JP2011112235A - Unit number control device, unit number control method, and fluid supply system - Google Patents

Unit number control device, unit number control method, and fluid supply system Download PDF

Info

Publication number
JP2011112235A
JP2011112235A JP2009266361A JP2009266361A JP2011112235A JP 2011112235 A JP2011112235 A JP 2011112235A JP 2009266361 A JP2009266361 A JP 2009266361A JP 2009266361 A JP2009266361 A JP 2009266361A JP 2011112235 A JP2011112235 A JP 2011112235A
Authority
JP
Japan
Prior art keywords
heat pump
frequency
number control
pump devices
predetermined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009266361A
Other languages
Japanese (ja)
Other versions
JP5053351B2 (en
Inventor
Koji Matsuzawa
耕司 松澤
Kazutaka Suzuki
一隆 鈴木
Nobuaki Uehara
伸哲 上原
Takahiro Ushijima
崇大 牛島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2009266361A priority Critical patent/JP5053351B2/en
Priority to EP10009569.4A priority patent/EP2325570A3/en
Publication of JP2011112235A publication Critical patent/JP2011112235A/en
Application granted granted Critical
Publication of JP5053351B2 publication Critical patent/JP5053351B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/06Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the arrangements for the supply of heat-exchange fluid for the subsequent treatment of primary air in the room units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices
    • F24D19/1006Arrangement or mounting of control or safety devices for water heating systems
    • F24D19/1009Arrangement or mounting of control or safety devices for water heating systems for central heating
    • F24D19/1039Arrangement or mounting of control or safety devices for water heating systems for central heating the system uses a heat pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/375Control of heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/375Control of heat pumps
    • F24H15/38Control of compressors of heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/022Compressor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/02System or Device comprising a heat pump as a subsystem, e.g. combined with humidification/dehumidification, heating, natural energy or with hybrid system
    • F24F2203/021Compression cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/335Control of pumps, e.g. on-off control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/355Control of heat-generating means in heaters
    • F24H15/37Control of heat-generating means in heaters of electric heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/06Several compression cycles arranged in parallel

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To efficiently control the number of heat pump units without the need of grasping air conditioning capacities of the heat pump units, in a fluid supply system including the plurality of heat pump units having compressors, and supplying the fluid heated or cooled by the heat pump units to a fluid using device. <P>SOLUTION: An operation frequency of the compressor of the prescribed heat pump unit among the plurality of heat pump units is acquired, and it is determined according to the acquired operation frequency whether the other heat pump units excluding the prescribed heat pump unit, among the plurality of heat pump units, are operated. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

この発明は、例えば、複数のヒートポンプ装置を用いる流体供給システムにおいて、ヒートポンプ装置の運転台数を制御する技術に関する。   The present invention relates to a technique for controlling the number of operating heat pump devices in a fluid supply system using a plurality of heat pump devices, for example.

ヒートポンプ装置等の熱源機を複数備える空調システムにおいて、建物側の除去すべき空調負荷と、熱源機の空調能力(特性)とに基づき、熱源機の運転台数を制御することが考えられる。
特許文献1には、空調負荷データを計測して、計測した空調負荷データに基づき熱源機の運転台数を決定することについての記載がある。
In an air conditioning system including a plurality of heat source units such as a heat pump device, it is conceivable to control the number of operating heat source units based on the air conditioning load to be removed on the building side and the air conditioning capability (characteristics) of the heat source unit.
Patent Document 1 describes that air conditioning load data is measured and the number of operating heat source units is determined based on the measured air conditioning load data.

特開2009−127936号公報JP 2009-127936 A

熱源機の運転台数を制御する台数制御装置が、空調負荷を把握するためには、計測機器(複数の配管温度計測用サーミスタ、流量計等)を設置して、空調負荷を検出する必要がある。一般に、日常的なエネルギー管理を実施していない建物(例えば、小規模な住宅やアパートなど)では、計測機器は設置されていない。このような建物に新たに計測機器を設置するにはコストがかかる。
また、台数制御装置が熱源機の空調能力を把握するには、予め空調能力を台数制御装置に入力しておくか、台数制御装置が通信回線を介して熱源機から空調能力に関する情報を取得する必要がある。しかし、熱源機を据付する据付業者が、任意に選択した熱源機を据付する場合がある。この場合には、接続される熱源機の空調能力を予め知ることはできないため、予め空調能力を台数制御装置に入力しておくことはできない。また、熱源機の据付方によっては、台数制御装置が通信回線を介して熱源機から空調能力に関する情報を取得することもできない場合がある。
この発明は、例えば、ヒートポンプ装置の空調能力を把握することなく、効率的にヒートポンプ装置の運転台数を制御することを目的とする。
In order for the unit control device that controls the number of operating heat source units to grasp the air conditioning load, it is necessary to install a measuring device (multiple piping temperature measurement thermistors, flow meters, etc.) and detect the air conditioning load. . In general, in a building where daily energy management is not performed (for example, a small house or an apartment), no measuring device is installed. It is costly to install a new measuring device in such a building.
Also, in order for the unit control device to grasp the air conditioning capability of the heat source unit, the air conditioning capability is input to the unit control unit in advance, or the unit control unit acquires information on the air conditioning capability from the heat source unit via a communication line. There is a need. However, an installation contractor who installs the heat source apparatus may install an arbitrarily selected heat source apparatus. In this case, since the air conditioning capability of the connected heat source machine cannot be known in advance, the air conditioning capability cannot be input to the unit control device in advance. Further, depending on how the heat source device is installed, the number control device may not be able to acquire information on the air conditioning capability from the heat source device via the communication line.
For example, an object of the present invention is to efficiently control the number of operating heat pump devices without grasping the air conditioning capability of the heat pump device.

この発明に係る台数制御装置は、例えば、
圧縮機を有する複数台のヒートポンプ装置を備え、前記ヒートポンプ装置で加熱又は冷却した流体を流体利用装置へ供給する流体供給システムにおいて、前記複数台のヒートポンプ装置の運転台数を制御をする台数制御装置であり、
前記複数台のヒートポンプ装置のうちの所定のヒートポンプ装置が備える前記圧縮機の運転周波数を取得する周波数取得部と、
前記周波数取得部が取得した運転周波数に応じて、前記複数台のヒートポンプ装置のうちの前記所定のヒートポンプ装置を除く他のヒートポンプ装置を運転させるか否かを決定する台数制御部と
を備えることを特徴とする。
The number control device according to the present invention is, for example,
In a fluid supply system comprising a plurality of heat pump devices having compressors and supplying fluid heated or cooled by the heat pump device to a fluid utilization device, a unit control device for controlling the number of operating the plurality of heat pump devices. Yes,
A frequency acquisition unit that acquires an operating frequency of the compressor included in a predetermined heat pump device of the plurality of heat pump devices;
A unit control unit for determining whether to operate other heat pump devices excluding the predetermined heat pump device among the plurality of heat pump devices, according to the operating frequency acquired by the frequency acquisition unit. Features.

