構造物の構面を形成する柱又は壁付柱及び梁又はスラブと接合されていることを特徴とする、請求項11に記載した耐震構造物。The seismic structure according to claim 11, wherein the corrugated steel sheet is joined to a column or walled column and a beam or slab that form a structural surface of the structure. 構造物のコア部のコア柱の側面にスタッド等の水平力伝達要素が設けられ、前記コア柱の相互間に嵌め込まれた波形鋼板の縦辺が前記水平力伝達要素と水平力の伝達が可能に接合されていることを特徴とする、請求項11に記載した耐震構造物。Horizontal force transmission elements such as studs are provided on the side of the core column of the core of the structure, and the vertical sides of the corrugated steel plates fitted between the core columns can transmit horizontal force to the horizontal force transmission element. The earthquake-resistant structure according to claim 11, wherein the earthquake-resistant structure is joined to the earthquake-resistant structure. 波形鋼板は、構造物の構面を形成する柱相互間、又は壁付柱の相互間、若しくはコア柱の相互間の全層にわたり、又は中・低層以下に、又は下層部を除く上層部に、若しくは中間層にのみ組み入れられていることを特徴とする、請求項11又は12若しくは13に記載した耐震構造物。 Corrugated steel is between pillars together and form a Plane of the structure, or between each other a wall pillars, or over the entire thickness of the mutual core column, or below the middle-low rise, or upper portion except the lower portion to, or wherein the only been incorporated et al in the intermediate layer, seismic structure as claimed in claim 11 or 12 or 13. 構造物の構面を形成する上下のフレーム材間に、当該構造物の曲げ戻し壁として波形鋼板その折り筋が垂直方向となる配置で組み入れられ、上下のフレームと転倒モーメントの伝達が可能に接合されており、構造物の転倒モーメントの一部を外周柱に分散させて当該構造物の曲げ剛性を高め変形を低減する構成としたことを特徴とする、耐震構造物。 Between the upper and lower frame members to form a Plane structures, corrugated steel as unbending wall of the structure is that creases are incorporated in an arrangement which is a vertical direction, the transmission of the upper and lower frame members tipping moment are capable bonded, characterized by being configured to reduce a portion deformed enhance the flexural rigidity of the structure is dispersed in the outer peripheral pillars or the like of the overturning moment of the structure, seismic structure. 構造物の構面を形成し且つ外周柱とコア柱を含む上下のフレーム材間に、構造物の曲げ戻し壁としての波形鋼板がその折り筋が垂直方向となる配置で組み入れられ、上下のフレーム材と転倒モーメントの伝達が可能に接合されており、構造物の転倒モーメントの一部を外周柱及びコア柱に分散させて当該構造物の曲げ剛性を高め変形を低減する構成としたことを特徴とする、耐震構造物。A corrugated steel plate as a bending return wall of the structure is incorporated between the upper and lower frame members that form the structural surface of the structure and includes the outer peripheral column and the core column, and the upper and lower frames The material is joined so that it can transmit the tipping moment, and a part of the tipping moment of the structure is distributed to the outer column and core column to increase the bending rigidity of the structure and reduce deformation. A seismic structure. 構造物の構面を形成し、且つ構造物のトップビームを形成する上下のフレーム間に、波形鋼板その折り筋が垂直方向となる配置で組み入れ、上下のフレームと転倒モーメントの伝達が可能に接合されており、構造物の転倒モーメントの一部を外周柱に分散させて当該構造物の曲げ剛性を高め変形を低減する構成としたことを特徴とする、耐震構造物。 Forming a Plane structures, and between the structure and below the frame members forming the top beam, incorporated in an arrangement corrugated steel is its crease is a vertical direction, the transmission of the upper and lower frame members tipping moment are capable bonded, characterized by being configured to reduce a portion deformed enhance the flexural rigidity of the structure is dispersed in the outer peripheral pillars or the like of the overturning moment of the structure, seismic structure. 構造物水平力で層間変形を発生する柱梁架構又は柱スラブ架構のうち、互い違いの市松模様状配置に選択した架構面内、波形鋼板で成る耐震壁が組み入れられ、水平力の伝達が可能に接合されていることを特徴とする、耐震構造物。 Of Hashiraharika構又the pillar slab Frames generates interlayer deformation in a horizontal force of the structure, the staggered checkerboard pattern Frame plane selected in place, shear wall is incorporated made of corrugated steel, the transmission of horizontal forces Seismic structure characterized by being able to be joined . 構造物において水平力で層間変形を発生する柱梁架構又は柱スラブ架構のうち、構造物の剛性、耐力を高めるのに適切なランダム配置に選択した架構面内に、波形鋼板で成る耐震壁が組み入れられ、水平力の伝達が可能に接合されていることを特徴とする、耐震構造物。A seismic wall made of corrugated steel is installed in the frame plane selected for random arrangement suitable for increasing the rigidity and proof strength of the column beam slab frame or column slab frame that generates inter-layer deformation due to horizontal force in the structure. A seismic structure that is incorporated and joined to enable horizontal force transmission.
JP2004224230A 2004-02-19 2004-07-30 Seismic walls and structures Active JP4485876B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004224230A JP4485876B2 (en) 2004-02-19 2004-07-30 Seismic walls and structures

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004042196 2004-02-19
JP2004224230A JP4485876B2 (en) 2004-02-19 2004-07-30 Seismic walls and structures

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2009147900A Division JP4897854B2 (en) 2004-02-19 2009-06-22 Seismic structure

Publications (2)

Publication Number Publication Date
JP2005264713A true JP2005264713A (en) 2005-09-29
JP4485876B2 JP4485876B2 (en) 2010-06-23

Family

ID=35089545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004224230A Active JP4485876B2 (en) 2004-02-19 2004-07-30 Seismic walls and structures

Country Status (1)

Country Link
JP (1) JP4485876B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007291766A (en) * 2006-04-26 2007-11-08 Misawa Homes Co Ltd Installation method for vibration control device
JP2009174223A (en) * 2008-01-25 2009-08-06 Takenaka Komuten Co Ltd Building structure and designing method of building structure
JP2011117145A (en) * 2009-12-01 2011-06-16 Takenaka Komuten Co Ltd Method for attaching viscoelastic damper, and building

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0249449U (en) * 1988-09-30 1990-04-05
JPH07292802A (en) * 1994-04-22 1995-11-07 Atsushi Nakagawa Building wall structure
JP2001317227A (en) * 2000-05-11 2001-11-16 Toda Constr Co Ltd Method for constructing seismic control wall and structure for mounting seismic control wall
JP2003176582A (en) * 2001-12-10 2003-06-24 Nippon Kokan Light Steel Kk Disaster resistant wall made of corrugated plate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0249449U (en) * 1988-09-30 1990-04-05
JPH07292802A (en) * 1994-04-22 1995-11-07 Atsushi Nakagawa Building wall structure
JP2001317227A (en) * 2000-05-11 2001-11-16 Toda Constr Co Ltd Method for constructing seismic control wall and structure for mounting seismic control wall
JP2003176582A (en) * 2001-12-10 2003-06-24 Nippon Kokan Light Steel Kk Disaster resistant wall made of corrugated plate

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007291766A (en) * 2006-04-26 2007-11-08 Misawa Homes Co Ltd Installation method for vibration control device
JP4634961B2 (en) * 2006-04-26 2011-02-16 ミサワホーム株式会社 Installation method of vibration control device
JP2009174223A (en) * 2008-01-25 2009-08-06 Takenaka Komuten Co Ltd Building structure and designing method of building structure
JP2011117145A (en) * 2009-12-01 2011-06-16 Takenaka Komuten Co Ltd Method for attaching viscoelastic damper, and building

Also Published As

Publication number Publication date
JP4485876B2 (en) 2010-06-23

Similar Documents

Publication Publication Date Title
JP4414834B2 (en) Construction method of earthquake-resistant wall
JP5383166B2 (en) Corrugated steel earthquake resistant wall, corrugated steel earthquake resistant wall design method, and building
JP4931490B2 (en) Structure reinforcement structure and method of reinforcement
JP2006342510A (en) Multi-story shear wall
JP5601882B2 (en) Steel seismic wall and building with the same
JP2006037628A (en) Earthquake resistant reinforcement method for existing building
JP2006336395A (en) Earthquake resisting wall and its construction method
JP4664997B2 (en) Buildings with joint hardware
JP4563872B2 (en) Seismic wall
JP4897854B2 (en) Seismic structure
JP2006037586A (en) Earthquake-resisting wall using corrugated steel plate
JP4395419B2 (en) Vibration control pillar
JP4414832B2 (en) Seismic walls using corrugated steel plates with openings
JP2010276080A (en) Energy absorbing member and structure in which the energy absorbing member is installed
JP2005264713A (en) Earthquake-proof building wall and structure
JP2008075314A (en) Aseismic control structure of connected buildings
JP6414877B2 (en) Reinforcement structure and building
JPH0776953A (en) Damping structure
JP2005083136A (en) Composite structure support
JP6126941B2 (en) Structure
JP2010133187A (en) Earthquake-resistant structure, building with earthquake-resistant structure, and repair method
JP4563875B2 (en) An improved method for reducing the eccentricity of a structure using corrugated steel sheets and a structure having a reduced eccentricity using corrugated steel sheets
JP5421236B2 (en) Building wall damping structure construction method
JP6951851B2 (en) High-rise earthquake-resistant building
JP2018184711A (en) Steel column-beam frame consisting of steel pipe column and h-shaped steel beam

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070628

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080703

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080717

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090421

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091013

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100316

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100325

R150 Certificate of patent or registration of utility model

Ref document number: 4485876

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140402

Year of fee payment: 4