JP2011117069A - Method for manufacturing high-strength hot-dip galvanized steel sheet and high-strength hot-dip galvannealed steel sheet - Google Patents

Method for manufacturing high-strength hot-dip galvanized steel sheet and high-strength hot-dip galvannealed steel sheet Download PDF

Info

Publication number
JP2011117069A
JP2011117069A JP2010179237A JP2010179237A JP2011117069A JP 2011117069 A JP2011117069 A JP 2011117069A JP 2010179237 A JP2010179237 A JP 2010179237A JP 2010179237 A JP2010179237 A JP 2010179237A JP 2011117069 A JP2011117069 A JP 2011117069A
Authority
JP
Japan
Prior art keywords
steel sheet
hot
heating step
heating
dip galvanized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010179237A
Other languages
Japanese (ja)
Other versions
JP5614159B2 (en
Inventor
Mai Miyata
麻衣 宮田
Yoshitsugu Suzuki
善継 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2010179237A priority Critical patent/JP5614159B2/en
Publication of JP2011117069A publication Critical patent/JP2011117069A/en
Application granted granted Critical
Publication of JP5614159B2 publication Critical patent/JP5614159B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Coating With Molten Metal (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To manufacture a hot-dip galvanized steel sheet and a hot-dip galvannealed steel sheet which use a high-strength steel sheet containing Si as its base metal and has no unplated part. <P>SOLUTION: A base steel sheet includes, by mass%, 0.05-0.30% C, 1.5-3.0% Si, 0.5-3.0% Mn, 0.01-3.0% Al, 0.001-0.01% S and 0.001-0.1% P. The manufacturing method includes: heating the base steel sheet in an atmosphere containing 0.01-20 vol.% O<SB>2</SB>and 1-50 vol.% H<SB>2</SB>O so as to keep a temperature in the range of 873-1,123 K; subsequently heating the steel sheet in an atmosphere containing 1-50 vol.% H<SB>2</SB>, and in such conditions that partial pressure of water vapor PH<SB>2</SB>O, partial pressure of carbon dioxide PCO<SB>2</SB>, the highest arrival temperature of the steel sheet T(K) and a Si content of the steel sheet [Si%] satisfy the relations of 0<PH<SB>2</SB>O/PCO<SB>2</SB><323.6-15.2logT<SP>2</SP>-71.5[Si%], 0<log(PH<SB>2</SB>O+15PCO<SB>2</SB>)<2.3 and 1,023≤T≤1,173; and then subjecting the steel sheet to hot-dip galvanizing treatment. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、Si含有高強度鋼板を母材とする溶融亜鉛めっき鋼板および合金化溶融亜鉛めっき鋼板の製造方法に関し、特に不めっきのない美麗な表面外観を有する溶融亜鉛めっき鋼板および合金化溶融亜鉛めっき鋼板の製造方法に関する。   The present invention relates to a hot-dip galvanized steel sheet and an alloyed hot-dip galvanized steel sheet manufacturing method using a Si-containing high-strength steel sheet as a base material, and in particular, a hot-dip galvanized steel sheet and an alloyed hot-dip galvanized steel having a beautiful surface appearance without unplating. The present invention relates to a method for producing a plated steel sheet.

近年、自動車、家電、建材等の分野においては、素材鋼板に防錆性を付与した表面処理鋼板、中でも防錆性に優れた溶融亜鉛めっき鋼板、合金化溶融亜鉛めっき鋼板が使用されている。   In recent years, in the fields of automobiles, home appliances, building materials, etc., surface-treated steel sheets imparted with rust resistance to raw steel sheets, particularly hot-dip galvanized steel sheets and galvannealed steel sheets excellent in rust resistance have been used.

一般に、溶融亜鉛めっき鋼板は以下の方法にて製造される。まず、スラブを熱延、冷延あるいは熱処理した薄鋼板を用いて、母材鋼板表面を前処理工程にて脱脂及び/または酸洗して洗浄するか、あるいは前処理工程を省略して予熱炉内で母材鋼板表面の油分を燃焼除去した後、非酸化性雰囲気中あるいは還元性雰囲気中で加熱することで再結晶焼鈍を行う。その後、非酸化性雰囲気中あるいは還元性雰囲気中で鋼板をめっきに適した温度まで冷却して、大気に触れることなく微量Al(0.1〜0.2mass%程度)を添加した溶融亜鉛浴中に浸漬する。   Generally, a hot dip galvanized steel sheet is manufactured by the following method. First, using a thin steel plate obtained by hot-rolling, cold-rolling or heat-treating a slab, the base steel plate surface is degreased and / or pickled and cleaned in the pretreatment step, or the pretreatment step is omitted. After the oil on the surface of the base steel plate is burned and removed, recrystallization annealing is performed by heating in a non-oxidizing atmosphere or a reducing atmosphere. Thereafter, the steel sheet is cooled to a temperature suitable for plating in a non-oxidizing atmosphere or a reducing atmosphere, and in a molten zinc bath to which a small amount of Al (about 0.1 to 0.2 mass%) is added without being exposed to the air. Immerse in.

また、合金化溶融亜鉛めっき鋼板は、溶融亜鉛めっき後、引き続き、鋼板を合金化炉内で熱処理することで製造される。   In addition, the alloyed hot-dip galvanized steel sheet is manufactured by subsequently heat-treating the steel sheet in an alloying furnace after hot-dip galvanizing.

ところで、近年、素材鋼板の高性能化とともに軽量化が推進され、素材鋼板の高強度化が求められており、防錆性を兼ね備えた高強度溶融亜鉛めっき鋼板の使用量が増加している。   By the way, in recent years, weight reduction has been promoted along with higher performance of raw steel plates, and higher strength of raw steel plates has been demanded, and the amount of high-strength hot-dip galvanized steel plates having rust prevention properties is increasing.

鋼板の高強度化にはSi、Mn、P、Al等の固溶強化元素の添加が行われる。中でもSiやAlは鋼の延性を損なわずに高強度化できる利点があり、Si含有鋼板は高強度鋼板として有望である。しかし、Siを多量に含有する高強度鋼板を母材とする溶融亜鉛めっき鋼板及び合金化溶融亜鉛めっき鋼板を製造する場合、以下の問題がある。   Addition of solid solution strengthening elements such as Si, Mn, P, and Al is performed to increase the strength of the steel sheet. Among these, Si and Al have an advantage that the strength can be increased without impairing the ductility of the steel, and the Si-containing steel plate is promising as a high-strength steel plate. However, when producing a hot-dip galvanized steel sheet and an alloyed hot-dip galvanized steel sheet that use a high-strength steel sheet containing a large amount of Si as a base material, there are the following problems.

前述のように溶融亜鉛めっき鋼板は非酸化性雰囲気中あるいは還元雰囲気中で873〜1173K程度の温度で加熱焼鈍を行った後に、溶融亜鉛めっき処理を行う。しかし、鋼中のSiは易酸化性元素であり、一般的に用いられる非酸化性雰囲気中あるいは還元雰囲気中でも選択酸化されて、表面に濃化し酸化物を形成する。この酸化物はめっき処理時の溶融亜鉛との濡れ性を低下させて不めっきを生じさせるので、鋼中Si濃度の増加と共に濡れ性が急激に低下し不めっきが多発する。また、不めっきに至らなかった場合でも、めっき密着性に劣るという問題がある。   As described above, the hot dip galvanized steel sheet is subjected to hot dip galvanization after being heat-annealed at a temperature of about 873 to 1173K in a non-oxidizing atmosphere or a reducing atmosphere. However, Si in steel is an easily oxidizable element, and is selectively oxidized in a generally used non-oxidizing atmosphere or reducing atmosphere to concentrate on the surface to form an oxide. Since this oxide reduces the wettability with molten zinc during the plating process and causes non-plating, the wettability rapidly decreases as the Si concentration in the steel increases and non-plating occurs frequently. In addition, even when non-plating does not occur, there is a problem that the plating adhesion is poor.

更に、鋼中のSiが選択酸化されて表面に濃化すると、溶融亜鉛めっき後の合金化過程において著しい合金化遅延が生じる。その結果、生産性を著しく阻害する。生産性を確保するために過剰に高温で合金化処理しようとすると、耐パウダリング性の劣化を招くという問題もあり、高い生産性と良好な耐パウダリング性を両立させることは困難である。   Further, when Si in the steel is selectively oxidized and concentrated on the surface, a significant alloying delay occurs in the alloying process after hot dip galvanizing. As a result, productivity is significantly inhibited. If an alloying treatment is attempted at an excessively high temperature in order to ensure productivity, there is a problem that the powdering resistance is deteriorated, and it is difficult to achieve both high productivity and good powdering resistance.

このような問題に対して、鋼板を焼鈍後に酸洗を行うことで表面の酸化物を除去し、その後、再び焼鈍し溶融亜鉛めっきを行う方法が提案されている(例えば特許文献1)。   In order to solve such a problem, a method has been proposed in which surface oxides are removed by performing pickling after annealing a steel sheet, and then annealing and hot-dip galvanizing are performed again (for example, Patent Document 1).

また、予め酸化性雰囲気中で鋼板を加熱して表面に酸化鉄を形成したのち、還元焼鈍を行うことにより、溶融亜鉛との濡れ性を改善することが提案されている(例えば特許文献2)。   In addition, it has been proposed to improve wettability with molten zinc by heating steel sheets in an oxidizing atmosphere in advance to form iron oxide on the surface and then performing reduction annealing (for example, Patent Document 2). .

特許文献1に記載の技術は焼鈍を2回行い、1回目の焼鈍後に表面に生成したSiの表面濃化物を酸洗除去することによって、2回目の焼鈍時に、表面濃化物の生成を抑制しようとするものである。しかしながら、Si濃度が高い場合には酸洗では表面濃化物が除去しきれないため、上述したところと同様にめっき層の性能の問題は解決できない。更に、Siの表面濃化物を除去するための酸洗設備が新たに必要なことからコストがかかるという問題もある。   The technique described in Patent Document 1 performs annealing twice and suppresses the formation of surface concentrate during the second annealing by pickling and removing the surface concentrate of Si generated on the surface after the first annealing. It is what. However, when the Si concentration is high, pickling cannot completely remove the surface concentrate, so that the problem of the performance of the plating layer cannot be solved as described above. Furthermore, there is another problem that the pickling equipment for removing the surface concentrate of Si is newly required, which is costly.