この発明に係る台数制御装置は、あるヒートポンプ装置が備える圧縮機の運転周波数に応じて運転台数の制御を行う。そのため、ヒートポンプ装置の空調負荷を把握することなく、効率的にヒートポンプ装置の運転台数を制御することができる。   The number control device according to the present invention controls the number of operating units according to the operating frequency of a compressor provided in a certain heat pump device. Therefore, the number of operating heat pump devices can be efficiently controlled without grasping the air conditioning load of the heat pump device.

流体供給システム200の基本構成図。1 is a basic configuration diagram of a fluid supply system 200. FIG. 実施の形態1に係る流体供給システム200の構成図。1 is a configuration diagram of a fluid supply system 200 according to Embodiment 1. FIG. 運転コントローラ100の機能を示す機能ブロック図。The functional block diagram which shows the function of the driving | operation controller 100. FIG. 台数制御における熱源機の運転効率の効果を示す概念図。The conceptual diagram which shows the effect of the operation efficiency of the heat source machine in number control. 台数制御部122による台数制御処理の流れを示すフローチャート。6 is a flowchart showing a flow of a unit number control process by a number control unit 122;

実施の形態1.
図1は、流体供給システム200の基本構成図である。
流体供給システム200は、ヒートポンプ装置10、補助熱源20、室内空間60に設置された放熱器30(流体利用装置の一例)、ポンプ40を備え、順次流体配管50によって接続されている。特に、流体配管50は、ヒートポンプ装置10が備える第1熱交換器2に接続されている。また、流体配管50の内部には、水(流体の一例)が流れている。
また、放熱器30が設置された室内空間60には、設定温度等を入力するためのリモートコントローラ70が設けられている。
Embodiment 1 FIG.
FIG. 1 is a basic configuration diagram of a fluid supply system 200.
The fluid supply system 200 includes a heat pump device 10, an auxiliary heat source 20, a radiator 30 (an example of a fluid utilization device) installed in an indoor space 60, and a pump 40, which are sequentially connected by a fluid pipe 50. In particular, the fluid pipe 50 is connected to the first heat exchanger 2 included in the heat pump device 10. Further, water (an example of a fluid) flows inside the fluid pipe 50.
In addition, a remote controller 70 for inputting a set temperature or the like is provided in the indoor space 60 where the radiator 30 is installed.

ヒートポンプ装置10は、圧縮機1と第1熱交換器2と膨張機構3と第2熱交換器4とが冷媒配管5により順次接続されたヒートポンプサイクルを有する。圧縮機1、第1熱交換器2、膨張機構3、第2熱交換器4の順にヒートポンプサイクル内を冷媒が循環することにより、冷媒は、第2熱交換器4で空気等から吸熱して、第1熱交換器2で流体配管50を流れる水へ放熱する。つまり、ヒートポンプ装置10により、流体配管50を流れる水が加熱され、温水になる。
補助熱源20は、ヒートポンプ装置10が加熱した温水を、さらに加熱する。例えば、補助熱源20は、電気ヒータ等である。
放熱器30は、ヒートポンプ装置10や補助熱源20により加熱された温水の熱を、室内空間60の空気へ放出する。その結果、室内空間60内部は暖かくなり、温水は冷却され冷水になる。例えば、放熱器30は、輻射熱による自然対流の熱交換により温水と空気とを熱交換させる床暖房パネルやラジエータ、内部ファンによる強制対流の熱交換により温水と空気とを熱交換させるファンコイルユニット等である。
ポンプ40は、流体配管50内を水を循環させる。つまり、ポンプ40が稼動することにより、ヒートポンプ装置10、補助熱源20、放熱器30の順に水が循環する。そして、上述したように、水は、ヒートポンプ装置10で加熱され、補助熱源20でさらに加熱され、放熱器30で冷却されることを繰り返す。これにより、室内空間60が暖められる。
The heat pump device 10 has a heat pump cycle in which a compressor 1, a first heat exchanger 2, an expansion mechanism 3, and a second heat exchanger 4 are sequentially connected by a refrigerant pipe 5. As the refrigerant circulates in the heat pump cycle in the order of the compressor 1, the first heat exchanger 2, the expansion mechanism 3, and the second heat exchanger 4, the refrigerant absorbs heat from the air or the like in the second heat exchanger 4. The first heat exchanger 2 radiates heat to the water flowing through the fluid pipe 50. That is, the water flowing through the fluid pipe 50 is heated by the heat pump device 10 to become hot water.
The auxiliary heat source 20 further heats the hot water heated by the heat pump device 10. For example, the auxiliary heat source 20 is an electric heater or the like.
The radiator 30 releases the heat of hot water heated by the heat pump device 10 and the auxiliary heat source 20 to the air in the indoor space 60. As a result, the interior of the indoor space 60 becomes warm, and the hot water is cooled and becomes cold water. For example, the radiator 30 is a floor heating panel or radiator that exchanges heat between hot water and air by natural convection heat exchange by radiant heat, a fan coil unit that exchanges heat between hot water and air by forced convection heat exchange by an internal fan, etc. It is.
The pump 40 circulates water through the fluid piping 50. That is, when the pump 40 is operated, water circulates in the order of the heat pump device 10, the auxiliary heat source 20, and the radiator 30. As described above, the water is repeatedly heated by the heat pump device 10, further heated by the auxiliary heat source 20, and cooled by the radiator 30. Thereby, the indoor space 60 is warmed.

図2は、実施の形態1に係る流体供給システム200の構成図である。
図2に示す流体供給システム200は、3台のヒートポンプ装置10a,10b,10cを備える。各ヒートポンプ装置10は、流体配管50によって並列に接続されている。
つまり、ポンプ40から流出した水は、第1分岐点80と第2分岐点81とで分岐して、ヒートポンプ装置10a,10b,10cそれぞれへ流れる。そして、ヒートポンプ装置10a,10b,10cそれぞれで加熱された温水は、第1合流点82と第2合流点83とで合流し、補助熱源20でさらに加熱されて放熱器30へ供給される。そして、放熱器30で冷却された水がポンプ40を通り、再びヒートポンプ装置10a,10b,10cへ流れる。
FIG. 2 is a configuration diagram of the fluid supply system 200 according to the first embodiment.
A fluid supply system 200 shown in FIG. 2 includes three heat pump devices 10a, 10b, and 10c. Each heat pump device 10 is connected in parallel by a fluid pipe 50.
That is, the water that flows out of the pump 40 branches at the first branch point 80 and the second branch point 81 and flows to the heat pump devices 10a, 10b, and 10c, respectively. The hot water heated by each of the heat pump devices 10a, 10b, and 10c is merged at the first merge point 82 and the second merge point 83, further heated by the auxiliary heat source 20, and supplied to the radiator 30. And the water cooled with the heat radiator 30 passes the pump 40, and flows into heat pump apparatus 10a, 10b, 10c again.

