JP2011116660A - Catalytic vapor-phase oxidation method - Google Patents

Catalytic vapor-phase oxidation method Download PDF

Info

Publication number
JP2011116660A
JP2011116660A JP2008068704A JP2008068704A JP2011116660A JP 2011116660 A JP2011116660 A JP 2011116660A JP 2008068704 A JP2008068704 A JP 2008068704A JP 2008068704 A JP2008068704 A JP 2008068704A JP 2011116660 A JP2011116660 A JP 2011116660A
Authority
JP
Japan
Prior art keywords
catalyst
phase oxidation
reaction
gas phase
catalytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008068704A
Other languages
Japanese (ja)
Inventor
Michio Tanimoto
道雄 谷本
Nobuyuki Hakozaki
伸幸 箱崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP2008068704A priority Critical patent/JP2011116660A/en
Priority to PCT/JP2009/055221 priority patent/WO2009116550A1/en
Publication of JP2011116660A publication Critical patent/JP2011116660A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • C07C51/23Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of oxygen-containing groups to carboxyl groups
    • C07C51/235Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of oxygen-containing groups to carboxyl groups of —CHO groups or primary alcohol groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/27Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
    • C07C45/32Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen
    • C07C45/33Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties
    • C07C45/34Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties in unsaturated compounds
    • C07C45/35Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties in unsaturated compounds in propene or isobutene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • C07C51/25Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of unsaturated compounds containing no six-membered aromatic ring

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for a stable catalytic vapor-phase oxidation reaction over a long period in an industrial scale. <P>SOLUTION: The catalytic vapor-phase oxidation method includes replacing at least one portion of a catalyst disposed in a gas outlet portion in a reaction gas flow direction with an un-used catalyst and/or additionally charging the un-used catalyst in the gas outlet portion to extend the length of the layer. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は触媒が充填されてなる固定床反応器を用いた少なくとも1種の有機化合物を分子状酸素または分子状酸素含有ガスにより接触気相酸化する方法に関する。詳しくは、反応ガス流れ方向に対してガス出口部に配置された活性の劣化した触媒の少なくとも一部を未使用の触媒に交換および/または未使用の触媒を追加充填して触媒層長を延長する接触気相酸化方法に関する。   The present invention relates to a method for catalytic vapor phase oxidation of at least one organic compound using molecular oxygen or a molecular oxygen-containing gas using a fixed bed reactor packed with a catalyst. Specifically, at least a part of the catalyst having deteriorated activity arranged at the gas outlet with respect to the reaction gas flow direction is replaced with an unused catalyst and / or an additional catalyst is additionally filled to extend the catalyst layer length. The present invention relates to a contact gas phase oxidation method.

石油化学工業の分野において、固定床反応器を用いた接触気相酸化反応は、例えば、エチレンの接触気相酸化による酸化エチレンの製造、プロピレン、イソブチレン、ターシャリーブタノールおよび/またはメチルターシャリーブチルエーテルを出発原料とした二段酸化による(メタ)アクリル酸の製造、o−キシレンおよび/またはナフタレンの接触気相酸化による無水フタル酸の製造、ベンゼンやn−ブタンの接触気相酸化による無水マレイン酸の製造など数多く実施されている。   In the petrochemical industry, the catalytic gas phase oxidation reaction using a fixed bed reactor is, for example, production of ethylene oxide by catalytic gas phase oxidation of ethylene, propylene, isobutylene, tertiary butanol and / or methyl tertiary butyl ether. Production of (meth) acrylic acid by two-step oxidation as a starting material, production of phthalic anhydride by catalytic gas phase oxidation of o-xylene and / or naphthalene, maleic anhydride by catalytic gas phase oxidation of benzene and n-butane Many productions have been implemented.

このような固定床反応器を用いた接触気相酸化反応において、より長期間安定かつ効率的に目的生成物を製造することを目的に各社から様々な提案がされている。   In the catalytic gas phase oxidation reaction using such a fixed bed reactor, various proposals have been made by various companies for the purpose of producing a target product stably and efficiently for a longer period of time.

例えば、特許文献1および特許文献2には、接触気相酸化反応により劣化した触媒の少なくとも一部を未使用の触媒に抜出交換することで、触媒層全体を交換することなくより長期間安定して目的生成物を製造する方法が開示されている。また、特許文献3には、斜交羽根車を有する熱交換媒体循環機構を持った反応器において、最上部の触媒層を反応に未使用の触媒に交換できることが開示されている。   For example, in Patent Document 1 and Patent Document 2, at least a part of the catalyst deteriorated by the catalytic gas phase oxidation reaction is extracted and replaced with an unused catalyst, so that the entire catalyst layer is stable for a long time without replacement. Thus, a method for producing the target product is disclosed. Patent Document 3 discloses that in a reactor having a heat exchange medium circulation mechanism having an oblique impeller, the uppermost catalyst layer can be replaced with an unused catalyst for the reaction.

米国特許公開(US−A1)2004/0015013号公報US Patent Publication (US-A1) 2004/0015013 米国特許公開(US−A1)2007/0155988号公報US Patent Publication (US-A1) 2007/0155988 特開2003−83289号公報JP 2003-83289 A

しかしながら、前記特許文献1〜特許文献3に記載の方法は、実質、反応ガス流れ方向に対してガス入口部に充填された触媒の一部を抜出交換するものであり、そのためにはガス入口部の触媒の上流側に配置された予熱層までも抜出交換する必要があるため経済的な面から好ましくない。また、特許文献1および特許文献3においては、性能が劣化したガス入口部の触媒の一部を未使用の触媒にそのまま交換するため、交換した部位とすでに反応に供してきた部位とで触媒活性のバランスが合わず局所的な高温発熱部の制御が困難となり暴走反応を引き起こしかねない。また、その過度の発熱により触媒劣化が促進される可能性もあり、長期運転のみならず安全運転の面からも好ましくない。その対策として特許文献2においては、反応ガス入口部の触媒を交換する際に、未使用の触媒に比べ体積比活性を低下させた触媒を用いることを開示しているものの、実質は未使用の触媒を不活性な担体で希釈する方法であり、その場合、反応管に充填される触媒量すなわち活性成分量が減少することになり、新たに充填した触媒の負荷が高くなるため長期運転の面から好ましくない。   However, the methods described in Patent Documents 1 to 3 substantially extract and replace a part of the catalyst filled in the gas inlet portion with respect to the reaction gas flow direction. Since it is necessary to extract and replace even the preheating layer arranged on the upstream side of the catalyst of the part, it is not preferable from the economical aspect. In Patent Document 1 and Patent Document 3, in order to replace a part of the catalyst at the gas inlet portion whose performance has deteriorated with an unused catalyst as it is, the catalytic activity between the replaced part and the part already subjected to the reaction is changed. This balance is not balanced and it becomes difficult to control the local high temperature heat generating part, which may cause a runaway reaction. Further, there is a possibility that catalyst deterioration is accelerated by the excessive heat generation, which is not preferable from the viewpoint of safe operation as well as long-term operation. As a countermeasure, Patent Document 2 discloses using a catalyst having a reduced volume specific activity as compared with an unused catalyst when exchanging the catalyst at the reaction gas inlet, but it is substantially unused. This is a method of diluting the catalyst with an inert carrier. In this case, the amount of catalyst charged into the reaction tube, that is, the amount of active component is reduced, and the load of the newly charged catalyst is increased, so that the long-term operation is required. Is not preferable.