更に、特許文献2に記載の技術は予め酸化性雰囲気中で加熱して鋼板表面に酸化鉄を形成することによって、還元焼鈍時におけるSiの表面濃化を抑制しようとするものである。しかしながら、一般に知られているように、鋼中のSi濃度の増加に伴い鋼板表面における酸化速度が大きく低下するため、特許文献2に記載の記述のみではSiの表面濃化を抑制するために必要な量の酸化鉄を得ることは困難である。   Furthermore, the technique described in Patent Document 2 attempts to suppress Si surface concentration during reduction annealing by heating in an oxidizing atmosphere in advance to form iron oxide on the steel sheet surface. However, as is generally known, since the oxidation rate on the steel sheet surface greatly decreases with an increase in the Si concentration in the steel, it is necessary to suppress the surface concentration of Si only by the description in Patent Document 2. It is difficult to obtain an adequate amount of iron oxide.

特開2000−290730号公報JP 2000-290730 A 特開平4−202630号公報JP-A-4-202630

本発明は、Si含有高強度鋼板を母材として、不めっきのない美麗な表面外観を有する溶融亜鉛めっき鋼板を製造する方法を提供し、また不めっきのない美麗な表面外観を有する合金化溶融亜鉛めっき鋼板を製造する方法を提供することを課題とする。   The present invention provides a method for producing a hot-dip galvanized steel sheet having a beautiful surface appearance without unplating using a Si-containing high-strength steel sheet as a base material, and alloying and melting having a beautiful surface appearance without unplating. It is an object to provide a method for producing a galvanized steel sheet.

前述したとおり、鋼中Si濃度の高い鋼板の場合、Siの表面濃化の除去または酸化による表面濃化の抑制技術のどちらにしても、不めっきを完全に抑制することは困難であった。   As described above, in the case of a steel sheet having a high Si concentration in steel, it is difficult to completely suppress non-plating by either removing the Si surface enrichment or suppressing the surface enrichment by oxidation.

ここで、鋼中Si濃度が高い鋼板については従来技術のうち酸化処理によるSi表面濃化抑制技術の方が効果的であると考えられるが、鋼中Si濃度の増加に伴い酸化が困難になることが分かっている。そこで、発明者らは少ない酸化量でSi表面濃化を抑制することができないかと考え、焼鈍後の鋼板表面を詳細に調査した。その結果、鋼中Si濃度の低い鋼板では還元鉄が鋼板表面全体を覆っているのに対し、鋼中Si濃度の高い鋼板では、還元鉄に覆われていない領域が存在することが分かった。更にこの現象は鋼中Si濃度が増加するほど顕著になり、鋼中Si濃度が2%を超えると還元鉄が島状に存在するようになった。   Here, for steel sheets with a high Si concentration in steel, it is considered that the Si surface enrichment suppression technology by oxidation treatment is more effective than the conventional technology, but the oxidation becomes difficult as the Si concentration in steel increases. I know that. Therefore, the inventors thought that the Si surface concentration could be suppressed with a small amount of oxidation, and investigated the steel sheet surface after annealing in detail. As a result, it was found that the reduced iron covered the entire steel sheet surface in the steel sheet having a low Si concentration in the steel, whereas the steel sheet having a high Si concentration in the steel had a region not covered by the reduced iron. Furthermore, this phenomenon becomes more prominent as the Si concentration in the steel increases. When the Si concentration in the steel exceeds 2%, reduced iron is present in the form of islands.

更に調査を行った結果、鋼板表面を酸化する第1加熱工程と、酸化鉄を還元する第2加熱工程を行う際に、第2加熱工程の還元雰囲気中のHO分圧を減少させると還元鉄の被覆率が高くなり、被覆率を60%以上とすることで不めっきのない溶融亜鉛めっき鋼板が得られることが分かった。これは酸化鉄の還元反応が促進されるためと考えられる。酸化鉄のHによる還元反応は以下の式で表される。 As a result of further investigation, when performing the first heating process for oxidizing the steel sheet surface and the second heating process for reducing iron oxide, the H 2 O partial pressure in the reducing atmosphere of the second heating process is reduced. It turned out that the hot-dip galvanized steel plate without unplating is obtained by making the coverage of reduced iron high and making a coverage 60% or more. This is probably because the reduction reaction of iron oxide is promoted. The reduction reaction of iron oxide with H 2 is represented by the following formula.

FeO+xH=Fe+xH
ここで、HO分圧を低下させると上式の反応は右へ進行する。したがって、雰囲気中のHO分圧が低いと酸化鉄の還元反応が促進され、還元速度が上昇することにより還元鉄の被覆率が向上するものと推測される。また、還元鉄の被覆率が60%以上となるHO分圧の上限値は鋼中Si濃度に応じて変化し、Si濃度が高いほど上限値は低くなることが分かった。また、酸化鉄は少量ではあるが、鋼中のCによっても還元されCOが発生する。還元速度の上昇のためにはCO分圧も低下させる必要があるが、Cによる還元反応は脱炭を伴うため材質の面から望ましいものではない。そこで、HO分圧とCO分圧を変化させて実験を行ったところ、HOとCOの分圧比および分圧和を適当な値に制御することで、脱炭を抑制しながら酸化鉄の還元速度を大きくできることが分かった。
FeO x + xH 2 = Fe + xH 2 O
Here, when the H 2 O partial pressure is lowered, the above reaction proceeds to the right. Therefore, when the H 2 O partial pressure in the atmosphere is low, the reduction reaction of iron oxide is promoted, and it is presumed that the reduction rate increases and the coverage of reduced iron is improved. It was also found that the upper limit value of the H 2 O partial pressure at which the reduced iron coverage was 60% or more changed according to the Si concentration in the steel, and the higher the Si concentration, the lower the upper limit value. Moreover, although iron oxide is a small amount, it is also reduced by C in the steel to generate CO 2 . In order to increase the reduction rate, it is necessary to reduce the CO 2 partial pressure, but the reduction reaction by C involves decarburization, which is not desirable in terms of material. Therefore, when an experiment was performed by changing the H 2 O partial pressure and the CO 2 partial pressure, the decarburization was suppressed by controlling the partial pressure ratio and the partial pressure sum of H 2 O and CO 2 to appropriate values. However, it was found that the reduction rate of iron oxide can be increased.

図1は、第2加熱工程のHOとCOの分圧比(PHO/PCO)、鋼中Si濃度と、第2加熱工程後の鋼板表面の還元鉄の被覆率の関係を示した一例である。還元鉄被覆率が60%以上のものはめっき外観が良好、還元鉄被覆率が60%未満のものはめっき外観が不良であった。 FIG. 1 shows the relationship between the H 2 O and CO 2 partial pressure ratio (PH 2 O / PCO 2 ) in the second heating step, the Si concentration in the steel, and the reduced iron coverage on the steel sheet surface after the second heating step. It is an example shown. When the reduced iron coverage was 60% or more, the plating appearance was good, and when the reduced iron coverage was less than 60%, the plating appearance was poor.

これらの知見に基づき、Si濃度の異なる鋼板について、第2加熱工程での加熱条件と、第2加熱工程後の鋼板表面の還元鉄の被覆率、めっき後の表面外観の関係を調査したところ、H:1〜50vol%を含有し、残部がN、HO、O、CO、COの1種又は2種以上および不可避的不純物からなる雰囲気中で、その雰囲気中の水蒸気分圧:PHO(Pa)、二酸化炭素分圧:PCO(Pa)、鋼板の最高到達温度:T(K)、鋼板のSi含有量:[Si%](mass%)が下記式(1)〜(3)を満たす条件で加熱すると、第2加熱工程後に鋼板表面の60%以上を還元鉄で被覆することができ、溶融亜鉛めっき処理後に良好な表面外観が得られることが分かった。
0<PHO/PCO<323.6−15.2logT−71.5[Si%]…(1)
0<log(PHO+15PCO)<2.3…(2)
1023≦T≦1173…(3)
また、第1加熱工程を、前段と後段に分け、前段を鋼板を酸化する工程、後段を前段の加熱工程で生成した酸化物の一部を還元する工程とすることで、第2加熱工程で炉内ロールによるピックアップの発生を防止する効果がより優れることが分かった。
Based on these findings, for steel sheets with different Si concentrations, the relationship between the heating conditions in the second heating step, the reduced iron coverage on the steel sheet surface after the second heating step, and the surface appearance after plating were investigated. H 2 : 1-50 vol%, the balance being one or more of N 2 , H 2 O, O 2 , CO, CO 2 and unavoidable impurities, and water vapor content in the atmosphere Pressure: PH 2 O (Pa), carbon dioxide partial pressure: PCO 2 (Pa), maximum reached temperature of steel plate: T (K), Si content of steel plate: [Si%] (mass%) ) To (3), it was found that 60% or more of the steel sheet surface can be coated with reduced iron after the second heating step, and a good surface appearance can be obtained after the hot dip galvanizing treatment.
0 <PH 2 O / PCO 2 <323.6-15.2 logT 2 -71.5 [Si%] (1)
0 <log (PH 2 O + 15PCO 2 ) <2.3 (2)
1023 ≦ T ≦ 1173 (3)
Further, the first heating step is divided into a first stage and a second stage, the first stage is a step of oxidizing the steel sheet, and the second stage is a step of reducing a part of the oxide generated in the first stage heating step. It was found that the effect of preventing the pickup by the in-furnace roll is more excellent.

本発明は上記知見に基くものである。本発明の要旨は次のとおりである。   The present invention is based on the above findings. The gist of the present invention is as follows.