また、図2に示す流体供給システム200は、運転コントローラ100(台数制御装置)を備える。運転コントローラ100は、ヒートポンプ装置10a,10b,10c、補助熱源20、ポンプ40の運転制御を行う。
運転コントローラ100とヒートポンプ装置10aとはネットワーク90により直接接続されている。また、運転コントローラ100とヒートポンプ装置10b,10cとは中継器101a,101bを介して、ネットワーク90により接続されている。ここでは、ヒートポンプ装置10aを親ヒートポンプ装置と呼び、ヒートポンプ装置10b,10cを子ヒートポンプ装置と呼ぶ。
The fluid supply system 200 shown in FIG. 2 includes an operation controller 100 (number control device). The operation controller 100 performs operation control of the heat pump devices 10a, 10b, and 10c, the auxiliary heat source 20, and the pump 40.
The operation controller 100 and the heat pump device 10a are directly connected by a network 90. The operation controller 100 and the heat pump devices 10b and 10c are connected by a network 90 via relays 101a and 101b. Here, the heat pump device 10a is called a parent heat pump device, and the heat pump devices 10b and 10c are called child heat pump devices.

図3は、運転コントローラ100の機能を示す機能ブロック図である。
運転コントローラ100は、データ収集部110、運転制御部120、データ記憶部130を備える。
FIG. 3 is a functional block diagram showing functions of the operation controller 100.
The operation controller 100 includes a data collection unit 110, an operation control unit 120, and a data storage unit 130.

データ収集部110は、周波数取得部111、実測温度検出部112、目標温度取得部113、運転情報取得部114を備える。
周波数取得部111は、親ヒートポンプ装置(ヒートポンプ装置10a)の圧縮機1aに設置された周波数検出器6aが検出した運転周波数をネットワーク90を介して受信することにより、親ヒートポンプ装置の圧縮機1aの運転周波数を取得する。
実測温度検出部112は、流体配管50における補助熱源20と放熱器30との間に設けられた温度センサ102によって検出された水の温度を実測温度として取得する。つまり、実測温度検出部112は、放熱器30へ供給される水の温度を実測温度として取得する。なお、温度センサ102は、例えば、温度サーミスタである。
目標温度取得部113は、リモートコントローラ70により入力された目標温度を、リモートコントローラ70からネットワーク90を介して受信することにより取得する。目標温度とは、放熱器30へ供給する水の目標温度である。
運転情報取得部114は、リモートコントローラ70により入力された流体供給システム200のON/OFF情報をリモートコントローラ70からネットワーク90を介して受信することにより取得する。
The data collection unit 110 includes a frequency acquisition unit 111, an actually measured temperature detection unit 112, a target temperature acquisition unit 113, and an operation information acquisition unit 114.
The frequency acquisition unit 111 receives the operating frequency detected by the frequency detector 6a installed in the compressor 1a of the parent heat pump device (heat pump device 10a) via the network 90, so that the compressor 1a of the parent heat pump device Get the operating frequency.
The actually measured temperature detection unit 112 acquires the temperature of water detected by the temperature sensor 102 provided between the auxiliary heat source 20 and the radiator 30 in the fluid pipe 50 as the actually measured temperature. That is, the measured temperature detection unit 112 acquires the temperature of the water supplied to the radiator 30 as the measured temperature. The temperature sensor 102 is, for example, a temperature thermistor.
The target temperature acquisition unit 113 acquires the target temperature input by the remote controller 70 by receiving it from the remote controller 70 via the network 90. The target temperature is a target temperature of water supplied to the radiator 30.
The operation information acquisition unit 114 acquires ON / OFF information of the fluid supply system 200 input by the remote controller 70 by receiving it from the remote controller 70 via the network 90.

運転制御部120は、空調制御部121、台数制御部122を備える。
空調制御部121は、流体供給システム200のON/OFF情報に応じて、ポンプ40のON/OFF制御を行う。また、空調制御部121は、全てのヒートポンプ装置10が運転中である場合に、目標温度と実測温度との温度差に応じて、補助熱源20のON/OFF制御を行う。つまり、空調制御部121は、全てのヒートポンプ装置10が運転中であり、目標温度と実測温度との温度差が大きい場合に、補助熱源20の運転を開始させ、目標温度と実測温度との温度差が小さくなると、補助熱源20の運転を中止する。なお、空調制御部121は、補助熱源20のON/OFF制御を行う場合には、空調制御部121は、ヒートポンプ装置10a,10b,10cの起動してからの時間を加味する。例えば、ヒートポンプ装置10cを起動したばかりである場合には、ヒートポンプ装置10cが十分に機能していない可能性があるため、目標温度と実測温度との温度差がある場合であっても補助熱源20の運転を開始することを控える。さらに、空調制御部121は、目標温度と実測温度とをネットワークを介してヒートポンプ装置10a,10b,10cへ送信して、ヒートポンプ装置10a,10b,10cに自身の能力(運転周波数)を決定させる。なお、ヒートポンプ装置10a,10b,10cは、目標温度と実測温度との温度差が大きい場合、運転周波数を高くし、温度差が小さい場合、運転周波数を低くする。
台数制御部122は、補助熱源20の運転が停止されている場合に、親ヒートポンプ装置の圧縮機1の運転周波数と、目標温度と実測温度との温度差とに応じて、子ヒートポンプ装置(ヒートポンプ装置10b,10c)のON/OFF制御を行う。
The operation control unit 120 includes an air conditioning control unit 121 and a number control unit 122.
The air conditioning control unit 121 performs ON / OFF control of the pump 40 according to the ON / OFF information of the fluid supply system 200. Moreover, the air-conditioning control part 121 performs ON / OFF control of the auxiliary heat source 20 according to the temperature difference between the target temperature and the actually measured temperature when all the heat pump devices 10 are in operation. That is, the air conditioning control unit 121 starts the operation of the auxiliary heat source 20 when all the heat pump devices 10 are in operation and the temperature difference between the target temperature and the measured temperature is large, and the temperature between the target temperature and the measured temperature is reached. When the difference becomes smaller, the operation of the auxiliary heat source 20 is stopped. In addition, when the air-conditioning control part 121 performs ON / OFF control of the auxiliary heat source 20, the air-conditioning control part 121 considers the time after starting of the heat pump apparatus 10a, 10b, 10c. For example, if the heat pump device 10c has just been started, the heat pump device 10c may not function sufficiently, so even if there is a temperature difference between the target temperature and the measured temperature, the auxiliary heat source 20 Refrain from starting driving. Further, the air conditioning control unit 121 transmits the target temperature and the actually measured temperature to the heat pump apparatuses 10a, 10b, and 10c via the network, and causes the heat pump apparatuses 10a, 10b, and 10c to determine their own capabilities (operation frequencies). The heat pump devices 10a, 10b, and 10c increase the operating frequency when the temperature difference between the target temperature and the measured temperature is large, and decrease the operating frequency when the temperature difference is small.
When the operation of the auxiliary heat source 20 is stopped, the number control unit 122 determines the child heat pump device (heat pump) according to the operating frequency of the compressor 1 of the parent heat pump device and the temperature difference between the target temperature and the measured temperature. ON / OFF control of the devices 10b and 10c) is performed.