かくして、本発明の目的は、触媒が充填されてなる固定床反応器を用いた少なくとも1種の有機化合物の分子状酸素または分子状酸素含有ガスによる接触気相酸化において、工業的な規模で長期間に渡り安全にかつ、安定して効率的に接触気相酸化反応を行うための方法を提供することにある。   Thus, the object of the present invention is long-run on an industrial scale in catalytic gas phase oxidation of at least one organic compound with molecular oxygen or a molecular oxygen-containing gas using a fixed bed reactor packed with a catalyst. It is an object of the present invention to provide a method for performing a catalytic gas phase oxidation reaction safely and stably over a period of time.

本発明者らは、上記課題に関し、上記従来公知の技術とは逆に、これらの接触気相反応においては、反応基質(原料)に対する反応次数がほぼ1次であるため、特に前記引用文献の実施例のようなガス入口部から出口部に向かって活性が高くなるよう充填する公知の方法では、ガス入口部の触媒を交換するより出口部を交換する方が、低下した触媒性能の回復効果が高くなると考え鋭意検討を行った結果、触媒が充填されてなる固定床反応器を用いた少なくとも1種の有機化合物の分子状酸素または分子状酸素含有ガスによる接触気相酸化において、反応に供した触媒層であっても、反応ガス流れ方向に対してガス出口部に配置された触媒は局所的な高温発熱がなく触媒性能が安定化しており、その少なくとも一部を未使用の触媒に交換および/または未使用の触媒を追加充填して触媒層長を延長することで、長期間反応に供して低下した性能を、触媒活性のバランスに影響を与えることなく効率的に回復させ、長期に渡り安定かつ、安全に接触気相酸化反応を行うことが可能となることを見出し本発明に至った。   In the catalytic gas phase reaction, the present invention has a reaction order with respect to the reaction substrate (raw material) almost in the first order, in contrast to the above-described conventional techniques. In the known method of filling so that the activity increases from the gas inlet portion toward the outlet portion as in the embodiment, it is more effective to recover the lowered catalyst performance by replacing the outlet portion than replacing the catalyst at the gas inlet portion. As a result of diligent investigations on the assumption that the oxygen concentration would be high, catalytic gas phase oxidation of at least one organic compound with molecular oxygen or a molecular oxygen-containing gas using a fixed bed reactor packed with a catalyst was used for the reaction. Even if the catalyst layer is a catalyst layer, the catalyst arranged at the gas outlet with respect to the direction of the reaction gas flow has no local high-temperature heat generation and the catalyst performance is stabilized. At least a part of the catalyst layer is replaced with an unused catalyst. And By extending the catalyst layer length by additionally filling unused catalyst, the performance deteriorated by the reaction for a long period of time can be recovered efficiently without affecting the balance of the catalyst activity. The present inventors have found that it is possible to carry out a catalytic gas phase oxidation reaction stably and safely.

本発明によれば、上記課題の解決により、工業的な規模で長期に渡り安定した接触気相酸化反応を行うことが可能となる。   According to the present invention, by solving the above problems, it is possible to perform a stable catalytic gas phase oxidation reaction on an industrial scale for a long period of time.

以下、本発明にかかる接触気相酸化方法について詳しく説明するが、本発明の範囲はこれらの説明に拘束されることはなく、以下の例示以外についても本発明の趣旨を損なわない範囲で適宜変更し、実施することができる。   Hereinafter, the contact gas phase oxidation method according to the present invention will be described in detail. However, the scope of the present invention is not limited to these descriptions, and other than the following examples, the scope of the present invention is changed as appropriate without departing from the spirit of the present invention. And can be implemented.

本発明によれば、触媒を充填してなる固定床反応器を用いた少なくとも1種の有機化合物の分子状酸素または分子状酸素含有ガスによる接触気相酸化において、反応に供して性能低下した際に、反応ガス流れ方向に対してガス出口部に配置された触媒の少なくとも一部を未使用の触媒に交換および/または未使用の触媒を追加充填して触媒層長を延長すればよい。なお、本発明における未使用の触媒とは、反応に供していない触媒のことである。   According to the present invention, in the catalytic gas phase oxidation of at least one organic compound with molecular oxygen or a molecular oxygen-containing gas using a fixed bed reactor packed with a catalyst, when the performance deteriorates due to the reaction. In addition, at least a part of the catalyst arranged at the gas outlet in the reaction gas flow direction may be replaced with an unused catalyst and / or an unused catalyst may be additionally charged to extend the catalyst layer length. In addition, the unused catalyst in this invention is a catalyst which has not been used for reaction.

反応ガス流れ方向に対してガス出口部に配置された触媒の少なくとも1部を未使用の触媒に交換および/またはガス出口部に未使用の触媒を追加充填して触媒層長を延長する際、触媒の交換量または触媒の追加充填量あるいは触媒の交換量および追加充填量の合計量が、触媒層長の1%以上であればよく、好ましくは3%以上であればより効果的である。交換量または触媒の追加充填量あるいは触媒の交換量および追加充填量の合計量が1%より少ないと、性能の回復効果が不十分であり、また長期間の運転にあたりその作業頻度が多くなり、それによって反応を停止する期間が長くなり十分な生産量が確保できなくなるため好ましくない。ただし、性能劣化した触媒を交換する場合には、交換量の上限としては、経済的な面および触媒活性のバランスの点から多くとも反応管に充填されている触媒層全体の1/3程度である。触媒層全体の1/3以上を交換した場合、高価な触媒の交換量に見合った効果が得られないばかりか、性能の劣化度合いの大きな触媒も交換することになり上述のように活性のバランスに影響を与える可能性がある。反応管の反応ガス出口部に充填されている触媒を触媒層の10%程度を交換すれば、活性のバランスに影響を与えない範囲で、交換量に見合った効果が十分に得られる。   When the catalyst layer length is extended by replacing at least one part of the catalyst arranged at the gas outlet with respect to the reaction gas flow direction with an unused catalyst and / or additionally charging an unused catalyst at the gas outlet, It is more effective if the exchange amount of the catalyst or the additional filling amount of the catalyst or the total amount of the exchange amount of the catalyst and the additional filling amount is 1% or more, preferably 3% or more of the catalyst layer length. If the replacement amount or the additional charge amount of the catalyst or the total amount of the catalyst replacement amount and the additional charge amount is less than 1%, the performance recovery effect is insufficient, and the work frequency increases during long-term operation, As a result, the period during which the reaction is stopped becomes long, and a sufficient production amount cannot be secured. However, when replacing a deteriorated catalyst, the upper limit of the replacement amount is at most about 1/3 of the entire catalyst layer packed in the reaction tube from the viewpoint of economic balance and catalyst activity. is there. When 1/3 or more of the entire catalyst layer is replaced, not only an effect commensurate with the replacement amount of the expensive catalyst is obtained, but also the catalyst having a large degree of performance deterioration is replaced, and the balance of the activity as described above. May be affected. If the catalyst filled in the reaction gas outlet of the reaction tube is exchanged by about 10% of the catalyst layer, an effect corresponding to the exchange amount can be sufficiently obtained within a range that does not affect the balance of activity.

反応ガスの出口部に未使用の触媒を追加充填する場合、触媒が充填された反応管の反応ガス出口部の空間部の長さによっても変わるが、追加充填による圧力損失の上昇と性能回復効果との関係から既に充填されている触媒層長の10%程度追加充填すれば十分である。   When an unused catalyst is additionally filled at the outlet of the reaction gas, the pressure loss increases and the performance recovery effect due to the additional filling, although it varies depending on the length of the space of the reaction gas outlet of the reaction tube filled with the catalyst. Therefore, it is sufficient to add about 10% of the already packed catalyst layer length.