[1]化学成分として、mass%で、C:0.05〜0.30%、Si:1.5〜3.0%、Mn:0.5〜3.0%、Al:0.01〜3.0%、S:0.001〜0.01%、P:0.001〜0.1%を含有し、残部Fe及び不可避的不純物からなる鋼板に溶融亜鉛めっきを施すに際し、O:0.01〜20vol%、HO:1〜50vol%を含有し、残部がN、CO、COの1種又は2種以上及び不可避的不純物からなる雰囲気中で鋼板を873〜1123Kの範囲内の温度になるように加熱する第1加熱工程、次いで、H:1〜50vol%を含有し、残部がN、HO、O、CO、COの1種又は2種以上および不可避的不純物からなる雰囲気中で、その雰囲気中の水蒸気分圧:PHO(Pa)、二酸化炭素分圧:PCO(Pa)、鋼板の最高到達温度:T(K)、鋼板のSi含有量:[Si%](mass%)が下記式(1)〜(3)を満たす条件で加熱する第2加熱工程を行い(但し、第2加熱工程の鋼板温度は第1加熱工程の鋼板温度より高温である。)、その後溶融亜鉛めっき処理を施すことを特徴とする表面外観に優れる高強度溶融亜鉛めっき鋼板の製造方法。
0<PHO/PCO<323.6−15.2logT−71.5[Si%]…(1)
0<log(PHO+15PCO)<2.3…(2)
1023≦T≦1173…(3)
[2]前記第1加熱工程は、前段は、O:0.1〜20vol%、HO:1〜50vol%を含有する雰囲気中で鋼板を873〜1023Kの範囲内の温度になるように加熱し、後段は、O:0.01〜0.1vol%未満、HO:1〜20vol%以下を含有する雰囲気中で鋼板を973〜1123Kの範囲内の温度になるように加熱する(但し、後段の鋼板温度は前段の鋼板温度より高温である。)ことを特徴とする上記[1]に記載の表面外観に優れる高強度溶融亜鉛めっき鋼板の製造方法。
[1] As chemical components, in mass%, C: 0.05 to 0.30%, Si: 1.5 to 3.0%, Mn: 0.5 to 3.0%, Al: 0.01 to In performing hot-dip galvanizing on a steel sheet containing 3.0%, S: 0.001 to 0.01%, P: 0.001 to 0.1%, and the balance Fe and inevitable impurities, O 2 : 0.01~20vol%, H 2 O: containing 1~50vol%, the balance being N 2, CO, one or more, and the steel sheet in an atmosphere consisting of unavoidable impurities of CO 2 873~1123K first heating step of heating so that a temperature in the range, then, H 2: containing 1~50Vol%, the balance being N 2, H 2 O, O 2, CO, 1 or 2 or of the CO 2 above and in an atmosphere consisting of unavoidable impurities, water vapor partial pressure in the atmosphere: PH 2 O (P ), Partial pressure of carbon dioxide: PCO 2 (Pa), the maximum temperature of the steel sheet: T (K), Si content of steel: satisfying [Si%] (mass%) satisfies the following expressions (1) to (3) A surface appearance characterized by performing a second heating step that heats under conditions (however, the steel plate temperature in the second heating step is higher than the steel plate temperature in the first heating step), and then performing hot dip galvanizing treatment. A method for producing an excellent high-strength hot-dip galvanized steel sheet.
0 <PH 2 O / PCO 2 <323.6-15.2 logT 2 -71.5 [Si%] (1)
0 <log (PH 2 O + 15PCO 2 ) <2.3 (2)
1023 ≦ T ≦ 1173 (3)
[2] In the first heating step, the first stage is such that the steel sheet is brought to a temperature in the range of 873 to 1023 K in an atmosphere containing O 2 : 0.1 to 20 vol% and H 2 O: 1 to 50 vol%. In the subsequent stage, the steel sheet is heated to a temperature in the range of 973 to 1123K in an atmosphere containing O 2 : 0.01 to less than 0.1 vol% and H 2 O: 1 to 20 vol% or less. (However, the temperature of the subsequent steel sheet is higher than the temperature of the preceding steel sheet.) The method for producing a high-strength hot-dip galvanized steel sheet having excellent surface appearance according to the above [1].

[3]前記第1加熱工程は、前段は、直火炉(DFF)または無酸化炉(NOF)により、空気比が1以上1.35以下の条件で加熱し、後段は直火炉または無酸化炉により、空気比が1未満の条件で加熱することを特徴とする上記[2]に記載の表面外観に優れる高強度溶融亜鉛めっき鋼板の製造方法。   [3] In the first heating step, the first stage is heated by a direct-fired furnace (DFF) or a non-oxidizing furnace (NOF) under the condition of an air ratio of 1 to 1.35, and the latter stage is a direct-fired furnace or a non-oxidizing furnace. The method for producing a high-strength hot-dip galvanized steel sheet having excellent surface appearance according to the above [2], wherein the heating is performed under the condition that the air ratio is less than 1.

[4]前記鋼板は、化学成分として、さらに、mass%で、Cr:0.1〜1.0%、Mo:0.1〜1.0%、Ti:0.01〜0.1%、Nb:0.01〜0.1%およびB:0.0005〜0.0050%から選ばれた1または2種以上を含有することを特徴とする上記[1]〜[3]のいずれかに記載の表面外観に優れる高強度溶融亜鉛めっき鋼板の製造方法。   [4] The steel sheet further includes, as a chemical component, mass%, Cr: 0.1 to 1.0%, Mo: 0.1 to 1.0%, Ti: 0.01 to 0.1%, One or more selected from Nb: 0.01 to 0.1% and B: 0.0005 to 0.0050% are contained in any one of the above [1] to [3] The manufacturing method of the high intensity | strength hot-dip galvanized steel plate which is excellent in the surface appearance of description.

[5]上記[1]〜[4]のいずれかに記載の方法で高強度溶融亜鉛めっき鋼板を製造した後、更に合金化処理を行うことを特徴とする表面外観に優れる高強度合金化溶融亜鉛めっき鋼板の製造方法。   [5] A high-strength alloyed and melted material with excellent surface appearance, wherein a high-strength hot-dip galvanized steel sheet is produced by the method described in any one of [1] to [4] above, and further alloyed. Manufacturing method of galvanized steel sheet.

本発明の製造方法によれば、Si含有高強度鋼板を母材とした場合にあっても、不めっきのない美麗な表面外観をする溶融亜鉛めっき鋼板と不めっきのない美麗な表面外観を有する合金化溶融亜鉛めっき鋼板が得られる。   According to the production method of the present invention, even when a Si-containing high-strength steel sheet is used as a base material, a hot-dip galvanized steel sheet having a beautiful surface appearance without unplating and a beautiful surface appearance without unplating are provided. An alloyed hot-dip galvanized steel sheet is obtained.

第2加熱工程のHOとCOの分圧比(PHO/PCO)、鋼中Si濃度と、第2加熱工程後の鋼板表面の還元鉄の被覆率の関係を示した一例である。An example showing the relationship between the H 2 O and CO 2 partial pressure ratio (PH 2 O / PCO 2 ) in the second heating step, the Si concentration in the steel, and the reduced iron coverage on the steel sheet surface after the second heating step. is there.

以下、本発明について具体的に説明する。   Hereinafter, the present invention will be specifically described.

まず、本発明において、鋼板の成分組成を上記の範囲に限定した理由について説明する。なお、成分に関する「%」表示は特に断らない限りmass%を意味するものとする。   First, the reason why the component composition of the steel sheet is limited to the above range in the present invention will be described. In addition, unless otherwise indicated, the "%" display regarding a component shall mean mass%.

C:0.05〜0.30%
Cはオーステナイト相を安定化させる元素であり、鋼板の強度を上昇させるために必要な元素である。C量が0.05%未満では、強度の確保が困難であり、C量が0.30%を超えると、溶接性が低下する。従って、C量は0.05〜0.30%の範囲内とする。
C: 0.05-0.30%
C is an element that stabilizes the austenite phase, and is an element necessary for increasing the strength of the steel sheet. If the C content is less than 0.05%, it is difficult to ensure the strength, and if the C content exceeds 0.30%, the weldability decreases. Therefore, the C content is in the range of 0.05 to 0.30%.

Si:1.5〜3.0%
Siは、フェライト相中の固溶Cをオーステナイト相中に濃化させ、鋼の焼戻し軟化抵抗を高めることにより鋼板の成形性を向上させる作用を有している。還元焼鈍後に還元鉄が島状に分布しめっき品質を低下させる問題はSi含有量が1.5%以上になると顕在化する。一方、Siは鋼板の酸化を抑制する効果があり、含有量が3.0%を超えると酸化鉄量を確保できないため、後述する本発明の製造工程を適用しても、還元鉄の被覆率が60%未満になり、表面外観が十分に改善されない。従って、Si量は1.5〜3.0%の範囲内とする。
Si: 1.5-3.0%
Si has the effect of improving the formability of the steel sheet by concentrating the solid solution C in the ferrite phase in the austenite phase and increasing the temper softening resistance of the steel. The problem that reduced iron is distributed in islands after reduction annealing and lowers the plating quality becomes apparent when the Si content is 1.5% or more. On the other hand, Si has an effect of suppressing oxidation of the steel sheet, and if the content exceeds 3.0%, the amount of iron oxide cannot be secured. Therefore, even if the production process of the present invention described later is applied, the coverage of reduced iron Is less than 60%, and the surface appearance is not sufficiently improved. Therefore, the Si amount is set in the range of 1.5 to 3.0%.

Mn:0.5〜3.0%
Mnは、焼入れ性を高め鋼板の強度を高めるために有用な元素である。その効果は、0.5%未満では得られない。一方、含有量が3.0%を超えるとMnの偏析が生じ、加工性が低下する。従って、Mn量は0.5〜3.0%の範囲内とする。
Mn: 0.5 to 3.0%
Mn is an element useful for increasing the hardenability and increasing the strength of the steel sheet. The effect cannot be obtained at less than 0.5%. On the other hand, if the content exceeds 3.0%, segregation of Mn occurs and the workability decreases. Therefore, the amount of Mn is in the range of 0.5 to 3.0%.

