JP2011114094A - Illuminator - Google Patents

Illuminator Download PDF

Info

Publication number
JP2011114094A
JP2011114094A JP2009268073A JP2009268073A JP2011114094A JP 2011114094 A JP2011114094 A JP 2011114094A JP 2009268073 A JP2009268073 A JP 2009268073A JP 2009268073 A JP2009268073 A JP 2009268073A JP 2011114094 A JP2011114094 A JP 2011114094A
Authority
JP
Japan
Prior art keywords
light
light emitting
wavelength conversion
emitting elements
conversion unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009268073A
Other languages
Japanese (ja)
Other versions
JP5374332B2 (en
Inventor
Ryoji Yokoya
良二 横谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Electric Works Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Electric Works Co Ltd filed Critical Panasonic Electric Works Co Ltd
Priority to JP2009268073A priority Critical patent/JP5374332B2/en
Publication of JP2011114094A publication Critical patent/JP2011114094A/en
Application granted granted Critical
Publication of JP5374332B2 publication Critical patent/JP5374332B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Led Device Packages (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an illuminator capable of reducing color unevenness of irradiated light on an irradiated face. <P>SOLUTION: The illuminator 20 comprises: a light emitting apparatus 10 containing LED chips 1 as a plurality of light-emitting elements mounted on one surface 2a of a mounting substrate 2 and a wavelength converting part 3 so disposed as to cover the LED chips 1 and convert the wavelength of light irradiated from the LED chips 1; and a lens 5 as a light distribution controlling part for distribution-controlling light irradiated from the light-emitting apparatus 10 into a predetermined direction where the light-emitting apparatus 10 comprises along a periphery of a light irradiating face 10a, a plurality of light-emitting sites for emitting light which becomes a complementary color relative to a luminescent color of light irradiated from the periphery based on a luminescent color at a central part of the light-emitting face 10a when viewing the side of the light-emitting face 10a of the light-emitting apparatus 10. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、発光素子および波長変換部を備えた発光装置を用いた照明装置に関するものである。   The present invention relates to a lighting device using a light emitting device including a light emitting element and a wavelength conversion unit.

近年、LEDチップなどの半導体発光素子からなる発光素子と、該発光素子を被覆し、該発光素子からの光の少なくとも一部を吸収し波長変換して補色となる蛍光を発する蛍光体を含有した透光性材料からなる波長変換部とを備え、たとえば、発光素子からの青色光と、波長変換部からの黄色光とを混色した白色光を放射する発光装置が開発されている。この種の発光装置は、発光素子の光出力の向上にともない照明装置にまで利用されている。   In recent years, a light-emitting element composed of a semiconductor light-emitting element such as an LED chip and a phosphor that coats the light-emitting element and absorbs at least a part of the light from the light-emitting element and converts the wavelength to emit complementary fluorescence are contained. For example, a light emitting device that includes a wavelength conversion unit made of a translucent material and emits white light in which blue light from a light emitting element and yellow light from a wavelength conversion unit are mixed has been developed. This type of light-emitting device is used as a lighting device as the light output of the light-emitting element is improved.

このような発光装置を応用した照明装置として、たとえば、図7(a),(b)に示すように、実装基板2’上に複数個の発光素子1’と、該発光素子1’の全てを覆うように配置され、発光素子1’から放射された光を波長変換する波長変換部3’と、複数個の発光素子1’の光出射方向上であって、空気層11を介して配置され、発光素子1’および波長変換部3’から放射された光を所定の方向に配光制御するための配光制御部たるレンズ5’とを備えた照明装置20’が知られている(たとえば、特許文献1を参照)。   As an illumination device to which such a light emitting device is applied, for example, as shown in FIGS. 7A and 7B, a plurality of light emitting elements 1 ′ and all of the light emitting elements 1 ′ are mounted on a mounting substrate 2 ′. And a wavelength conversion unit 3 ′ for converting the wavelength of light emitted from the light emitting element 1 ′, and a light emitting direction of the plurality of light emitting elements 1 ′, and disposed via the air layer 11. In addition, there is known an illuminating device 20 ′ including a lens 5 ′ serving as a light distribution control unit for controlling light distribution from a light emitting element 1 ′ and a wavelength conversion unit 3 ′ in a predetermined direction ( For example, see Patent Document 1).

なお、照明装置20’は、実装基板2’上に導体パターン12が形成されており、導体パターン12の端部となる外部接続用端子13から発光素子1’に給電可能に構成されている。ここで、レンズ5’の光入射面5b’および光出射面5a’の形状を変えることにより、配光を変えることができる。   The lighting device 20 ′ has a conductor pattern 12 formed on the mounting substrate 2 ′, and is configured to be able to supply power to the light emitting element 1 ′ from an external connection terminal 13 that is an end of the conductor pattern 12. Here, the light distribution can be changed by changing the shapes of the light incident surface 5b 'and the light emitting surface 5a' of the lens 5 '.

上述の構成の照明装置20’は、たとえば、発光素子1’が青色光を放射するとともに、波長変換部3’によって青色光を波長変換し黄色の蛍光を発させ、発光素子1’から放射された青色光と、波長変換部3’から放射された黄色光とが混色された混色光(白色光)を、空気層11を介して配置された配光制御部たるレンズ5’から外部に放射させる。   In the illuminating device 20 ′ configured as described above, for example, the light emitting element 1 ′ emits blue light, and the wavelength conversion unit 3 ′ converts the wavelength of the blue light to emit yellow fluorescence, which is emitted from the light emitting element 1 ′. The mixed color light (white light) in which the blue light and the yellow light emitted from the wavelength conversion unit 3 ′ are mixed is radiated to the outside from the lens 5 ′ serving as the light distribution control unit disposed via the air layer 11. Let

これによって、照明装置20’は、空気層11と、レンズ5’との屈折率差により、照明装置20’から放射された混色光が、被照射面に届く光量を調整し、被照射面における照度ばらつきを低減することができる、とされている。   As a result, the lighting device 20 ′ adjusts the amount of light that the mixed color light emitted from the lighting device 20 ′ reaches the irradiated surface by the difference in refractive index between the air layer 11 and the lens 5 ′. It is said that illuminance variation can be reduced.

特開2006−190723号公報JP 2006-190723 A

ところで、上述の構成の照明装置20’では、波長変換部3’から放射された光を効率よく配光制御部たるレンズ5’に入射させるため、配光制御部たるレンズ5’の中央部を、円形の波長変換部3’(図7(a)を参照)の中央部に合うように配置してある。そのため、照明装置20’から放射された光の被照射面では、被照射面の中心部に照明装置20’の波長変換部3’における光出射面(図7(c)を参照)の中央部3e’から発した光が照射され、被照射面の周辺部に上記光出射面における周部3d’から発した光が照射される。すなわち、照明装置20’の上記光出射面における発光色が被照射面側に反映される。   By the way, in the illuminating device 20 ′ having the above-described configuration, the light emitted from the wavelength conversion unit 3 ′ is efficiently incident on the lens 5 ′ serving as the light distribution control unit. The circular wavelength conversion unit 3 ′ (see FIG. 7A) is arranged so as to match the central part. Therefore, in the irradiated surface of the light emitted from the illuminating device 20 ′, the central portion of the light emitting surface (see FIG. 7C) in the wavelength conversion unit 3 ′ of the illuminating device 20 ′ is located at the center of the irradiated surface. The light emitted from 3e ′ is irradiated, and the light emitted from the peripheral portion 3d ′ on the light emitting surface is irradiated to the periphery of the irradiated surface. That is, the emission color on the light exit surface of the illumination device 20 'is reflected on the irradiated surface side.

また、波長変換部3’は、複数個の発光素子1’全体を覆うように被覆し、波長変換部3’の光出射面における周部が発光素子1’の外側まで配置されている。   In addition, the wavelength conversion unit 3 ′ covers the plurality of light emitting elements 1 ′ so as to cover the entire light emitting element 1 ′, and the peripheral portion on the light emission surface of the wavelength conversion unit 3 ′ is disposed to the outside of the light emitting element 1 ′.

ここで、発光素子1’は、発光素子1’の厚み方向に沿った光出射方向で波長変換部3’に入射される光だけでなく、発光素子1’の厚み方向に沿った光出射方向からずれた方向にも光を放射する。これにより、波長変換部3’の周部では、波長変換部3’を通過する発光素子1’の厚み方向に沿った光出射方向からずれた光の光路長が、発光素子1’の厚み方向に沿った光出射方向に放射される光の光路長よりも長くなる。照明装置20’から放射される光のうち、波長変換部3’の周部から発する光の発光色は、波長変換部3’を透過する光の光路長が長くなる分だけ波長変換される割合が増加し、青色光の波長成分に対する黄色光の波長成分の割合が大きくなることから、黄色味がかった色温度の低い発光色となる。その結果、照明装置20’から放射された混色光の被照射面では、被照射面の中央部における色を白色とさせても、被照射面の周部における色は、色温度の低い黄色味の強い白色となり、被照射面で色むらが生じる場合がある。   Here, the light emitting element 1 ′ has not only the light incident on the wavelength conversion unit 3 ′ in the light emitting direction along the thickness direction of the light emitting element 1 ′ but also the light emitting direction along the thickness direction of the light emitting element 1 ′. Light is emitted in the direction deviated from. Thereby, in the peripheral part of wavelength conversion part 3 ', the optical path length of the light shifted from the light emission direction along the thickness direction of light emitting element 1' which passes wavelength conversion part 3 'is the thickness direction of light emitting element 1'. It becomes longer than the optical path length of the light radiated | emitted in the light emission direction along. Of the light emitted from the illuminating device 20 ′, the emission color of the light emitted from the peripheral portion of the wavelength conversion unit 3 ′ is wavelength-converted by the length of the optical path length of the light transmitted through the wavelength conversion unit 3 ′. Since the ratio of the wavelength component of the yellow light to the wavelength component of the blue light increases, the emission color with a yellowish color temperature and a low color temperature is obtained. As a result, even if the color of the mixed color light emitted from the lighting device 20 ′ is white at the center of the irradiated surface, the color at the peripheral portion of the irradiated surface is yellowish with a low color temperature. The color of the surface to be irradiated may become uneven.

照明装置20’は、被照射面での照射光の発光色の均一性が、より強く求められており、上述の照明装置20’の構成だけでは十分ではなく、更なる改良が求められている。   In the illumination device 20 ′, the uniformity of the emission color of the irradiation light on the irradiated surface is more strongly required, and the configuration of the illumination device 20 ′ described above is not sufficient, and further improvement is required. .

本発明は上記事由に鑑みて為されたものであり、その目的は、照明装置から放射された光の被照射面における色むらを、低減させることが可能な照明装置を提供することにある。   This invention is made | formed in view of the said reason, The objective is to provide the illuminating device which can reduce the color nonuniformity in the to-be-irradiated surface of the light radiated | emitted from the illuminating device.