また、触媒の交換および追加充填を同時に行う場合にあっても、合計量が触媒層長の10%程度で十分に効果が得られる。
また、長期間安定して運転を行うには、前記の触媒の交換および/または触媒の追加充填による層長の延長を定期的に行うことが好ましく、少なくとも1回/年の頻度で行うのが好ましい。
前記した触媒の交換および/または追加充填を行う方法としては、特に限定されるものではなく、公知の方法に従って行うことができる。例えば、触媒の交換時には、反応ガス流れ方向に対してガス出口部に配置された触媒の抜き出しに際しては、特開2002−301355号公報のように排気吸引装置に接続された吸引管を反応管内に挿入して空気流とともに抜き出す方法などを好適に用いることができる。また、触媒の交換時あるいは触媒層長の延長時に触媒を反応管に充填するに際しては、特開平10−202084号公報のような振動を制御した充填機を用いて充填する方法、特開2002−306953号公報のように予め容量が均一になるよう計量して所定の充填時間で充填する方法などが好適に使用できる。
Further, even when the catalyst is exchanged and the additional filling is performed simultaneously, a sufficient effect can be obtained when the total amount is about 10% of the catalyst layer length.
In order to operate stably for a long period of time, it is preferable to periodically extend the layer length by exchanging the catalyst and / or additionally filling the catalyst, and at least once / year. preferable.
The method for exchanging and / or additionally filling the catalyst is not particularly limited, and can be performed according to a known method. For example, when exchanging the catalyst, when extracting the catalyst arranged at the gas outlet with respect to the reaction gas flow direction, a suction pipe connected to an exhaust suction device as in JP-A-2002-301355 is placed in the reaction pipe. The method of inserting and extracting with an air flow etc. can be used suitably. In addition, when the catalyst is filled in the reaction tube at the time of catalyst replacement or when the catalyst layer length is extended, a method of filling using a filling machine with controlled vibration such as JP-A-10-202084, JP-A 20002- For example, as described in Japanese Patent No. 306953, a method in which the volume is preliminarily measured so as to be uniform and the filling is performed with a predetermined filling time can be suitably used.

本発明で用いられる触媒としては、特に制限はなく、接触気相酸化において一般に用いられている公知の触媒を用いることができ、例えば、下記(1)〜(9)等が挙げられる。
(1)銀を必須成分として含み、エチレンを気相で酸化して酸化エチレンを製造するための触媒、
(2)モリブデン、ビスマスおよび鉄を必須成分として含み、プロピレン、イソブチレン、ターシャリーブタノールおよび/またはメチルターシャリーブチルエーテルを気相で酸化して(メタ)アクロレインおよび(メタ)アクリル酸を製造するための触媒、
(3)モリブデンおよびバナジウムを必須成分として含み、アクロレインを気相で酸化してアクリル酸を製造するための触媒、
(4)モリブデンおよびリンを必須成分として含み、メタクロレインを気相で酸化してメタクリル酸を製造するための触媒、
(5)バナジウムおよびチタンを必須成分として含み、o−キシレンおよび/またはナフタレンを気相で酸化して無水フタル酸を製造するための触媒、
(6)モリブデンを必須成分として含み、ベンゼンを気相で酸化して無水マレイン酸を製造するための触媒、
(7)リンおよびバナジウムを必須成分として含み、n−ブタンを気相で酸化して無水マレイン酸を製造するための触媒、
(8)モリブデンを必須成分として含み、プロパンを気相で酸化してプロピレン、アクロレインおよび/またはアクリル酸を製造するための触媒、
(9)その他、固定床多管式反応器に充填して接触気相酸化反応に用いられる固体粒状触媒。
There is no restriction | limiting in particular as a catalyst used by this invention, The well-known catalyst generally used in catalytic gas phase oxidation can be used, For example, following (1)-(9) etc. are mentioned.
(1) A catalyst for producing ethylene oxide by containing silver as an essential component and oxidizing ethylene in a gas phase,
(2) For producing (meth) acrolein and (meth) acrylic acid by containing molybdenum, bismuth and iron as essential components and oxidizing propylene, isobutylene, tertiary butanol and / or methyl tertiary butyl ether in the gas phase catalyst,
(3) A catalyst for producing acrylic acid by oxidizing acrolein in the gas phase, containing molybdenum and vanadium as essential components,
(4) a catalyst for producing methacrylic acid by oxidizing molybdenum in the gas phase, containing molybdenum and phosphorus as essential components,
(5) A catalyst for producing phthalic anhydride by oxidizing vanadium and titanium as essential components and oxidizing o-xylene and / or naphthalene in a gas phase,
(6) A catalyst for producing maleic anhydride by oxidizing molybdenum in the gas phase, containing molybdenum as an essential component,
(7) A catalyst for producing maleic anhydride by oxidizing phosphorus in the gas phase and containing phosphorus and vanadium as essential components,
(8) A catalyst for producing propylene, acrolein and / or acrylic acid by oxidizing molybdenum in the gas phase, containing molybdenum as an essential component,
(9) In addition, a solid granular catalyst used in a catalytic gas phase oxidation reaction by filling a fixed bed multitubular reactor.

これら触媒については従来から公知の種々の方法で製造することができ、特に限定されるものではない。   These catalysts can be produced by various conventionally known methods and are not particularly limited.

なお、反応器に充填される触媒は、上記(1)〜(9)のそれぞれの場合において、単一種の触媒である必要はなく、組成、形状や活性の異なる複数種の触媒をそれぞれ活性の異なる順に層を形成するように充填、あるいは混合して充填することも可能である。また、触媒の一部を不活性担体などで希釈することもできる。   The catalyst charged in the reactor does not need to be a single type of catalyst in each of the cases (1) to (9), and a plurality of types of catalysts having different compositions, shapes, and activities are each active. It is also possible to fill the layers so as to form the layers in a different order, or to mix and fill the layers. Further, a part of the catalyst can be diluted with an inert carrier or the like.

本発明において、反応ガス流れ方向に対してガス出口部に配置された触媒の交換および/またはガス出口部に追加充填するにあたり、当然ながら反応器に導入される反応ガス流れは反応器下部から上部に向かって流れるアップフローである必要があり、アップフローである限りは、公知の反応器を用いることができる。例えば、プロピレンの二段酸化によりアクリル酸を製造する方法においては、プロピレンを主としてアクロレインに接触気相酸化するに好適な触媒(前段触媒)を充填した反応器(前段反応器)および得られたアクロレインをアクリル酸に接触気相酸化するに好適な触媒(後段触媒)を充填した反応器(後段反応器)の2つの反応器が共にアップフローである装置、あるいは、下部に前段触媒を充填した反応帯(前段反応帯)および上部に後段触媒を充填した反応帯(後段反応帯)を設けた一つの反応器を用いることができる。その際、本発明における触媒の交換および/または追加充填による触媒層長の延長は、前段触媒または後段触媒のいずれか一方において行えばよく、当然前段触媒と後段触媒の双方について行ってもよい。これら反応器の反応管としては、特に限定されるわけではないが、好ましくはその内径が15〜50mmのものである。
プロピレンの二段酸化によりアクリル酸を製造する方法においては、前段触媒および後段触媒の好適な反応温度は、反応条件などによって適宜選択されるが、前段触媒では、通常、300〜380℃であり、また、後段触媒では、通常、250〜350℃である。さらに、前段触媒の反応温度と後段触媒の反応温度との差は10〜110℃、好ましくは30〜80℃とするのがよい。
In the present invention, when exchanging the catalyst disposed at the gas outlet and / or additionally filling the gas outlet with respect to the direction of the reaction gas flow, the reaction gas flow introduced into the reactor is naturally from the bottom to the top of the reactor. Therefore, a known reactor can be used as long as it is an upflow. For example, in a method for producing acrylic acid by two-stage oxidation of propylene, a reactor (pre-stage reactor) filled with a catalyst (pre-stage catalyst) suitable for catalytic vapor phase oxidation of propylene mainly on acrolein and the obtained acrolein A reactor in which two reactors (secondary reactor) filled with a catalyst (secondary catalyst) suitable for catalytic gas phase oxidation of acrylic acid with acrylic acid are both up-flow, or a reaction in which the first catalyst is charged at the bottom One reactor provided with a zone (front reaction zone) and a reaction zone (second stage reaction zone) filled with a rear catalyst at the top can be used. In that case, the catalyst layer length extension by the replacement and / or additional filling of the catalyst in the present invention may be performed in either the front stage catalyst or the rear stage catalyst, and naturally it may be performed for both the front stage catalyst and the rear stage catalyst. The reaction tubes of these reactors are not particularly limited, but preferably have an inner diameter of 15 to 50 mm.
In the method for producing acrylic acid by two-stage oxidation of propylene, suitable reaction temperatures for the former catalyst and the latter catalyst are appropriately selected depending on the reaction conditions and the like, but the former catalyst is usually 300 to 380 ° C. Moreover, it is 250-350 degreeC normally with a back | latter stage catalyst. Furthermore, the difference between the reaction temperature of the former catalyst and the reaction temperature of the latter catalyst is 10 to 110 ° C, preferably 30 to 80 ° C.