データ記憶部130は、ヒートポンプ装置10a,10b,10cそれぞれの運転状況(運転しているか停止しているか)等、運転制御部120が運転制御を行うのに必要な情報を記憶装置に記憶する。   The data storage unit 130 stores, in the storage device, information necessary for the operation control unit 120 to perform operation control, such as the operation status (operating or stopped) of each of the heat pump apparatuses 10a, 10b, and 10c.

図4は、台数制御における熱源機の運転効率の効果を示す概念図である。
ヒートポンプ装置は、一般に、定格周波数付近の周波数で運転する場合の効率がよく、定格周波数から離れた周波数で運転する場合の効率は悪い。例えば、熱源機周波数制御が30Hzから100Hzの範囲で実施されている場合、30Hz付近(低周波数領域)の周波数で運転する場合の効率が最も悪く、定格周波数に近い50Hzから70Hz付近(定格周波数領域)の周波数で運転する場合の効率が最もよい。
そのため、図4に示すように、3台のヒートポンプ装置10a,10b,10cを、能力を落として低周波数領域の周波数で運転するよりも、2台のヒートポンプ装置10a,10bを、能力を高くして定格周波数領域の周波数で運転する方が効率がよい。
FIG. 4 is a conceptual diagram showing the effect of the operation efficiency of the heat source machine in the number control.
In general, the heat pump device has high efficiency when operated at a frequency near the rated frequency, and poor efficiency when operated at a frequency away from the rated frequency. For example, when the heat source frequency control is performed in the range of 30 Hz to 100 Hz, the efficiency when operating at a frequency near 30 Hz (low frequency range) is the worst, and 50 Hz to 70 Hz close to the rated frequency (rated frequency range) ) The best efficiency when operating at a frequency of
Therefore, as shown in FIG. 4, the capacity of the two heat pump devices 10 a, 10 b is increased rather than operating the three heat pump devices 10 a, 10 b, 10 c at a low frequency range with a reduced capacity. It is more efficient to operate at a frequency in the rated frequency range.

ここで、目標温度と実測温度との温度差が小さく、親ヒートポンプ装置の圧縮機1の運転周波数が低周波数領域にある場合、ヒートポンプ装置10の能力は空調負荷を満足し、かつヒートポンプ装置10は低効率な運転していると判断できる。そこで、台数制御部122は、目標温度と実測温度との温度差が小さく、親ヒートポンプ装置の圧縮機1の運転周波数が低周波数領域にある場合、子ヒートポンプ装置を1台(図4ではヒートポンプ装置10c)停止させる。
すると、ヒートポンプ装置10の台数が減ったことにより、一時的に能力不足となり、目標温度と実測温度との温度差が大きくなる。ヒートポンプ装置10は、上述したように、目標温度と実測温度との温度差に応じて運転周波数を決定している。そのため、運転中のヒートポンプ装置10(図4では、ヒートポンプ装置10a,10b)は、目標温度と実測温度との温度差が大きくなると、運転周波数を高くする。その結果、運転周波数が定格周波数に近づき、ヒートポンプ装置10の効率がよくなる。
Here, when the temperature difference between the target temperature and the measured temperature is small and the operation frequency of the compressor 1 of the parent heat pump device is in the low frequency region, the capability of the heat pump device 10 satisfies the air conditioning load, and the heat pump device 10 It can be judged that the vehicle is operating at low efficiency. Therefore, when the temperature difference between the target temperature and the actually measured temperature is small and the operating frequency of the compressor 1 of the parent heat pump device is in the low frequency region, the number control unit 122 has one child heat pump device (in FIG. 4, the heat pump device). 10c) Stop.
Then, since the number of heat pump devices 10 is reduced, the capacity is temporarily insufficient, and the temperature difference between the target temperature and the actually measured temperature increases. As described above, the heat pump device 10 determines the operating frequency according to the temperature difference between the target temperature and the actually measured temperature. Therefore, the operating heat pump device 10 (heat pump devices 10a and 10b in FIG. 4) increases the operating frequency when the temperature difference between the target temperature and the actually measured temperature increases. As a result, the operating frequency approaches the rated frequency, and the efficiency of the heat pump device 10 is improved.

図5は、台数制御部122による台数制御処理の流れを示すフローチャートである。なお、前提として、補助熱源20の運転は停止されているものとする。
(S1)では、台数制御部122は、親ヒートポンプ装置であるヒートポンプ装置10aの効率が低下しているか否かを判定する。具体的には、台数制御部122は、ヒートポンプ装置10aの圧縮機1aの運転周波数が予め定められた第1の周波数以下で、かつ、目標温度と実測温度との温度差が予め定められた第1の温度以下(温度差小)であるか否かを判定する。この条件を満たす場合には、(S2)へ進み、この条件を満たさない場合には(S3)へ進む。
(S2)では、台数制御部122は、ヒートポンプ装置10aの効率が低下しているため、現在運転中の子ヒートポンプ装置のうちの1台の運転を停止(OFF)する。
FIG. 5 is a flowchart showing the flow of the number control process by the number control unit 122. As a premise, it is assumed that the operation of the auxiliary heat source 20 is stopped.
In (S1), the number control unit 122 determines whether or not the efficiency of the heat pump device 10a that is the parent heat pump device is reduced. Specifically, the number control unit 122 is a first controller in which the operating frequency of the compressor 1a of the heat pump apparatus 10a is equal to or lower than a predetermined first frequency, and the temperature difference between the target temperature and the measured temperature is predetermined. It is determined whether or not the temperature is 1 or less (small temperature difference). If this condition is satisfied, the process proceeds to (S2), and if this condition is not satisfied, the process proceeds to (S3).
In (S2), since the efficiency of the heat pump device 10a is reduced, the number control unit 122 stops (OFF) the operation of one of the child heat pump devices currently in operation.