Al:0.01〜3.0%
AlはSiと補完的に添加される元素であり、0.01%以上含有させることが好ましい。しかしながら、Al量が3.0%を超えると溶接性や強度延性バランスの確保に悪影響を及ぼす。従って、Al量は0.01〜3.0%の範囲が好ましい。
Al: 0.01 to 3.0%
Al is an element added in a complementary manner to Si, and is preferably contained in an amount of 0.01% or more. However, if the Al content exceeds 3.0%, the weldability and strength ductility balance are adversely affected. Therefore, the Al content is preferably in the range of 0.01 to 3.0%.

S:0.001〜0.01%
Sは鋼に不可避的に含有される元素であり、冷間圧延後に板状の介在物MnSを生成することにより、成形性を低下させる。S量が0.01%まではMnSは生成しないが、過度の低減は製鋼工程における脱硫コストの増加を伴う。従って、S量は0.001〜0.01%の範囲内とする。
S: 0.001 to 0.01%
S is an element inevitably contained in steel, and lowers formability by producing plate-like inclusions MnS after cold rolling. MnS is not produced until the S content is 0.01%, but excessive reduction is accompanied by an increase in desulfurization cost in the steelmaking process. Therefore, the S content is within the range of 0.001 to 0.01%.

P:0.001〜0.1%
Pは鋼に不可避的に含有される元素であり、強度向上に寄与する元素である。その反面、溶接性を低下させる元素でもあり、P量が0.1%を超えるとその影響が顕著に現れる。また一方で、過度のP低減は製鋼工程における製造コストの増加を伴う。従って、P量は0.001〜0.1%の範囲内とする。
P: 0.001 to 0.1%
P is an element inevitably contained in steel, and is an element contributing to strength improvement. On the other hand, it is also an element that deteriorates weldability, and when the amount of P exceeds 0.1%, the influence appears remarkably. On the other hand, excessive P reduction is accompanied by an increase in manufacturing cost in the steelmaking process. Therefore, the P content is within the range of 0.001 to 0.1%.

本発明では、上記の成分組成を必須成分とし、残部は鉄および不可避的不純物であるが、必要に応じて、下記成分の1種または2種以上を適宜含有することが出来る。   In the present invention, the above component composition is an essential component, and the balance is iron and unavoidable impurities. However, if necessary, one or more of the following components can be appropriately contained.

Cr:0.1〜1.0%
Crは鋼の焼入れ性向上に有効な元素であり、この効果を得るためには、0.1%以上の添加を必要とする。また、Crはフェライト相を固溶強化し、マルテンサイト相とフェライト相の硬度差を低減して、成形性の向上に有効に寄与する。しかしながら、Cr量が1.0%を超えるとこの効果は飽和し、むしろ表面品質を著しく劣化させる。従って、Cr量は0.1〜1.0%の範囲内とする。
Cr: 0.1 to 1.0%
Cr is an effective element for improving the hardenability of steel. To obtain this effect, addition of 0.1% or more is required. Cr strengthens the ferrite phase in a solid solution, reduces the hardness difference between the martensite phase and the ferrite phase, and effectively contributes to improving the formability. However, if the Cr content exceeds 1.0%, this effect is saturated, but rather the surface quality is significantly degraded. Therefore, the Cr content is within the range of 0.1 to 1.0%.

Mo:0.1〜1.0%
Moは、鋼の焼入れ性向上に有効な元素であると共に、焼戻し二次硬化を発現させる元素でもある。この効果を得るためには0.1%以上の添加を必要とする。しかしながら、Mo量が1.0%超えると、この効果は飽和し、コストアップの要因となる。従って、Mo量は0.1〜1.0%の範囲内とする。
Mo: 0.1 to 1.0%
Mo is an element effective for improving the hardenability of steel and is an element that develops tempering secondary hardening. In order to obtain this effect, addition of 0.1% or more is required. However, if the amount of Mo exceeds 1.0%, this effect is saturated and causes an increase in cost. Therefore, the Mo amount is set within a range of 0.1 to 1.0%.

Ti:0.01〜0.1%
Tiは鋼中でCまたはNと微細炭化物や微細窒化物を形成することにより、焼鈍後の組織の細粒化および析出強化の付与に有効に作用する。この効果を得るためには0.01%以上の添加が必要である。しかしながらTi量が0.1%を超えるとこの効果が飽和する。従って、Ti量は0.01〜0.1%の範囲内とする。
Ti: 0.01 to 0.1%
Ti effectively acts to impart fine grain refinement and precipitation strengthening after annealing by forming fine carbides and fine nitrides with C or N in steel. In order to obtain this effect, addition of 0.01% or more is necessary. However, this effect is saturated when the Ti content exceeds 0.1%. Therefore, the Ti amount is within the range of 0.01 to 0.1%.

Nb:0.01〜0.1%
Nbは、固溶強化または析出強化により強度の向上に寄与する元素である。この効果を得るためには0.01%以上の添加を必要とする。しかしながら、0.1%を超えて含有されると、フェライトの延性を低下させ、加工性が低下する。従って、Nb量は0.01〜0.1%の範囲内とする。
Nb: 0.01 to 0.1%
Nb is an element that contributes to improvement in strength by solid solution strengthening or precipitation strengthening. In order to obtain this effect, addition of 0.01% or more is required. However, if the content exceeds 0.1%, the ductility of ferrite is lowered, and the workability is lowered. Therefore, the Nb content is in the range of 0.01 to 0.1%.

B:0.0005〜0.0050%
Bは焼入れ性を高め、焼鈍冷却中のフェライトの生成を抑制し、所望のマルテンサイト量を得るのに必要である。この効果を得るためには、B量は0.0005%以上添加する必要があるが、0.0050%を超えるとこの効果は飽和する。従って、B量は0.0005〜0.0050%の範囲内とする。
B: 0.0005 to 0.0050%
B is necessary for improving the hardenability, suppressing the formation of ferrite during annealing cooling, and obtaining a desired amount of martensite. In order to acquire this effect, it is necessary to add B amount 0.0005% or more, but if it exceeds 0.0050%, this effect will be saturated. Therefore, the B amount is within the range of 0.0005 to 0.0050%.

次に、高強度溶融亜鉛めっき鋼板及び高強度合金化溶融亜鉛めっき鋼板の製造方法について説明する。なお、雰囲気に関する「%」表示、「ppm」表示は特に断らない限り、各々vol%、volppmを意味し、雰囲気中の水蒸気分圧PHO、二酸化炭素分圧PCOの単位は特に断らない限り「Pa」である。 Next, the manufacturing method of a high-strength hot-dip galvanized steel sheet and a high-strength galvannealed steel sheet will be described. Unless otherwise specified, “%” display and “ppm” display relating to the atmosphere mean vol% and vol ppm, respectively, and units of water vapor partial pressure PH 2 O and carbon dioxide partial pressure PCO 2 in the atmosphere are not particularly specified. As long as it is “Pa”.

上記組成を有する鋼スラブを、熱間圧延工程で加熱後、粗圧延、仕上げ圧延を施し、その後、酸洗工程で熱延板表層のスケールを除去した後、冷間圧延する。熱間圧延工程から冷間圧延工程は特に限定されず、常法でよい。   The steel slab having the above composition is heated in the hot rolling process, then subjected to rough rolling and finish rolling, and then the hot-rolled sheet surface scale is removed in the pickling process, followed by cold rolling. The hot rolling process to the cold rolling process is not particularly limited, and may be a conventional method.

冷間圧延した鋼板に以下の第1加熱工程及び第2加熱工程の2工程からなる加熱処理を行った後にめっき処理を行う。この加熱処理は本発明において重要な要件であり、特に第2加熱工程は最も重要な要件である。第1加熱工程後に、第2加熱工程を以下の条件で行うことで、第2加熱工程終了時に鋼板表面の60%以上が還元鉄で被覆されるため、鋼板表面へのSiの濃化を抑制し、Siを多量に含有する鋼板でも表面外観に優れる溶融亜鉛めっき鋼板および合金化溶融亜鉛めっき鋼板を製造することが可能となる。   The cold-rolled steel sheet is subjected to a heat treatment consisting of the following two steps of a first heating step and a second heating step, followed by plating. This heat treatment is an important requirement in the present invention, and in particular, the second heating step is the most important requirement. After the first heating step, by performing the second heating step under the following conditions, 60% or more of the steel plate surface is covered with reduced iron at the end of the second heating step, thereby suppressing Si concentration on the steel plate surface. In addition, a hot-dip galvanized steel sheet and an alloyed hot-dip galvanized steel sheet that are excellent in surface appearance even with a steel sheet containing a large amount of Si can be produced.

第1加熱工程:O:0.01〜20%、HO:1〜50%を含有し、残部がN、CO、COの1種又は2種以上および不可避的不純物からなる雰囲気中で鋼板の最高到達温度が873〜1123Kの範囲内になるように加熱する。 First heating step: atmosphere containing O 2 : 0.01 to 20%, H 2 O: 1 to 50%, the balance being one or more of N 2 , CO, CO 2 and unavoidable impurities The steel sheet is heated so that the maximum temperature of the steel sheet is within the range of 873 to 1123K.

第2加熱工程:H:1〜50vol%を含有し、残部がN、HO、O、CO、COの1種又は2種以上および不可避的不純物からなる雰囲気中で、その雰囲気中の水蒸気分圧:PHO(Pa)、二酸化炭素分圧:PCO(Pa)、鋼板の最高到達温度:T(K)、鋼板のSi含有量:[Si%](mass%)が下記式(1)〜(3)を満たす条件で加熱する。
0<PHO/PCO<323.6−15.2logT−71.5[Si%]…(1)
0<log(PHO+15PCO)<2.3…(2)
1023≦T≦1173…(3)
第1加熱工程、第2加熱工程の限定理由を説明する。
Second heating step: H 2 : 1-50 vol%, the balance is N 2 , H 2 O, O 2 , CO, CO 2 in an atmosphere composed of one or more and unavoidable impurities, Water vapor partial pressure in the atmosphere: PH 2 O (Pa), carbon dioxide partial pressure: PCO 2 (Pa), maximum reached temperature of steel plate: T (K), Si content of steel plate: [Si%] (mass%) Is heated under conditions that satisfy the following formulas (1) to (3).
0 <PH 2 O / PCO 2 <323.6-15.2 logT 2 -71.5 [Si%] (1)
0 <log (PH 2 O + 15PCO 2 ) <2.3 (2)
1023 ≦ T ≦ 1173 (3)
The reasons for limiting the first heating step and the second heating step will be described.