なお、前段触媒の反応温度と後段触媒の反応温度とは、それぞれの反応器または反応帯における熱媒体入口温度に実質的に相当するものであり、熱媒体入口温度は、上記の範囲内で設定されたそれぞれの設定温度に応じて決定される。以下、実施例を挙げて本発明を更に具体的に説明する。   The reaction temperature of the front catalyst and the reaction temperature of the rear catalyst substantially correspond to the heat medium inlet temperature in each reactor or reaction zone, and the heat medium inlet temperature is set within the above range. It is determined according to each set temperature. Hereinafter, the present invention will be described more specifically with reference to examples.

以下に、実施例を挙げて本発明を具体的に説明するが、本発明はもとより下記実施例により制限を受けるものではなく、本発明の趣旨に適合し得る範囲で適当に変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に含まれる。なお、以下では、便宜上、「質量部」を単に「部」、と記すことがある。なお、転化率および収率は次の通り定義される。
転化率(モル%)
=(反応した原料のモル数/供給した原料のモル数)×100
収率(モル%)
=(生成した目的生成物のモル数/供給した原料のモル数)×100
<参考例1>
[酸化物触媒(1)および(2)の調製]
蒸留水2000部を加熱攪拌しつつモリブデン酸アンモニウム350部を溶解した(A液)。別に500部の蒸留水に硝酸コバルト250部および硝酸ニッケル120部を溶解させ(B液)、さらに別途、蒸留水350部に濃硝酸(65質量%)18部を加えて酸性とした溶液に硝酸第二鉄80.1部および硝酸ビスマス120部を溶解させた(C液)。A液にこれらの硝酸塩溶液(B液、C液)を滴下した。引き続き、硝酸カリウム1.67部を加えた。このようにして得られた懸濁液を加熱、攪拌、蒸発せしめた。得られた乾燥物を200℃で乾燥後に150μm以下に粉砕し、触媒粉体を得た。転動造粒機に平均粒径4mmのアルミナ球状担体1400部を投入し、次いで結合剤として35質量%の硝酸アンモニウム水溶液と共に触媒粉体を徐々に投入して担体に担持させた後、空気雰囲気下470℃で6時間熱処理をして酸化物触媒(1)を得た。この触媒の担体および酸素を除く金属元素組成は次のとおりであった。
Hereinafter, the present invention will be described in detail with reference to examples. However, the present invention is not limited to the following examples, and may be implemented with appropriate modifications within a range that can meet the gist of the present invention. These are all included in the technical scope of the present invention. Hereinafter, for convenience, “parts by mass” may be simply referred to as “parts”. The conversion rate and yield are defined as follows.
Conversion rate (mol%)
= (Number of moles of reacted raw material / number of moles of supplied raw material) × 100
Yield (mol%)
= (Number of moles of target product produced / number of moles of supplied raw material) x 100
<Reference Example 1>
[Preparation of Oxide Catalysts (1) and (2)]
While heating and stirring 2000 parts of distilled water, 350 parts of ammonium molybdate was dissolved (solution A). Separately, 250 parts of cobalt nitrate and 120 parts of nickel nitrate are dissolved in 500 parts of distilled water (liquid B), and separately, nitric acid is added to a solution made acidic by adding 18 parts of concentrated nitric acid (65% by mass) to 350 parts of distilled water. 80.1 parts of ferric iron and 120 parts of bismuth nitrate were dissolved (C solution). These nitrate solutions (B solution and C solution) were added dropwise to the A solution. Subsequently, 1.67 parts of potassium nitrate were added. The suspension thus obtained was heated, stirred and evaporated. The obtained dried product was dried at 200 ° C. and pulverized to 150 μm or less to obtain catalyst powder. Into a rolling granulator, 1400 parts of an alumina spherical carrier having an average particle diameter of 4 mm was charged, and then catalyst powder was gradually added together with a 35 mass% ammonium nitrate aqueous solution as a binder to be supported on the carrier, and then in an air atmosphere. Heat treatment was performed at 470 ° C. for 6 hours to obtain an oxide catalyst (1). The metal element composition excluding the carrier and oxygen of this catalyst was as follows.

Mo12Bi1.5Co5.2Ni2.5Fe1.20.1
また、この酸化物触媒の次式より算出した担持率は約30質量%であった。
Mo 12 Bi 1.5 Co 5.2 Ni 2.5 Fe 1.2 K 0.1
Further, the loading rate calculated from the following formula of this oxide catalyst was about 30% by mass.