請求項1の発明は、実装基板の一表面上に実装された複数個の発光素子および該発光素子を覆うように配置され、前記発光素子から放射された光を波長変換する波長変換部を備えた発光装置と、該発光装置から放射された光を所定の方向に配光制御する配光制御部とを備えた照明装置であって、前記発光装置は、該発光装置の光出射面側を見て、該光出射面の中央部の発光色を基準として、前記光出射面の周部から放射される光の発光色に対する補色となる光を発する複数個の発光部位を、前記周部に沿って備えてなることを特徴とする。   The invention according to claim 1 includes a plurality of light emitting elements mounted on one surface of the mounting substrate, a wavelength conversion unit arranged to cover the light emitting elements, and wavelength-converting light emitted from the light emitting elements. And a light distribution control unit that controls light distribution of the light emitted from the light emitting device in a predetermined direction. The light emitting device has a light emitting surface side of the light emitting device. As seen from the above, a plurality of light emitting portions that emit light that is complementary to the light emission color of the light emitted from the peripheral portion of the light emitting surface on the basis of the light emitting color at the central portion of the light emitting surface. It is characterized by being provided along.

この発明によれば、発光装置は、該発光装置の光出射面側を見て、該光出射面の中央部の発光色を基準として、前記光出射面の周部から放射される光の発光色に対する補色となる光を発する複数個の発光部位を、前記周部に備えてなることにより、前記光出射面の前記周部から放射される光の発光色を前記中央部から放射された光の発光色に近づけることができ、前記光出射面の発光色の均一性をより向上させることが可能となる。したがって、照明装置から放射された光は、被照射面における色むらを低減することが可能となる。   According to this invention, the light emitting device emits light emitted from the peripheral portion of the light emitting surface with reference to the light emission color at the center of the light emitting surface when viewed from the light emitting surface side of the light emitting device. The light emitted from the central portion is emitted from the peripheral portion of the light emitting surface by providing the peripheral portion with a plurality of light emitting portions that emit light that is complementary to the color. Thus, it is possible to improve the uniformity of the emission color of the light exit surface. Therefore, the light emitted from the lighting device can reduce color unevenness on the irradiated surface.

請求項2の発明は、請求項1に記載の発明において、複数個の前記発光部位は、前記周部に沿って均等に配置されてなることを特徴とする。   According to a second aspect of the present invention, in the first aspect of the present invention, the plurality of light emitting portions are arranged uniformly along the peripheral portion.

この発明によれば、複数個の前記発光部位は、前記周部に沿って均等に配置されてなることにより、前記光出射面の前記周部から放射される光の発光色を前記中央部から放射された光の発光色にさらに近づけることができ、前記光出射面の発光色の均一性をより向上させることが可能となる。したがって、照明装置から放射された光は、被照射面における色むらを、より低減することが可能となる。   According to the present invention, the plurality of light emitting portions are evenly arranged along the peripheral portion, so that the emission color of light emitted from the peripheral portion of the light emitting surface is changed from the central portion. It can be made closer to the emission color of the emitted light, and the uniformity of the emission color of the light exit surface can be further improved. Therefore, the light emitted from the lighting device can further reduce the color unevenness on the irradiated surface.

請求項3の発明は、請求項1または請求項2に記載の発明において、前記発光部位は、複数個の前記発光素子のうち、前記波長変換部で覆われていない複数個の前記発光素子の一部を用いて構成されていることを特徴とする。   According to a third aspect of the present invention, in the first or second aspect of the present invention, the light emitting portion is a plurality of the light emitting elements that are not covered with the wavelength conversion unit among the plurality of light emitting elements. It is characterized by using a part.

この発明によれば、前記発光部位は、複数個の前記発光素子のうち、前記波長変換部で覆われていない複数個の前記発光素子の一部で構成することにより、比較的簡単な照明装置の構成で、被照射面における色むらを低減することができる。照明装置は、たとえば、複数個の前記発光素子のうち、一部の前記発光素子に前記波長変換部を単に覆わないで形成させるという製造工程により、被照射面での色むらが少く、別途に前記発光部位を形成させるものと比較して、より低い製造コストで製造することができる。   According to the present invention, the light emitting part is constituted by a part of the plurality of light emitting elements that are not covered with the wavelength conversion unit among the plurality of light emitting elements, so that a relatively simple illumination device is provided. With this configuration, it is possible to reduce color unevenness on the irradiated surface. For example, the illumination device has a small unevenness of color on the irradiated surface due to a manufacturing process in which, among the plurality of light emitting elements, a part of the light emitting elements is formed without simply covering the wavelength conversion unit. Compared with what forms the said light emission site | part, it can manufacture at a lower manufacturing cost.

請求項4の発明は、請求項1または請求項2に記載の発明において、前記発光部位は、複数個の前記発光素子を覆う前記波長変換部の厚みが、複数個の前記発光素子のうち、一部の前記発光素子上で薄くなる凹部を備えてなることを特徴とする。   The invention according to claim 4 is the invention according to claim 1 or 2, wherein the light emitting portion has a thickness of the wavelength conversion unit covering the plurality of light emitting elements, among the plurality of light emitting elements. It is characterized by comprising a concave portion which becomes thin on a part of the light emitting elements.

この発明によれば、前記発光部位は、複数個の前記発光素子を覆う前記波長変換部の厚みが、複数個の前記発光素子のうち、一部の前記発光素子上で薄くなる凹部を備えてなることで、前記波長変換部の厚みが部分的に薄くなり、前記発光装置の前記光出射面から放射される光の発光色が変わるため、照明装置から放射された光の被照射面における色むらを低減させることができる。   According to the present invention, the light emitting portion includes a recess in which the thickness of the wavelength conversion portion covering the plurality of light emitting elements is reduced on a part of the light emitting elements among the plurality of light emitting elements. As a result, the thickness of the wavelength conversion part is partially reduced, and the emission color of light emitted from the light emitting surface of the light emitting device changes, so that the color on the irradiated surface of the light emitted from the illumination device is changed. Unevenness can be reduced.

また、前記発光部位は、前記波長変換部によって複数個の前記発光素子それぞれを被覆して保護されているため、前記発光素子の信頼性を向上させることができる。さらに、照明装置は、前記凹部の深さを適宜設定することで前記発光部位の発光色を調整することができる。そのため、照明装置は、複数個の前記発光素子を利用して、前記発光部位を形成させた場合においても、前記発光部位の発光素子と、それ以外の発光素子とを前記実装基板の導体パターンなどを別途にそれぞれ分離して形成する必要もなく、前記実装基板の導電パターンなどからなる回路構成を簡素化して信頼性を向上させることもできる。   In addition, since the light emitting part is protected by covering each of the plurality of light emitting elements by the wavelength conversion unit, the reliability of the light emitting element can be improved. Furthermore, the illuminating device can adjust the luminescent color of the said light emission site | part by setting the depth of the said recessed part suitably. Therefore, even when the light emitting part is formed by using a plurality of the light emitting elements, the lighting device connects the light emitting element of the light emitting part and the other light emitting elements to the conductor pattern of the mounting substrate, etc. There is no need to separately form each of the components, and the circuit configuration including the conductive pattern of the mounting substrate can be simplified to improve the reliability.

請求項5の発明は、請求項4に記載の発明において、前記凹部は、前記波長変換部の厚みが連続的に変化するテーパ部を備えてなることを特徴とする。   According to a fifth aspect of the present invention, in the invention according to the fourth aspect, the concave portion includes a tapered portion in which the thickness of the wavelength converting portion continuously changes.

この発明によれば、前記凹部は、前記波長変換部の厚みが連続的に変化するテーパ部を備えてなるため、前記発光部位における前記波長変換部で、波長変換される光の量を連続的に変化させ、前記光出射面における色むらを、より低減させることが可能となる。そのため、照明装置は、照明装置から放射された光の被照射面における色むらを、より低減させることができる。   According to the present invention, the concave portion includes a tapered portion in which the thickness of the wavelength conversion portion continuously changes. Therefore, the amount of light that is wavelength-converted by the wavelength conversion portion in the light emitting portion is continuously increased. Thus, the color unevenness on the light exit surface can be further reduced. Therefore, the illuminating device can further reduce color unevenness on the irradiated surface of the light emitted from the illuminating device.

請求項6の発明は、請求項1ないし請求項5のいずれか1項に記載の発明において、前記発光部位は、複数個の前記発光素子のうち、一部の発光素子を用いており、前記発光部位の前記発光素子に通電するための電気回路部を、他の前記発光素子に通電するための電気回路部と分離して構成してなることを特徴とする。   The invention according to claim 6 is the invention according to any one of claims 1 to 5, wherein the light emitting part uses a part of the plurality of light emitting elements, An electric circuit portion for energizing the light emitting element in the light emitting part is configured separately from an electric circuit portion for energizing the other light emitting elements.

この発明によれば、前記発光部位は、複数個の前記発光素子のうち、一部の発光素子を用いており、前記発光部位の前記発光素子に通電するための電気回路部を、他の前記発光素子に通電するための電気回路部と分離して構成することで、前記発光部の前記発光素子の駆動電流などを、他の前記発光素子とは別途に調整することが可能となり、前記光出射面の色むらを、さらに低減させることが可能となる。そのため、照明装置は、照明装置から放射された光の被照射面における色むらを、さらに低減させることができる。   According to this invention, the light emitting part uses a part of the light emitting elements among the plurality of light emitting elements, and the electric circuit part for energizing the light emitting element in the light emitting part is provided with the other light emitting elements. By being configured separately from the electric circuit unit for energizing the light emitting element, the drive current of the light emitting element of the light emitting unit can be adjusted separately from the other light emitting elements, and the light It is possible to further reduce the color unevenness of the emission surface. Therefore, the lighting device can further reduce color unevenness on the irradiated surface of the light emitted from the lighting device.

請求項1の発明では、発光装置が、該発光装置の光出射面側を見て、該光出射面の中央部の発光色を基準として、前記光出射面の周部から放射される光の発光色に対する補色となる光を発する発光部位を、前記周部に沿って備えてなることにより、照明装置から放射された光の被照射面における色むらを低減させることが可能な照明装置を提供できるという顕著な効果がある。   In the first aspect of the present invention, the light emitting device, when viewed from the light emitting surface side of the light emitting device, has the light emitted from the peripheral portion of the light emitting surface with reference to the emission color of the central portion of the light emitting surface. Provided is an illuminating device capable of reducing color unevenness on a surface to be irradiated with light emitted from the illuminating device by providing a light emitting portion that emits light complementary to the luminescent color along the peripheral portion. There is a remarkable effect of being able to.

実施形態1の照明装置を示し、(a)は概略断面図、(b)は要部の概略拡大平面図、(c)は要部の概略拡大断面図である。The illuminating device of Embodiment 1 is shown, (a) is a schematic sectional drawing, (b) is a schematic enlarged plan view of the principal part, (c) is a schematic enlarged sectional view of the principal part. 同上の要部説明図である。It is principal part explanatory drawing same as the above. 同上の他の要部構成を示し、(a)は概略平面図、(b)は概略断面図である。The other principal part structure same as the above is shown, (a) is a schematic plan view, (b) is a schematic sectional drawing. 同上の別の要部構成を示し、(a)は概略平面図、(b)は概略断面図である。The other principal part structure same as the above is shown, (a) is a schematic plan view, (b) is a schematic sectional drawing. 実施形態2の照明装置の要部構成を示し、(a)は概略平面図、(b)は概略断面図である。The principal part structure of the illuminating device of Embodiment 2 is shown, (a) is a schematic plan view, (b) is a schematic sectional drawing. 実施形態3の照明装置の要部構成を示し、(a)は概略平面図、(b)は概略断面図である。The principal part structure of the illuminating device of Embodiment 3 is shown, (a) is a schematic plan view, (b) is a schematic sectional drawing. 比較のための照明装置を示し、(a)は平面図、(b)は断面図、(c)は要部における例示である。The lighting apparatus for a comparison is shown, (a) is a top view, (b) is sectional drawing, (c) is the illustration in the principal part.

(実施形態1)
以下、本実施形態の照明装置20を図1から図4に基づいて説明する。なお、図1から図4において同じ部材に対しては、同じ番号を付して重複する説明を省略している。
(Embodiment 1)
Hereinafter, the illuminating device 20 of this embodiment is demonstrated based on FIGS. 1-4. In FIG. 1 to FIG. 4, the same members are denoted by the same reference numerals and redundant description is omitted.

本実施形態の図1(a)に示す照明装置20は、実装基板2の一表面2a上に実装された複数個の発光素子たるLEDチップ1および該LEDチップ1を覆うように配置され、LEDチップ1から放射された光を波長変換する波長変換部3を備えた発光装置10と、発光装置10のLEDチップ1および波長変換部3から放射された光の混色光を、前記発光装置10の光軸Xに合わせた所定の方向に配光制御する配光制御部たるレンズ5とを備えている。   A lighting device 20 shown in FIG. 1A of the present embodiment is arranged so as to cover a plurality of LED chips 1 that are light emitting elements mounted on one surface 2a of the mounting substrate 2 and the LED chips 1. A light-emitting device 10 having a wavelength conversion unit 3 that converts the wavelength of light emitted from the chip 1 and a mixed color light emitted from the LED chip 1 and the wavelength conversion unit 3 of the light-emitting device 10 And a lens 5 serving as a light distribution control unit that performs light distribution control in a predetermined direction according to the optical axis X.

ここで、図1(b),(c)に、本実施形態の照明装置20における発光装置10の拡大図を例示しており、発光装置10は、発光装置10の光出射面10a側を見て、該光出射面10aの中央部の発光色を基準として、前記光出射面10aの周部から放射される光の発光色に対する補色となる光を発する複数個の発光部位を、前記周部に沿って設けている。ここでは、前記発光部位は、波長変換部3の切り欠き部3aに配置されたLEDチップ1で構成されることになる。   Here, FIGS. 1B and 1C illustrate an enlarged view of the light emitting device 10 in the illumination device 20 of the present embodiment, and the light emitting device 10 looks at the light emitting surface 10a side of the light emitting device 10. A plurality of light emitting portions that emit light that is complementary to the emission color of the light emitted from the peripheral portion of the light emitting surface 10a on the basis of the emission color of the central portion of the light emitting surface 10a. It is provided along. Here, the light emitting part is constituted by the LED chip 1 arranged in the cutout part 3 a of the wavelength conversion part 3.

より具体的には、本実施形態の照明装置20は、図1(a)の断面図に示すように、照明装置20の器具本体6が有底円筒状に形成されており、器具本体6の内底面に配置させた発光装置10と、器具本体6内に収納され、発光装置10から放出された混色光を所定の方向に配光制御する配光制御部たるレンズ5とを備えている。なお、器具本体6は、金属材料(たとえば、Alなど)により形成している。   More specifically, as shown in the cross-sectional view of FIG. 1A, the lighting device 20 of the present embodiment is configured such that the tool body 6 of the lighting device 20 is formed in a bottomed cylindrical shape. A light emitting device 10 disposed on the inner bottom surface and a lens 5 serving as a light distribution control unit that is housed in the fixture body 6 and controls light distribution of the mixed color light emitted from the light emitting device 10 in a predetermined direction. The instrument body 6 is made of a metal material (for example, Al).

また、レンズ5は、発光装置10と対向する面側が窪み、内部に発光装置10側に突出したレンズ5の入射面5bとなる凸状部を備え、レンズ5の外周面となる側面5cを用いて椀状に形成されている。これにより、レンズ5は、発光装置10からレンズ5へ入射する入射光を、レンズ5の入射面5bおよび出射面5aでの屈折作用、およびレンズ5の側面5cでの全反射作用により、狭角に配光制御してレンズ5の出射面5aから放射することが可能な非対称レンズとしている。このようなレンズ5の焦点F(図2を参照)は、発光装置10の光出射面10aにおける中心あるいは、その近傍に設定することができる。   In addition, the lens 5 has a concave surface on the side facing the light emitting device 10, and includes a convex portion serving as the entrance surface 5 b of the lens 5 projecting toward the light emitting device 10. It is formed like a bowl. As a result, the lens 5 narrows the incident light incident on the lens 5 from the light emitting device 10 by a refracting action on the entrance surface 5b and the exit surface 5a of the lens 5 and a total reflection action on the side surface 5c of the lens 5. Thus, the asymmetric lens can be radiated from the exit surface 5a of the lens 5 by controlling the light distribution. The focal point F (see FIG. 2) of the lens 5 can be set at the center of the light emitting surface 10a of the light emitting device 10 or in the vicinity thereof.

発光装置10から放射された光は、焦点Fの近傍から放射された光(図2中の実線の矢印を参照)と、発光装置10の光出射面10aにおける周部から放射された光(図2中の破線の矢印を参照)で例示され、レンズ5を介して照明装置20の外部に放射されることになる。   The light emitted from the light emitting device 10 includes light emitted from the vicinity of the focal point F (see the solid line arrow in FIG. 2) and light emitted from the peripheral portion of the light emitting surface 10a of the light emitting device 10 (FIG. 2 (see the broken-line arrows in FIG. 2), and is emitted to the outside of the illumination device 20 via the lens 5.

ここで、照明装置20の発光装置10は、複数個のLEDチップ1が実装基板2の一表面2a上に実装されており、発光装置10が配線基板7上に実装されている。複数個のLEDチップ1は、実装基板2の一表面2aに設けられた導体パターン(図示していない)と電気的に接続させている。同様に、発光装置10は、配線基板7上で配線パターン(図示していない)と電気的に接続させている。発光装置10の実装基板2は、配線基板7に、はんだリフローにより実装することができ、実装基板2の導体パターンに設けられた電極と、配線基板7の配線パターンに設けられた電極とが、たとえば、AuワイヤやCuワイヤなどの金属ワイヤ(図示していない)で接続されている。   Here, in the light emitting device 10 of the lighting device 20, a plurality of LED chips 1 are mounted on one surface 2 a of the mounting substrate 2, and the light emitting device 10 is mounted on the wiring substrate 7. The plurality of LED chips 1 are electrically connected to a conductor pattern (not shown) provided on one surface 2 a of the mounting substrate 2. Similarly, the light emitting device 10 is electrically connected to a wiring pattern (not shown) on the wiring board 7. The mounting substrate 2 of the light emitting device 10 can be mounted on the wiring substrate 7 by solder reflow, and an electrode provided on the conductor pattern of the mounting substrate 2 and an electrode provided on the wiring pattern of the wiring substrate 7 are: For example, they are connected by metal wires (not shown) such as Au wires and Cu wires.

また、配線基板7は、照明装置20の器具本体6の内底面に複数本の固定螺子61により、固定させている。すなわち、発光装置10が実装された配線基板7は、たとえば、長方形状の配線基板7の四隅となる隅部で、発光装置10が実装された一表面2a側から器具本体6の内底面に対して複数本の固定螺子61により、器具本体6の内底面に設けられた螺子孔に螺子止されている。また、照明装置20の内部に配置された発光装置10は、照明装置20の器具本体6に設けられた貫通孔を通して外部に導出した電源コード62から、配線基板7を介して給電できるように電気的に接続されている。   The wiring board 7 is fixed to the inner bottom surface of the fixture body 6 of the lighting device 20 by a plurality of fixing screws 61. That is, the wiring board 7 on which the light emitting device 10 is mounted is, for example, at the corners that are the four corners of the rectangular wiring board 7 from the one surface 2a side on which the light emitting device 10 is mounted to the inner bottom surface of the fixture body 6. A plurality of fixing screws 61 are screwed into screw holes provided on the inner bottom surface of the instrument body 6. In addition, the light emitting device 10 arranged inside the lighting device 20 is electrically supplied through the wiring board 7 from the power cord 62 led out through a through hole provided in the fixture body 6 of the lighting device 20. Connected.

したがって、照明装置20は、照明装置20の外部に設けられた電源コード62から照明装置20の内部に配置された発光装置10に給電することで、実装基板2の導体パターンや配線基板7の配線パターンなどの各LEDチップ1に通電するための電気回路部を介して発光することができる。なお、本実施形態の照明装置20の前記電気回路部は、電源(図示していない)により電力を供給され、各LEDチップ1それぞれの光出力を各別に制御可能な可変抵抗などを有する制御ユニット(図示していない)を備えていてもよい。   Therefore, the illuminating device 20 feeds power from the power cord 62 provided outside the illuminating device 20 to the light emitting device 10 disposed inside the illuminating device 20, so that the conductor pattern of the mounting substrate 2 and the wiring of the wiring substrate 7 are provided. Light can be emitted through an electric circuit unit for energizing each LED chip 1 such as a pattern. In addition, the electric circuit unit of the lighting device 20 of the present embodiment is supplied with power from a power source (not shown), and has a control unit having a variable resistor that can individually control the light output of each LED chip 1. (Not shown) may be provided.

本実施形態の照明装置20は、器具本体6の開口縁と、レンズ5の縁から外方へ延設された外鍔部5dとを狭持する形で保持する円環状の保持枠8を備えている。ここで、保持枠8は、器具本体6に対して複数本の取付螺子81により固定されている。   The illuminating device 20 of the present embodiment includes an annular holding frame 8 that holds the opening edge of the instrument body 6 and the outer flange portion 5d extending outward from the edge of the lens 5 in a sandwiched manner. ing. Here, the holding frame 8 is fixed to the instrument body 6 by a plurality of mounting screws 81.

また、本実施形態の照明装置20に用いられる発光装置10は、図1(b),(c)に示すごとく矩形平板状のアルミナセラミック基板上にAuでメッキされた一対の導体パターン(図示していない)が形成された実装基板2を用いている。実装基板2の一対の導体パターンは、複数個のLEDチップ1の各電極と、それぞれ導電性部材(たとえば、Auバンプ、AuSnやAgペーストなど)を介して電気的に接続させている。発光装置10のLEDチップ1は、サファイア基板上にn型の窒化ガリウム系化合物半導体層、Inが含有された窒化ガリウム系化合物半導体からなる発光層、p型の窒化ガリウム系化合物半導体層が順に積層されている。   Further, the light emitting device 10 used in the lighting device 20 of the present embodiment has a pair of conductor patterns (not shown) plated with Au on a rectangular flat alumina ceramic substrate as shown in FIGS. The mounting substrate 2 on which is not formed) is used. The pair of conductor patterns on the mounting substrate 2 are electrically connected to the electrodes of the plurality of LED chips 1 via conductive members (for example, Au bumps, AuSn, Ag paste, etc.). The LED chip 1 of the light-emitting device 10 has an n-type gallium nitride compound semiconductor layer, a light-emitting layer made of a gallium nitride compound semiconductor containing In, and a p-type gallium nitride compound semiconductor layer sequentially stacked on a sapphire substrate. Has been.