(S3)では、台数制御部122は、空調能力が不足しているか否かを判定する。具体的には、台数制御部122は、ヒートポンプ装置10aの圧縮機1aの運転周波数が第1の周波数よりも高い予め定められた第2の周波数以上で、かつ、目標温度と実測温度との温度差が第1の温度よりも大きい予め定められた第2の温度以上(温度差大)であるか否かを判定する。この条件を満たす場合には、(S4)へ進み、この条件を満たさない場合には(S5)へ進む。なお、第2の周波数は、例えば、圧縮機1aの最大運転周波数であってもよい。
(S4)では、台数制御部122は、空調能力が不足しているため、現在運転を停止している子ヒートポンプ装置のうちの1台の運転を開始(ON)する。
(S5)では、台数制御部122は、ヒートポンプ装置10aの効率が低下していることや、空調能力が不足していることがないため、現状維持とする。つまり、台数制御部122は、子ヒートポンプ装置のON/OFF制御を行わない。
In (S3), the number control unit 122 determines whether the air conditioning capability is insufficient. Specifically, the number control unit 122 has a predetermined frequency equal to or higher than a predetermined second frequency where the operating frequency of the compressor 1a of the heat pump device 10a is higher than the first frequency, and a temperature between the target temperature and the actually measured temperature. It is determined whether or not the difference is greater than or equal to a predetermined second temperature greater than the first temperature (large temperature difference). If this condition is satisfied, the process proceeds to (S4), and if this condition is not satisfied, the process proceeds to (S5). The second frequency may be the maximum operating frequency of the compressor 1a, for example.
In (S4), since the air conditioning capability is insufficient, the number control unit 122 starts (ON) one of the child heat pump devices that are currently stopped.
In (S5), the number control unit 122 maintains the current state because the efficiency of the heat pump device 10a is not reduced and the air conditioning capability is not insufficient. That is, the number control unit 122 does not perform ON / OFF control of the child heat pump device.

(S6)では、台数制御部122は、(S2)や(S4)で台数制御を行った場合には、所定の時間待ちに入り、所定の時間台数制御を行わない。これは、ヒートポンプ装置10の運転開始や停止をしたことが水温の変化に反映される時間遅れを考慮するためである。また、ヒートポンプ装置10のON/OFFの切り替えが短時間のうちに繰り返されるハンチング動作を防止するためである。なお、(S2)で運転台数を減少させた場合と、(S4)で運転台数を増加させた場合とでは、台数制御の結果が水温の変化に反映されるまでの時間等が異なる場合がある。この場合には、(S2)で運転台数を減少させた場合(つまり、(S2)から(S6)へ遷移した場合)と、(S4)で運転台数を増加させた場合(つまり、(S4)から(S6)へ遷移した場合)とで待ち時間を異なる時間としてもよい。
台数制御部122は、所定の時間経過後、再び(S1)から処理を行う。
In (S6), when the number control unit 122 performs the number control in (S2) or (S4), the number control unit 122 waits for a predetermined time and does not perform the number control for a predetermined time. This is to take into account the time delay that the start or stop of the operation of the heat pump device 10 is reflected in the change in the water temperature. Moreover, it is for preventing the hunting operation | movement where switching of ON / OFF of the heat pump apparatus 10 is repeated within a short time. In addition, when the number of operating units is decreased in (S2) and when the number of operating units is increased in (S4), the time until the result of unit control is reflected in the change in water temperature may be different. . In this case, when the number of operating units is decreased in (S2) (that is, when transitioning from (S2) to (S6)) and when the number of operating units is increased in (S4) (that is, (S4) The waiting time may be a different time in the case of transition from (S6) to (S6).
The number control unit 122 performs the processing from (S1) again after a predetermined time has elapsed.

なお、子ヒートポンプ装置が運転中である場合には、空調制御部121により補助熱源20のON/OFF制御が行われる。つまり、目標温度と実測温度との温度差が所定の温度以上である場合には、空調制御部121により補助熱源20の運転が開始される。目標温度と実測温度との温度差が所定の温度より小さい場合には、空調制御部121により補助熱源20の運転が停止される。   In addition, when the child heat pump device is in operation, the air conditioning control unit 121 performs ON / OFF control of the auxiliary heat source 20. That is, when the temperature difference between the target temperature and the actually measured temperature is equal to or higher than a predetermined temperature, the operation of the auxiliary heat source 20 is started by the air conditioning control unit 121. When the temperature difference between the target temperature and the actually measured temperature is smaller than the predetermined temperature, the air conditioning control unit 121 stops the operation of the auxiliary heat source 20.

また、(S1)で、ヒートポンプ装置10aの運転周波数が第1の周波数よりも低い第3の周波数以下であると判定された場合、(S2)で、台数制御部122は現在運転中の2台の子ヒートポンプ装置の運転を停止してもよい。
同様に、(S3)で、目標温度と実測温度との温度差が第2の温度よりも大きい第3の温度以上であると判定された場合、(S4)で、台数制御部122は現在運転中の2台の子ヒートポンプ装置の運転を開始してもよい。
つまり、台数制御部122は、親ヒートポンプ装置の圧縮機1の運転周波数と、目標温度と実測温度との温度差とに応じて、一度に複数の子ヒートポンプ装置のON/OFF制御を行ってもよい。すなわち、台数制御部122は、親ヒートポンプ装置の圧縮機1の運転周波数と、目標温度と実測温度との温度差とに応じて、ヒートポンプ装置10の運転台数を制御する。
When it is determined in (S1) that the operation frequency of the heat pump device 10a is equal to or lower than the third frequency lower than the first frequency, the number control unit 122 is set to two units currently in operation in (S2). The operation of the child heat pump device may be stopped.
Similarly, when it is determined in (S3) that the temperature difference between the target temperature and the actually measured temperature is equal to or higher than a third temperature that is greater than the second temperature, the number control unit 122 performs the current operation in (S4). The operation of the two child heat pump devices may be started.
That is, the number control unit 122 may perform ON / OFF control of a plurality of child heat pump devices at a time according to the operating frequency of the compressor 1 of the parent heat pump device and the temperature difference between the target temperature and the actually measured temperature. Good. In other words, the number control unit 122 controls the number of operating heat pump devices 10 according to the operating frequency of the compressor 1 of the parent heat pump device and the temperature difference between the target temperature and the measured temperature.