担持率(質量%)=(酸化物触媒質量−担体質量)/担体質量×100
同様にして、平均粒径7mmの球状アルミナ担体に担持させた酸化物触媒(2)を得た。
〔反応器〕
全長3000mm、内径25mmのSUS製反応管およびこれを覆う熱媒体を流すためのシェルからなる反応器3器(A、B、C)を鉛直方向に用意した。各々の反応器について反応管上部より予熱層として平均粒径8mmの不活性なセラミックボール、酸化物触媒(2)、酸化物触媒(1)を順次落下させて、それぞれの層長が下から順に、セラミックボール;100mm、酸化物触媒(2);700mm、酸化物触媒(1);2000mmとなるように充填し、反応器3器(A、B、C)の触媒充填仕様は実質的に同一とした。
〔酸化反応〕
酸化物触媒を充填した3器の反応器各々に、プロピレン8.3容量%、酸素15容量%、水蒸気30容量%、窒素46.7容量%の混合ガスを空間速度1800hr−1(STP)で反応器下部より導入し、接触気相酸化反応を8000時間継続して行った。その反応結果を表1に示す。3器ともほぼ同じ性能であった。
<比較例1>
参考例1において、反応の8000時間経過後に、反応器Aについて触媒の抜出し等を何も行わず、さらに8000時間継続して反応を行った。その累計経時12000時間および16000時間における反応結果を表1に示す。
<実施例1>
参考例1において、反応の8000時間経過後に、反応器Bについて反応管上部より酸化物触媒(1)を層長20mm分抜出し、代わりに未使用の酸化物触媒(1)を層長20mm分再充填し触媒交換を行った後、さらに反応を4000時間継続して行った(累計経時12000時間)。触媒交換直後(交換後48時間経過時点)および累計経時12000時間における反応結果を表1に示す。
<実施例2>
実施例1において、累計経時12000時間後に、反応管上部より未使用の酸化物触媒(1)を追加充填し触媒層長を40mm延長した後、さらに反応を4000時間継続して行った(累計経時16000時間)。その触媒層長延長直後(延長後48時間経過時点)および累計経時16000時間における反応結果を表1に示す。
<実施例3>
参考例1において、反応の8000時間経過後に、反応器Cについて反応管上部より酸化物触媒(1)を層長30mm分抜出し、代わりに未使用の酸化物触媒(1)を層長30mm分再充填し触媒交換を行った後、さらに反応を4000時間継続して行った(累計経時12000時間)。その触媒交換直後(交換後48時間経過時点)および累計経時12000時間における反応結果を表1に示す。
<実施例4>
実施例3において、累計経時12000時間後に、反応管上部より酸化物触媒(1)を層長60mm分抜出し、代わりに未使用の酸化物触媒(1)を層長60mm分再充填し、さらに反応管上部より未使用の酸化物触媒(1)を追加充填し触媒層長40mm延長した後、反応を4000時間継続して行った(累計経時16000時間)。その触媒交換および層長延長直後(交換・延長後48時間経過時点)および累計経時16000時間における反応結果を表1に示す。
Support rate (mass%) = (oxide catalyst mass−support mass) / support mass × 100
Similarly, an oxide catalyst (2) supported on a spherical alumina carrier having an average particle diameter of 7 mm was obtained.
[Reactor]
Three reactors (A, B, C) comprising a SUS reaction tube having a total length of 3000 mm and an inner diameter of 25 mm and a shell for flowing a heat medium covering the SUS reaction tube were prepared in the vertical direction. For each reactor, an inert ceramic ball having an average particle diameter of 8 mm, an oxide catalyst (2), and an oxide catalyst (1) are sequentially dropped from the upper part of the reaction tube as a preheating layer, and the respective layer lengths are changed in order from the bottom. , Ceramic balls: 100 mm, oxide catalyst (2): 700 mm, oxide catalyst (1): packed to 2000 mm, and the catalyst filling specifications of the three reactors (A, B, C) are substantially the same. It was.
[Oxidation reaction]
In each of the three reactors filled with the oxide catalyst, a mixed gas of 8.3% by volume of propylene, 15% by volume of oxygen, 30% by volume of water vapor, and 46.7% by volume of nitrogen at a space velocity of 1800 hr −1 (STP). The reaction was introduced from the lower part of the reactor, and the catalytic gas phase oxidation reaction was continued for 8000 hours. The reaction results are shown in Table 1. All three units had almost the same performance.
<Comparative Example 1>
In Reference Example 1, after 8000 hours of the reaction, the catalyst A was not extracted from the reactor A and the reaction was continued for 8000 hours. Table 1 shows the reaction results at the accumulated time of 12000 hours and 16000 hours.
<Example 1>
In Reference Example 1, after 8000 hours of the reaction, the oxide catalyst (1) was extracted from the upper part of the reaction tube for the reactor B by a layer length of 20 mm, and an unused oxide catalyst (1) was replaced by a layer length of 20 mm instead. After filling and exchanging the catalyst, the reaction was further continued for 4000 hours (cumulative time 12000 hours). Table 1 shows the reaction results immediately after the catalyst replacement (48 hours after the replacement) and at a cumulative time of 12000 hours.
<Example 2>
In Example 1, after 12,000 hours of cumulative time elapsed, an unused oxide catalyst (1) was additionally charged from the upper part of the reaction tube to extend the catalyst layer length by 40 mm, and the reaction was further continued for 4000 hours (cumulative time elapsed). 16000 hours). Table 1 shows the reaction results immediately after extension of the catalyst layer length (48 hours after extension) and at a cumulative time of 16000 hours.
<Example 3>
In Reference Example 1, after 8000 hours of the reaction, the oxide catalyst (1) was extracted from the upper part of the reaction tube for the reactor C by a layer length of 30 mm, and an unused oxide catalyst (1) was replaced by a layer length of 30 mm instead. After filling and exchanging the catalyst, the reaction was further continued for 4000 hours (cumulative time 12000 hours). Table 1 shows the reaction results immediately after the catalyst replacement (48 hours after the replacement) and the accumulated time of 12000 hours.
<Example 4>
In Example 3, after the accumulated time of 12000 hours, the oxide catalyst (1) was extracted from the upper part of the reaction tube by the length of 60 mm. Instead, the unused oxide catalyst (1) was refilled by the length of 60 mm and further reacted. After the unused oxide catalyst (1) was additionally charged from the upper part of the tube and the catalyst layer length was extended by 40 mm, the reaction was continued for 4000 hours (total time: 16000 hours). Table 1 shows the reaction results immediately after the catalyst exchange and extension of the layer length (48 hours after exchange / extension) and at a cumulative time of 16000 hours.

Figure 2011116660
Figure 2011116660

<参考例2>
参考例1において、反応管上部より酸化物触媒(1)、酸化物触媒(2)および予熱層として平均粒径8mmの不活性なセラミックボールを順次落下させて、それぞれの層長が下から酸化物触媒(1);2000mm、酸化物触媒(2);700mm、セラミックボール;100mmとなるように充填し、参考例1同様の混合ガスを反応器上部より導入し、接触気相酸化反応を8000時間継続して行った。その反応結果を表2に示す。
<比較例2>
参考例2において、反応の8000時間経過後に、反応管上部よりセラミックボール全量、次いでガス入口部の酸化物触媒(2)を200mm抜出し、代わりに未使用の酸化物触媒(2)を200mmと再度セラミックボールを充填し触媒交換を行った後、さらに反応を4000時間継続して行った(累計経時12000時間)。その触媒交換直後(交換後48時間経過時点)および累計経時12000時間における反応結果を表2に示す。局所的な高温発熱部の影響により最適な反応温度での運転が出来ず低性能であった。
<Reference Example 2>
In Reference Example 1, the oxide catalyst (1), the oxide catalyst (2), and an inert ceramic ball having an average particle size of 8 mm are sequentially dropped from the upper part of the reaction tube as the preheating layer, and the respective layer lengths are oxidized from below. Product catalyst (1): 2000 mm, oxide catalyst (2): 700 mm, ceramic balls: packed to 100 mm, mixed gas similar to that of Reference Example 1 was introduced from the top of the reactor, and catalytic gas phase oxidation reaction was carried out to 8000 The time continued. The reaction results are shown in Table 2.
<Comparative Example 2>
In Reference Example 2, after 8000 hours of the reaction, the whole ceramic ball was extracted from the upper part of the reaction tube, and then the oxide catalyst (2) at the gas inlet was removed by 200 mm. Instead, the unused oxide catalyst (2) was again removed at 200 mm. After the ceramic balls were filled and the catalyst was exchanged, the reaction was further continued for 4000 hours (total time of 12000 hours). Table 2 shows the reaction results immediately after the catalyst replacement (48 hours after the replacement) and the accumulated time of 12000 hours. The operation at the optimum reaction temperature was not possible due to the local high temperature heating part, and the performance was low.