第1加熱工程は、鋼板表面に酸化鉄を形成するために行う。このため、加熱雰囲気はO:0.01〜20%、HO:1〜50%を含有し、残部がN、CO、COの1種又は2種以上および不可避的不純物からなる雰囲気とする。 A 1st heating process is performed in order to form iron oxide on the steel plate surface. Therefore, the heating atmosphere O 2: 0.01~20%, H 2 O: containing 1% to 50%, with the balance being N 2, CO, 1 or 2 or more and unavoidable impurities CO 2 The atmosphere.

加熱雰囲気のO濃度が0.01%未満になるとFeが酸化せず、20%超になるとコストがかかる。また、HOは酸化を促進するために1%以上とする。加湿コストを考えて50%以下が好ましい。 When the O 2 concentration in the heating atmosphere is less than 0.01%, Fe is not oxidized, and when it exceeds 20%, the cost is increased. Further, H 2 O is made 1% or more in order to promote oxidation. Considering the humidification cost, 50% or less is preferable.

また、CO濃度は10%以下、CO濃度は5%以下が望ましい。 Further, the CO 2 concentration is desirably 10% or less, and the CO concentration is desirably 5% or less.

鋼板温度が873K未満では鋼板は酸化せず、1123Kを超えると鋼板が酸化しすぎて第2加熱工程で炉内ロールでのピックアップにより押し疵が発生するようになるので鋼板温度が873K以上1123Kの範囲内の温度になるように鋼板を加熱する。   When the steel plate temperature is less than 873K, the steel plate is not oxidized. When the steel plate temperature exceeds 1123K, the steel plate is excessively oxidized, and push scoops are generated by picking up with the in-furnace roll in the second heating step, so the steel plate temperature is 873K or more and 1123K. The steel sheet is heated to a temperature within the range.

また、第2加熱工程で炉内ロールでのピックアップによる押し疵の発生をより効果的に抑制するには、前記第1加熱工程を2段階に分け、前段を鋼板を酸化する工程、後段を前段で生成した酸化物の一部を還元する工程とすることが好ましい。具体的には、前段をO:0.1〜20vol%、HO:1〜50vol%を含有する雰囲気中で鋼板温度が873〜1023Kの範囲内の温度になるように加熱し、後段をO:0.01〜0.1vol%未満、HO:1〜20vol%以下を含有する雰囲気中で鋼板温度が、973〜1123Kの範囲内の温度になるように鋼板を加熱する(但し、後段の鋼板温度は前段の鋼板温度よりも高温とする。)ことが好ましい。 Further, in order to more effectively suppress the occurrence of push rods due to pick-up by the roll in the furnace in the second heating step, the first heating step is divided into two stages, the former stage is a step of oxidizing the steel sheet, and the latter stage is the preceding stage. It is preferable to set it as the process of reducing a part of oxide produced | generated by this. Specifically, the former stage is heated in an atmosphere containing O 2 : 0.1 to 20 vol% and H 2 O: 1 to 50 vol% so that the steel sheet temperature is in the range of 873 to 1023K, and the latter stage In an atmosphere containing O 2 : 0.01 to less than 0.1 vol% and H 2 O: 1 to 20 vol% or less, the steel sheet is heated so that the steel sheet temperature is within the range of 973 to 1123 K ( However, the latter steel plate temperature is preferably higher than the former steel plate temperature.)

前段における加熱は鋼板を酸化させるために行うものであり、Oは酸化を行うのに十分な量が必要であり0.1%以上とする。また、経済的な理由から大気レベルの20%以下が好ましい。HOは酸化を促進するために1%以上とする。また、加湿コストを考えて50%以下が好ましい。前段で加熱後の鋼板温度が873K未満では酸化しにくく、1023Kを超えると酸化しすぎて、この酸化物を後段で還元した際に酸化物を十分に還元できず、第2加熱工程で炉内ロールのピックアップを抑制する効果は不十分になる。そのため、前段は、鋼板温度が873〜1023Kとなるように加熱する。 The heating in the previous stage is performed to oxidize the steel sheet, and O 2 needs a sufficient amount to oxidize and is 0.1% or more. For economic reasons, it is preferably 20% or less of the atmospheric level. H 2 O is made 1% or more in order to promote oxidation. Further, considering the humidification cost, 50% or less is preferable. It is difficult to oxidize when the steel plate temperature after heating in the former stage is less than 873K, and it is excessively oxidized if it exceeds 1023K, and when this oxide is reduced in the latter stage, the oxide cannot be sufficiently reduced, and the second heating step The effect of suppressing roll pickup is insufficient. Therefore, the former stage is heated so that the steel sheet temperature becomes 873-1023K.

後段の加熱は一旦酸化された鋼板表面を還元処理し、押し疵を抑制するために行う。そのため後段の加熱では鋼板表面を還元処理することが可能で、かつ、ピックアップが起こらない条件、すなわち低O濃度雰囲気で低温還元加熱の条件で加熱を行い、前段で一旦酸化された鋼板表面を、次の第2加熱工程内で炉内ロールと反応しピックアップが起こらない程度まで還元処理する。Oが0.1%以上になると、還元が不十分になり、第2加熱工程内で炉内ロールのピックアップを防止する効果が不十分なるのでOは0.1%未満とする。HOは多量に含まれると鋼板が酸化されるので20%以下とする(但し1vol%以上)。鋼板温度が、973K未満では還元しにくく、1123Kを超えると加熱コストがかかるため、後段では鋼板温度が973〜1123Kの範囲内の温度となるように加熱する(但し、第2加熱工程の鋼板温度は第1加熱工程の鋼板温度より高温である。)。 The latter stage heating is performed to reduce the surface of the steel plate once oxidized and suppress the pressing. Therefore, it is possible to reduce the surface of the steel sheet by heating in the latter stage, and heating is performed under conditions where pick-up does not occur, that is, low-temperature reducing heating conditions in a low O 2 concentration atmosphere. In the next second heating step, reduction treatment is performed to such an extent that it reacts with the in-furnace roll and pick-up does not occur. When O 2 becomes 0.1% or more, the reduction becomes insufficient, and the effect of preventing pickup of the in-furnace roll in the second heating step becomes insufficient, so O 2 is made less than 0.1%. If H 2 O is contained in a large amount, the steel sheet is oxidized, so the content is set to 20% or less (however, 1 vol% or more). If the steel plate temperature is less than 973K, it is difficult to reduce, and if it exceeds 1123K, heating costs are required. Therefore, the latter is heated so that the steel plate temperature is within the range of 973 to 1123K (however, the steel plate temperature in the second heating step) Is higher than the steel plate temperature in the first heating step).

前段加熱を直火炉(DFF)または無酸化炉(NOF)により行う場合、燃焼ガスはコークス炉で発生するCガスを用い、空気比が1以上1.35以下の条件で行うことが好ましい。これは空気比が1未満では鋼板は酸化せず、1.35を超えると過酸化によりピックアップが発生するためである。また、後段加熱を直火炉(DFF)もしくは無酸化炉(NOF)により行う場合、燃焼ガスはコークス炉で発生するCガスを用い、空気比が0.6以上1未満の条件で行うことが好ましい。これは空気比が1を超えると鋼板表面の酸化鉄を還元することができず、空気比が0.6未満であると燃焼効率が悪くなるためである。ここで、空気比とは、完全燃焼に要する空気量に対する導入空気量の比である。   When the pre-stage heating is performed by a direct-fired furnace (DFF) or a non-oxidizing furnace (NOF), it is preferable that the combustion gas is C gas generated in a coke oven and the air ratio is 1 to 1.35. This is because when the air ratio is less than 1, the steel sheet is not oxidized, and when it exceeds 1.35, pickup occurs due to overoxidation. In addition, when post-stage heating is performed in a direct-fired furnace (DFF) or a non-oxidizing furnace (NOF), it is preferable that the combustion gas is C gas generated in a coke oven and the air ratio is 0.6 to less than 1. . This is because if the air ratio exceeds 1, iron oxide on the surface of the steel sheet cannot be reduced, and if the air ratio is less than 0.6, the combustion efficiency deteriorates. Here, the air ratio is the ratio of the amount of introduced air to the amount of air required for complete combustion.

第2加熱工程は、第1加熱工程に引き続いて行われ、第1加熱工程で鋼板表面に形成した酸化物(酸化鉄)の還元処理と鋼板の再結晶焼鈍を行う。このため、加熱雰囲気はH:1〜50vol%を含有し、残部がN、HO、O、CO、COの1種又は2種以上および不可避的不純物からなる雰囲気とする。Hが1%未満では酸化鉄が還元しにくく、50%を超えるとコストアップにつながる。 The second heating step is performed subsequent to the first heating step, and a reduction treatment of the oxide (iron oxide) formed on the steel plate surface in the first heating step and recrystallization annealing of the steel plate are performed. For this reason, the heating atmosphere contains H 2 : 1 to 50 vol%, and the balance is an atmosphere composed of one or more of N 2 , H 2 O, O 2 , CO, CO 2 and inevitable impurities. If H 2 is less than 1%, iron oxide is difficult to reduce, and if it exceeds 50%, the cost increases.