LEDチップ1は、前記発光層および前記p型の窒化ガリウム系化合物半導体層の一部が除去されて前記n型の窒化ガリウム系化合物半導体層が部分的に露出しており、同一平面側にp型およびn型の各窒化ガリウム系化合物半導体層と電気的に接続されるアノード電極およびカソード電極がそれぞれ設けられている。LEDチップ1は、LEDチップ1の同一平面側に設けられた前記アノード電極および前記カソード電極を、実装基板2の一対の導体パターン上のAuバンプにフリップチップ実装により給電可能に実装している。   In the LED chip 1, the n-type gallium nitride compound semiconductor layer is partially exposed by removing a part of the light emitting layer and the p-type gallium nitride compound semiconductor layer, and the p-type p An anode electrode and a cathode electrode that are electrically connected to each of the n-type and n-type gallium nitride compound semiconductor layers are provided. In the LED chip 1, the anode electrode and the cathode electrode provided on the same plane side of the LED chip 1 are mounted on an Au bump on a pair of conductor patterns of the mounting substrate 2 so that power can be supplied by flip chip mounting.

実装基板2の一表面2a上に実装された各LEDチップ1は、通電による発光で、ピーク波長が、たとえば、460nmの青色光をそれぞれ放射する。このようなLEDチップ1の外形は、たとえば、大きさが約1mm角で、厚みが約100μmとすることができる。   Each LED chip 1 mounted on one surface 2a of the mounting substrate 2 emits blue light having a peak wavelength of, for example, 460 nm by light emission by energization. The outer shape of such an LED chip 1 can be, for example, a size of about 1 mm square and a thickness of about 100 μm.

また、波長変換部3は、LEDチップ1から放射された青色光を補色となる黄色の蛍光に波長変換することが発光可能な黄色蛍光体(たとえば、Euで付活された(Sr,Ba)SiOやCeで付活されたYAl12など)をバインダーとなる屈折率が約1.2から約1.5程度の透光性耐熱樹脂(たとえば、シリコーン樹脂)中に均一に分散させ、複数個のLEDチップ1を覆うように配置されている。 Further, the wavelength conversion unit 3 is a yellow phosphor capable of emitting light capable of converting the wavelength of the blue light emitted from the LED chip 1 into a complementary yellow fluorescence (for example, activated by Eu (Sr, Ba)). 2 SiO 4 or Y 3 Al 5 O 12 activated with Ce) is uniformly used in a translucent heat-resistant resin (eg, silicone resin) having a refractive index of about 1.2 to about 1.5. Are arranged so as to cover the plurality of LED chips 1.

ここで、発光装置10は、図1(b)で示す複数個(ここでは、40個)の青色光を発光するLEDチップ1を、実装基板2の一表面2a上に仮想の略円形の範囲内で収納できるように略均一の間隔で配置させている。また、LEDチップ1を被覆する波長変換部3は、上記光出射面10aの周部となる外周端部に複数個のLEDチップ1の一部を露出させるため、複数個(ここでは、8個)の切り欠き部3aを有している。したがって、発光装置10は、波長変換部3の複数個の切り欠き部3aごとに、上記光出射面10aの周部に沿って略均等に等間隔で配置させた複数個のLEDチップ1の一部(ここでは、8個)が波長変換部3から露出している。   Here, the light-emitting device 10 includes a plurality of (here, 40) LED chips 1 that emit blue light shown in FIG. 1B on a surface 2a of the mounting substrate 2 in a virtually circular range. They are arranged at substantially uniform intervals so that they can be stored inside. In addition, the wavelength conversion unit 3 that covers the LED chip 1 has a plurality of (here, eight) in order to expose a part of the plurality of LED chips 1 at the outer peripheral end portion that becomes the peripheral portion of the light emitting surface 10a. ) Notch 3a. Therefore, the light-emitting device 10 includes a plurality of LED chips 1 that are arranged at approximately equal intervals along the peripheral portion of the light emitting surface 10a for each of the plurality of notches 3a of the wavelength conversion unit 3. Parts (eight in this case) are exposed from the wavelength converter 3.

なお、発光装置10の実装基板2の一表面2a上に設けられた導体パターンは、発光装置10の波長変換部3の切り欠き部3aに設けられた各LEDチップ1と、波長変換部3で覆われた各LEDチップ1とが、それぞれ別々に分離して点灯できるように、各々の前記電気回路部として形成している。また、発光装置10の波長変換部3の切り欠き部3aに配置されるLEDチップ1は、照明装置20の配線基板7に設けた可変抵抗(図示していない)などを用いて電流量を調整することができるようにも構成している。   The conductor pattern provided on the one surface 2 a of the mounting substrate 2 of the light emitting device 10 is formed by the LED chip 1 provided in the notch 3 a of the wavelength converting unit 3 of the light emitting device 10 and the wavelength converting unit 3. Each of the covered LED chips 1 is formed as each of the electric circuit portions so that it can be separately lit. Further, the LED chip 1 disposed in the notch 3 a of the wavelength conversion unit 3 of the light emitting device 10 adjusts the amount of current using a variable resistor (not shown) provided on the wiring board 7 of the lighting device 20. Also configured to be able to.

以下、本実施形態の照明装置20に用いられる各構成について詳述する。   Hereinafter, each structure used for the illuminating device 20 of this embodiment is explained in full detail.

本実施形態1の照明装置20における発光装置10に用いられる発光素子たるLEDチップ1は、通電により光を発光可能なものである。発光素子の放射する光は、たとえば、可視光のうちピーク波長が450nmから470nmの範囲にある青色光とすることができるが、青色光のみに限定するものではなく、他の波長の光や波長変換部3を効率よく励起させるために紫外線であってもよい。発光素子たるLEDチップ1としては、たとえば、サファイア基板、スピネル基板、窒化ガリウム基板、酸化亜鉛基板や炭化シリコン基板などの結晶成長基板上にn型の窒化ガリウム系化合物半導体層、多重量子井戸構造や単一量子井戸構造の発光層となるインジウムが含有された窒化ガリウム系化合物体層、p型の窒化ガリウム系化合物半導体層を順に積層させたものが挙げられる。   The LED chip 1 which is a light emitting element used in the light emitting device 10 in the lighting device 20 of the first embodiment can emit light by energization. The light emitted from the light-emitting element can be, for example, blue light having a peak wavelength in the range of 450 nm to 470 nm of visible light, but is not limited to blue light. Ultraviolet light may be used to efficiently excite the conversion unit 3. As the LED chip 1 which is a light emitting element, for example, an n-type gallium nitride compound semiconductor layer, a multiple quantum well structure or the like is formed on a crystal growth substrate such as a sapphire substrate, a spinel substrate, a gallium nitride substrate, a zinc oxide substrate or a silicon carbide substrate. For example, a gallium nitride compound body layer containing indium and a p-type gallium nitride compound semiconductor layer, which are light emitting layers having a single quantum well structure, are sequentially stacked.

なお、結晶成長基板として絶縁性基板を用いたLEDチップ1は、前記p型の窒化ガリウム系半導体層側から前記n型の窒化ガリウム系化合物半導体層の一部を露出させることにより、同一平面側でアノード電極およびカソード電極をそれぞれ形成することができる。また、導電性基板を用いたLEDチップ1は、LEDチップ1の厚み方向の両面側にアノード電極やカソード電極を形成すればよい。   The LED chip 1 using an insulating substrate as a crystal growth substrate is exposed on the same plane side by exposing a part of the n-type gallium nitride compound semiconductor layer from the p-type gallium nitride semiconductor layer side. Thus, an anode electrode and a cathode electrode can be formed respectively. The LED chip 1 using a conductive substrate may be formed with an anode electrode and a cathode electrode on both sides in the thickness direction of the LED chip 1.

LEDチップ1に設けられる前記アノード電極や前記カソード電極は、Ni膜とAu膜との積層膜、Al膜、ITO膜など窒化ガリウム系化合物半導体層などと良好なオーミック特性が得られる材料であれば、限定されるものではない。   The anode electrode or the cathode electrode provided on the LED chip 1 is a material that can obtain good ohmic characteristics with a laminated film of a Ni film and an Au film, a gallium nitride compound semiconductor layer such as an Al film, an ITO film, or the like. It is not limited.

同一平面側に前記アノード電極および前記カソード電極が設けられたLEDチップ1は、実装基板2の一表面2a上の一対の導体パターンにAuバンプなどの金属バンプを用いてフリップチップ実装させることができる。また、LEDチップ1として、厚み方向の両面側に前記アノード電極や前記カソード電極が形成されたLEDチップ1を用いる場合は、LEDチップ1が実装される実装基板2の一表面2a上に形成された一対の導体パターンのうちの一方の導体パターンと、LEDチップ1の前記アノード電極あるいは前記カソード電極とを導電性部材(たとえば、AuSnやAgペーストなど)を介してダイボンディングなどして電気的に接続させる。また、LEDチップ1の光取り出し面側の他方の前記カソード電極あるいは前記アノード電極は、ワイヤ(たとえば、金線やアルミニウム線など)を介して他方の導体パターンと電気的に接続させればよい。   The LED chip 1 in which the anode electrode and the cathode electrode are provided on the same plane side can be flip-chip mounted on a pair of conductor patterns on one surface 2a of the mounting substrate 2 using metal bumps such as Au bumps. . When the LED chip 1 having the anode electrode and the cathode electrode formed on both sides in the thickness direction is used as the LED chip 1, the LED chip 1 is formed on one surface 2a of the mounting substrate 2 on which the LED chip 1 is mounted. One conductor pattern of the pair of conductor patterns and the anode electrode or the cathode electrode of the LED chip 1 are electrically bonded by die bonding via a conductive member (for example, AuSn or Ag paste). Connect. The other cathode electrode or anode electrode on the light extraction surface side of the LED chip 1 may be electrically connected to the other conductor pattern via a wire (for example, a gold wire or an aluminum wire).

本実施形態の発光装置10における複数個のLEDチップ1は、配光制御部たるレンズ5の入射面5aの形状に合わせて、発光装置10の上記光出射面10aを見て、実装基板2の上記一表面2a上において、たとえば、円形状の範囲の内側に複数個のLEDチップ1を略均等に等間隔で実装させればよい。このような、複数個のLEDチップ1は、実装基板2に設けられた導体パターンを介して各LEDチップ1をそれぞれ適宜に直列、並列や直並列に電気的に接続させればよい。   The plurality of LED chips 1 in the light emitting device 10 of the present embodiment are arranged on the mounting substrate 2 by looking at the light emitting surface 10a of the light emitting device 10 according to the shape of the incident surface 5a of the lens 5 that is a light distribution control unit. On the one surface 2a, for example, a plurality of LED chips 1 may be mounted substantially equally at regular intervals inside a circular range. Such a plurality of LED chips 1 may be electrically connected in series, parallel, or series-parallel to each LED chip 1 through a conductor pattern provided on the mounting substrate 2.

次に、本実施形態の照明装置20に用いられる発光装置10の実装基板2は、複数個の発光素子たるLEDチップ1がそれぞれ実装可能なものである。また、実装基板2は、実装基板2の一表面2a上の一対の導体パターン(たとえば、最表面がAuでメッキされた導体パターン)を利用して、各LEDチップ1の通電経路を構成してもよい。このような実装基板2は、アルミナや窒化アルミニウムなどを用いたセラミック基板、Cu、AlやFeなどの金属材料を用いた金属ベース基板やガラスエポキシ樹脂基板などを用いることができる。実装基板2としてアルミナセラミック基板を用いた場合は、導体パターンを形成しやすく、ガラスエポキシ樹脂基板などと比較して熱伝導率も高く、LEDチップ1の点灯で生じた熱を外部に効率よく放熱させ発光装置10の放熱性を高めることができる。   Next, the mounting substrate 2 of the light emitting device 10 used in the lighting device 20 of the present embodiment can mount the LED chips 1 as a plurality of light emitting elements. Further, the mounting substrate 2 forms a current-carrying path for each LED chip 1 by using a pair of conductor patterns (for example, a conductor pattern plated with Au on the outermost surface) on one surface 2a of the mounting substrate 2. Also good. As such a mounting substrate 2, a ceramic substrate using alumina, aluminum nitride, or the like, a metal base substrate using a metal material such as Cu, Al, or Fe, a glass epoxy resin substrate, or the like can be used. When an alumina ceramic substrate is used as the mounting substrate 2, it is easy to form a conductor pattern, has higher thermal conductivity than a glass epoxy resin substrate, etc., and efficiently dissipates heat generated by lighting the LED chip 1 to the outside. The heat dissipation of the light emitting device 10 can be improved.

また、実装基板2は、平面視が矩形状に限られず、たとえば、円形状、楕円形状や多角形状でもよい。実装基板2に実装されたLEDチップ1は、実装基板2の一表面2a上に設けられた導体パターンの一部からなるダイパッド部にAuSn、半田や銀ペーストなどの接合材料を用いて接合することができる。なお、LEDチップ1は、実装基板2の一表面2a上にサブマウントを介して実装させてもよい。   Further, the mounting substrate 2 is not limited to a rectangular shape in plan view, and may be, for example, a circular shape, an elliptical shape, or a polygonal shape. The LED chip 1 mounted on the mounting substrate 2 is bonded to a die pad portion made of a part of a conductor pattern provided on one surface 2a of the mounting substrate 2 using a bonding material such as AuSn, solder or silver paste. Can do. The LED chip 1 may be mounted on one surface 2a of the mounting substrate 2 via a submount.

なお、本実施形態の発光装置10は、矩形平板状の実装基板2を用いているが、実装基板2の上記一表面2aの周部にLEDチップ1や波長変換部3からの光を反射させるリフレクタを備えた実装基板2を用いてもよい。   In addition, although the light-emitting device 10 of this embodiment uses the rectangular flat plate-shaped mounting substrate 2, the light from the LED chip 1 and the wavelength conversion unit 3 is reflected on the peripheral portion of the one surface 2a of the mounting substrate 2. You may use the mounting board | substrate 2 provided with the reflector.

また、本実施形態の発光装置10は、実装基板2の上記一表面2aに、反射膜(図示せず)を設けても良く、このような反射膜は、LEDチップ1から放射される光と、波長変換部3から放射される光を効率よく反射可能なものであって、具体的には、Al、Al合金、Ag、Ag合金などの金属材料やBaSOなどの白色顔料となる無機材料が含有されたガラスや樹脂を用いて構成すればよい。 In addition, the light emitting device 10 of the present embodiment may be provided with a reflective film (not shown) on the one surface 2a of the mounting substrate 2, and such a reflective film is formed with light emitted from the LED chip 1. , Which can efficiently reflect the light emitted from the wavelength conversion unit 3, specifically, a metal material such as Al, Al alloy, Ag, Ag alloy, or a white pigment such as BaSO 4 What is necessary is just to comprise using the glass and resin containing this.

さらに、発光装置10には、複数個のLEDチップ1や波長変換部3などを外部からの保護するために波長変換部3上に透光部を別途に配置させてもよい。透光部の具体的な材料としては、たとえば、シリコーン樹脂、エポキシ樹脂、アクリル樹脂、ポリカーボネート樹脂やガラスなどが挙げられる。このような透光部は、平板状に形成させてもよいし、発光装置10からの光を所望の方向に配光制御する凸状や凹状などのレンズ形状に形成させてもよい。さらに、透光部中には、LEDチップ1からの光や波長変換部3からの光を散乱させ混色性を向上させるなどの目的により、光拡散材を含有させてもよい。このような光拡散材の材料としては、酸化アルミニウム、シリカ、酸化チタンなどの無機材料やフッ素系樹脂などの有機材料、有機成分と無機成分とを分子レベルや粒子レベルで複合化した有機無機ハイブリッド材料などが挙げられ、平均粒径もたとえば、数μmから数十μmまでで適宜に選択すればよい。   Furthermore, in the light emitting device 10, a light transmitting part may be separately arranged on the wavelength converting part 3 in order to protect the plurality of LED chips 1, the wavelength converting part 3 and the like from the outside. Specific materials for the translucent part include, for example, silicone resin, epoxy resin, acrylic resin, polycarbonate resin, and glass. Such a light transmitting portion may be formed in a flat plate shape, or may be formed in a lens shape such as a convex shape or a concave shape that controls light distribution from the light emitting device 10 in a desired direction. Further, the light transmissive part may contain a light diffusing material for the purpose of scattering the light from the LED chip 1 or the light from the wavelength converting part 3 to improve the color mixing property. Such light diffusing materials include inorganic materials such as aluminum oxide, silica, and titanium oxide, organic materials such as fluororesin, and organic / inorganic hybrids that combine organic and inorganic components at the molecular level and particle level. The average particle size may be appropriately selected from several μm to several tens of μm, for example.

なお、実装基板2には、実装基板2の上記一表面2aから側面および裏面にも導体パターンを延設させ側面と裏面とに跨る、導体パターンを発光装置10の外部電極として構成してもよい。このような発光装置10の外部電極は、リフロー工程などによって照明装置20の配線基板7と電気的に接続させることができる。   The mounting substrate 2 may be configured such that a conductor pattern extends from the one surface 2 a of the mounting substrate 2 to the side surface and the back surface and extends across the side surface and the back surface as an external electrode of the light emitting device 10. . Such external electrodes of the light emitting device 10 can be electrically connected to the wiring substrate 7 of the lighting device 20 by a reflow process or the like.

本実施形態に用いられる波長変換部3は、発光素子たるLEDチップ1から放射した光を波長変換し、LEDチップ1からの光よりも長波長側に主発光波長となる蛍光を発するものである。波長変換部3は、たとえば、LEDチップ1から放射された光を、より長波長側に主発光波長となる蛍光を放射する粒子状の蛍光体をバインダーとなる透光性材料中に含有して形成すればよい。なお、波長変換部3の材料として用いる透光性材料は、耐熱性樹脂であるシリコーン樹脂を好適に用いることができるが、シリコーン樹脂に限らず、たとえば、エポキシ樹脂、アクリル樹脂、ポリカーボネート樹脂やガラスなどを採用してもよい。また、波長変換部3に用いられる蛍光体は、発光色の調整や演色性を高めるなどの目的で複数種類の蛍光体を用いてもよい。たとえば、照明装置20から放射する光を、演色性の高い白色光とするには、青色光を放射するLEDチップ1と、波長変換部3との組み合わせにおいて、波長変換部3の蛍光体として青色光を吸収して緑色光を発する緑色蛍光体および青色光を吸収して赤色光を発する赤色蛍光体を用いることができる。   The wavelength conversion unit 3 used in the present embodiment converts the wavelength of light emitted from the LED chip 1 as a light emitting element, and emits fluorescence having a main emission wavelength on the longer wavelength side than the light from the LED chip 1. . For example, the wavelength conversion unit 3 contains light emitted from the LED chip 1 in a translucent material serving as a binder with a particulate phosphor that emits fluorescence having a main emission wavelength on the longer wavelength side. What is necessary is just to form. Note that the translucent material used as the material of the wavelength conversion unit 3 can be suitably a silicone resin that is a heat-resistant resin, but is not limited to a silicone resin, for example, an epoxy resin, an acrylic resin, a polycarbonate resin, or glass. Etc. may be adopted. Further, as the phosphor used in the wavelength conversion unit 3, a plurality of types of phosphors may be used for the purpose of adjusting the emission color and improving the color rendering. For example, in order to change the light emitted from the lighting device 20 to white light having high color rendering properties, the combination of the LED chip 1 that emits blue light and the wavelength conversion unit 3 is blue as the phosphor of the wavelength conversion unit 3. A green phosphor that absorbs light and emits green light and a red phosphor that absorbs blue light and emits red light can be used.

このような波長変換部3に用いられる蛍光体として、たとえば、Ceで付活されたYAl12やCeで付活されたTbAl12などのアルミネート系の蛍光体のほか、Euで付活されたBaSiOやEuで付活された(Sr,Ba)SiOなどの珪酸塩系の蛍光体、Euで付活されたCaAlSiN、Euで付活されたSrSi、Euで付活されたCaSi、Euで付活されたSrSi10やEuで付活されたCaSi10などの窒化物系の蛍光体を採用することができる。 Examples of the phosphor used in the wavelength conversion unit 3 include aluminate-based phosphors such as Y 3 Al 5 O 12 activated by Ce and Tb 3 Al 5 O 12 activated by Ce. in addition, were activated by the activated with Ba 2 SiO 4 and Eu in Eu (Sr, Ba) silicate phosphors such as 2 SiO 4, are activated by activated with CaAlSiN 3, Eu with Eu and Sr 2 Si 5 N 8, Eu Ca 2 was activated by Si 5 N 8, Eu in CaSi are activated by activated with SrSi 7 N 10 and Eu 7 N 10 nitride phosphor such as Can be adopted.

緑色光を発光する緑色蛍光体としては、Ceで付活されたCaScSi12、Ceで付活されたCaScやEuで付活された(Sr,Ba,Ca)SiOなど、黄色光を発光する黄色蛍光体としては、Ceで付活されたYAl12、Ceで付活されたTbAl12、Euで付活された(Sr,Ba)SiOなど、赤色蛍光体としては、Euで付活されたCaAlSiN、Euで付活された(Sr,Ca,Mg)AlSiN、Ceで付活された(Sr,Ca,Mg)AlSiN、Ceで付活された(Sr,Ca)Siなどが挙げられる。 Green phosphors emitting green light include Ca 3 Sc 2 Si 3 O 12 activated by Ce, CaSc 2 O 4 activated by Ce and Eu (Sr, Ba, Ca). Examples of yellow phosphors that emit yellow light such as SiO 4 were Y 3 Al 5 O 12 activated by Ce, Tb 3 Al 5 O 12 activated by Ce, and Eu (Sr, Ba) 2 SiO 4 and other red phosphors include CaAlSiN 3 activated with Eu, (Sr, Ca, Mg) AlSiN 3 activated with Eu, and (Sr, Ca, Mg) activated with Ce. ) AlSiN 3 , (Sr, Ca) 2 Si 5 N 8 activated with Ce, and the like.

波長変換部3は、複数種の蛍光体を用いた波長変換部3を形成させる場合、バインダーとなる透光性材料中に複数種の蛍光体を混合して含有させてもよいし、バインダーとなる透光性樹脂中に複数種の蛍光体ごとに多層状に形成させたものでもよい。   When the wavelength conversion unit 3 forms the wavelength conversion unit 3 using a plurality of types of phosphors, the wavelength conversion unit 3 may include a mixture of a plurality of types of phosphors in a translucent material serving as a binder, In the translucent resin, a plurality of types of phosphors may be formed in multiple layers.

波長変換部3は、実装基板2の上記一表面2aにおいて、仮想の円形状の範囲における内側に実装された複数個のLEDチップ1を覆っている。ここで、円形状の波長変換部3の周部であって、円形状における円周を等分割(ここでは、8分割)させた扇状の中心角が約45°ごとの周部に、切り欠き部3aを設けている。波長変換部3の切り欠き部3aでは、LEDチップ1が配置されており、複数個のLEDチップ1のうち、一部のLEDチップ1が波長変換部3で覆われていないことになる。   The wavelength conversion unit 3 covers the plurality of LED chips 1 mounted on the inner side in a virtual circular range on the one surface 2 a of the mounting substrate 2. Here, it is a peripheral portion of the circular wavelength conversion section 3, and is divided into a peripheral portion in which the fan-shaped central angle obtained by equally dividing the circumference in the circular shape (in this case, eight divisions) is about 45 °. A portion 3a is provided. The LED chip 1 is disposed in the notch 3 a of the wavelength conversion unit 3, and some of the LED chips 1 among the plurality of LED chips 1 are not covered with the wavelength conversion unit 3.

ここで、発光装置10が、たとえば、青色光を発光する複数個のLEDチップ1を用いている場合、波長変換部3の切り欠き部3aに配置されるLEDチップ1が、上記光出射面10aの中央部の発光色を基準として、上記光出射面10aの周部から放射される光の発光色に対する補色の光を発する前記発光部位を構成することになる。   Here, when the light emitting device 10 uses, for example, a plurality of LED chips 1 that emit blue light, the LED chip 1 disposed in the cutout portion 3a of the wavelength conversion unit 3 is connected to the light emitting surface 10a. The light emitting part that emits light of a complementary color to the light emission color of the light emitted from the peripheral portion of the light emitting surface 10a is configured with the light emission color at the center of the light emission surface 10a as a reference.

なお、波長変換部3がLEDチップ1を覆っていない切り欠き部3aの間隔は、前記中心角が45°となるものだけに限らず、他の間隔でもよく、たとえば、中心角が30°とすることもできる。また、波長変換部3における切り欠き部3aは、厳密に均等な等間隔で設ける必要もなく、略等間隔であってもよい。   The interval between the notches 3a where the wavelength conversion unit 3 does not cover the LED chip 1 is not limited to the interval at which the central angle is 45 °, but may be other intervals, for example, the central angle is 30 °. You can also Further, the notches 3a in the wavelength conversion unit 3 do not have to be provided at exactly equal intervals, and may be at substantially equal intervals.

また、図3(a),(b)に示す発光装置10では、波長変換部3に切り欠き部3aを設ける代わりに、波長変換部3における上記周部でLEDチップ1を覆わない開口部3bを設けてもよい。波長変換部3の開口部3bにより、波長変換部3から露出したLEDチップ1は、LEDチップ1を保護するように、たとえば、シリコーン樹脂などの透光性材料からなり、断面が凸形状の透光性部材9で覆われていてもよい。なお、透光性部材9中には、LEDチップ1からの光を拡散させる光拡散材を含有させてもよい。   In addition, in the light emitting device 10 shown in FIGS. 3A and 3B, instead of providing the notch 3a in the wavelength converter 3, the opening 3b that does not cover the LED chip 1 with the peripheral portion in the wavelength converter 3 is provided. May be provided. The LED chip 1 exposed from the wavelength conversion unit 3 by the opening 3b of the wavelength conversion unit 3 is made of a translucent material such as silicone resin so as to protect the LED chip 1, and has a convex cross section. It may be covered with the optical member 9. The light transmissive member 9 may contain a light diffusing material that diffuses light from the LED chip 1.

さらに、円形状の波長変換部3における開口部3bは、図3で示した、波長変換部3の最外周側に配置されるLEDチップ1のみを波長変換部3で覆われないように開口部3bを設けたものだけに限定されるわけではない。   Furthermore, the opening 3 b in the circular wavelength conversion unit 3 is formed so that only the LED chip 1 arranged on the outermost peripheral side of the wavelength conversion unit 3 shown in FIG. 3 is not covered with the wavelength conversion unit 3. It is not necessarily limited to the one provided with 3b.

したがって、図4(a),(b)に示すごとく、発光装置10は、円形状の波長変換部3における開口部3bを、発光装置10の上記光出射面10aの中央部を除いて同心円状(ここでは、二つの仮想円)の仮想円上でそれぞれ周方向に沿って略均等に等間隔で配置させてもよい。   Therefore, as shown in FIGS. 4A and 4B, the light emitting device 10 has a concentric circular shape in which the opening 3b in the circular wavelength converter 3 is removed except for the central portion of the light emitting surface 10a of the light emitting device 10. On the virtual circle (here, two virtual circles), they may be arranged substantially equally at regular intervals along the circumferential direction.

すなわち、図4に示す発光装置10では、実装基板2の上記一表面2aに、仮想の円形状の範囲の内側に略均等の間隔で実装される複数個のLEDチップ1のうち、円形状における周部を等分割させた扇状の中心角ごとに対応する間隔で、最外周および最外周より内側のLEDチップ1にも開口部3bが設けられている。なお、開口部3bに配置されている各LEDチップ1は、断面が凸形状の透光性部材9で保護するように覆われている。ここで、波長変換部3の切り欠き部3aや開口部3bの形状は、LEDチップ1の少なくとも一部が波長変換部3から露出できる形状であればよく、たとえば、円形状、楕円形状、三角形状や矩形状、多角形状に形成することができる。また、波長変換部3に設けられる切り欠き部3aや開口部3bは、それぞれの形状を組み合わせて用いてもよいことはいうまでもない。   That is, in the light emitting device 10 shown in FIG. 4, among the plurality of LED chips 1 mounted on the one surface 2 a of the mounting substrate 2 at substantially equal intervals inside the virtual circular range, Openings 3b are also provided in the outermost outer periphery and the LED chip 1 inside the outermost outer periphery at intervals corresponding to each fan-shaped central angle obtained by equally dividing the peripheral portion. In addition, each LED chip 1 arrange | positioned at the opening part 3b is covered so that the cross section may be protected with the translucent member 9 with a convex shape. Here, the shape of the notch 3a and the opening 3b of the wavelength conversion unit 3 may be any shape that allows at least a part of the LED chip 1 to be exposed from the wavelength conversion unit 3. For example, a circular shape, an elliptical shape, a triangular shape, etc. It can be formed in a shape, rectangular shape, or polygonal shape. Needless to say, the notch 3a and the opening 3b provided in the wavelength conversion unit 3 may be used in combination.

なお、本実施形態の照明装置20における発光装置10は、たとえば、次の形成工程により形成することができる。   In addition, the light-emitting device 10 in the illuminating device 20 of this embodiment can be formed by the following formation process, for example.

実装基板2の上記一表面2aに、複数個のLEDチップ1を、Auバンプを用いてフリップチップ実装する。その後、発光装置10の光出射面10a側を見て、上記光出射面10aの周部に、該周部から放射される光の発光色に対する補色となる前記発光部位を形成させるため、上記光出射面10aの周部に配置された複数個のLEDチップ1の一部に、シリコーン樹脂からなる透光性部材9の樹脂材料を塗布硬化させて、予め透光性部材9を形成させる。   A plurality of LED chips 1 are flip-chip mounted on the one surface 2a of the mounting substrate 2 using Au bumps. After that, when the light emitting surface 10a side of the light emitting device 10 is viewed, the light emitting portion is formed on the peripheral portion of the light emitting surface 10a so as to be complementary to the emission color of the light emitted from the peripheral portion. The light transmissive member 9 is formed in advance by applying and curing a resin material of the light transmissive member 9 made of silicone resin on a part of the plurality of LED chips 1 arranged on the peripheral portion of the emission surface 10a.

次に、波長変換部3は、透光性部材9が形成されたLEDチップ1を除いて、複数個のLEDチップ1上に透光性材料たるシリコーン樹脂をバインダーとして蛍光体が充填された材料をスクリーン印刷法などを利用して塗布し、加熱硬化して形成することができる。   Next, the wavelength conversion unit 3 is a material in which a phosphor is filled on a plurality of LED chips 1 with a silicone resin as a translucent material as a binder, except for the LED chip 1 on which the translucent member 9 is formed. Can be formed using a screen printing method and the like, followed by heat curing.

なお、波長変換部3は、複数個のLEDチップ1を全て覆うように形成させたのち、湿式エッチングや乾式エッチングなどを利用して部分的に除去して、波長変換部3における切り欠き部3aや開口部3bなどを形成させてもよい。   The wavelength conversion unit 3 is formed so as to cover all of the plurality of LED chips 1 and then partially removed using wet etching, dry etching, or the like, and the notch 3a in the wavelength conversion unit 3 is removed. Or an opening 3b may be formed.

また、照明装置20の配光制御部は、発光装置10の複数個のLEDチップ1や波長変換部3から放射された光を所定の方向に配光制御するものであって、レンズ5や反射鏡などで構成することができる。したがって、配光制御部は、発光装置10の上記光出射面10aから放射された光を照明装置20の外部へ狭角配光で放射できるように形状を設計することができる。配光制御部としてレンズ5を用いる場合、レンズ5の材料は、たとえば、LEDチップ1や波長変換部3から放射される光を効率よく透過する樹脂(たとえば、アクリル樹脂やポリカーボネート樹脂)やガラスなどが挙げられる。   The light distribution control unit of the lighting device 20 controls the light distribution of the light emitted from the plurality of LED chips 1 and the wavelength conversion unit 3 of the light emitting device 10 in a predetermined direction. It can be composed of a mirror or the like. Therefore, the light distribution control unit can design the shape so that the light emitted from the light emitting surface 10a of the light emitting device 10 can be emitted to the outside of the lighting device 20 with a narrow angle light distribution. When the lens 5 is used as the light distribution control unit, the material of the lens 5 is, for example, a resin (for example, acrylic resin or polycarbonate resin) or glass that efficiently transmits light emitted from the LED chip 1 or the wavelength conversion unit 3. Is mentioned.

また、照明装置20の配光制御部として、発光装置10の上記光出射面10aの中心点を焦点Fとするレンズ5の代わりに、たとえば、発光装置10における上記光出射面10aの中心点を焦点Fとする放物面状に形成された反射鏡でもよい。なお、配光制御部たる前記反射鏡の内側面の形状は、特に限定されるものではなく、照明装置20の所望の配光特性に応じ、発光装置10の光軸Xに沿って、発光装置10における上記光出射面10aの中心点を焦点Fから離れるにつれ、反射鏡の開口面積が徐々に大きくなる椀状の曲面形状などに形成することもできる。また、配光制御部として反射鏡を用いた場合には、発光装置10からの光を効率よく反射させるため、所望に応じて、反射鏡の内側面にAgを蒸着したり、白色顔料などにより塗装することもできる。   Further, instead of the lens 5 having the focal point F at the central point of the light emitting surface 10a of the light emitting device 10 as the light distribution control unit of the lighting device 20, for example, the central point of the light emitting surface 10a in the light emitting device 10 is used. A reflecting mirror formed in a parabolic shape as the focal point F may be used. In addition, the shape of the inner surface of the reflecting mirror as the light distribution control unit is not particularly limited, and the light emitting device is arranged along the optical axis X of the light emitting device 10 according to a desired light distribution characteristic of the lighting device 20. As the center point of the light exit surface 10a in FIG. 10 moves away from the focal point F, it can be formed into a bowl-like curved surface shape in which the opening area of the reflecting mirror gradually increases. In addition, when a reflecting mirror is used as the light distribution control unit, Ag is vapor-deposited on the inner surface of the reflecting mirror or a white pigment or the like is used to efficiently reflect the light from the light emitting device 10. It can also be painted.

また、本実施形態の電気回路部は、LEDチップ1を点灯させるために通電するためのものであって、発光装置10の実装基板2の一表面2a上に設けられた導体パターン、配線基板7に設けられた配線パターンや各LEDチップ1を点灯するために供給する電流量を調整することができる可変抵抗などにより構成することができる。   Further, the electric circuit portion of the present embodiment is for energizing the LED chip 1 to light up, and is a conductor pattern provided on one surface 2 a of the mounting substrate 2 of the light emitting device 10, the wiring substrate 7. Can be constituted by a variable resistor or the like that can adjust the amount of current supplied for lighting each LED chip 1.

(実施形態2)
本実施形態の照明装置20の基本構成は、実施形態1と略同一であり、照明装置20の図1(b),(c)に示す発光装置10における波長変換部3の切り欠き部3aに配置されたLEDチップ1で、発光部位を構成する代わりに、図5に示すように、複数個のLEDチップ1を覆う波長変換部3の厚みが、複数個のLEDチップ1のうち、一部のLEDチップ1上で薄くなる凹部3cを備えた発光部位により構成した点が相違する。なお、実施形態1と同様の構成要素には、同一の符号を付して説明を適宜省略する。
(Embodiment 2)
The basic configuration of the illuminating device 20 of the present embodiment is substantially the same as that of the first embodiment, and the notch 3a of the wavelength conversion unit 3 in the light emitting device 10 shown in FIGS. Instead of constituting the light emitting part with the arranged LED chip 1, the thickness of the wavelength conversion unit 3 covering the plurality of LED chips 1 is part of the plurality of LED chips 1 as shown in FIG. 5. The point which comprised with the light emission site | part provided with the recessed part 3c thinned on the LED chip 1 of this is different. In addition, the same code | symbol is attached | subjected to the component similar to Embodiment 1, and description is abbreviate | omitted suitably.

図5(a)に示す本実施形態の照明装置20における発光装置10は、複数個のLEDチップ1が実装基板2の一表面2a上に配置されている。   In the light emitting device 10 in the illumination device 20 of this embodiment shown in FIG. 5A, a plurality of LED chips 1 are arranged on one surface 2 a of the mounting substrate 2.

また、照明装置20における発光装置10の波長変換部3は、実装基板2の上記一表面2aにおいて、仮想の円形状の範囲の内側に略均等の間隔で実装された複数個のLEDチップ1を全て覆っている。本実施形態の照明装置20における補色の光を発する複数個の前記発光部位は、複数個のLEDチップ1を覆う波長変換部3の厚みが、複数個のLEDチップ1のうち、一部のLEDチップ1上で薄くなる凹部3cを備えて構成されている。   In addition, the wavelength conversion unit 3 of the light emitting device 10 in the lighting device 20 includes a plurality of LED chips 1 mounted on the inside surface of the virtual circular shape on the one surface 2a of the mounting substrate 2 at substantially equal intervals. All covered. In the plurality of light emitting portions that emit light of complementary colors in the lighting device 20 of the present embodiment, the wavelength conversion unit 3 that covers the plurality of LED chips 1 has a thickness of some of the plurality of LED chips 1. A recess 3 c that is thin on the chip 1 is provided.

ここで、発光装置10における波長変換部3の凹部3cが設けられた波長変換部3の厚みは、照明装置20から放射される光の被照射面における色むらが少なくなるように、波長変換部3を透過するLEDチップ1から放射された光と、波長変換部3によって波長変換された光の光出力比などを適宜に考慮して形成すればよい。また、波長変換部3は、前記発光部位の波長変換部3の厚みを基準として、複数個の他のLEDチップ1が配置される波長変換部3の厚みを厚くした凸形状で形成させてもよい。   Here, the thickness of the wavelength conversion unit 3 provided with the recess 3c of the wavelength conversion unit 3 in the light emitting device 10 is such that the color unevenness on the irradiated surface of the light emitted from the illumination device 20 is reduced. The light output ratio of the light radiated from the LED chip 1 that transmits the light 3 and the light that has been wavelength-converted by the wavelength converter 3 may be appropriately considered. In addition, the wavelength conversion unit 3 may be formed in a convex shape with the thickness of the wavelength conversion unit 3 on which a plurality of other LED chips 1 are arranged based on the thickness of the wavelength conversion unit 3 of the light emitting part as a reference. Good.

なお、本実施形態の照明装置20に用いられる発光装置10の複数個のLEDチップ1は、全てが実装基板2の一表面2a上で導体パターンによって電気的に直列接続されている。   Note that all of the plurality of LED chips 1 of the light emitting device 10 used in the lighting device 20 of the present embodiment are electrically connected in series by a conductor pattern on one surface 2a of the mounting substrate 2.

本実施形態の照明装置20は、複数個のLEDチップ1のうち、前記発光部位を構成する補色の光を発するLEDチップ1上の波長変換部3の厚みが、複数個のLEDチップ1うちの他のLEDチップ1上の波長変換部3の厚みと比較して薄いため、この部位の波長変換部3から発する光は、他のLEDチップ1上の波長変換部3から発する光よりも色温度の高い光を放射することができる。   In the illumination device 20 of the present embodiment, the thickness of the wavelength conversion unit 3 on the LED chip 1 that emits the complementary color light that constitutes the light emitting portion among the plurality of LED chips 1 is the same as that of the plurality of LED chips 1. Since the thickness of the wavelength conversion unit 3 on the other LED chip 1 is thin, the light emitted from the wavelength conversion unit 3 in this region has a color temperature higher than that of the light emitted from the wavelength conversion unit 3 on the other LED chip 1. High light can be emitted.

このような、照明装置20に用いられる発光装置10の波長変換部3は、実装基板2の一表面2a上に複数個のLEDチップ1を実装した後、LEDチップ1上に蛍光体を含有する透光性材料を、スクリーン印刷法により塗布した後、硬化させることで形成させることもできる。スクリーン印刷法による多色印刷を利用すれば、波長変換部3における特定の部位の膜厚を適宜に変更することができる。また、実装基板2の一表面2a上にLEDチップ1を実装した後、インクジェット印刷法を利用し、発光装置10の光出射面10a側において、上記光出射面10aの中央部となるLEDチップ1上にのみ蛍光体を含有する透光性材料を吐出させて波長変換部3を形成させることもできる。また、インクジェット印刷法の吐出量を調整したり、繰り返し吐出させる回数を制御することで、波長変換部3における特定の部位の膜厚を適宜に変更することもできる。   The wavelength conversion unit 3 of the light emitting device 10 used for the lighting device 20 includes a phosphor on the LED chip 1 after mounting the plurality of LED chips 1 on the one surface 2a of the mounting substrate 2. It is also possible to form the light-transmitting material by applying it by a screen printing method and then curing it. If multi-color printing by the screen printing method is used, the film thickness of a specific part in the wavelength conversion unit 3 can be appropriately changed. In addition, after mounting the LED chip 1 on the one surface 2a of the mounting substrate 2, the LED chip 1 that becomes the central portion of the light emitting surface 10a on the light emitting surface 10a side of the light emitting device 10 by using an inkjet printing method. The wavelength conversion part 3 can also be formed by discharging a translucent material containing a phosphor only on the top. Moreover, the film thickness of the specific site | part in the wavelength conversion part 3 can also be changed suitably by adjusting the discharge amount of an inkjet printing method, or controlling the frequency | count of repeating discharge.

本実施形態の照明装置20は、発光装置10の上記光出射面10aにおいて、波長変換部3の厚みを部分的に変更することで、前記発光部位から放射される光の色温度を調整することができる。そのため、実装基板2の上記一表面2aに実装させた複数個のLEDチップ1に通電するための電気回路部を分離させる必要もなく、実装基板2の導体パターンおよび配線基板7の配線パターンなどを簡略化させて、照明装置20の信頼性を、より向上させることもできる。また、照明装置20の発光装置10は、前記発光部位が、複数個のLEDチップ1のうち、一部のLEDチップ1を用いており、前記発光部位のLEDチップ1に通電するための電気回路部を、他のLEDチップ1に通電するための電気回路部と分離して構成することにより、照明装置20から放射された混色光による被照射面での色むらを、より低減させることもできる。   The illuminating device 20 of this embodiment adjusts the color temperature of the light radiated | emitted from the said light emission site | part by changing partially the thickness of the wavelength conversion part 3 in the said light-projection surface 10a of the light-emitting device 10. FIG. Can do. Therefore, it is not necessary to separate the electric circuit portion for energizing the plurality of LED chips 1 mounted on the one surface 2a of the mounting substrate 2, and the conductor pattern of the mounting substrate 2, the wiring pattern of the wiring substrate 7, etc. It is possible to simplify and further improve the reliability of the lighting device 20. Further, in the light emitting device 10 of the lighting device 20, the light emitting part uses a part of the LED chips 1 among the plurality of LED chips 1, and an electric circuit for energizing the LED chip 1 in the light emitting part. By configuring the unit separately from the electric circuit unit for energizing the other LED chip 1, it is possible to further reduce the color unevenness on the irradiated surface due to the mixed color light emitted from the illumination device 20. .

(実施形態3)
本実施形態の照明装置20は、図5に示す実施形態2の照明装置20の構成と略同一であり、実施形態2の発光装置10における波長変換部3に設けられた凹部3cの形状が、実装基板2と略垂直な壁面と、実装基板2と略平行な内底面により形成されているのに対し、図6に示すように、波長変換部3の凹部3cが、凹部3cの内底面から凹部3cの周辺部への厚みが連続的に厚くなる側壁で構成されるテーパ部3dを備えて形成される点が相違する。なお、実施形態2と同様の構成要素には同一の符号を付して説明を適宜省略する。
(Embodiment 3)
The illuminating device 20 of this embodiment is substantially the same as the structure of the illuminating device 20 of Embodiment 2 shown in FIG. 5, and the shape of the recessed part 3c provided in the wavelength conversion part 3 in the light-emitting device 10 of Embodiment 2 is the following. As shown in FIG. 6, the concave portion 3c of the wavelength converting portion 3 is formed from the inner bottom surface of the concave portion 3c, whereas the wall surface is substantially perpendicular to the mounting substrate 2 and the inner bottom surface is substantially parallel to the mounting substrate 2. The difference is that it is provided with a tapered portion 3d formed of a side wall in which the thickness to the peripheral portion of the recess 3c is continuously increased. In addition, the same code | symbol is attached | subjected to the component similar to Embodiment 2, and description is abbreviate | omitted suitably.

すなわち、本実施形態の照明装置20に用いられる発光装置10の波長変換部3における凹部3cは、波長変換部3の厚みが連続的に変化するテーパ部3dを側壁として備えている。凹部3cの側壁は、波長変換部3の表面に行くほど広がる形状となっている。したがって、前記発光部位は、テーパ部3dとなる界面部で該発光部位における波長変換部3で波長変換される光の量を連続的に変化させ、発光色が連続的に変化するため、光出射面10aにおける色むらを、より低減させることができる。   That is, the concave portion 3c in the wavelength conversion unit 3 of the light emitting device 10 used in the lighting device 20 of the present embodiment includes a tapered portion 3d in which the thickness of the wavelength conversion unit 3 continuously changes as a side wall. The side wall of the recess 3 c has a shape that widens toward the surface of the wavelength conversion unit 3. Therefore, the light emitting portion continuously changes the amount of light that is wavelength-converted by the wavelength conversion unit 3 in the light emitting portion at the interface portion that becomes the tapered portion 3d, and the emission color continuously changes. Color unevenness on the surface 10a can be further reduced.

これにより、本実施形態の照明装置20は、照明装置20から放射された光の被照射面での色むらを、より低減させることが可能となる。   Thereby, the illuminating device 20 of this embodiment can further reduce color unevenness on the irradiated surface of the light emitted from the illuminating device 20.

1 LEDチップ(発光素子)
2 実装基板
2a 一表面
3 波長変換部
3c 凹部
3d テーパ部
5 レンズ(配光制御部)
10 発光装置
10a 光出射面
20 照明装置
1 LED chip (light emitting device)
2 Mounting substrate 2a One surface 3 Wavelength conversion part 3c Concave part 3d Taper part 5 Lens (light distribution control part)
DESCRIPTION OF SYMBOLS 10 Light-emitting device 10a Light emission surface 20 Illumination device

Claims (6)

実装基板の一表面上に実装された複数個の発光素子および該発光素子を覆うように配置され、前記発光素子から放射された光を波長変換する波長変換部を備えた発光装置と、該発光装置から放射された光を所定の方向に配光制御する配光制御部とを備えた照明装置であって、前記発光装置は、該発光装置の光出射面側を見て、該光出射面の中央部の発光色を基準として、前記光出射面の周部から放射される光の発光色に対する補色の光を発する複数個の発光部位を、前記周部に沿って備えてなることを特徴とする照明装置。   A plurality of light-emitting elements mounted on one surface of the mounting substrate, a light-emitting device that is disposed so as to cover the light-emitting elements, and that includes a wavelength conversion unit that converts the wavelength of light emitted from the light-emitting elements; An illumination device including a light distribution control unit configured to perform light distribution control of light emitted from the device in a predetermined direction, wherein the light emitting device looks at the light emitting surface side of the light emitting device, and the light emitting surface A plurality of light emitting portions that emit light of complementary colors with respect to the light emission color of light emitted from the peripheral portion of the light emitting surface with reference to the light emission color of the central portion of the light emitting surface is provided along the peripheral portion. A lighting device. 複数個の前記発光部位は、前記周部に沿って均等に配置されてなることを特徴とする請求項1に記載の照明装置。   The lighting device according to claim 1, wherein the plurality of light emitting portions are uniformly arranged along the peripheral portion. 前記発光部位は、複数個の前記発光素子のうち、前記波長変換部で覆われていない複数個の前記発光素子の一部を用いて構成されていることを特徴とする請求項1または請求項2に記載の照明装置。   The said light emission site | part is comprised using a part of several said light emitting elements which are not covered with the said wavelength conversion part among the said several light emitting elements. 2. The illumination device according to 2. 前記発光部位は、複数個の前記発光素子を覆う前記波長変換部の厚みが、複数個の前記発光素子のうち、一部の前記発光素子上で薄くなる凹部を備えてなることを特徴とする請求項1または請求項2に記載の照明装置。   The light emitting portion includes a concave portion in which the thickness of the wavelength conversion portion covering the plurality of light emitting elements is reduced on a part of the light emitting elements among the plurality of light emitting elements. The lighting device according to claim 1 or 2. 前記凹部は、前記波長変換部の厚みが連続的に変化するテーパ部を備えてなることを特徴とする請求項4に記載の照明装置。   The illumination device according to claim 4, wherein the concave portion includes a tapered portion in which a thickness of the wavelength conversion portion continuously changes. 前記発光部位は、複数個の前記発光素子のうち、一部の発光素子を用いており、前記発光部位の前記発光素子に通電するための電気回路部を、他の前記発光素子に通電するための電気回路部と分離して構成してなることを特徴とする請求項1ないし請求項5のいずれか1項に記載の照明装置。
The light emitting part uses a part of the light emitting elements among the plurality of light emitting elements, and an electric circuit portion for energizing the light emitting elements in the light emitting part is energized to the other light emitting elements. The lighting device according to any one of claims 1 to 5, wherein the lighting device is configured separately from the electrical circuit section.
JP2009268073A 2009-11-25 2009-11-25 Lighting device Active JP5374332B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009268073A JP5374332B2 (en) 2009-11-25 2009-11-25 Lighting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009268073A JP5374332B2 (en) 2009-11-25 2009-11-25 Lighting device

Publications (2)

Publication Number Publication Date
JP2011114094A true JP2011114094A (en) 2011-06-09
JP5374332B2 JP5374332B2 (en) 2013-12-25

Family

ID=44236210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009268073A Active JP5374332B2 (en) 2009-11-25 2009-11-25 Lighting device

Country Status (1)

Country Link
JP (1) JP5374332B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014007317A (en) * 2012-06-26 2014-01-16 Toyoda Gosei Co Ltd Light-emitting module
WO2014015655A1 (en) * 2012-07-23 2014-01-30 贵州光浦森光电有限公司 Method for constructing universal led bulb and flange snap ring type led bulb and led lamp
WO2014015654A1 (en) * 2012-07-23 2014-01-30 贵州光浦森光电有限公司 Method for constructing universal led bulb and flange inner snap ring type led bulb and lamp
JP2016029720A (en) * 2014-07-18 2016-03-03 日亜化学工業株式会社 Light-emitting device and method for manufacturing the same
JP2019003947A (en) * 2018-09-05 2019-01-10 コエルクス・エッセ・エッレ・エッレCoeLux S.r.l. Artificial lighting device
US10429050B2 (en) 2015-08-03 2019-10-01 Citizen Electronics Co., Ltd. Light-emitting apparatus having different packaging densities
US10775022B2 (en) 2012-11-14 2020-09-15 Coelux S.R.L. Artificial illumination device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006303303A (en) * 2005-04-22 2006-11-02 Stanley Electric Co Ltd Optical characteristic controlling led device and its manufacturing method
JP2008283155A (en) * 2007-05-14 2008-11-20 Sharp Corp Light emitting device, lighting device, and liquid crystal display device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006303303A (en) * 2005-04-22 2006-11-02 Stanley Electric Co Ltd Optical characteristic controlling led device and its manufacturing method
JP2008283155A (en) * 2007-05-14 2008-11-20 Sharp Corp Light emitting device, lighting device, and liquid crystal display device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014007317A (en) * 2012-06-26 2014-01-16 Toyoda Gosei Co Ltd Light-emitting module
WO2014015655A1 (en) * 2012-07-23 2014-01-30 贵州光浦森光电有限公司 Method for constructing universal led bulb and flange snap ring type led bulb and led lamp
WO2014015654A1 (en) * 2012-07-23 2014-01-30 贵州光浦森光电有限公司 Method for constructing universal led bulb and flange inner snap ring type led bulb and lamp
EP2876358A4 (en) * 2012-07-23 2016-03-16 Guizhou Gzgps Co Ltd Method for constructing universal led bulb and flange inner snap ring type led bulb and lamp
US9765951B2 (en) 2012-07-23 2017-09-19 Guizhou Gzgps Co., Ltd. Method for constructing universal LED bulb, flange inner snap ring type LED bulb and lamp
US9797590B2 (en) 2012-07-23 2017-10-24 Guizhou Gzgps Co., Ltd. Method for constructing universal LED bulb and flange snap ring type LED bulb and LED lamp
US10775022B2 (en) 2012-11-14 2020-09-15 Coelux S.R.L. Artificial illumination device
JP2016029720A (en) * 2014-07-18 2016-03-03 日亜化学工業株式会社 Light-emitting device and method for manufacturing the same
US10429050B2 (en) 2015-08-03 2019-10-01 Citizen Electronics Co., Ltd. Light-emitting apparatus having different packaging densities
JP2019003947A (en) * 2018-09-05 2019-01-10 コエルクス・エッセ・エッレ・エッレCoeLux S.r.l. Artificial lighting device

Also Published As

Publication number Publication date
JP5374332B2 (en) 2013-12-25

Similar Documents

Publication Publication Date Title
JP6493345B2 (en) Light emitting device
JP5810301B2 (en) Lighting device
RU2581426C2 (en) Light-emitting module, lamp, lighting device and display device
JP5196711B2 (en) LIGHT EMITTING DEVICE AND LIGHTING DEVICE USING THE SAME
JP5899507B2 (en) LIGHT EMITTING DEVICE AND LIGHTING DEVICE USING THE SAME
JP5374332B2 (en) Lighting device
KR20090026196A (en) Efficient emitting led package and method for efficiently emitting light
JP5443959B2 (en) Lighting device
JP2006237264A (en) Light emitting device and lighting apparatus
WO2013041979A1 (en) A light emitting module, a lamp, a luminaire and a display device
US20120299463A1 (en) Light emitting device and illumination apparatus using same
JP2006210627A (en) Light emitting element housing package, light emitting unit, and lighting device
JP4986608B2 (en) Light emitting device and lighting device
JP2011114093A (en) Lighting system
JP4948841B2 (en) Light emitting device and lighting device
JP2005340472A (en) Light-emitting device and illuminator
JP4938255B2 (en) Light emitting element storage package, light source, and light emitting device
JP5330944B2 (en) Light emitting device
JP2005277331A (en) Light emitting device and lighting device
JP2006278741A (en) Light emitting device and lighting device
JP2006066657A (en) Light emitting device and lighting device
JP2006100441A (en) Light emitting element housing package, light emitting device, and illumination device
JP4845370B2 (en) Light emitting device and lighting device
JP4417757B2 (en) LIGHT EMITTING DEVICE, ITS MANUFACTURING METHOD, AND LIGHTING DEVICE
JP2012009696A (en) Light emitting device and led illuminating equipment

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120118

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120514

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130305

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130507

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130604

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130827

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130920

R150 Certificate of patent or registration of utility model

Ref document number: 5374332

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150