以上のように、実施の形態1に係る運転コントローラ100は、ヒートポンプ装置10の能力を把握することなく、ヒートポンプ装置10の運転台数の制御をすることができ、運転効率が向上する。
ここで、ヒートポンプ装置10a,10b,10cは、据付業者により選定され据え付られる場合には、それぞれの能力が同じ能力(例えば、5kW,5kW,5kW)の場合だけでなく、それぞれの能力が異なる能力(例えば、5kW,3kW,7kW)の場合もある。しかし、実施の形態1に係る運転コントローラ100であれば、いずれの場合であっても、的確な運転台数の制御を行うことができ、運転効率が向上する。
As described above, the operation controller 100 according to Embodiment 1 can control the number of operating heat pump devices 10 without grasping the capability of the heat pump device 10, thereby improving the operation efficiency.
Here, when the heat pump apparatuses 10a, 10b, and 10c are selected and installed by an installation contractor, the respective capacities are not only the same (for example, 5 kW, 5 kW, and 5 kW), but also have different capacities. There is also a case of capacity (for example, 5 kW, 3 kW, 7 kW). However, if the operation controller 100 according to the first embodiment is used, in any case, it is possible to accurately control the number of operation, and the operation efficiency is improved.

なお、上記説明では、3台のヒートポンプ装置10を備える流体供給システム200を例として説明した。しかし、ヒートポンプ装置10は、2台であっても、4台以上であってもよい。
また、上記説明では、放熱器30を流体供給装置の一例として説明した。しかし、放熱器30に代えて、流体供給装置として給湯機等を用いてもよい。
また、放熱器30に代えて、流体供給装置として吸熱機や冷水供給機を用いてもよい。この場合、ヒートポンプ装置10は、冷媒を、圧縮機1、第2熱交換器4、膨張機構3、第1熱交換器2の順にヒートポンプサイクル内を循環させる。これにより、冷媒は、第1熱交換器2で流体配管50を流れる水から吸熱して、第2熱交換器4で空気等へ放熱する。つまり、ヒートポンプ装置10により、流体配管50を流れる水が冷却され、冷水になる。この冷水を吸熱機や冷水供給機へ供給することにより、冷房や冷水の供給を行ってもよい。
また、上記説明では、流体配管50の内部を水が流れているとしたが、水以外の流体が流れているとしてもよい。
また、上記説明では、流体供給システム200は、放熱器30を1台のみ備える構成としたが、複数台の放熱器30を備える構成としてもよい。
In the above description, the fluid supply system 200 including the three heat pump devices 10 has been described as an example. However, the number of heat pump devices 10 may be two, or four or more.
In the above description, the radiator 30 is described as an example of the fluid supply device. However, instead of the radiator 30, a water heater or the like may be used as the fluid supply device.
Further, instead of the radiator 30, a heat absorber or a cold water feeder may be used as the fluid supply device. In this case, the heat pump device 10 circulates the refrigerant in the heat pump cycle in the order of the compressor 1, the second heat exchanger 4, the expansion mechanism 3, and the first heat exchanger 2. Thereby, the refrigerant absorbs heat from the water flowing through the fluid pipe 50 in the first heat exchanger 2 and dissipates heat to the air or the like in the second heat exchanger 4. That is, the water flowing through the fluid pipe 50 is cooled by the heat pump device 10 and becomes cold water. By supplying this cold water to an endothermic machine or a cold water supply machine, cooling or cold water may be supplied.
In the above description, water flows through the fluid pipe 50, but fluid other than water may flow.
In the above description, the fluid supply system 200 is configured to include only one radiator 30, but may be configured to include a plurality of radiators 30.

1 圧縮機、2 第1熱交換器、3 膨張機構、4 第2熱交換器、5 冷媒配管、6a 周波数検出器、10 ヒートポンプ装置、20 補助熱源、30 放熱器、40 ポンプ、50 流体配管、60 室内空間、70 リモートコントローラ、71 入力部、72 表示部、80 第1分岐点、81 第2分岐点、82 第1合流点、83 第2合流点、90 ネットワーク、100 運転コントローラ、101 中継器、102 温度センサ、110 データ収集部、111 周波数取得部、112 実測温度検出部、113 目標温度取得部、114 運転情報取得部、120 運転制御部、121 空調制御部、122 台数制御部、130 データ記憶部、140 データ記憶部、200 流体供給システム。   DESCRIPTION OF SYMBOLS 1 Compressor, 2 1st heat exchanger, 3 Expansion mechanism, 4 2nd heat exchanger, 5 Refrigerant piping, 6a Frequency detector, 10 Heat pump apparatus, 20 Auxiliary heat source, 30 Radiator, 40 Pump, 50 Fluid piping, 60 indoor space, 70 remote controller, 71 input unit, 72 display unit, 80 1st branch point, 81 2nd branch point, 82 1st junction point, 83 2nd junction point, 90 network, 100 operation controller, 101 relay , 102 Temperature sensor, 110 Data collection unit, 111 Frequency acquisition unit, 112 Actual temperature detection unit, 113 Target temperature acquisition unit, 114 Operation information acquisition unit, 120 Operation control unit, 121 Air conditioning control unit, 122 Number control unit, 130 Data Storage unit, 140 Data storage unit, 200 Fluid supply system.

Claims (9)