Figure 2011116660
Figure 2011116660

<参考例3>
[酸化物触媒(3)および(4)の調製]
蒸留水2400部を加熱攪拌しながら、その中にパラモリブデン酸アンモニウム380部、メタバナジン酸アンモニウム83.9部、パラタングステン酸アンモニウム72.7部を溶解した。別に水400部を加熱攪拌しながら、硝酸銅56.3部および硝酸コバルト36.5部を溶解した。得られた2つの水溶液を混合し、さらに三酸化アンチモン26.1部を添加し、懸濁液を得た。この懸濁液を噴霧乾燥機にて乾燥を行った。得られた顆粒状粉体を、空気雰囲気下392℃で約5時間焼成を行った。このとき、顆粒状粉体中に温度計を挿入し、急激な温度上昇が起こらないよう、炉の温度を調整しながら上昇させた。焼成後の顆粒状粉体を150μm以下に粉砕し、触媒粉体を得た。転動造粒機に平均粒径4.5mmのシリカ−アルミナ球形担体1500部を投入し、次いで結合剤として15質量%のグリセリン水溶液と共に触媒粉体を徐々に投入して担体に担持させた後、空気雰囲気下400℃で6時間熱処理をして酸化物触媒(3)を得た。この触媒の担持率は約30質量%であり、担体および酸素を除く金属元素組成は次のとおりであった。
触媒1:Mo121.5Cu1.3Sb1.0Co0.7
同様にして、平均粒径7.5mmのシリカ−アルミナ球形担体に担持させた酸化物触媒(4)を得た。
〔反応器〕
全長3000mm、内径25mmのSUS製反応管およびこれを覆う熱媒体を流すためのシェルからなる反応器3器(D、E、F)を鉛直方向に用意した。各々の反応管上部より予熱層として平均粒径8mmの不活性なセラミックボール、酸化物触媒(4)、酸化物触媒(3)を順次落下させて、それぞれの層長が下から順にセラミックボール;100mm、酸化物触媒(4);600mm、酸化物触媒(3);2000mmとなるように充填し、反応器3器(D、E、F)の触媒充填仕様は実質的に同一とした。
〔酸化反応〕
酸化物触媒を充填した3器の反応器各々に、アクロレイン7.7容量%、酸素9.9容量%、水蒸気35容量%、窒素47.4容量%の混合ガスを反応器下部より空間速度1800hr−1(STP)で導入し、接触気相酸化反応を8000時間継続して行った。その反応結果を表3に示す。3器ともほぼ同じ性能であった。
<比較例3>
参考例3において、反応の8000時間経過後に、反応器Dについて触媒の抜出し等を何も行わず、さらに8000時間継続して反応を行った。その累計経時12000時間および16000時間における反応結果を表3に示す。
<実施例5>
参考例3において、反応の8000時間経過後に、反応器Eについて反応管上部より酸化物触媒(3)を層長30mm分抜出し、代わりに未使用の酸化物触媒(3)を層長30mm分再充填し触媒交換を行った後、さらに反応を4000時間継続して行った(累計経時12000時間)。その触媒交換直後(交換後48時間経過時点)および累計経時12000時間における反応結果を表3に示す。
<実施例6>
実施例5において、累計経時12000時間後に、反応管上部より酸化物触媒(3)を層長60mm分抜出し、代わりに未使用の酸化物触媒(3)を層長60mm分再充填した後、さらに反応を4000時間継続して行った(累計経時16000時間)。その触媒交換直後(交換後48時間経過時点)および累計経時16000時間における反応結果を表3に示す。
<実施例7>
参考例3において、反応の8000時間経過後に、反応器Fについて反応管上部より未使用の酸化物触媒(3)を追加充填し触媒層長を90mm延長した後、さらに反応を4000時間継続して行った(累計経時12000時間)。その触媒層長延長直後(層長延長後48時間経過時点)および累計経時12000時間における反応結果を表3に示す。
<実施例8>
実施例7において、累計経時12000時間後に、反応管上部より酸化物触媒(3)を層長150mm分抜出し、代わりに未使用の酸化物触媒(3)を層長150mm分再充填した後、さらに反応を4000時間継続して行った(累計経時16000時間)。その触媒交換直後(交換後48時間経過時点)および累計経時16000時間における反応結果を表3に示す。
<Reference Example 3>
[Preparation of Oxide Catalysts (3) and (4)]
While heating and stirring 2400 parts of distilled water, 380 parts of ammonium paramolybdate, 83.9 parts of ammonium metavanadate, and 72.7 parts of ammonium paratungstate were dissolved therein. Separately, 46.3 parts of water was heated and stirred, and 56.3 parts of copper nitrate and 36.5 parts of cobalt nitrate were dissolved. The two aqueous solutions obtained were mixed, and 26.1 parts of antimony trioxide was further added to obtain a suspension. This suspension was dried with a spray dryer. The obtained granular powder was calcined at 392 ° C. for about 5 hours in an air atmosphere. At this time, a thermometer was inserted into the granular powder, and the temperature was raised while adjusting the furnace temperature so as not to cause a rapid temperature rise. The calcined granular powder was pulverized to 150 μm or less to obtain catalyst powder. After 1500 parts of a silica-alumina spherical carrier having an average particle size of 4.5 mm is put into a rolling granulator, catalyst powder is gradually put together with a 15% by mass glycerin aqueous solution as a binder and supported on the carrier. The oxide catalyst (3) was obtained by heat treatment at 400 ° C. for 6 hours in an air atmosphere. The catalyst loading was about 30% by mass, and the metal element composition excluding the carrier and oxygen was as follows.
Catalyst 1: Mo 12 V 4 W 1.5 Cu 1.3 Sb 1.0 Co 0.7
Similarly, an oxide catalyst (4) supported on a silica-alumina spherical carrier having an average particle diameter of 7.5 mm was obtained.
[Reactor]
Three reactors (D, E, F) comprising a SUS reaction tube having a total length of 3000 mm and an inner diameter of 25 mm and a shell for flowing a heat medium covering the SUS reaction tube were prepared in the vertical direction. An inert ceramic ball having an average particle diameter of 8 mm, an oxide catalyst (4), and an oxide catalyst (3) are sequentially dropped as a preheating layer from the upper part of each reaction tube, and the respective layer lengths are ceramic balls in order from the bottom; 100 mm, oxide catalyst (4); 600 mm, oxide catalyst (3): packed to 2000 mm, and the catalyst filling specifications of the three reactors (D, E, F) were substantially the same.
[Oxidation reaction]
In each of the three reactors filled with the oxide catalyst, a mixed gas of 7.7% by volume of acrolein, 9.9% by volume of oxygen, 35% by volume of water vapor, and 47.4% by volume of nitrogen was supplied from the lower part of the reactor at a space velocity of 1800 hr. -1 (STP) and the catalytic gas phase oxidation reaction was continued for 8000 hours. The reaction results are shown in Table 3. All three units had almost the same performance.
<Comparative Example 3>
In Reference Example 3, after 8000 hours of the reaction, the catalyst D was not extracted from the reactor D, and the reaction was continued for 8000 hours. Table 3 shows the reaction results at the accumulated time of 12000 hours and 16000 hours.
<Example 5>
In Reference Example 3, after 8000 hours of the reaction, the oxide catalyst (3) was extracted from the upper part of the reaction tube for the reactor E by 30 mm, and the unused oxide catalyst (3) was replaced by 30 mm for the layer length instead. After filling and exchanging the catalyst, the reaction was further continued for 4000 hours (cumulative time 12000 hours). Table 3 shows the reaction results immediately after the catalyst exchange (at the time when 48 hours have passed after the exchange) and at a cumulative time of 12000 hours.
<Example 6>
In Example 5, after 12,000 hours of cumulative time elapsed, the oxide catalyst (3) was extracted from the upper part of the reaction tube by a layer length of 60 mm. Instead, an unused oxide catalyst (3) was refilled by a layer length of 60 mm. The reaction was continued for 4000 hours (cumulative time 16000 hours). Table 3 shows the reaction results immediately after the catalyst replacement (when 48 hours had elapsed after the replacement) and at a cumulative time of 16000 hours.
<Example 7>
In Reference Example 3, after 8000 hours of the reaction, the reactor F was additionally filled with unused oxide catalyst (3) from the upper part of the reaction tube to extend the catalyst layer length by 90 mm, and then the reaction was further continued for 4000 hours. (Total time of 12000 hours). Table 3 shows the reaction results immediately after the catalyst layer length extension (48 hours after the layer length extension) and at a cumulative time of 12000 hours.
<Example 8>
In Example 7, after 12,000 hours of cumulative time elapsed, the oxide catalyst (3) was extracted from the upper part of the reaction tube by a layer length of 150 mm. Instead, an unused oxide catalyst (3) was refilled by a layer length of 150 mm. The reaction was continued for 4000 hours (cumulative time 16000 hours). Table 3 shows the reaction results immediately after the catalyst replacement (when 48 hours had elapsed after the replacement) and at a cumulative time of 16000 hours.