さらに、加熱雰囲気の水蒸気分圧:PHO(Pa)、二酸化炭素分圧:PCO(Pa)、鋼板の最高到達温度:T(K)、鋼板のSi含有量:[Si%](mass%)が下記式(1)〜(3)を満たすことが必要である。
0<PHO/PCO<323.6−15.2logT−71.5[Si%]…(1)
0<log(PHO+15PCO)<2.3…(2)
1023≦T≦1173…(3)
O分圧とCO分圧の比、PHO/PCOが323.6−15.2logT−71.5[Si%]以上となると、酸化鉄の還元速度が小さくなるため還元鉄の被覆率が60%未満となる。
Furthermore, the partial pressure of water vapor in the heating atmosphere: PH 2 O (Pa), the partial pressure of carbon dioxide: PCO 2 (Pa), the maximum temperature reached by the steel plate: T (K), the Si content of the steel plate: [Si%] (mass) %) Must satisfy the following formulas (1) to (3).
0 <PH 2 O / PCO 2 <323.6-15.2 logT 2 -71.5 [Si%] (1)
0 <log (PH 2 O + 15PCO 2 ) <2.3 (2)
1023 ≦ T ≦ 1173 (3)
When the ratio of the H 2 O partial pressure and the CO 2 partial pressure, PH 2 O / PCO 2 is 323.6-15.2 logT 2 -71.5 [Si%] or more, the reduction rate of iron oxide decreases, so that the reduction occurs. The iron coverage is less than 60%.

O分圧とCO分圧の和、PHO+15PCOの対数が2.3以上になると脱炭しやすくなる。また、HO分圧とCO分圧の和、PHO+15PCOの対数が0以下になるとコストアップになるためである。 When the sum of the H 2 O partial pressure and the CO 2 partial pressure, the logarithm of PH 2 O + 15 PCO 2 is 2.3 or more, decarburization is facilitated. Further, this is because the cost increases when the sum of the H 2 O partial pressure and the CO 2 partial pressure, or the logarithm of PH 2 O + 15 PCO 2 , is 0 or less.

また、O濃度は5ppm未満、CO濃度は10ppm未満が望ましい。 Further, it is desirable that the O 2 concentration is less than 5 ppm and the CO concentration is less than 10 ppm.

鋼板の最高到達温度が1023K未満では冷間圧延中に導入された歪みが残存し加工性が劣化する。また、酸化鉄の還元速度が低下するため還元鉄の被覆率が低下する。また、1173Kを超えると加熱コストの点で不利になる。   If the maximum temperature of the steel sheet is less than 1023 K, the strain introduced during cold rolling remains and the workability deteriorates. Moreover, since the reduction | restoration rate of iron oxide falls, the coverage of reduced iron falls. Moreover, when it exceeds 1173K, it will become disadvantageous at the point of heating cost.

上記2工程による加熱後、冷却し、溶融亜鉛めっき浴に浸漬して溶融亜鉛めっきを施す。上記2工程を行うと、第2加熱工程終了時に鋼板表面の60%以上が還元鉄で被覆される。このような鋼板は、Siの表層濃化が抑制されているため、溶融亜鉛めっきするとSiの表層濃化に起因する不めっきの発生が抑制され、まためっき密着性の低下が防止され、合金化処理したときに合金化遅延の発生が防止されることから、高い生産性と良好な耐パウダリング性を両立させることができるようになる。   After the heating in the above two steps, it is cooled and immersed in a hot dip galvanizing bath to perform hot dip galvanizing. When the above two steps are performed, 60% or more of the steel sheet surface is covered with reduced iron at the end of the second heating step. Since such steel sheets have suppressed surface concentration of Si, hot dip galvanization suppresses the occurrence of non-plating due to surface concentration of Si, prevents deterioration of plating adhesion, and forms an alloy. Since the occurrence of alloying delay is prevented when the treatment is performed, both high productivity and good powdering resistance can be achieved.

溶融亜鉛めっき鋼板の製造には浴温713〜823K、浴中Al濃度が0.14〜0.24%の亜鉛めっき浴を用い、合金化溶融亜鉛めっき鋼板の製造には浴温713〜823K、浴中Al濃度が0.10〜0.20%の亜鉛めっき浴を用いることが好ましい。   For the production of hot dip galvanized steel sheet, a bath temperature of 713 to 823K and a zinc plating bath with an Al concentration in the bath of 0.14 to 0.24% are used. For the production of an alloyed hot dip galvanized steel sheet, the bath temperature is 713 to 823K. It is preferable to use a galvanizing bath having an Al concentration in the bath of 0.10 to 0.20%.

浴温が713K未満では浴内における温度ばらつきが大きい場所はZnの凝固が起こる可能性があるため不適であり、823Kを超えると加熱コストの問題や浴の蒸発が激しく気化したZnが炉内へ付着するため操業上の問題がある。更にめっき時に合金化が進行するため、過合金になりやすい。   If the bath temperature is less than 713K, the place where the temperature variation in the bath is large is not suitable because there is a possibility that the solidification of Zn occurs, and if it exceeds 823K, the problem of heating costs and the vaporized Zn vaporized into the furnace will enter the furnace. There are operational problems due to adhesion. Furthermore, since alloying proceeds during plating, it tends to be overalloyed.

溶融亜鉛めっき鋼板を製造する時に浴中Al濃度が0.14%未満になるとFe−Zn合金化が進みめっき密着性が悪化し、0.24%超になるとAl酸化物による欠陥が発生する。合金化溶融亜鉛めっき鋼板を製造する時に浴中Al濃度が0.10%未満になるとζ相が多量に生成しパウダリング性が悪化し、0.20%超になるとFe−Zn合金化が進まない。   If the Al concentration in the bath is less than 0.14% when producing a hot dip galvanized steel sheet, Fe—Zn alloying progresses and plating adhesion deteriorates, and if it exceeds 0.24%, defects due to Al oxide occur. When the alloyed hot-dip galvanized steel sheet is produced, if the Al concentration in the bath is less than 0.10%, a large amount of ζ phase is generated and powdering properties deteriorate, and if it exceeds 0.20%, Fe-Zn alloying progresses. Absent.

合金化処理は773K超、843K未満で行うのが最適である。773K以下では合金化進行が遅く、843K以上では過合金により地鉄界面に生成する硬くて脆いZn−Fe合金層が生成しすぎてめっき密着性が劣化するだけでなく、残留オーステナイト相が分解するため、強度延性バランスも劣化する。めっき付着量は特に定めないが、耐食性およびめっき付着量制御上10g/m以上(片面当り付着量)が好ましい。また、付着量が多いと密着性が低下するので、120g/m以下(片面当り付着量)が望ましい。 The alloying process is optimally performed at a temperature exceeding 773K and less than 843K. Below 773K, the alloying progresses slowly, and above 843K, a hard and brittle Zn-Fe alloy layer formed at the base iron interface due to overalloy is formed too much, not only the plating adhesion deteriorates, but also the residual austenite phase decomposes. Therefore, the strength ductility balance is also deteriorated. The plating adhesion amount is not particularly defined, but is preferably 10 g / m 2 or more (adhesion amount per one surface) for corrosion resistance and plating adhesion amount control. Moreover, since adhesion will fall when there is much adhesion amount, 120 g / m < 2 > or less (attachment amount per one side) is desirable.

以下、本発明を実施例に基づいて具体的に説明する。   Hereinafter, the present invention will be specifically described based on examples.

表1に示す鋼組成のスラブを加熱炉にて1533Kで60分加熱し、引き続き厚さ2.8mmまで熱間圧延を施し、813Kで巻き取った。次いで、酸洗で黒皮スケールを除去して、厚さ1.6mmまで冷間圧延した。その後、雰囲気調整が可能で熱処理中にガス流量を一定に保てるような炉を用いて、表2または表3に示す熱処理条件にて第1加熱工程及び第2加熱工程を行った。この際、第1加熱工程はDFF型加熱炉またはNOF型加熱炉で行った。燃料ガスにはコークス炉で発生するCガスを用いた。第2加熱工程はRTF型加熱炉で行い、雰囲気ガスとしてH−Nガスを供給した。 A slab having a steel composition shown in Table 1 was heated in a heating furnace at 1533K for 60 minutes, subsequently hot-rolled to a thickness of 2.8 mm, and wound at 813K. Next, the black scale was removed by pickling and cold rolled to a thickness of 1.6 mm. Thereafter, the first heating step and the second heating step were performed under the heat treatment conditions shown in Table 2 or Table 3 using a furnace capable of adjusting the atmosphere and keeping the gas flow rate constant during the heat treatment. At this time, the first heating step was performed in a DFF type heating furnace or a NOF type heating furnace. C gas generated in a coke oven was used as the fuel gas. The second heating step was performed in an RTF type heating furnace, and H 2 —N 2 gas was supplied as an atmospheric gas.

引き続き、733KのAl含有Zn浴にて溶融亜鉛めっき処理を施し、溶融亜鉛めっき鋼板を得た。なお、浴中Al濃度は溶融亜鉛めっき鋼板製造時には0.18%、合金化溶融亜鉛めっき鋼板製造時には0.14%とし、付着量はガスワイピングにより片面当り40g/mに調節した。また、溶融亜鉛めっきを施した後に、773Kで合金化処理を行うことで合金化溶融亜鉛めっき鋼板を得た。また、めっき浴を空通しすることで、第2加熱工程後の鋼板を得た。この鋼板表面についてEPMAで500μm×500μmの範囲について元素マッピングを行い、還元鉄の被覆率を求めた。 Subsequently, hot dip galvanizing treatment was performed in a 733K Al-containing Zn bath to obtain a hot dip galvanized steel sheet. The Al concentration in the bath was 0.18% during the production of the hot dip galvanized steel sheet, 0.14% during the production of the alloyed hot dip galvanized steel sheet, and the adhesion amount was adjusted to 40 g / m 2 per side by gas wiping. Moreover, after performing hot dip galvanization, the alloying hot dip galvanized steel sheet was obtained by performing an alloying process at 773K. Moreover, the steel plate after the 2nd heating process was obtained by letting a plating bath pass. Elemental mapping was performed on the surface of this steel plate with EPMA in the range of 500 μm × 500 μm, and the reduced iron coverage was determined.

Figure 2011117069
Figure 2011117069

以上より得られた溶融亜鉛めっき鋼板(GI)及び合金化溶融亜鉛めっき鋼板(GA)に対して、下記に示す方法にて表面外観を調査した。   The surface appearance was investigated by the method shown below with respect to the hot dip galvanized steel sheet (GI) and the galvannealed steel sheet (GA) obtained as described above.

