JP2011116730A - Method for preventing and treating respiratory disease - Google Patents

Method for preventing and treating respiratory disease Download PDF

Info

Publication number
JP2011116730A
JP2011116730A JP2009291365A JP2009291365A JP2011116730A JP 2011116730 A JP2011116730 A JP 2011116730A JP 2009291365 A JP2009291365 A JP 2009291365A JP 2009291365 A JP2009291365 A JP 2009291365A JP 2011116730 A JP2011116730 A JP 2011116730A
Authority
JP
Japan
Prior art keywords
hypochlorous acid
influenza
preventing
virus
case
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009291365A
Other languages
Japanese (ja)
Inventor
Yasuharu Shima
安治 島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2009291365A priority Critical patent/JP2011116730A/en
Publication of JP2011116730A publication Critical patent/JP2011116730A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for preventing and treating respiratory diseases against which an antibacterial agent and an anti-influenza drug are not effective; and to provide especially a method which, in the case of influenza, does not require vaccination having the worry of adverse reaction and is effective for treatment even in the case when virus proliferates and influenza becomes seriously ill so as to invalidate an anti-influenza drug. <P>SOLUTION: Pathogenic bacterium and virus, both being infected and being proliferating on the mucosa of the respiratory passage surface going to nose, throat, air tube, bronchus, and lung, are antisepticized by generating and aspirating microscopic vapor from an aqueous solution of hypochlorous acid HOCl generated by neutrophil of biologic defense mechanism during foreign material phagocytosis. Pure hypochlorous acid HOCl, being same as neutrophil, is produced by using sodium hypochlorite as a raw material and by an electrolysis method using a cation exchange membrane. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、図1のように、鼻から喉、さらに気管への上気道・下気道を経由して肺に至る粘膜上皮、及び肺胞に付着・生息している細菌・ウイルスを殺滅して、鼻腔の炎症、気管及び気管支の炎症、肺の炎症の予防と治療を行うことに関するものである。  As shown in FIG. 1, the present invention kills bacteria and viruses attached to and inhabiting the mucosal epithelium reaching the lungs through the upper and lower respiratory tracts from the nose to the throat and the trachea as shown in FIG. The present invention relates to the prevention and treatment of nasal cavity inflammation, tracheal and bronchial inflammation, and lung inflammation.

呼吸器疾患の起因には、ウイルスと病原菌の両方がある。結核等に救世主として登場した抗生物質は、ウイルスには効果が無い。抗生物質は、ウイルスに比較して複雑な構造・成分・代謝の病原菌を、人体に副作用が無いように、ピンポイントで攻撃できるからである。ウイルスの場合は病原菌よりも構造・代謝が簡単なので攻撃ポイントが限られる。抗インフルエンザ薬と知られるタミフル(中外製薬)、リレンザ(グラクソスミスクライン社)、近日発売予定のペラミビル(塩野義製薬)、CS−8598(第−三共)は、ウイルスの増殖過程を疎外するものであって、ウイルスそのものを殺滅できない。発熱し、タミフルやリレンザを投与されたが、重症肺炎になり、死亡した新型インフルエンザ患者の報道が絶えない。2002年11月から2003年にかけて新型インフルエンザの大流行開始と疑われたSARS(重症性呼吸器症候群)の原因は新種のコロナウイルスで、当初、ペニシリンが効かないので非定型性肺炎とされた。  Respiratory diseases are caused by both viruses and pathogens. Antibiotics that have appeared as saviors in tuberculosis have no effect on viruses. This is because antibiotics can pinpoint pathogens with complicated structures, components, and metabolism compared to viruses, so that there are no side effects on the human body. In the case of viruses, attack points are limited because the structure and metabolism are easier than pathogenic bacteria. Anti-influenza drugs known as Tamiflu (Chugai Pharmaceutical), Relenza (GlaxoSmithKline), Peramivir (Shionogi Pharmaceutical) and CS-8598 (Daisan Sankyo), which are scheduled to be released soon, are designed to exclude the virus growth process. And you can't kill the virus itself. Fever, Tamiflu and Relenza were administered, but severe pneumonia caused and death of a new influenza patient who died. From November 2002 to 2003, the cause of SARS (severe respiratory syndrome), which was suspected to start a pandemic of new influenza, was caused by a new type of coronavirus, which was initially atypical pneumonia because penicillin did not work.

菌に有効な筈の抗生物質は、使用が広がるに連れて効果が無くなる。菌が自ら変異して、複雑な構造の抗生物質の攻撃方法を逃れる<耐性>を菌が獲得するからである。同様な<耐性>問題は、タミフルやリレンザの抗インフルエンザ薬にも発生している。いずれの場合も、菌・ウイルスの分裂・増殖の世代交代が速いので、変異によって<耐性>を獲得したものが生き残るからである。  Antibiotics that are effective against fungi become less effective as their use expands. This is because they acquire <resistance> that mutates themselves and escapes the attack method of antibiotics with complex structures. A similar <tolerance> problem occurs with anti-influenza drugs such as Tamiflu and Relenza. In any case, because the generational change of the division / proliferation of bacteria / viruses is fast, those that have acquired <resistance> by mutation survive.

薬剤の共通の問題として、感染部位・炎症部位だけに集中的に届かないことである。カプセル・錠剤の場合は小腸から血管に浸透して、皮下注射・点滴剤の場合は直接に血管に入って全身に送られる。そのため、薬剤が感染部位・炎症部位に届くのが遅れて、届く量も不十分になり薬効が薄れる。逆に、感染部位・炎症部位でない部位に薬剤が届くので副作用の弊害を招く。  A common problem with drugs is that they do not reach intensively at the site of infection or inflammation. In the case of capsules and tablets, it penetrates into the blood vessel from the small intestine, and in the case of subcutaneous injection and infusion, it directly enters the blood vessel and is sent to the whole body. This delays the arrival of the drug to the infected / inflamed site, resulting in an insufficient amount of drug and diminished efficacy. On the contrary, since the drug reaches a site that is not an infection site or an inflammation site, it causes adverse effects.

生体の免疫機能を利用するワクチンでは、病原菌・病原ウイルスを弱らせたものまたはそれらを分割した一部を皮下注射する。これらは病原物であるから、注射箇所に炎症を起こしたり、ワクチン接種者の健康状態・免疫力の違いにより、重篤な副作用が発生している。副作用の弊害は、抗体の発現能力を高めるために補助剤が添加される場合はさらに懸念され、グラクソスミスクライン社の新型インフルエンザの場合、カナダでは中止されて回収された([非特許文献1])。さらに、体内に不完全な抗体ができることによって同じタイプの感染症を発症しやすくなる他、発症したときの症状が重くなる「抗体依存性感染増強現象」と呼ばれる弊害がある。  In a vaccine that uses the immune function of a living body, a weakened pathogen or pathogenic virus, or a part of a divided part is injected subcutaneously. Since these are pathogens, serious side effects have occurred due to inflammation at the injection site and differences in the health and immunity of the vaccine recipient. The adverse effects of side effects are further a concern when adjuvants are added to enhance the expression of antibodies, and in the case of GlaxoSmithKline's new influenza, it was discontinued and recovered in Canada ([Non-Patent Document 1] ). Furthermore, incomplete antibodies in the body make it easier to develop the same type of infectious disease, and there is a detrimental effect called “antibody-dependent infection enhancement phenomenon” in which symptoms at the time of onset become severe.

インフルエンザワクチンの基本問題は、感染予防には無力であることである。飛沫感染として、空気を吸入する鼻、喉の気道の表面の細胞にインフルエンザウイルスが感染する。ここには血液中にあるワクチンから生成された抗体は届いていない。気道の表面細胞からウイルスが大増殖して皮下の血管に達してから、即ち、重症化してから効果を発揮するとされているが、新型インフルエンザワクチンの接種者から既に死者が発生している([非特許文献2])。従来のインフルエンザワクチンの場合にも、ワクチンを接種していたが死亡した例は何件もある([非特許文献3])。インフルエンザワクチンについては、かつて日本では公衆衛生上から弊害があるのに効果が無い([非特許文献4)として生産が激減された経緯がある。  The basic problem with influenza vaccines is their inability to prevent infection. As a droplet infection, influenza viruses infect cells on the surface of the respiratory tract of the nose and throat that inhale air. No antibody generated from a vaccine in the blood has arrived here. It is said that the virus is proliferated from the surface cells of the respiratory tract and reaches the subcutaneous blood vessels, that is, it becomes effective after becoming severe, but death has already occurred from the recipient of the new influenza vaccine ([[ Non-patent document 2]). Even in the case of conventional influenza vaccines, there have been several cases in which they were vaccinated but died ([Non-Patent Document 3]). As for influenza vaccines, there is a reason why production was drastically reduced in Japan because it was ineffective in the public health in the past ([Non-Patent Document 4]).

2009年の新型インフルエンザの流行で重症化・死亡した患者の特徴は、鼻・喉・気管・気管支だけでなく、肺に重篤な炎症を起こしていることである([非特許文献5])。発熱し、抗インフルエンザ薬のタミフル、リレンザの投与は効果が無く、最後は集中治療室で人工呼吸器・酸素吸入器を装着されて呼吸を確保しても死亡するか、助かっても脳症の後遺症が残ることが連日報道されている。
東京新聞2009年11月24日 東京新聞2009年11月26日 東京新聞2009年 1月18日 ワクチン非接種地域におけるインフルエンザ流行状況:前橋市インフルエンザ研究班・前橋市医師会・由上修三班長 インフルエンザパンデミック:第6、9章:河岡・堀元、講談社
A characteristic of patients who became severely dead due to the 2009 epidemic of influenza is that they have severe inflammation not only in the nose, throat, trachea and bronchi but also in the lungs ([Non-Patent Document 5]). . Fever, administration of anti-influenza drugs Tamiflu and Relenza is ineffective, and the end result is encephalopathy after death even if ventilator is secured in the intensive care unit and breathing is secured. Is reported every day.
Tokyo Shimbun November 24, 2009 Tokyo Newspaper November 26, 2009 Tokyo Shimbun January 18, 2009 Influenza epidemic situation in non-vaccinated areas: Maebashi City Influenza Research Group, Maebashi City Medical Association, Shuzo Yugami Head Influenza pandemic: Chapters 6 and 9: Kawaoka / Horimoto, Kodansha

新型インフルエンザで重症化するとウイルス性肺炎になり、多くは死亡する。肺炎の原因には、ウイルスだけでなく結核菌をはじめとする非結核性抗酸菌、肺炎球菌、MRSA、肺真菌、口腔内菌(誤嚥性肺炎の原因)、マイコプラズマ等の病原菌や微生物が多数存在する。いずれにも抗生物質が特効薬とされるが、上記のように、<耐性化>の問題、薬剤が肺の患部に集中できない等、共通の問題がある。  When it becomes severe with new influenza, it becomes viral pneumonia and many die. Causes of pneumonia include not only viruses but also non-tuberculous mycobacteria such as Mycobacterium tuberculosis, pneumococci, MRSA, pulmonary fungi, oral bacteria (cause of aspiration pneumonia), mycoplasma and other pathogenic bacteria and microorganisms There are many. In both cases, antibiotics are considered to be specific medicines, but as described above, there are common problems such as <tolerance> problems and inability of the drug to concentrate on the affected area of the lung.

本発明の課題は、死に至る呼吸器系疾患の原因の病原菌とウイルスを副作用なく直接に殺滅することである。インフルエンザの場合、ウイルスそのものには毒性は無いが、ウイルスの増殖が進むと生体の防御機構が働き、サイトカインという防御伝達物質が分泌され、全身の各所で発熱、悪寒、筋肉痛、関節痛、脳症等さまざまな症状が発生する。これら諸症状に対処療法として解熱、痛み止めを施しても、ウイルスの増殖とサイトカインの発生は進行するので、死に至る例が多く報道されて居る。原因のウイルス、病原菌を一刻も早く殺滅しなければならない。
医薬品の安全性の条件は、病原性ウイルス・菌に対して、必要な強さで、必要な量を、必要な時に(残留しない)、必要な場所(感染・炎症患部)にだけ届き、治療目的患部以外には副作用が無い、殺滅効果を減じる<耐性>問題が無いことである。
An object of the present invention is to directly kill pathogens and viruses that cause death of respiratory diseases without side effects. In the case of influenza, the virus itself is not toxic, but when the virus grows, the defense mechanism of the living body works, and a defense mediator called a cytokine is secreted. Various symptoms occur. Even if antipyretic and pain relief are applied as a coping therapy for these symptoms, virus growth and cytokine development continue, so many cases have been reported leading to death. We must kill the virus and pathogenic bacteria as soon as possible.
The safety conditions for pharmaceuticals are the necessary strength and the required amount for pathogenic viruses and bacteria, and only when needed (no residue) and only when needed (infection / inflammation), treatment There are no side effects other than the target affected area, and there is no <tolerance> problem that reduces the killing effect.

課題を解決する手段として、次亜塩素酸を利用する。次亜塩素酸は、生体内の白血球の防御機構として、マクロファージから進化した好中球([非特許文献6])が異物貪食する最後の止めとして生成するものである([非特許文献7])。次亜塩素酸HOClは、ヒドロキシラジカル・OHと塩素原子・Clに分かれて反応する([非特許文献8])。
ヒドロキシラジカル・OHは最強の活性酸素であり、進化の前段階のマクロファージの場合はこれよりずっと弱いOを生成する。ヒドロキシラジカル・OHは蛋白質を構成するアミノ酸を架橋し、蛋白質を凝固変性する。このことは、鶏卵の透明な白身に次亜塩素酸水を注ぐと瞬時に白濁することから容易に分かる。次亜塩素酸HOClは、水素・酸素・塩素の3原子分子で抗生物質・抗インフルエンザ薬に比べてずっと小さく、単純な化学反応をする。そのため、複雑な抗生物質・抗インフルエンザ薬の反応の場合のような<耐性>問題を生じない。また、蛋白質のような有機物に触れると次第に分解するので、残留することは無い。
「絵でわかる免疫」;安保 徹、講談社 細菌の感染とこれに対する防御のしくみ−細菌と生体の共存と戦い;金ケ崎史郎(生物の科学−遺伝、1998年4月号、P53) 次亜塩素酸のレーザ光分解による塩素原子およびヒトロキシラジカルの生成:徳村、谷口、島(光化学協会光化学討論会、平成13年9月11日発表)
Hypochlorous acid is used as a means for solving the problems. Hypochlorous acid is generated as the last stop of foreign body phagocytosis by neutrophils evolved from macrophages ([Non-Patent Document 6]) as a defense mechanism of leukocytes in the body ([Non-Patent Document 7]). ). Hypochlorous acid HOCl reacts by being divided into hydroxy radicals · OH and chlorine atoms · Cl ([Non-Patent Document 8]).
Hydroxyl radical OH is the strongest active oxygen and produces much weaker O 2 in the case of macrophages in the pre-evolution stage. Hydroxyl radical OH crosslinks amino acids constituting proteins and coagulates and modifies proteins. This can be easily understood from the fact that when hypochlorous acid water is poured into the transparent white of the egg, it becomes cloudy instantly. Hypochlorous acid HOCl is a triatomic molecule of hydrogen, oxygen and chlorine, which is much smaller than antibiotics and anti-influenza drugs, and has a simple chemical reaction. Therefore, the <resistance> problem does not occur as in the case of complex antibiotic / anti-influenza reactions. Moreover, since it will decompose | degrade gradually when it touches organic substances like protein, it will not remain.
"Immunity understood with pictures"; Toru Anbo, Kodansha Bacterial infection and defense mechanism against it-the coexistence and fight between bacteria and living body; Shiro Kanegasaki (Science of Biology-Genetics, April 1998, P53) Generation of chlorine atoms and human roxy radicals by laser photolysis of hypochlorous acid: Tokumura, Taniguchi, Shima (Photochemical Society Photochemistry Conference, published on September 11, 2001)

次亜塩素酸HOClは、次亜塩素酸ナトリウムNaClOを原料として電気分解の方法で、次亜塩素酸水として生成する。次亜塩素酸HOClは単独では存在できず、水溶液として水分子に水和して存在するからである。
図2の如く、陽イオン交換膜で隔てられた水の電気分解の構成で、陽極室側に次亜塩素酸ナトリウムの水溶液を入れると、[化2]の如く陽電極で発生する水素イオンHと陰イオンの次亜塩素酸イオンClOが[化1]の如く結合して中性の次亜塩素酸HOCl分子ができる。次亜塩素酸が中性の分子として析出するのは、次亜塩素酸が陽電極で発生する強酸相当の水素イオンHに比べて弱酸性であるからである。陽極室のNa陽イオンは陽イオン交換膜を通過して陰電極に吸引される。陰極室では、Na陽イオンと[化3]の如く陰電極で発生する水酸化物イオンOHとで、[化1]の如く苛性ソーダNaOHが生成される。陽電極と陰電極でそれぞれ発生する水素イオンHと水酸化物イオンOHの量は、陽電極と陰電極の間に流れる電流と通電時間に比例し、陽極室側に入れられる次亜塩素酸ナトリウムNaClOの濃度に依存する。陽極室は次亜塩素酸ナトリウム水溶液のアルカリ性から次第に酸性の次亜塩素酸水に変化し、逆に陰極室は中性の水からアルカリ性の苛性ソーダに変化する。さらに、次亜塩素酸ナトリウム水溶液に含まれる不純物は、陽イオンは陽イオン交換膜を通過して陰極室に分離され、陰イオンは陽電極の多孔性電極に吸引析出される。この様にして純粋な次亜塩素酸水が得られる。[化2]では陽極に酸素が、[化3]では陰極に水素が発生するが、各室の生成液の液面表面から散逸放出される。図2の陽イオン交換膜1にはフッ素樹脂の陽イオン交換膜が、陽電極3・陰電極4には多孔性の炭素電極が使用される。

Figure 2011116730
Figure 2011116730
Figure 2011116730
Hypochlorous acid HOCl is generated as hypochlorous acid water by electrolysis using sodium hypochlorite NaClO as a raw material. This is because hypochlorous acid HOCl cannot exist alone, but exists as an aqueous solution hydrated with water molecules.
As shown in FIG. 2, in the structure of electrolysis of water separated by a cation exchange membrane, when an aqueous solution of sodium hypochlorite is put into the anode chamber side, hydrogen ions H generated at the positive electrode as shown in [Chemical Formula 2] + and hypochlorite ion ClO anion - can hypochlorite HOCl neutral molecules bound to as Formula 1]. Hypochlorous acid is precipitated as a neutral molecule because hypochlorous acid is weakly acidic compared to hydrogen ion H + corresponding to a strong acid generated at the positive electrode. Na + cations in the anode chamber pass through the cation exchange membrane and are attracted to the negative electrode. In the cathode chamber, caustic soda NaOH is generated as shown in [Chemical Formula 1] with Na + cations and hydroxide ions OH generated at the negative electrode as shown in [Chemical Formula 3]. The amounts of hydrogen ions H + and hydroxide ions OH generated at the positive electrode and the negative electrode, respectively, are proportional to the current flowing between the positive electrode and the negative electrode and the energization time, and hypochlorous acid placed on the anode chamber side. Depends on the concentration of sodium acid NaClO. The anode chamber changes from the alkalinity of the sodium hypochlorite aqueous solution to the acidic hypochlorous acid water, while the cathode chamber changes from neutral water to alkaline caustic soda. Further, as for impurities contained in the sodium hypochlorite aqueous solution, the cations pass through the cation exchange membrane and are separated into the cathode chamber, and the anions are attracted and deposited on the porous electrode of the positive electrode. In this way, pure hypochlorous acid water is obtained. In [Chemical Formula 2], oxygen is generated at the anode, and in [Chemical Formula 3], hydrogen is generated at the cathode. A cation exchange membrane made of a fluororesin is used for the cation exchange membrane 1 in FIG. 2, and a porous carbon electrode is used for the positive electrode 3 and the negative electrode 4.
Figure 2011116730
Figure 2011116730
Figure 2011116730

呼吸器系疾患の予防と治療には、次亜塩素酸水を病原菌・ウイルスに感染している鼻から肺への空気の通り道の気道表面に蒸気として送り届ける。鼻の役割は、吸気を体温近い36℃に加熱し、この温度の100%近い飽和蒸気に加湿することである。標準の呼吸では、700CC/回、7L/分、約1万L/日の空気が吸込まれる。飽和水蒸気量は図3のグラフのようになる。図1左下の蒸気発生器のように、次亜塩素酸水を40℃に加熱して発生蒸気を吸引すると、温度低下を見込みグラフの36℃から蒸気水量を42g/1000Lとすると、1時間当り、約17g(17cc)の次亜塩素酸水が気道の奥の肺まで届くことになる。感染初期の鼻・喉迄であれば、耳鼻科処置室のネブライザーやハンドスプレーの目に見える大きさの水滴でも届く。肺の奥迄水滴が届くためには、粒子径が3μm以下であることがのぞましい。次亜塩素酸水の濃度は、患者の吸引能力、治療時間に応じて変えることができる:50ppm(0.005%)、100ppm(0.01%)、400ppm(0.04%)、1000ppm(0.1%)、もちろんこれらの中間の濃度もつくることができる。  For prevention and treatment of respiratory diseases, hypochlorous acid water is delivered as vapor to the airway surface of the airway from the nose to the lungs infected with pathogenic bacteria and viruses. The role of the nose is to heat the inspiration to 36 ° C. near body temperature and humidify to saturated vapor near 100% of this temperature. In standard breathing, 700 CC / time, 7 L / min, about 10,000 L / day of air is inhaled. The saturated water vapor amount is as shown in the graph of FIG. When the hypochlorous acid water is heated to 40 ° C and the generated steam is sucked like the steam generator in the lower left of Fig. 1, the temperature is expected to drop, and the amount of steam water is 42g / 1000L from 36 ° C in the graph. About 17 g (17 cc) of hypochlorous acid water reaches the lungs behind the airway. Even if it is up to the nose and throat in the early stage of infection, it can reach even with a water droplet of a visible size on the nebulizer or hand spray in the otolaryngology treatment room. In order for water droplets to reach the depths of the lungs, the particle size is preferably 3 μm or less. The concentration of hypochlorous acid water can be changed according to the patient's suction ability and treatment time: 50 ppm (0.005%), 100 ppm (0.01%), 400 ppm (0.04%), 1000 ppm ( 0.1%) and of course intermediate concentrations of these can be produced.

次亜塩素酸水の強力な殺菌力は、純粋な条件で表1のように測定されている。Aは本液の57ppm、Bは塩化ベンザルコニウム、Cは本液の原料の次亜塩素酸ソーダ(ナトリウム)200ppmで、最上欄記載の消毒剤テスト菌である芽胞菌の場合、5分後にB、Cではほとんど減っていないのに本液では激減している。  The strong bactericidal power of hypochlorous acid water is measured as shown in Table 1 under pure conditions. A is 57 ppm of this liquid, B is benzalkonium chloride, C is sodium hypochlorite (sodium) 200 ppm, which is the raw material of this liquid, and in the case of spore bacteria that are the disinfectant test bacteria described in the top column, 5 minutes later Although it has hardly decreased in B and C, it has drastically decreased in this solution.

次亜塩素酸水の微細な蒸気を吸引することによって、以下のような効果を期待できる。
(1)病原菌とウイルスに起因する呼吸器系疾患の予防と治療に有効である。
(2)とくに、抗インフルエンザ薬が効かない新型インフルエンザの重篤化した肺炎に有効である。 人工呼吸器を装着する場合、吸気経路の加湿ができる。
(3)気道表面の感染部位・増殖部位だけに届くので、他部位への副作用は無い。
(4)次亜塩素酸HOClの作用は単純な化学反応であるため、薬剤<耐性>問題は無い。
(5)次亜塩素酸HOClの作用は単純な化学反応であるため、効果は菌の種類、ウイルスの種類によらない。
(6)次亜塩素酸水の蒸気で室内を加湿すれば、飛沫感染を防ぐことができ、医療従事者も患者も安心して診断・治療に専念できる。
The following effects can be expected by sucking fine vapor of hypochlorous acid water.
(1) It is effective for the prevention and treatment of respiratory diseases caused by pathogenic bacteria and viruses.
(2) It is particularly effective for severe pneumonia caused by a new type of influenza for which anti-influenza drugs are ineffective. When a ventilator is attached, the intake passage can be humidified.
(3) Since it reaches only the infected / proliferated site on the airway surface, there are no side effects on other sites.
(4) Since the action of hypochlorous acid HOCl is a simple chemical reaction, there is no problem of drug <resistance>.
(5) Since the action of hypochlorous acid HOCl is a simple chemical reaction, the effect does not depend on the type of bacteria or virus.
(6) If the room is humidified with hypochlorous acid water vapor, spray infection can be prevented, and medical staff and patients can concentrate on diagnosis and treatment with peace of mind.

Figure 2011116730
Figure 2011116730

呼吸器系の構造と次亜塩素酸水の蒸気吸入器Respiratory system structure and hypochlorous acid water vapor inhaler 次亜塩素酸水の生成装置Hypochlorous acid water generator 空気温度と飽和水蒸気量及び飽和水蒸気圧の関係Relationship between air temperature, saturated water vapor volume and saturated water vapor pressure

1 目
2 鼻
3 口
4 鼻腔
5 咽頭
6 喉頭
7 気管
8 気管支
9 次亜塩素酸水
10 温度制御ヒータ
11 微細蒸気
12 鼻あて
13 陽イオン交換膜
14 ガスケット(パッキン)
15 陽電極
16 陰電極
17 陽極室壁
18 陰極室壁
19 給液口
20 出液口
1 eye 2 nose 3 mouth 4 nasal cavity 5 pharynx 6 larynx 7 trachea 8 bronchi 9 hypochlorous acid water 10 temperature control heater 11 fine steam 12 nose 13 cation exchange membrane 14 gasket (packing)
15 Positive electrode 16 Negative electrode 17 Anode chamber wall 18 Cathode chamber wall 19 Liquid supply port 20 Liquid discharge port

Claims (4)

呼吸器系疾患に次亜塩素酸水を使用する予防と治療方法。Prevention and treatment methods using hypochlorous acid water for respiratory diseases. 呼吸器系疾患に、体温付近の次亜塩素酸水蒸気を吸引する予防と治療方法。Prevention and treatment methods for inhaling hypochlorous acid water vapor near body temperature for respiratory diseases. 上記請求項の次亜塩素酸水は、水の電気分解の方法で、陽イオン交換膜で仕切られた陽極室に次亜塩素酸ナトリウムの水溶液を入れて得られる純粋な次亜塩素酸水を使用することを特徴とする呼吸器系疾患の予防と治療方法。The hypochlorous acid water of the above-mentioned claim is obtained by adding pure sodium hypochlorite water obtained by putting an aqueous solution of sodium hypochlorite into an anode chamber partitioned by a cation exchange membrane by a method of electrolysis of water. A method for preventing and treating respiratory diseases characterized by using. 上記請求項の陽イオン交換膜としてフッ素樹脂系のものを、電極材として炭素を使用することを特徴とする呼吸器系疾患の予防と治療方法。A method of preventing and treating a respiratory disease, characterized in that a fluorinated resin-based membrane is used as the cation exchange membrane and carbon is used as an electrode material.
JP2009291365A 2009-12-04 2009-12-04 Method for preventing and treating respiratory disease Pending JP2011116730A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009291365A JP2011116730A (en) 2009-12-04 2009-12-04 Method for preventing and treating respiratory disease

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009291365A JP2011116730A (en) 2009-12-04 2009-12-04 Method for preventing and treating respiratory disease

Publications (1)

Publication Number Publication Date
JP2011116730A true JP2011116730A (en) 2011-06-16

Family

ID=44282485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009291365A Pending JP2011116730A (en) 2009-12-04 2009-12-04 Method for preventing and treating respiratory disease

Country Status (1)

Country Link
JP (1) JP2011116730A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018509460A (en) * 2015-03-27 2018-04-05 レルム セラピューティクス,インコーポレイテッド Methods and compositions for treating inflammatory and immune diseases

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018509460A (en) * 2015-03-27 2018-04-05 レルム セラピューティクス,インコーポレイテッド Methods and compositions for treating inflammatory and immune diseases

Similar Documents

Publication Publication Date Title
JP6033082B2 (en) Solution containing hypochlorous acid and method of using the same
RU199823U1 (en) DEVICE FOR TREATMENT OF BRONCHOPULMONARY DISEASES
US20120207853A1 (en) Methods of treating or preventing influenza associated illness with oxidative reductive potential water solutions
JP2007517064A5 (en)
US20200281969A1 (en) Inhibiting viral and bacterial activity using low concentration hypochlorous acid solutions
Simmons et al. Guideline for prevention of nosocomial pneumonia
WO2022111497A1 (en) Application of iodine in preparation of drugs for preventing and treating respiratory tract infectious diseases
JP2016000081A (en) Hydrogen therapeutic device and hydrogen therapeutic method
US20200268656A1 (en) Nebulized Ethanol for Internal Disinfecting and Improvement
JP2011116730A (en) Method for preventing and treating respiratory disease
CN106668997A (en) Oxygen supply device for respiratory medicine departments
CN106138093A (en) A kind for the treatment of clearing up pulmonary&#39;s dust and the auxiliary treating method of pulmonary infection
JP2023520289A (en) Iodinated compounds for treating respiratory pathogens
WO2022038507A1 (en) A solution for use in treating hypoxemia and potential asphyxiation
CN1175906C (en) Automatic infection ward sterilizing equipment and applying system thereof
CN205126945U (en) Medical breathing disinfecting equipment that disinfects
JP2022174696A (en) Prevention and Treatment of Respiratory and Digestive Diseases
RU2665959C1 (en) Spray for emergency prevention of acute respiratory viral infections
US20130123364A1 (en) N6-(1-iminoethyl)-l-lysine for regeneration of alveoli in lungs
CN202289147U (en) Tracheal incision mask
CN204073008U (en) Respiratory tract infection disinfecting device
CN201862088U (en) Medical sterilizing atomizer
CN201551699U (en) H1N1 flu virus control respirator
US20220323489A1 (en) Hypochlorous acid solutions for the treatment of drug resistant pneumonia and tuberculosis
US20210177892A1 (en) Prevention and treatment of infectious disease using low concentration hypochlorous acid solutions