Figure 2011116660
Figure 2011116660

<参考例4>
[第一反応器]
反応管数13,000本(反応管径25mm、長さ3000mm)およびこれを覆う熱媒体を流すためのシェルからなる固定床多管式反応器に、その各反応管上部から予熱層として平均粒径8mmの不活性なセラミックボール、酸化物触媒(2)、酸化物触媒(1)、を順次落下させ、各反応管においてそれぞれの層長が下から順にセラミックボール;100mm、酸化物触媒(2);600mm、酸化物触媒(1);2000mmとなるように充填した。
[第二反応器]
反応管数13,000本(反応管径25mm、長さ3000mm)およびこれを覆う熱媒体を流すためのシェルからなる固定床多管式反応器に、その各反応管上部から予熱層として平均粒径8mmの不活性なセラミックボール、酸化物触媒(4)、酸化物触媒(3)、を順次落下させ、各反応管においてそれぞれの層長が下から順にセラミックボール;100mm、酸化物触媒(4);600mm、酸化物触媒(3);2000mmとなるように充填した。
<Reference Example 4>
[First reactor]
In the fixed bed multitubular reactor composed of 13,000 reaction tubes (reaction tube diameter 25 mm, length 3000 mm) and a shell for flowing a heat medium covering the reaction tube, an average particle is formed as a preheating layer from the top of each reaction tube. An inactive ceramic ball having a diameter of 8 mm, the oxide catalyst (2), and the oxide catalyst (1) are dropped sequentially, and the respective layer lengths in the respective reaction tubes are ceramic balls in order from the bottom; 100 mm, the oxide catalyst (2 ); 600 mm, oxide catalyst (1);
[Second reactor]
In the fixed bed multitubular reactor composed of 13,000 reaction tubes (reaction tube diameter 25 mm, length 3000 mm) and a shell for flowing a heat medium covering the reaction tube, an average particle is formed as a preheating layer from the top of each reaction tube. An inactive ceramic ball having a diameter of 8 mm, an oxide catalyst (4), and an oxide catalyst (3) are dropped sequentially, and in each reaction tube, each layer length is in order from the bottom ceramic ball; 100 mm, oxide catalyst (4 ); 600 mm, oxide catalyst (3);

第一反応器の出口と第2反応器の入口とを蒸気で外部から加熱できるようにした内径500mm、長さ5000mmの鋼鉄製パイプで連結した。
[酸化反応]
酸化物触媒を充填した反応器に、プロピレン8.2容量%、酸素15容量%、水蒸気32容量%および窒素44.8容量%からなる混合ガスを第一反応器の下部より第一反応器に充填した触媒に対する空間速度1700h−1(STP)で導入し、第一反応器で生成した反応ガスを第二反応器下部より導入し、接触気相酸化反応を8000時間継続して行った。その反応結果を表4に示す。
<実施例9>
参考例4において、反応の8000時間経過後に、第一反応器の各反応管の上部より酸化物触媒(1)を層長100mm分抜出し、代わりに未使用の酸化物触媒(1)を層長100mm分再充填した後、さらに各反応管の上部より未使用の酸化物触媒(1)を追加充填し触媒層長を50mm延長した。同様に、第二反応器において、各反応管の上部より酸化物触媒(3)を層長100mm分抜出し、代わりに未使用の酸化物触媒(3)を層長100mm分再充填した後、さらに各反応管の上部より未使用の酸化物触媒(3)を追加充填し触媒層長を50mm延長し、反応を4000時間継続して行った(累計経時12000時間)。その触媒交換延長直後(交換・延長後48時間経過時点)および累計経時12000時間における反応結果を表4に示す。
<実施例10>
実施例9において、累計経時12000時間後に、第一反応器の各反応管の上部より酸化物触媒(1)を層長200mm分抜出し、代わりに未使用の酸化物触媒(1)を層長200mm分再充填した。同様に、第二反応器において、各反応管の上部より酸化物触媒(3)を層長200mm分抜出し、代わりに未使用の酸化物触媒(3)を層長200mm分充填した後、さらに反応を4000時間継続して行った(累計経時16000時間)。その触媒交換直後(交換後48時間経過時点)および累計経時16000時間における反応結果を表4に示す。
The outlet of the first reactor and the inlet of the second reactor were connected by a steel pipe having an inner diameter of 500 mm and a length of 5000 mm so that it could be heated from the outside with steam.
[Oxidation reaction]
A mixed gas consisting of 8.2% by volume of propylene, 15% by volume of oxygen, 32% by volume of water vapor and 44.8% by volume of nitrogen is fed into the first reactor from the bottom of the first reactor. The catalyst was introduced at a space velocity of 1700 h −1 (STP) with respect to the packed catalyst, the reaction gas produced in the first reactor was introduced from the lower part of the second reactor, and the catalytic gas phase oxidation reaction was continued for 8000 hours. The reaction results are shown in Table 4.
<Example 9>
In Reference Example 4, after 8000 hours of the reaction, the oxide catalyst (1) was extracted by 100 mm from the upper part of each reaction tube of the first reactor, and an unused oxide catalyst (1) was used instead. After refilling for 100 mm, an unused oxide catalyst (1) was further charged from the top of each reaction tube to extend the catalyst layer length by 50 mm. Similarly, in the second reactor, the oxide catalyst (3) is extracted from the upper part of each reaction tube by a layer length of 100 mm, and after refilling with an unused oxide catalyst (3) by a layer length of 100 mm, An unused oxide catalyst (3) was additionally charged from the upper part of each reaction tube, the catalyst layer length was extended by 50 mm, and the reaction was continued for 4000 hours (total time of 12000 hours). Table 4 shows the reaction results immediately after the catalyst exchange extension (48 hours after the exchange / extension) and at a cumulative time of 12000 hours.
<Example 10>
In Example 9, after a cumulative time of 12000 hours, the oxide catalyst (1) was extracted from the upper part of each reaction tube of the first reactor by a layer length of 200 mm, and an unused oxide catalyst (1) was replaced by a layer length of 200 mm instead. Refilled minutes. Similarly, in the second reactor, the oxide catalyst (3) is extracted from the upper part of each reaction tube by a layer length of 200 mm, and is filled with an unused oxide catalyst (3) by a layer length of 200 mm, and then further reacted. For 4000 hours (cumulative time of 16000 hours). Table 4 shows the reaction results immediately after the catalyst replacement (48 hours after the replacement) and the cumulative time of 16000 hours.

Figure 2011116660
Figure 2011116660

Claims (4)

触媒が充填されてなる固定床反応器を用いて、少なくとも1種の有機化合物を分子状酸素または分子状酸素含有ガスにより接触気相酸化する方法において、反応ガス流れ方向に対してガス出口部に配置された活性の劣化した触媒の少なくとも一部を未使用の触媒に交換および/またはガス出口部に未使用の触媒を追加充填して触媒層長を延長することを特徴とする接触気相酸化方法。   In a method of catalytic vapor phase oxidation of at least one organic compound with molecular oxygen or a molecular oxygen-containing gas using a fixed bed reactor packed with a catalyst, the gas outlet is positioned in the direction of the reaction gas flow. Catalytic gas phase oxidation characterized in that at least a part of the catalyst having a deteriorated activity is replaced with an unused catalyst and / or an unused catalyst is additionally filled in the gas outlet to extend the catalyst layer length. Method. 反応ガス流れ方向に対してガス出口部に配置された触媒の少なくとも1部を未使用の触媒に交換および/またはガス出口部に未使用の触媒を追加充填して触媒層長を延長する際、触媒の交換量または触媒の追加充填量あるいは触媒の交換量および追加充填量の合計量が、触媒層長の1%以上であることを特徴とする請求項1記載の接触気相酸化方法。   When the catalyst layer length is extended by replacing at least one part of the catalyst arranged at the gas outlet with respect to the reaction gas flow direction with an unused catalyst and / or additionally charging an unused catalyst at the gas outlet, 2. The catalytic gas phase oxidation method according to claim 1, wherein the exchange amount of the catalyst or the additional filling amount of the catalyst or the total amount of the exchange amount of the catalyst and the additional filling amount is 1% or more of the catalyst layer length. ガス流れ方向に対してガス出口部に配置された触媒の少なくとも1部を未使用の触媒に交換および/またはガス出口部に未使用の触媒を追加充填して触媒層長を延長する際、触媒の交換量または触媒の追加充填量あるいは触媒の交換量および追加充填量の合計量が、触媒層長の10%以下であることを特徴とする請求項1または2に記載の接触気相酸化方法。   When extending the catalyst layer length by replacing at least one part of the catalyst arranged at the gas outlet with respect to the gas flow direction with an unused catalyst and / or additionally charging the catalyst with an unused catalyst at the gas outlet The catalytic gas phase oxidation method according to claim 1 or 2, wherein the exchange amount of the catalyst, the additional charge amount of the catalyst, or the total amount of the catalyst exchange amount and the additional charge amount is 10% or less of the catalyst layer length. . 接触気相酸化反応が、下記(1)〜(8)からなる群から選ばれた少なくとも1種である、請求項1〜3のいずれかに記載の接触気相酸化方法。
(1)エチレンを気相酸化して酸化エチレンを製造するための接触気相酸化反応
(2)プロピレン、イソブチレン、ターシャリーブタノールおよび/またはメチルターシャリーブチルエーテルを気相酸化して(メタ)アクロレインおよび(メタ)アクリル酸を製造するための接触気相酸化反応
(3)アクロレインを気相酸化してアクリル酸を製造するための接触気相酸化反応
(4)メタクロレインを気相酸化してメタクリル酸を製造するための接触気相酸化反応
(5)オルト−キシレンおよび/またはナフタレンを気相酸化して無水フタル酸を製造するための接触気相酸化反応
(6)ベンゼンを気相酸化して無水マレイン酸を製造するための接触気相酸化反応
(7)n−ブタンを気相酸化して無水マレイン酸を製造するための接触気相酸化反応
(8)プロパンを気相酸化してプロピレン、アクロレインおよび/またはアクリル酸を製造するための接触気相酸化反応
The catalytic vapor phase oxidation method according to any one of claims 1 to 3, wherein the catalytic vapor phase oxidation reaction is at least one selected from the group consisting of the following (1) to (8).
(1) Catalytic gas phase oxidation reaction for producing ethylene oxide by vapor phase oxidation of ethylene (2) Gas phase oxidation of propylene, isobutylene, tertiary butanol and / or methyl tertiary butyl ether to (meth) acrolein and Catalytic gas phase oxidation reaction for producing (meth) acrylic acid (3) Catalytic gas phase oxidation reaction for producing acrylic acid by vapor phase oxidation of acrolein (4) Gas phase oxidation of methacrylic acid to methacrylic acid (5) Catalytic gas phase oxidation reaction for producing phthalic anhydride by gas phase oxidation of ortho-xylene and / or naphthalene (6) Gas phase oxidation of benzene and anhydrous Catalytic gas phase oxidation reaction for producing maleic acid (7) Catalytic gas phase oxidation reaction for producing maleic anhydride by vapor phase oxidation of n-butane (8) propane and gas phase oxidation of propylene, acrolein and / or catalytic gas phase oxidation reaction for the production of acrylic acid
JP2008068704A 2008-03-18 2008-03-18 Catalytic vapor-phase oxidation method Pending JP2011116660A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008068704A JP2011116660A (en) 2008-03-18 2008-03-18 Catalytic vapor-phase oxidation method
PCT/JP2009/055221 WO2009116550A1 (en) 2008-03-18 2009-03-11 Catalytic vapor-phase oxidation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008068704A JP2011116660A (en) 2008-03-18 2008-03-18 Catalytic vapor-phase oxidation method

Publications (1)

Publication Number Publication Date
JP2011116660A true JP2011116660A (en) 2011-06-16

Family

ID=41090950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008068704A Pending JP2011116660A (en) 2008-03-18 2008-03-18 Catalytic vapor-phase oxidation method

Country Status (2)

Country Link
JP (1) JP2011116660A (en)
WO (1) WO2009116550A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105473539A (en) * 2014-04-30 2016-04-06 三菱丽阳株式会社 Method for producing (meth)acrylic acid

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2659839B2 (en) * 1990-01-26 1997-09-30 株式会社日本触媒 Method for producing methacrolein and methacrylic acid
JP5134745B2 (en) * 2001-09-19 2013-01-30 株式会社日本触媒 Acrylic acid production method
US7115776B2 (en) * 2002-07-18 2006-10-03 Basf Aktiengesellschaft Heterogeneously catalyzed gas-phase partial oxidation of at least one organic compound

Also Published As

Publication number Publication date
WO2009116550A1 (en) 2009-09-24

Similar Documents

Publication Publication Date Title
JP6527499B2 (en) Process for producing unsaturated aldehyde and / or unsaturated carboxylic acid
JP2008535784A (en) Process for producing unsaturated aldehyde and / or unsaturated acid
JP5450591B2 (en) Method for producing oxidized organic compound
JPWO2009017074A1 (en) Method for producing acrylic acid by two-stage catalytic gas phase oxidation
JP5106856B2 (en) Process for producing unsaturated aldehyde and / or unsaturated acid
KR20030025184A (en) Process for producing acrylic acid
WO2014014041A1 (en) Production method for unsaturated aldehyde and/or unsaturated carboxylic acid
JPWO2017010159A1 (en) Process for producing unsaturated aldehyde and / or unsaturated carboxylic acid
JP5130562B2 (en) Method for producing methacrolein and / or methacrylic acid
JP5501221B2 (en) Method for producing acrolein and / or acrylic acid
JP2011116660A (en) Catalytic vapor-phase oxidation method
JP6912153B2 (en) Manufacturing method of unsaturated aldehyde
JP6752035B2 (en) How to restart
JP2010241700A (en) Method for producing acrylic acid
JP5590382B2 (en) Process for producing unsaturated aldehyde and / or unsaturated carboxylic acid
JP4163895B2 (en) Method for producing (meth) acrolein and (meth) acrylic acid
JP5433321B2 (en) Method for producing (meth) acrylic acid
JP2009084167A (en) Manufacturing method of acrolein and/or acrylic acid
JP5099903B2 (en) Reaction initiation method for gas-solid contact reaction
JP5902374B2 (en) Acrylic acid production method
JP2005162744A (en) Method for producing unsaturated aldehyde and unsaturated carboxylic acid
JP5107084B2 (en) Method for producing methacrylic acid
JP2008043937A (en) Reactor for contact vapor-phase oxidation and production method for acrylic acid using it
KR100992173B1 (en) Shell-and-tube heat exchanger type reactor and method of producing unsaturated aldehyde and/or unsaturated fatty acid using the same
JP2020152727A (en) Re-startup method