圧縮機を有する複数台のヒートポンプ装置を備え、前記ヒートポンプ装置で加熱又は冷却した流体を流体利用装置へ供給する流体供給システムにおいて、前記複数台のヒートポンプ装置の運転台数を制御をする台数制御装置であり、
前記複数台のヒートポンプ装置のうちの所定のヒートポンプ装置が備える前記圧縮機の運転周波数を取得する周波数取得部と、
前記周波数取得部が取得した運転周波数に応じて、前記複数台のヒートポンプ装置のうちの前記所定のヒートポンプ装置を除く他のヒートポンプ装置を運転させるか否かを決定する台数制御部と
を備えることを特徴とする台数制御装置。
In a fluid supply system comprising a plurality of heat pump devices having compressors and supplying fluid heated or cooled by the heat pump device to a fluid utilization device, a unit control device for controlling the number of operating the plurality of heat pump devices. Yes,
A frequency acquisition unit that acquires an operating frequency of the compressor included in a predetermined heat pump device of the plurality of heat pump devices;
A unit control unit for determining whether to operate other heat pump devices excluding the predetermined heat pump device among the plurality of heat pump devices, according to the operating frequency acquired by the frequency acquisition unit. Feature number control device.
前記台数制御部は、前記運転周波数が予め決められた第1の周波数以下である場合、前記他のヒートポンプ装置のうち、運転しているヒートポンプ装置の少なくとも1台のヒートポンプ装置の運転を停止させる
ことを特徴とする請求項1に記載の台数制御装置。
When the operation frequency is equal to or lower than a predetermined first frequency, the number control unit stops the operation of at least one heat pump device that is operating among the other heat pump devices. The number control device according to claim 1.
前記台数制御部は、前記運転周波数が予め決められた第2の周波数以上である場合、前記他のヒートポンプ装置のうち、運転を停止しているヒートポンプ装置の少なくとも1台のヒートポンプ装置の運転を開始させる
ことを特徴とする請求項1又は2に記載の台数制御装置。
When the operation frequency is equal to or higher than a predetermined second frequency, the number control unit starts operation of at least one heat pump device of the heat pump device that has stopped operating among the other heat pump devices. The number control device according to claim 1, wherein the number control device is a control unit.
前記台数制御装置は、さらに、
前記流体利用装置へ供給する流体の目標温度を取得する目標温度取得部と、
前記流体利用装置へ供給される流体の温度を実測温度として検出する実測温度検出部とを備え、
前記台数制御部は、前記目標温度取得部が取得した目標温度と前記実測温度検出部が検出した実測温度との温度差と、前記運転周波数とに応じて、前記他のヒートポンプ装置を運転させるか否かを決定する
ことを特徴とする請求項1から3までのいずれかに記載の台数制御装置。
The number control device further includes:
A target temperature acquisition unit for acquiring a target temperature of a fluid to be supplied to the fluid utilization device;
An actual temperature detector that detects the temperature of the fluid supplied to the fluid utilization device as an actual temperature;
Whether the number control unit operates the other heat pump device according to the temperature difference between the target temperature acquired by the target temperature acquisition unit and the actual temperature detected by the actual temperature detection unit, and the operation frequency. The number control device according to claim 1, wherein it is determined whether or not.
前記台数制御部は、前記温度差が予め決められた第1の温度以下であって、かつ前記運転周波数が予め決められた第1の周波数以下である場合、前記他のヒートポンプ装置のうち、運転しているヒートポンプ装置の少なくとも1台のヒートポンプ装置の運転を停止させる
ことを特徴とする請求項4に記載の台数制御装置。
When the temperature difference is equal to or lower than a predetermined first temperature and the operating frequency is equal to or lower than a predetermined first frequency, the number control unit operates among the other heat pump devices. The number control device according to claim 4, wherein the operation of at least one heat pump device of the heat pump device is stopped.
前記台数制御部は、前記温度差が予め決められた第2の温度以上であって、かつ前記運転周波数が予め決められた第2の周波数以上である場合、前記他のヒートポンプ装置のうち、運転を停止しているヒートポンプ装置の少なくとも1台のヒートポンプ装置の運転を開始させる
ことを特徴とする請求項4又は5に記載の台数制御装置。
When the temperature difference is equal to or higher than a predetermined second temperature and the operating frequency is equal to or higher than a predetermined second frequency, the number control unit operates among the other heat pump devices. 6. The number control device according to claim 4, wherein the operation of at least one heat pump device of the heat pump devices that are stopped is started.
前記台数制御部は、前記他のヒートポンプ装置の運転を停止又は開始した後、所定の時間は、前記他のヒートポンプ装置の運転を停止又は開始を行わない
ことを特徴とする請求項1から6までのいずれかに記載の台数制御装置。
The number control unit does not stop or start the operation of the other heat pump device for a predetermined time after stopping or starting the operation of the other heat pump device. The number control device according to any one of the above.
圧縮機を有する複数台のヒートポンプ装置を備え、前記ヒートポンプ装置で加熱又は冷却した流体を流体利用装置へ供給する流体供給システムにおいて、前記複数台のヒートポンプ装置の運転台数を制御をする台数制御方法であり、
前記複数台のヒートポンプ装置のうちの所定のヒートポンプ装置が備える前記圧縮機の運転周波数を受信する周波数受信工程と、
前記周波数受信工程で取得した運転周波数に応じて、前記複数台のヒートポンプ装置のうちの前記所定のヒートポンプ装置を除く他のヒートポンプ装置を運転させるか否かを決定する台数制御工程と
を備えることを特徴とする台数制御方法。
In a fluid supply system comprising a plurality of heat pump devices having compressors and supplying fluid heated or cooled by the heat pump device to a fluid utilization device, a unit control method for controlling the number of operating the plurality of heat pump devices. Yes,
A frequency receiving step of receiving an operating frequency of the compressor included in a predetermined heat pump device of the plurality of heat pump devices;
A number control step of determining whether to operate other heat pump devices except the predetermined heat pump device among the plurality of heat pump devices, according to the operating frequency acquired in the frequency receiving step. Characteristic unit control method.
圧縮機を備える複数台のヒートポンプ装置と、
前記複数台のヒートポンプ装置の運転台数を制御をする台数制御装置とを備え、
前記ヒートポンプ装置で加熱又は冷却した流体を流体利用装置へ供給する流体供給システムであり、
前記台数制御装置は、
前記複数台のヒートポンプ装置のうちの所定のヒートポンプ装置が備える前記圧縮機の運転周波数を取得する周波数取得部と、
前記周波数取得部が取得した運転周波数に応じて、前記複数台のヒートポンプ装置のうちの前記所定のヒートポンプ装置を除く他のヒートポンプ装置を運転させるか否かを決定する台数制御部と
を備えることを特徴とする流体供給システム。
A plurality of heat pump devices including compressors;
A number control device that controls the number of operating heat pump devices.
A fluid supply system for supplying fluid heated or cooled by the heat pump device to a fluid utilization device;
The number controller is
A frequency acquisition unit that acquires an operating frequency of the compressor included in a predetermined heat pump device of the plurality of heat pump devices;
A unit control unit for determining whether to operate other heat pump devices excluding the predetermined heat pump device among the plurality of heat pump devices, according to the operating frequency acquired by the frequency acquisition unit. A fluid supply system.
JP2009266361A 2009-11-24 2009-11-24 Number control device Expired - Fee Related JP5053351B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009266361A JP5053351B2 (en) 2009-11-24 2009-11-24 Number control device
EP10009569.4A EP2325570A3 (en) 2009-11-24 2010-09-14 Unit count control device, unit count control method, and fluid supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009266361A JP5053351B2 (en) 2009-11-24 2009-11-24 Number control device

Publications (2)