〈表面外観〉
不めっきや押し疵などの外観不良の有無を目視にて判断し、外観不良がない場合には良好(○)、外観不良がわずかにあるがおおむね良好である場合にはおおむね良好(△)、外観不良がある場合には不良(×)と判定した。
<Surface appearance>
Judging by visual inspection for appearance defects such as non-plating and pushing rods, good (○) when there is no appearance defect, good (△) when there is a slight but poor appearance. When there was an appearance defect, it was determined as a defect (x).

雰囲気の水蒸気分圧PHO、二酸化炭素分圧PCOは、各々雰囲気のHO濃度、CO濃度に基づき、下式から算出した。
水蒸気分圧PHO(Pa)=HO濃度(ppm)×10−6×101325
二酸化炭素分圧PCO(Pa)=CO濃度(ppm)×10−6×101325
得られた結果を条件と併せて表2(発明例)、表3(比較例)に示す。
The water vapor partial pressure PH 2 O and the carbon dioxide partial pressure PCO 2 in the atmosphere were calculated from the following formulas based on the H 2 O concentration and the CO 2 concentration in the atmosphere, respectively.
Water vapor partial pressure PH 2 O (Pa) = H 2 O concentration (ppm) × 10 −6 × 101325
Carbon dioxide partial pressure PCO 2 (Pa) = CO 2 concentration (ppm) × 10 −6 × 101325
The obtained results are shown in Table 2 (Invention Example) and Table 3 (Comparative Example) together with the conditions.

Figure 2011117069
Figure 2011117069

Figure 2011117069
Figure 2011117069

表2、表3からわかるように、本発明例の溶融亜鉛めっき鋼板と合金化溶融亜鉛めっき鋼板は、Siを含有するにも関わらず、不めっきや押し疵がなく美麗な表面外観を有する。これに対して、比較例の溶融亜鉛めっき鋼板と合金化溶融亜鉛めっき鋼板は、表面外観が劣る。   As can be seen from Tables 2 and 3, the hot-dip galvanized steel sheet and the alloyed hot-dip galvanized steel sheet of the examples of the present invention have a beautiful surface appearance with no unplating or pressing, despite containing Si. On the other hand, the hot-dip galvanized steel sheet and the galvannealed steel sheet of the comparative example are inferior in surface appearance.

本発明例は、めっき密着性の低下、合金化遅延の問題はなかった。   In the inventive examples, there was no problem of a decrease in plating adhesion and a delay in alloying.

実施例1と同様に、表1に示す鋼組成のスラブを加熱炉にて1533Kで60分加熱し、引き続き2.8mmまで熱間圧延を施し、813Kで巻き取った。次いで、酸洗で黒皮スケールを除去して、1.6mmまで冷間圧延した。その後、雰囲気調整が可能で熱処理中にガス流量を一定に保てるような炉を用いて、表4または5に示す熱処理条件にて第1加熱工程前段、第1加熱工程後段、及び第2加熱工程を行った。この際、第1加熱工程はDFF型加熱炉またはNOF型加熱炉で行った。燃料ガスにはコークス炉で発生するCガスを用いた。第2加熱工程はRTF型加熱炉で行い、雰囲気ガスとしてH−Nガスを供給した。 Similarly to Example 1, a slab having the steel composition shown in Table 1 was heated in a heating furnace at 1533 K for 60 minutes, subsequently hot-rolled to 2.8 mm, and wound at 813 K. Next, the black scale was removed by pickling and cold rolled to 1.6 mm. Thereafter, using a furnace in which the atmosphere can be adjusted and the gas flow rate can be kept constant during the heat treatment, the first heating step, the first heating step, and the second heating step under the heat treatment conditions shown in Table 4 or 5 Went. At this time, the first heating step was performed in a DFF type heating furnace or a NOF type heating furnace. C gas generated in a coke oven was used as the fuel gas. The second heating step was performed in an RTF type heating furnace, and H 2 —N 2 gas was supplied as an atmospheric gas.

引き続き、733KのAl含有Zn浴にて溶融亜鉛めっき処理を施し、溶融亜鉛めっき鋼板を得た。なお、浴中Al濃度は溶融亜鉛めっき鋼板製造時には0.18%、合金化溶融亜鉛めっき鋼板製造時には0.14%とし、付着量はガスワイピングにより片面当り40g/mに調節した。また、溶融亜鉛めっきを施した後に、773Kで合金化処理を行うことで合金化溶融亜鉛めっき鋼板を得た。また、めっき浴を空通しすることで、第2加熱工程後の鋼板を得た。この鋼板表面についてEPMAで500μm×500μmの範囲について元素マッピングを行い、還元鉄の被覆率を求めた。
以上より得られた溶融亜鉛めっき鋼板(GI)及び合金化溶融亜鉛めっき鋼板(GA)に対して、下記に示す方法にて表面外観を調査した。表面外観判定基準は実施例1と同じである。雰囲気の水蒸気分圧PHO、二酸化炭素分圧PCOは、実施例1と同様にして算出した。
Subsequently, hot dip galvanizing treatment was performed in a 733K Al-containing Zn bath to obtain a hot dip galvanized steel sheet. The Al concentration in the bath was 0.18% during the production of the hot dip galvanized steel sheet, 0.14% during the production of the alloyed hot dip galvanized steel sheet, and the adhesion amount was adjusted to 40 g / m 2 per side by gas wiping. Moreover, after performing hot dip galvanization, the alloying hot dip galvanized steel sheet was obtained by performing an alloying process at 773K. Moreover, the steel plate after the 2nd heating process was obtained by letting a plating bath pass. Elemental mapping was performed on the surface of this steel plate with EPMA in the range of 500 μm × 500 μm, and the reduced iron coverage was determined.
The surface appearance was investigated by the method shown below with respect to the hot dip galvanized steel sheet (GI) and the galvannealed steel sheet (GA) obtained as described above. The surface appearance criteria are the same as those in the first embodiment. The atmospheric water vapor partial pressure PH 2 O and the carbon dioxide partial pressure PCO 2 were calculated in the same manner as in Example 1.

得られた結果を条件と合わせて表4(発明例)、表5(比較例)に示す。   The obtained results are shown in Table 4 (Invention Examples) and Table 5 (Comparative Examples) together with the conditions.

Figure 2011117069
Figure 2011117069

Figure 2011117069
Figure 2011117069

表4、表5からわかるように、本発明例の溶融亜鉛めっき鋼板と合金化溶融亜鉛めっき鋼板は、Siを含有するにも関わらず、不めっきや押し疵がなく美麗な表面外観を有する。本発明例の中では、請求項3の発明範囲を満足するもの(No.1〜16)の方が、請求項3の発明範囲を外れるもの(No.17、18)より美麗な表面外観を有する。これに対して、比較例の溶融亜鉛めっき鋼板と合金化溶融亜鉛めっき鋼板は、表面外観が劣る。   As can be seen from Tables 4 and 5, the hot-dip galvanized steel sheet and the alloyed hot-dip galvanized steel sheet of the examples of the present invention have a beautiful surface appearance without any unplating or pressing, despite containing Si. Among the examples of the present invention, those satisfying the invention scope of claim 3 (Nos. 1 to 16) have a more beautiful surface appearance than those outside the invention scope of claim 3 (Nos. 17 and 18). Have. On the other hand, the hot-dip galvanized steel sheet and the galvannealed steel sheet of the comparative example are inferior in surface appearance.

本発明例は、めっき密着性の低下、合金化遅延の問題はなかった。   In the inventive examples, there was no problem of a decrease in plating adhesion and a delay in alloying.

本発明法で製造された高強度溶融亜鉛めっき鋼板と高強度合金化溶融亜鉛めっき鋼板は、美麗な表面外観を有するので、自動車、家電、建材の分野を中心に幅広い用途での使用が見込まれる。   The high-strength hot-dip galvanized steel sheet and high-strength galvannealed steel sheet produced by the method of the present invention have a beautiful surface appearance, and are expected to be used in a wide range of applications, especially in the fields of automobiles, home appliances, and building materials. .

Claims (5)

化学成分として、mass%で、C:0.05〜0.30%、Si:1.5〜3.0%、Mn:0.5〜3.0%、Al:0.01〜3.0%、S:0.001〜0.01%、P:0.001〜0.1%を含有し、残部Fe及び不可避的不純物からなる鋼板に溶融亜鉛めっきを施すに際し、O:0.01〜20vol%、HO:1〜50vol%を含有し、残部がN、CO、COの1種又は2種以上及び不可避的不純物からなる雰囲気中で鋼板を873〜1123Kの範囲内の温度になるように加熱する第1加熱工程、次いで、H:1〜50vol%を含有し、残部がN、HO、O、CO、COの1種又は2種以上および不可避的不純物からなる雰囲気中で、その雰囲気中の水蒸気分圧:PHO(Pa)、二酸化炭素分圧:PCO(Pa)、鋼板の最高到達温度:T(K)、鋼板のSi含有量:[Si%](mass%)が下記式(1)〜(3)を満たす条件で加熱する第2加熱工程を行い(但し、第2加熱工程の鋼板温度は第1加熱工程の鋼板温度より高温である。)、その後溶融亜鉛めっき処理を施すことを特徴とする表面外観に優れる高強度溶融亜鉛めっき鋼板の製造方法。
0<PHO/PCO<323.6−15.2logT−71.5[Si%]…(1)
0<log(PHO+15PCO)<2.3…(2)
1023≦T≦1173…(3)
As chemical components, in mass%, C: 0.05 to 0.30%, Si: 1.5 to 3.0%, Mn: 0.5 to 3.0%, Al: 0.01 to 3.0 %, S: 0.001 to 0.01%, P: 0.001 to 0.1%, and when applying hot dip galvanizing to a steel plate composed of the remaining Fe and inevitable impurities, O 2 : 0.01 ~20vol%, H 2 O: containing 1~50vol%, the balance being N 2, CO, one or more, and the steel sheet in an atmosphere consisting of unavoidable impurities in CO 2 in the range of 873~1123K first heating step of heating so as to temperature, then, H 2: containing 1~50Vol%, the balance being N 2, H 2 O, O 2, CO, 1 or 2 or more of CO 2 and unavoidable in an atmosphere consisting of impurities, water vapor partial pressure in the atmosphere: PH 2 O (Pa), Carbon monoxide partial pressure: PCO 2 (Pa), the maximum temperature of the steel sheet: T (K), Si content of the steel sheet: [Si%] (mass% ) is in a condition satisfying the following formula (1) to (3) The second heating step for heating is performed (however, the steel plate temperature in the second heating step is higher than the steel plate temperature in the first heating step), followed by hot dip galvanizing treatment. A manufacturing method of high strength hot-dip galvanized steel sheet.
0 <PH 2 O / PCO 2 <323.6-15.2 logT 2 -71.5 [Si%] (1)
0 <log (PH 2 O + 15PCO 2 ) <2.3 (2)
1023 ≦ T ≦ 1173 (3)
前記第1加熱工程は、前段は、O:0.1〜20vol%、HO:1〜50vol%を含有する雰囲気中で鋼板を873〜1023Kの範囲内の温度になるように加熱し、後段は、O:0.01〜0.1vol%未満、HO:1〜20vol%以下を含有する雰囲気中で鋼板を973〜1123Kの範囲内の温度になるように加熱する(但し、後段の鋼板温度は前段の鋼板温度より高温である。)ことを特徴とする請求項1に記載の表面外観に優れる高強度溶融亜鉛めっき鋼板の製造方法。 In the first heating step, the former stage is such that the steel sheet is heated to a temperature in the range of 873 to 1023 K in an atmosphere containing O 2 : 0.1 to 20 vol% and H 2 O: 1 to 50 vol%. In the latter stage, the steel sheet is heated to a temperature in the range of 973 to 1123K in an atmosphere containing O 2 : 0.01 to less than 0.1 vol% and H 2 O: 1 to 20 vol% (provided that The method for producing a high-strength hot-dip galvanized steel sheet having excellent surface appearance according to claim 1, wherein the steel plate temperature at the latter stage is higher than the steel plate temperature at the former stage. 前記第1加熱工程は、前段は、直火炉(DFF)または無酸化炉(NOF)により、空気比が1以上1.35以下の条件で加熱し、後段は直火炉または無酸化炉により、空気比が1未満の条件で加熱することを特徴とする請求項2に記載の表面外観に優れる高強度溶融亜鉛めっき鋼板の製造方法。 In the first heating step, the first stage is heated by a direct-fired furnace (DFF) or a non-oxidizing furnace (NOF) at an air ratio of 1 or more and 1.35 or less, and the latter stage is heated by a direct-fired furnace or a non-oxidizing furnace. The method for producing a high-strength hot-dip galvanized steel sheet having excellent surface appearance according to claim 2, wherein heating is performed under a condition where the ratio is less than 1. 前記鋼板は、化学成分として、さらに、mass%で、Cr:0.1〜1.0%、Mo:0.1〜1.0%、Ti:0.01〜0.1%、Nb:0.01〜0.1%およびB:0.0005〜0.0050%から選ばれた1または2種以上を含有することを特徴とする請求項1〜3のいずれかの項に記載の表面外観に優れる高強度溶融亜鉛めっき鋼板の製造方法。 The steel sheet has, as chemical components, mass%, Cr: 0.1 to 1.0%, Mo: 0.1 to 1.0%, Ti: 0.01 to 0.1%, Nb: 0 The surface appearance according to any one of claims 1 to 3, comprising one or more selected from 0.01 to 0.1% and B: 0.0005 to 0.0050%. For producing high-strength hot-dip galvanized steel sheets with excellent resistance. 請求項1〜4のいずれかの項に記載の方法で高強度溶融亜鉛めっき鋼板を製造した後、更に合金化処理を行うことを特徴とする表面外観に優れる高強度合金化溶融亜鉛めっき鋼板の製造方法。 A high-strength galvannealed steel sheet having excellent surface appearance, characterized by further alloying after producing a high-strength galvanized steel sheet by the method according to any one of claims 1 to 4. Production method.
JP2010179237A 2009-10-30 2010-08-10 Method for producing high-strength hot-dip galvanized steel sheet and high-strength galvannealed steel sheet Active JP5614159B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010179237A JP5614159B2 (en) 2009-10-30 2010-08-10 Method for producing high-strength hot-dip galvanized steel sheet and high-strength galvannealed steel sheet

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009249993 2009-10-30
JP2009249993 2009-10-30
JP2010179237A JP5614159B2 (en) 2009-10-30 2010-08-10 Method for producing high-strength hot-dip galvanized steel sheet and high-strength galvannealed steel sheet

Publications (2)

Publication Number Publication Date
JP2011117069A true JP2011117069A (en) 2011-06-16
JP5614159B2 JP5614159B2 (en) 2014-10-29

Family

ID=44282721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010179237A Active JP5614159B2 (en) 2009-10-30 2010-08-10 Method for producing high-strength hot-dip galvanized steel sheet and high-strength galvannealed steel sheet

Country Status (1)

Country Link
JP (1) JP5614159B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014091702A1 (en) * 2012-12-11 2014-06-19 Jfeスチール株式会社 Production method for hot-dip galvanized steel sheet
KR20150121212A (en) 2013-03-01 2015-10-28 제이에프이 스틸 가부시키가이샤 Method for manufacturing hot dip galvanized steel sheet and continuous hot dip galvanization device
KR20160125472A (en) 2014-02-25 2016-10-31 제이에프이 스틸 가부시키가이샤 Method for controlling dew point of reduction furnace, and reduction furnace

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005060743A (en) * 2003-08-19 2005-03-10 Nippon Steel Corp Method and facility for manufacturing high-strength galvannealed steel sheet
JP2010132975A (en) * 2008-12-05 2010-06-17 Jfe Steel Corp Method of manufacturing high-strength hot-dip galvanized steel sheet and high-strength hot-dip galvannealed steel sheet

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005060743A (en) * 2003-08-19 2005-03-10 Nippon Steel Corp Method and facility for manufacturing high-strength galvannealed steel sheet
JP2010132975A (en) * 2008-12-05 2010-06-17 Jfe Steel Corp Method of manufacturing high-strength hot-dip galvanized steel sheet and high-strength hot-dip galvannealed steel sheet

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014091702A1 (en) * 2012-12-11 2014-06-19 Jfeスチール株式会社 Production method for hot-dip galvanized steel sheet
JP2014114489A (en) * 2012-12-11 2014-06-26 Jfe Steel Corp Method of producing molten zinc plated steel plate
CN104919073A (en) * 2012-12-11 2015-09-16 杰富意钢铁株式会社 Production method for hot-dip galvanized steel sheet
EP2933351A4 (en) * 2012-12-11 2016-01-27 Jfe Steel Corp Production method for hot-dip galvanized steel sheet
CN104919073B (en) * 2012-12-11 2017-03-15 杰富意钢铁株式会社 The manufacture method of hot-dip galvanized steel sheet
US9677148B2 (en) 2012-12-11 2017-06-13 Jfe Steel Corporation Method for manufacturing galvanized steel sheet
KR20150121212A (en) 2013-03-01 2015-10-28 제이에프이 스틸 가부시키가이샤 Method for manufacturing hot dip galvanized steel sheet and continuous hot dip galvanization device
KR20160125472A (en) 2014-02-25 2016-10-31 제이에프이 스틸 가부시키가이샤 Method for controlling dew point of reduction furnace, and reduction furnace

Also Published As

Publication number Publication date
JP5614159B2 (en) 2014-10-29

Similar Documents

Publication Publication Date Title
JP5206705B2 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
JP4972775B2 (en) Manufacturing method of high-strength hot-dip galvanized steel sheet with excellent appearance and plating adhesion
JP5564784B2 (en) Manufacturing method of high-strength hot-dip galvanized steel sheet and high-strength galvannealed steel sheet
JP5799819B2 (en) Method for producing hot-dip galvanized steel sheet with excellent plating wettability and pick-up resistance
JP5982905B2 (en) Method for producing high-strength hot-dip galvanized steel sheet
WO2014073520A1 (en) Alloyed hot-dip galvanized steel sheet and method for manufacturing same
JP5888267B2 (en) Method for producing high-strength hot-dip galvanized steel sheet and high-strength hot-dip galvanized steel sheet
JP5552863B2 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
KR101789958B1 (en) Galvannealed steel sheet and method for producing the same
JP5552859B2 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
JP5444752B2 (en) Method for producing high-strength hot-dip galvanized steel sheet and method for producing high-strength galvannealed steel sheet
JP5593771B2 (en) Method for producing high-strength hot-dip galvanized steel sheet
JP5552864B2 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
JP5552862B2 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
JP5555992B2 (en) Manufacturing method of high-strength hot-dip galvanized steel sheet with excellent surface appearance and plating adhesion
WO2014017034A1 (en) Method for producing high-strength hot-dip galvanized steel sheets
KR101707981B1 (en) Method for manufacturing galvanized steel sheet
JP5614159B2 (en) Method for producing high-strength hot-dip galvanized steel sheet and high-strength galvannealed steel sheet
JP5906628B2 (en) Alloyed hot-dip galvanized steel sheet with excellent corrosion resistance after painting
JP6164280B2 (en) Mn-containing alloyed hot-dip galvanized steel sheet excellent in surface appearance and bendability and method for producing the same
JP5556033B2 (en) Method for producing high-strength hot-dip galvanized steel sheet
JP5593770B2 (en) Method for producing high-strength hot-dip galvanized steel sheet
JP5354178B2 (en) Manufacturing method of high-strength hot-dip galvanized steel sheet and high-strength galvannealed steel sheet
JP5552861B2 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
JP5552860B2 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140401

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140812

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140825

R150 Certificate of patent or registration of utility model

Ref document number: 5614159

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250