Publication Number Publication Date
JP2011112235A true JP2011112235A (en) 2011-06-09
JP5053351B2 JP5053351B2 (en) 2012-10-17

Family

ID=43838044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009266361A Expired - Fee Related JP5053351B2 (en) 2009-11-24 2009-11-24 Number control device

Country Status (2)

Country Link
EP (1) EP2325570A3 (en)
JP (1) JP5053351B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013160397A (en) * 2012-02-01 2013-08-19 Daikin Industries Ltd Chiller control system
JP2013160398A (en) * 2012-02-01 2013-08-19 Daikin Industries Ltd Chiller control system
WO2014002137A1 (en) * 2012-06-27 2014-01-03 三菱電機株式会社 Railway-vehicle total-heat-exchange ventilation system
KR20150005535A (en) * 2012-03-07 2015-01-14 에이에스엠엘 네델란즈 비.브이. Radiation source and lithographic apparatus
KR20170018890A (en) * 2014-06-10 2017-02-20 도시바 캐리어 가부시키가이샤 Heat source machine and heat source device
KR20180007205A (en) * 2016-07-12 2018-01-22 대림산업 주식회사 Method and Apparatus for Operating Heat Pump of Geothermal Exchanger
KR101865637B1 (en) * 2016-07-12 2018-06-11 대림산업 주식회사 Method and Apparatus for Operating Heat Pump of Geothermal Exchanger
WO2020165992A1 (en) * 2019-02-14 2020-08-20 日立ジョンソンコントロールズ空調株式会社 Air conditioning system, air conditioning apparatus, operation control method, and program
US11143434B2 (en) 2017-02-10 2021-10-12 Mitsubishi Electric Corporation Refrigeration cycle apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101843088B1 (en) 2016-12-05 2018-03-28 최재호 Geothermal system based on active control according to the amount of heating load and the control method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10213339A (en) * 1997-01-30 1998-08-11 Mitsubishi Electric Corp Air conditioner
JP2008267722A (en) * 2007-04-23 2008-11-06 Mitsubishi Electric Corp Heat source machine and refrigerating air conditioner
JP2009127936A (en) * 2007-11-22 2009-06-11 Yamatake Corp Unit count control device for heat source unit and unit count control method for heat source unit

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0327249Y2 (en) * 1984-10-26 1991-06-12
JP2693693B2 (en) * 1992-11-06 1997-12-24 株式会社日立製作所 Electronic device cooling device and control method thereof
US7793509B2 (en) * 2004-04-12 2010-09-14 Johnson Controls Technology Company System and method for capacity control in a multiple compressor chiller system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10213339A (en) * 1997-01-30 1998-08-11 Mitsubishi Electric Corp Air conditioner
JP2008267722A (en) * 2007-04-23 2008-11-06 Mitsubishi Electric Corp Heat source machine and refrigerating air conditioner
JP2009127936A (en) * 2007-11-22 2009-06-11 Yamatake Corp Unit count control device for heat source unit and unit count control method for heat source unit

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013160397A (en) * 2012-02-01 2013-08-19 Daikin Industries Ltd Chiller control system
JP2013160398A (en) * 2012-02-01 2013-08-19 Daikin Industries Ltd Chiller control system
KR20150005535A (en) * 2012-03-07 2015-01-14 에이에스엠엘 네델란즈 비.브이. Radiation source and lithographic apparatus
KR102106026B1 (en) 2012-03-07 2020-05-04 에이에스엠엘 네델란즈 비.브이. Radiation source and lithographic apparatus
WO2014002137A1 (en) * 2012-06-27 2014-01-03 三菱電機株式会社 Railway-vehicle total-heat-exchange ventilation system
JPWO2014002137A1 (en) * 2012-06-27 2016-05-26 三菱電機株式会社 Total heat exchange ventilation system for railway vehicles
JPWO2015190525A1 (en) * 2014-06-10 2017-04-20 東芝キヤリア株式会社 Heat source machine and heat source device
KR101895175B1 (en) 2014-06-10 2018-09-04 도시바 캐리어 가부시키가이샤 Heat source machine and heat source device
KR20170018890A (en) * 2014-06-10 2017-02-20 도시바 캐리어 가부시키가이샤 Heat source machine and heat source device
KR20180007205A (en) * 2016-07-12 2018-01-22 대림산업 주식회사 Method and Apparatus for Operating Heat Pump of Geothermal Exchanger
KR101865637B1 (en) * 2016-07-12 2018-06-11 대림산업 주식회사 Method and Apparatus for Operating Heat Pump of Geothermal Exchanger
US11143434B2 (en) 2017-02-10 2021-10-12 Mitsubishi Electric Corporation Refrigeration cycle apparatus
WO2020165992A1 (en) * 2019-02-14 2020-08-20 日立ジョンソンコントロールズ空調株式会社 Air conditioning system, air conditioning apparatus, operation control method, and program
JPWO2020165992A1 (en) * 2019-02-14 2021-02-18 日立ジョンソンコントロールズ空調株式会社 Air conditioning system, air conditioning device, operation control method and program

Also Published As

Publication number Publication date
EP2325570A2 (en) 2011-05-25
JP5053351B2 (en) 2012-10-17
EP2325570A3 (en) 2013-08-07

Similar Documents

Publication Publication Date Title
JP5053351B2 (en) Number control device
JP6249932B2 (en) Air conditioning system
EP2362164A2 (en) Heat pump system and control method thereof
US20140174117A1 (en) Air conditioning apparatus
JP5622859B2 (en) Heat source equipment
EP2508806B1 (en) Heat pump system and heat pump unit controlling method
JP2014163594A (en) Flow control device and fluid circuit system
JP6471672B2 (en) Hot water heating system
JP2013119954A (en) Heat pump hot water heater
JP2012159255A (en) Heat pump type heat source device, and heating system
JP2008121982A (en) Refrigerating cycle device
CA2841378C (en) Operation of a hvac system using a combined hydronic and forced air system
JP5973076B2 (en) Hot water heater
EP3346197B1 (en) Heating control system and heat pump hot-water heating system
KR101252786B1 (en) Heating and method for controlling the heating
JP6111871B2 (en) Demand response system
AU2021309103A1 (en) A variable refrigerant flow conditioning system
CN101660851A (en) Heat pump system and method of controlling the same
JP2000179917A (en) Method for operating air conditioner
EP3091293B1 (en) Heating device
JP6361021B2 (en) Hot water generator
JP2014163536A (en) Temperature control system
JP2011133137A (en) Air conditioning system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120127

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120327

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120608

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120724

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120725

R150 Certificate of patent or registration of utility model

Ref document number: 5053351

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150803

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees