JP2011111496A - Heat-storing agent - Google Patents

Heat-storing agent Download PDF

Info

Publication number
JP2011111496A
JP2011111496A JP2009267667A JP2009267667A JP2011111496A JP 2011111496 A JP2011111496 A JP 2011111496A JP 2009267667 A JP2009267667 A JP 2009267667A JP 2009267667 A JP2009267667 A JP 2009267667A JP 2011111496 A JP2011111496 A JP 2011111496A
Authority
JP
Japan
Prior art keywords
aqueous solution
heat storage
heat
water
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009267667A
Other languages
Japanese (ja)
Other versions
JP5573122B2 (en
Inventor
Keiji Tomura
啓二 戸村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP2009267667A priority Critical patent/JP5573122B2/en
Publication of JP2011111496A publication Critical patent/JP2011111496A/en
Application granted granted Critical
Publication of JP5573122B2 publication Critical patent/JP5573122B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat-storing agent having a high heat-storing speed and hardly causing bilayer separation, and a heat-storing material by using such heat-storing agent. <P>SOLUTION: This heat-storing agent containing a quaternary ammonium salt, water, an alkali metal phosphate and water soluble polysaccharides is characterized in that the water soluble polysaccharides have at least one of carboxyl group and carboxymethyl group. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、潜熱蓄熱剤に係り、特に、その蓄熱速度を高め、かつ層分離を抑制する技術に関する。   The present invention relates to a latent heat storage agent, and more particularly to a technique for increasing the heat storage rate and suppressing layer separation.

蓄熱材の主剤として使用される蓄熱剤は、その単位時間あたりの蓄熱量(以下「蓄熱速度」という)が高いものほど実用上好ましい。その蓄熱速度がより高ければ、より短時間でより多くの熱エネルギーを蓄積できるからである。   As the heat storage agent used as the main component of the heat storage material, a material having a higher heat storage amount per unit time (hereinafter referred to as “heat storage speed”) is more practically preferable. This is because if the heat storage speed is higher, more heat energy can be stored in a shorter time.

第四級アンモニウム塩の水溶液(以下「原料水溶液」という)が冷却されて生成される第四級アンモニウム塩の包接水和物(準包接水和物を含む。以下同様)は、蓄熱式のビル空調設備に使用される蓄熱材や鮮魚保存用の保冷材の主剤として良く知られており(例えば、特許文献1、2参照)、相分離を起こし難いことでも知られている(例えば、特許文献3参照)。そして、原料水溶液から第四級アンモニウム塩の包接水和物が生成する際の単位時間あたりの蓄熱量(これは、第四級アンモニウム塩の包接水和物が原料水溶液に復帰する際の単位時間あたりの放熱量と実質的に等しい)、即ち蓄熱速度を高める技術開発が進められている。そのような技術として、原料水溶液にアルカリ金属リン酸塩を添加することにより蓄熱速度を向上させる技術がある(例えば、特許文献4参照)。   The quaternary ammonium salt clathrate hydrate (including quasi clathrate hydrate; the same shall apply hereinafter) produced by cooling an aqueous solution of a quaternary ammonium salt (hereinafter referred to as “raw aqueous solution”) is a heat storage type. It is well known as the main agent of heat storage materials used for building air conditioning equipment and cold storage materials for preservation of fresh fish (for example, see Patent Documents 1 and 2), and is also known to be difficult to cause phase separation (for example, (See Patent Document 3). And the amount of heat storage per unit time when the clathrate hydrate of the quaternary ammonium salt is produced from the raw material aqueous solution (this is when the clathrate hydrate of the quaternary ammonium salt returns to the raw material aqueous solution. Development of technology for increasing the heat storage speed is proceeding, which is substantially equal to the amount of heat released per unit time. As such a technique, there is a technique for improving the heat storage rate by adding an alkali metal phosphate to a raw material aqueous solution (see, for example, Patent Document 4).

特開2001−280875号公報JP 2001-280875 A 特開2007−161894号公報JP 2007-161894 A 特開2005−126728号公報Japanese Patent Laying-Open No. 2005-126728 特開2008−214527号公報JP 2008-214527 A 特開2006−131856号公報JP 2006-131856 A 特許3774530公報Japanese Patent No. 3774530

ここで、原料水溶液から生成する第四級アンモニウム塩の包接水和物は、原料水溶液中で相分離を起こし難いことは確かであるが、長時間静置すれば、やがて二相に分離状態になる。そのような包接水和物が相分離した状態にある原料水溶液に対して加熱と冷却を繰り返した場合、撹拌などにより相分離状態を事前に解消しておくような場合を除き、蓄熱速度の向上効果は長続きしない。蓄熱速度の向上効果を維持させるためにアルカリ金属リン酸塩を原料水溶液により多く添加すると、かえって二相分離がより顕著に起こる現象も確認されている。   Here, it is certain that clathrate hydrate of quaternary ammonium salt produced from the raw material aqueous solution is unlikely to cause phase separation in the raw material aqueous solution, but if left standing for a long time, it will eventually be separated into two phases. become. When heating and cooling are repeated for the raw material aqueous solution in which such clathrate hydrate is in a phase-separated state, unless the phase separation state is eliminated in advance by stirring or the like, the heat storage rate is reduced. The improvement effect does not last long. It has also been confirmed that when more alkali metal phosphate is added to the raw material aqueous solution in order to maintain the effect of improving the heat storage rate, two-phase separation occurs more remarkably.

一方、蓄熱剤が起こす相分離を防止又は抑制する手法として、次の例が知られている。   On the other hand, the following example is known as a technique for preventing or suppressing phase separation caused by the heat storage agent.

(1)硫酸ナトリウム10水和物を主成分とする蓄熱剤の相分離抑制のためにスターチ等の多糖類を用いる手法(特許文献5)。この手法によれば、スターチ等の多糖類による蓄熱剤のゲル化という物理的効果により、相分離を防止又は抑制することができる。   (1) A method of using a polysaccharide such as starch to suppress phase separation of a heat storage agent mainly composed of sodium sulfate decahydrate (Patent Document 5). According to this method, phase separation can be prevented or suppressed by the physical effect of gelation of the heat storage agent using polysaccharides such as starch.

(2)酢酸ナトリウム3水塩を主成分とする蓄熱剤に含まれる過冷却解除防止用担持結晶の沈降を抑制するために、増粘剤を添加する手法(特許文献6)。この手法によれば、増粘剤による粘性増加という物理的効果により、過冷却防止用担持結晶の沈降が抑制され、その沈降が原因となる相分離を防止又は抑制することができる。   (2) A technique in which a thickener is added in order to suppress sedimentation of the supporting crystals for preventing overcooling contained in the heat storage agent mainly composed of sodium acetate trihydrate (Patent Document 6). According to this technique, due to the physical effect of viscosity increase by the thickener, sedimentation of the supercooling-preventing supported crystals is suppressed, and phase separation caused by the sedimentation can be prevented or suppressed.

しかし、上記(1)及び(2)の各手法における物理的効果を維持するためには、蓄熱剤の粘性を大幅に増加させなければならない。蓄熱剤の粘性が大幅に増加すると、蓄熱剤中の熱移動が緩慢になり、蓄熱剤と外部との熱交換速度(延いては蓄熱速度)が低下するという性能上の問題が生じ、また、蓄熱剤を蓄熱容器に充填することが難しくなるなど、取扱い上の問題が生じる。   However, in order to maintain the physical effects in the above methods (1) and (2), the viscosity of the heat storage agent must be significantly increased. When the viscosity of the heat storage agent increases significantly, the heat transfer in the heat storage agent slows down, causing a performance problem that the heat exchange rate between the heat storage agent and the outside (and hence the heat storage rate) decreases, Handling problems such as difficulty in filling the heat storage container with the heat storage agent occur.

本発明は、以上の事情に鑑みてなされたものであり、第四級アンモニウム塩、水及びアルカリ金属リン酸塩を含む蓄熱剤であって、蓄熱速度が高く、二層分離が起こり難いもの、及びそのような蓄熱剤を用いた蓄熱材を提供することを目的とする。   The present invention has been made in view of the above circumstances, and is a heat storage agent containing a quaternary ammonium salt, water and an alkali metal phosphate, which has a high heat storage rate and is unlikely to cause two-layer separation. And it aims at providing the thermal storage material using such a thermal storage agent.

第四級アンモニウム塩と水を含む蓄熱剤にアルカリ金属リン酸塩を特定の濃度以上に添加すると、液相が二層に分離する現象が認められた。例えば、臭化テトラnブチルアンモニウム(TBAB)40重量部を水60重量部に溶解して得られた蓄熱剤に対して、リン酸水素二ナトリウム1.5重量部を添加して加熱及び攪拌して溶解させ、静置して放置すると、溶液状態で既に二層に分離する現象がみられた。   When the alkali metal phosphate was added to a heat storage agent containing a quaternary ammonium salt and water at a specific concentration or more, a phenomenon that the liquid phase separated into two layers was observed. For example, to a heat storage agent obtained by dissolving 40 parts by weight of tetra n-butylammonium bromide (TBAB) in 60 parts by weight of water, 1.5 parts by weight of disodium hydrogen phosphate is added and heated and stirred. When dissolved and allowed to stand, it was already separated into two layers in the solution state.

このとき、上層液部分は体積割合で90%以上であり、下層液部分は体積割合で10%以下であった。 それぞれの層を分析すると、上層液部分はTBABと水が主成分であり、下層液部分はリン酸水素二ナトリウムと水が主成分であった。   At this time, the upper layer liquid part was 90% or more by volume ratio, and the lower layer liquid part was 10% or less by volume ratio. When each layer was analyzed, the upper layer liquid part was mainly composed of TBAB and water, and the lower layer liquid part was mainly composed of disodium hydrogen phosphate and water.

ここで、溶液を調製した直後に液が二層に分離するという現象は、凝固融解を繰り返して固相部分が次第に沈澱していき固相と液相とに分離する固液相分離現象とは根本的に異なっている。固液相分離を抑制するために、溶液の粘性を上昇させるなどして、固体部分の沈降を防ぐことが試みられているが、液が二層に分離する現象に対しては粘性上昇により分層を抑制できる可能性が低い。   Here, the phenomenon that the liquid separates into two layers immediately after the solution is prepared is the solid-liquid phase separation phenomenon in which the solid phase part gradually precipitates by repeated solidification and melting and separates into a solid phase and a liquid phase. It is fundamentally different. In order to suppress solid-liquid phase separation, attempts have been made to prevent sedimentation of the solid part by increasing the viscosity of the solution. The possibility of suppressing the layer is low.

実際に発明者らが周知の増粘剤(デンプン、ゼラチン、ポリアクリル酸ナトリウム、ポリビニルアルコールなど)を添加することで溶液の粘性を上昇させても、二層分離を抑制することができなかった。すなわち、粘性上昇などの物理的作用による二層分離を抑制することは困難である。   Even when the inventors actually increased the viscosity of the solution by adding known thickeners (starch, gelatin, sodium polyacrylate, polyvinyl alcohol, etc.), the two-layer separation could not be suppressed. . That is, it is difficult to suppress two-layer separation due to physical action such as increase in viscosity.

そこで、本発明者らが鋭意検討した結果、第四級アンモニウム塩と水とアルカリ金属リン酸塩を含む蓄熱剤に、カルボキシル基およびカルボキシメチル基のうち少なくとも一つを有する水溶性多糖類を添加する、あるいはカルボキシル基およびカルボキシメチル基のうち少なくとも一つを有し、アルカリ金属を有する水溶性多糖類を添加することにより、二層分離を抑制することができることを見出した。   Therefore, as a result of intensive studies by the present inventors, a water-soluble polysaccharide having at least one of a carboxyl group and a carboxymethyl group is added to a heat storage agent containing a quaternary ammonium salt, water, and an alkali metal phosphate. It was also found that the two-layer separation can be suppressed by adding a water-soluble polysaccharide having at least one of a carboxyl group and a carboxymethyl group and having an alkali metal.

これは、単に粘性上昇などの物理的な作用ではなく、アルカリ金属リン酸塩と、カルボキシル基およびカルボキシメチル基のうち少なくとも一つを有する水溶性多糖類との化学的な作用により、あるいはカルボキシル基およびカルボキシメチル基のうち少なくとも一つを有し、アルカリ金属を有する水溶性多糖類との化学的な作用により、二層分離を抑制できるためと考えられる。   This is not simply a physical action such as an increase in viscosity, but a chemical action of an alkali metal phosphate and a water-soluble polysaccharide having at least one of a carboxyl group and a carboxymethyl group, or a carboxyl group. It is considered that the two-layer separation can be suppressed by a chemical action with a water-soluble polysaccharide having at least one of carboxymethyl groups and an alkali metal.

本発明において、カルボキシル基およびカルボキシメチル基のうち少なくとも一つを有する水溶性多糖類の典型例は、カラギーナン、カルボキシメチルセルロースである。また、カルボキシル基およびカルボキシメチル基のうち少なくとも一つを有し、アルカリ金属を有する水溶性多糖類の典型例は、アルギン酸ナトリウム、カルボキシメチルセルロースナトリウムである。   In the present invention, typical examples of water-soluble polysaccharides having at least one of a carboxyl group and a carboxymethyl group are carrageenan and carboxymethylcellulose. Typical examples of the water-soluble polysaccharide having at least one of a carboxyl group and a carboxymethyl group and having an alkali metal are sodium alginate and sodium carboxymethylcellulose.

本発明において、アルカリ金属リン酸塩の典型例は、ナトリウムのリン酸塩、カリウムのリン酸塩であり、具体的にはリン酸二水素ナトリウム、リン酸水素二ナトリウム、リン酸三ナトリウム、リン酸二水素カリウム、リン酸水素二カリウム、リン酸三カリウムであり、その混合物であっても良い。   In the present invention, typical examples of the alkali metal phosphate are sodium phosphate and potassium phosphate. Specifically, sodium dihydrogen phosphate, disodium hydrogen phosphate, trisodium phosphate, phosphorus Potassium dihydrogen acid, dipotassium hydrogen phosphate, and tripotassium phosphate, or a mixture thereof.

また、本発明において、第四級アンモニウム塩の典型例は、テトラアルキルアンモニウム塩である。テトラアルキルアンモニウム塩の典型例は、臭化テトラnブチルアンモニウムである。   In the present invention, a typical example of a quaternary ammonium salt is a tetraalkylammonium salt. A typical example of a tetraalkylammonium salt is tetra nbutylammonium bromide.

また、本発明者は、これらの水溶性多糖類を加えても、蓄熱剤の性能、すなわち過冷却解除性能や蓄熱速度が問題になるほど損なわれることがないことを見出した。   Further, the present inventor has found that even when these water-soluble polysaccharides are added, the performance of the heat storage agent, that is, the supercooling release performance and the heat storage speed are not impaired to a problem.

さらに、本発明者は、第四級アンモニウム塩とアルカリ金属リン酸塩を含む水溶液に添加するこれらの水溶性多糖類の分子量や添加量によって溶液の粘性は異なってくるものの、二層分離の抑制効果はその粘性とはほとんど関係がないことを見出した。したがって、第四級アンモニウム塩とアルカリ金属リン酸塩を含む水溶液の粘性を上昇させることなく、二層分離を抑制することができるので、粘性上昇により蓄熱剤中の熱移動が緩慢になり蓄熱剤と外部との熱交換速度が低下する性能上の問題や、高粘性により蓄熱容器への蓄熱剤の充填が難しくなるなどの取扱い上の問題が生じることを避けることができる。   Furthermore, the present inventor suppresses the two-layer separation, although the viscosity of the solution varies depending on the molecular weight and the amount of these water-soluble polysaccharides added to the aqueous solution containing a quaternary ammonium salt and an alkali metal phosphate. We found that the effect has little to do with its viscosity. Therefore, since two-layer separation can be suppressed without increasing the viscosity of an aqueous solution containing a quaternary ammonium salt and an alkali metal phosphate, heat transfer in the heat storage agent becomes slow due to the increase in viscosity, and the heat storage agent. It is possible to avoid problems in performance in which the rate of heat exchange with the outside decreases and problems in handling such as difficulty in filling the heat storage container with the heat storage container due to high viscosity.

本発明の第1の態様は、第四級アンモニウム塩、水、アルカリ金属リン酸塩及び水溶性多糖類を含む蓄熱剤であって、前記水溶性多糖類がカルボキシル基およびカルボキシメチル基のうちの少なくとも一つを有する水溶性多糖類であることを特徴とする蓄熱剤を提供する。   A first aspect of the present invention is a heat storage agent comprising a quaternary ammonium salt, water, an alkali metal phosphate and a water-soluble polysaccharide, wherein the water-soluble polysaccharide is a carboxyl group or a carboxymethyl group. There is provided a heat storage agent characterized by being a water-soluble polysaccharide having at least one.

本発明の第2の態様は、第四級アンモニウム塩、水、アルカリ金属リン酸塩及び水溶性多糖類を含む蓄熱剤であって、前記水溶性多糖類がカルボキシル基並びにカルボキシメチル基のうちの少なくとも一つ、及びアルカリ金属を有する水溶性多糖類であることを特徴とする蓄熱剤を提供する。   A second aspect of the present invention is a heat storage agent comprising a quaternary ammonium salt, water, an alkali metal phosphate and a water-soluble polysaccharide, wherein the water-soluble polysaccharide is a carboxyl group or a carboxymethyl group. There is provided a heat storage agent characterized by being a water-soluble polysaccharide having at least one and an alkali metal.

以上の蓄熱剤において、前記アルカリ金属リン酸塩として、リン酸水素二ナトリウムを用いることが出来る。   In the above heat storage agent, disodium hydrogen phosphate can be used as the alkali metal phosphate.

なお、本明細書において、次に掲げる用語は、別段の説明がなされる場合を除き、以下のとおり解釈されるものとする。   In the present specification, the following terms are interpreted as follows unless otherwise explained.

(1)「包接水和物」には、準包接水和物が含まれる。   (1) The “clathrate hydrate” includes quasi clathrate hydrate.

(2)「包接水和物」は「水和物」と略称される場合がある。   (2) The “clathrate hydrate” is sometimes abbreviated as “hydrate”.

(3)「原料水溶液」とは、第四級アンモニウム塩の水溶液をいう。当該第四級アンモニウム塩とは別の微量物質が添加されていても「原料水溶液」という。また、第四級アンモニウム塩をゲスト化合物とする包接水和物が分散又は懸濁していても、第四級アンモニウム塩を含む水溶液であれば「原料水溶液」という。   (3) “Raw material aqueous solution” refers to an aqueous solution of a quaternary ammonium salt. Even if a trace substance other than the quaternary ammonium salt is added, it is referred to as “raw aqueous solution”. Moreover, even if the clathrate hydrate containing a quaternary ammonium salt as a guest compound is dispersed or suspended, an aqueous solution containing a quaternary ammonium salt is referred to as a “raw material aqueous solution”.

(4)「水和物生成温度」とは、原料水溶液を冷却したとき、第四級アンモニウム塩をゲスト化合物とする包接水和物が生成する平衡温度をいう。原料水溶液の第四級アンモニウム塩の濃度により包接化合物が生成する温度が変動する場合であっても、これを「水和物生成温度」という。なお、簡便のため、「水和物生成温度」を「融点」という場合がある。   (4) “Hydrate formation temperature” refers to an equilibrium temperature at which clathrate hydrate having a quaternary ammonium salt as a guest compound is generated when an aqueous raw material solution is cooled. Even when the temperature at which the clathrate compound is generated varies depending on the concentration of the quaternary ammonium salt in the raw material aqueous solution, this is referred to as “hydrate formation temperature”. For convenience, the “hydrate formation temperature” may be referred to as “melting point”.

(5)「第四級アンモニウム塩をゲスト化合物とする包接水和物」は「第四級アンモニウム塩の水和物」と略称される場合がある。   (5) “The clathrate hydrate containing a quaternary ammonium salt as a guest compound” may be abbreviated as “a hydrate of a quaternary ammonium salt”.

(6)「蓄熱剤」とは、熱エネルギーの貯蔵や輸送その他の使用の目的や態様、利用分野等の如何を問わず、蓄熱性を有する物質をいう。蓄冷性を有する物質を「蓄冷剤」という場合がある。蓄熱性を有する包接水和物は、「蓄熱剤」又は「蓄冷剤」の構成成分となり得る。   (6) “Heat storage agent” refers to a substance having a heat storage property regardless of the purpose and mode of use, storage, and other uses of thermal energy. Substances having cold storage properties are sometimes referred to as “cold storage agents”. The clathrate hydrate having heat storage properties can be a constituent of “heat storage agent” or “cold storage agent”.

(7)「蓄熱速度」とは、単位体積もしくは単位重量の蓄熱剤が、ある条件の熱交換操作により単位時間内に蓄積できる熱エネルギーの量又はこれに正の相関関係を有するパラメータをいう。   (7) “Heat storage rate” refers to the amount of heat energy that a heat storage agent of unit volume or unit weight can store in a unit time by a heat exchange operation under a certain condition, or a parameter having a positive correlation with this.

本発明の蓄熱剤によると、アルカリ金属リン酸塩の作用により高い蓄熱速度を有することができるとともに、二層に分離することを有効に抑制することができ、凝固融解を繰返しても高い蓄熱速度を維持することができる。   According to the heat storage agent of the present invention, it is possible to have a high heat storage rate due to the action of the alkali metal phosphate, and it is possible to effectively suppress separation into two layers, and a high heat storage rate even after repeated solidification and melting. Can be maintained.

また、蓄熱剤の粘性が高くなることがないので、粘性上昇により蓄熱剤中の熱移動が緩慢になって蓄熱剤と外部との熱交換速度が低下する性能上の問題や、高粘性により蓄熱容器への蓄熱剤の充填が難しくなるなどの取扱い上の問題も生じない。   In addition, since the viscosity of the heat storage agent does not increase, the heat transfer in the heat storage agent becomes slow due to the increase in viscosity and the heat exchange rate between the heat storage agent and the outside decreases, and the heat storage due to high viscosity There are no handling problems such as difficulty in filling the container with the heat storage agent.

以下、本発明の実施の形態について、本発明の実施例及び比較例を示すことにより、詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail by showing examples and comparative examples of the present invention.

<水和物生成実験>
第四級アンモニウム塩の典型例としての臭化テトラnブチルアンモニウム(TBAB)の水溶液に、アルカリ金属リン酸塩の典型例としてのリン酸水素二ナトリウムを添加し、さらに水溶性多糖類を添加することにより調製した蓄熱剤の包接水和物の生成挙動と蓄熱量を調べた。
<Hydrate generation experiment>
To an aqueous solution of tetra-n-butylammonium bromide (TBAB) as a typical example of a quaternary ammonium salt, disodium hydrogen phosphate as a typical example of an alkali metal phosphate is added, and further a water-soluble polysaccharide is added. The formation behavior of the clathrate hydrate and the amount of heat storage were investigated.

TBAB33重量%水溶液をブランクの原料水溶液とし、その水和物生成温度は約10℃である。   A 33% by weight aqueous solution of TBAB is used as a blank raw material aqueous solution, and its hydrate formation temperature is about 10 ° C.

[実験方法]
原料水溶液30gを入れたガラス容器を4℃の冷却液に挿入して冷却を行い、水和物結晶の生成挙動を観察した。
[experimental method]
A glass container containing 30 g of the raw material aqueous solution was inserted into a 4 ° C. cooling liquid and cooled, and the formation behavior of hydrate crystals was observed.

次に、4℃に冷却し水和物結晶が生成した原料水溶液の入っているガラス容器を、内部にヒータを備えている断熱容器に入った12℃の水に挿入した。 そして、水の温度を12℃に保持するようにヒータに電流を流し、加熱しながら、ガラス容器内の水溶液温度が12℃になるまで放置した。この間に生成していたTBAB水和物結晶は融解する。   Next, the glass container containing the raw material aqueous solution that was cooled to 4 ° C. and produced hydrate crystals was inserted into 12 ° C. water contained in a heat insulating container equipped with a heater inside. Then, an electric current was passed through the heater so as to keep the water temperature at 12 ° C., and the solution was left until the aqueous solution temperature in the glass container reached 12 ° C. while heating. The TBAB hydrate crystals generated during this time melt.

4℃の水和物結晶が生成した原料水溶液の入っているガラス容器が12℃になるまでの熱量を、ヒータに加えた累積熱量の計測値によって求め、さらに水溶液が入っていないガラス容器だけの4℃から12℃になるまでの熱量を差し引いて、原料水溶液が4℃から12℃になるまでの熱量を求め、蓄熱剤の12℃を基準とした蓄熱量として求めた。   The amount of heat until the glass container containing the raw material aqueous solution in which the hydrate crystals at 4 ° C are formed reaches 12 ° C is obtained from the measured value of the cumulative amount of heat applied to the heater. By subtracting the amount of heat from 4 ° C. to 12 ° C., the amount of heat until the raw material aqueous solution became 4 ° C. to 12 ° C. was obtained, and the amount of heat stored was determined based on 12 ° C. of the heat storage agent.

蓄熱量を求めるにあたり、12℃を基準とするのは、一般的なセントラル冷房空調システムにおいて負荷側に送った冷媒が戻ってくる温度が12℃であり、蓄熱剤が一般的なセントラル冷房空調システムで用いられる際の温度範囲の上限温度が12℃であり、12℃までの温度範囲で保有する熱量を蓄熱量として評価するからである。一方、冷却する温度として4℃を基準とするのは、一般的な冷房用冷凍機の冷却温度が4℃であるからである。   In determining the amount of heat storage, 12 ° C. is used as a reference because the temperature at which the refrigerant sent to the load in the general central cooling air conditioning system returns is 12 ° C., and the heat storage agent is a general central cooling air conditioning system. This is because the upper limit temperature of the temperature range when used in the above is 12 ° C., and the amount of heat held in the temperature range up to 12 ° C. is evaluated as the amount of stored heat. On the other hand, the reason why the temperature for cooling is based on 4 ° C. is that the cooling temperature of a general cooling refrigerator is 4 ° C.

次に、12℃になった原料水溶液の入ったガラス容器を、恒温槽に入れて50℃に加熱した。加熱温度を50℃に設定したのは、蓄熱式のビル空調設備に使用される蓄熱材や鮮魚保存用の保冷材の主剤としての蓄熱剤が夏季に到達すると考えられる温度が、多くの場合、40〜50℃程度であるという経験的知見を根拠とする。   Next, the glass container containing the raw material aqueous solution at 12 ° C. was placed in a thermostatic bath and heated to 50 ° C. The heating temperature was set to 50 ° C because the heat storage material used in the heat storage building air-conditioning equipment and the heat storage agent as the main ingredient of the cold storage material for preserving fresh fish often reached the summer, Based on empirical knowledge that the temperature is about 40-50 ° C.

以上の4℃冷却、12℃加熱、50℃加熱を1サイクルとして、水和物結晶の生成挙動の観察、及び蓄熱剤が蓄えた蓄熱量の計測を実施した。   The above 4 ° C. cooling, 12 ° C. heating, and 50 ° C. heating were taken as one cycle, and the formation behavior of hydrate crystals was observed and the amount of heat stored in the heat storage agent was measured.

[比較例1]
TBAB33重量%水溶液をブランクの原料水溶液として、約40℃で調製し、比較例1の原料水溶液とした。
[Comparative Example 1]
A TBAB 33 wt% aqueous solution was prepared as a blank raw material aqueous solution at about 40 ° C. and used as the raw material aqueous solution of Comparative Example 1.

比較例1の原料水溶液を入れたガラス容器を4℃の冷却液に挿入し、水溶液を静置した状態で冷却した。約10分後に水溶液の温度が4℃に到達した。冷却開始後60分が経過したところで、水和物結晶の生成は認められず、過冷却状態のままであった。   The glass container containing the raw material aqueous solution of Comparative Example 1 was inserted into a 4 ° C. cooling liquid and cooled in a state where the aqueous solution was allowed to stand. After about 10 minutes, the temperature of the aqueous solution reached 4 ° C. When 60 minutes had passed since the start of cooling, no hydrate crystals were observed, and the product was still in a supercooled state.

次に、水溶液温度が4℃から12℃に到達するまでのヒータ加熱量を求め、4℃から12℃での蓄熱量を求めたところ、水溶液1gあたり約7カロリーであった。水溶液の状態に変化はなかった。次に、水溶液を50℃に加熱したところ、水溶液の状態に変化はなかった。さらに、4℃冷却、12℃加熱、50℃加熱のサイクルを10回繰り返したが、水和物結晶の生成が認められることはなかった。   Next, when the heater heating amount until the aqueous solution temperature reached 4 ° C. to 12 ° C. was obtained, and the heat storage amount at 4 ° C. to 12 ° C. was obtained, it was about 7 calories per 1 g of aqueous solution. There was no change in the state of the aqueous solution. Next, when the aqueous solution was heated to 50 ° C., the state of the aqueous solution was not changed. Furthermore, the cycle of 4 ° C. cooling, 12 ° C. heating, and 50 ° C. heating was repeated 10 times, but formation of hydrate crystals was not observed.

以上のように、TBABだけの水溶液の場合、水和物結晶が生成しないため、潜熱を蓄熱することができなかった。   As described above, in the case of an aqueous solution containing only TBAB, hydrate crystals are not generated, so that latent heat cannot be stored.

[比較例2]
TBAB33重量%、リン酸水素二ナトリウム2重量%の濃度で原料水溶液を約40℃で調製し、比較例2の原料水溶液とした。水溶液は多少濁っており、静置すると液相が二層に分離した。下層の割合は、全体の1体積%未満であった。
[Comparative Example 2]
A raw material aqueous solution was prepared at a concentration of 33% by weight of TBAB and 2% by weight of disodium hydrogen phosphate at about 40 ° C. to obtain a raw material aqueous solution of Comparative Example 2. The aqueous solution was somewhat turbid, and the liquid phase separated into two layers upon standing. The proportion of the lower layer was less than 1% by volume of the whole.

比較例2の原料水溶液を入れたガラス容器を4℃の冷却液に挿入し、水溶液を静置した状態で冷却した。水溶液温度が約4℃に到達してしばらくして水和物結晶生成が確認された。60分経過した時点で、原料水溶液の多くの部分が結晶化していることが確認された。   The glass container containing the raw material aqueous solution of Comparative Example 2 was inserted into a 4 ° C. cooling liquid and cooled in a state where the aqueous solution was allowed to stand. Hydrate crystal formation was confirmed after a while after the aqueous solution temperature reached about 4 ° C. When 60 minutes passed, it was confirmed that many parts of the raw material aqueous solution were crystallized.

次に、水溶液温度が4℃から12℃に到達するまでのヒータ加熱量を求め、4℃から12℃での蓄熱量を求めたところ、水溶液1gあたり約30カロリーであった。12℃に到達した水溶液の中に少量の結晶が残存していることが確認された。次に、水溶液を50℃に加熱したところ、水溶液中の残存していた少量の結晶はなくなり、水溶液は二層に分離していた。下層の割合は、全体の1体積%未満であった。   Next, when the heater heating amount until the aqueous solution temperature reached 4 ° C. to 12 ° C. was obtained, and the heat storage amount at 4 ° C. to 12 ° C. was obtained, it was about 30 calories per 1 g of the aqueous solution. It was confirmed that a small amount of crystals remained in the aqueous solution that reached 12 ° C. Next, when the aqueous solution was heated to 50 ° C., a small amount of crystals remaining in the aqueous solution disappeared, and the aqueous solution was separated into two layers. The proportion of the lower layer was less than 1% by volume of the whole.

さらに、4℃冷却、12℃加熱、50℃加熱のサイクルを9回繰り返した。繰り返しの9回目の4℃冷却時には、60分が経過した時点で、原料水溶液のうち下部の一部が結晶化していることが確認された。4℃から12℃での蓄熱量は、水溶液1gあたり約18カロリーであった。 水溶液を50℃に加熱したところ、水溶液中の少量の結晶はなくなり、水溶液は二層に分離しており、下層の割合は、全体の3体積%程度であった。   Further, the cycle of 4 ° C. cooling, 12 ° C. heating, and 50 ° C. heating was repeated nine times. During the 9th repeated cooling at 4 ° C., it was confirmed that a part of the lower part of the raw material aqueous solution was crystallized when 60 minutes passed. The amount of heat stored at 4 ° C. to 12 ° C. was about 18 calories per 1 g of the aqueous solution. When the aqueous solution was heated to 50 ° C., a small amount of crystals in the aqueous solution disappeared, the aqueous solution was separated into two layers, and the proportion of the lower layer was about 3% by volume of the whole.

以上のように、TBABにリン酸水素二ナトリウムを添加した水溶液の場合、水溶液は二層に分離しており、水和物結晶は生成するものの、冷却加熱のサイクル数を重ねるにつれ蓄えられる潜熱量が低下した。   As described above, in the case of an aqueous solution in which disodium hydrogen phosphate is added to TBAB, the aqueous solution is separated into two layers, and hydrate crystals are formed, but the latent heat amount that is stored as the number of cycles of cooling and heating is accumulated. Decreased.

[実施例1〜4]
TBAB33重量%、リン酸水素二ナトリウム2重量%、カルボキシメチルセルロースナトリウム1重量%の濃度で原料水溶液を約40℃で調製し、実施例1の原料水溶液とした。水溶液は無色透明であった。カルボキシメチルセルロースナトリウムはカルボキシメチル基を有し、アルカリ金属を有する水溶性多糖類の典型例の一つである。
[Examples 1 to 4]
A raw material aqueous solution was prepared at a concentration of 33% by weight of TBAB, 2% by weight of disodium hydrogen phosphate, and 1% by weight of sodium carboxymethylcellulose at about 40 ° C. to obtain a raw material aqueous solution of Example 1. The aqueous solution was colorless and transparent. Sodium carboxymethylcellulose is one of typical examples of water-soluble polysaccharides having a carboxymethyl group and having an alkali metal.

実施例1の原料水溶液を入れたガラス容器を4℃の冷却液に挿入し、水溶液を静置した状態で冷却した。水溶液温度が約4℃に到達してしばらくして結晶生成が確認された。60分経過した時点で、原料水溶液の多くの部分が結晶化していることが確認された。   The glass container containing the raw material aqueous solution of Example 1 was inserted into a 4 ° C. cooling liquid and cooled in a state where the aqueous solution was allowed to stand. Crystal formation was confirmed after a while after the aqueous solution temperature reached about 4 ° C. When 60 minutes passed, it was confirmed that many parts of the raw material aqueous solution were crystallized.

次に、水溶液温度が4℃から12℃に到達するまでのヒータ加熱量を求め、4℃から12℃での蓄熱量を求めたところ、水溶液1gあたり約35カロリーであった。12℃に到達した水溶液の中に少量の結晶が残存していることが確認された。次に、水溶液を50℃に加熱した。水溶液中の残存していた少量の結晶はなくなり、無色透明となり、水溶液は二層に分離することはなかった。   Next, when the heater heating amount until the aqueous solution temperature reached 4 ° C. to 12 ° C. was obtained, and the heat storage amount at 4 ° C. to 12 ° C. was obtained, it was about 35 calories per 1 g of the aqueous solution. It was confirmed that a small amount of crystals remained in the aqueous solution that reached 12 ° C. The aqueous solution was then heated to 50 ° C. A small amount of crystals remaining in the aqueous solution disappeared, and the solution became colorless and transparent, and the aqueous solution was not separated into two layers.

さらに、4℃冷却、12℃加熱、50℃加熱のサイクルを9回繰り返した。繰り返しの9回目の4℃冷却時には、60分が経過した時点で、原料水溶液の多くの部分が結晶化していることが確認された。4℃から12℃での蓄熱量は、水溶液1gあたり約35カロリーであった。水溶液を50℃に加熱したところ、水溶液中の少量の結晶はなくなり、無色透明となった。   Further, the cycle of 4 ° C. cooling, 12 ° C. heating, and 50 ° C. heating was repeated nine times. During the 9th repeated cooling at 4 ° C., it was confirmed that many parts of the raw material aqueous solution were crystallized after 60 minutes had passed. The amount of heat stored at 4 ° C. to 12 ° C. was about 35 calories per 1 g of the aqueous solution. When the aqueous solution was heated to 50 ° C., a small amount of crystals in the aqueous solution disappeared and became colorless and transparent.

以上のように、TBABにリン酸水素二ナトリウムを添加し、カルボキシメチルセルロースナトリウムを添加した水溶液の場合、水溶液は二層に分離することなく、冷却により水和物結晶は円滑に生成され、蓄えられる潜熱量は比較例2よりも多く、また、冷却加熱のサイクルを繰り返しても蓄えられる潜熱量は低下することなく維持された。   As described above, in the case of an aqueous solution in which disodium hydrogen phosphate is added to TBAB and sodium carboxymethylcellulose is added, the aqueous solution is not separated into two layers, and hydrate crystals are smoothly generated and stored by cooling. The amount of latent heat was larger than that of Comparative Example 2, and the amount of latent heat stored was maintained without lowering even when the cooling and heating cycle was repeated.

さらに、カルボキシメチルセルロースナトリウムの濃度を0.5〜2重量%の範囲で変えて原料水溶液を調製し、実施例2〜4の原料水溶液とした。実施例2〜4の原料水溶液について、実施例1と同様の実験を行ったところ、下記表1に示すように、水溶液は二層に分離することなく、冷却により水和物結晶は円滑に生成し、蓄えられる潜熱量は、カルボキシメチルセルロースナトリウムの濃度を変えても変化がなく、水溶液1gあたり約35カロリーであり、また、冷却加熱のサイクルを繰り返しても蓄えられる潜熱量は低下することなく維持された。   Furthermore, the raw material aqueous solution was prepared by changing the concentration of sodium carboxymethylcellulose in the range of 0.5 to 2% by weight to obtain the raw material aqueous solutions of Examples 2 to 4. When the same experiments as in Example 1 were performed on the raw material aqueous solutions of Examples 2 to 4, as shown in Table 1 below, the aqueous solution was not separated into two layers, and hydrate crystals were generated smoothly by cooling. However, the amount of latent heat stored does not change even when the concentration of sodium carboxymethylcellulose is changed, and is about 35 calories per gram of the aqueous solution. Also, the amount of stored latent heat is maintained without decreasing even if the cooling and heating cycle is repeated. It was done.

実施例1〜4の水溶性多糖類を添加した原料水溶液の粘度を常温にて計測した。その結果を下記表1に示す。下記表1に示すように、添加率が高いほど粘度が高くなっている。一方、水溶性多糖類を添加したことによる二層分離の抑制効果と蓄えられる潜熱量は、原料水溶液の粘性とはほとんど関係ないことが確認された。   The viscosity of the raw material aqueous solution to which the water-soluble polysaccharides of Examples 1 to 4 were added was measured at room temperature. The results are shown in Table 1 below. As shown in Table 1 below, the higher the addition rate, the higher the viscosity. On the other hand, it was confirmed that the effect of suppressing the two-layer separation by adding the water-soluble polysaccharide and the amount of latent heat stored were almost unrelated to the viscosity of the aqueous raw material solution.

したがって、第四級アンモニウム塩とアルカリ金属リン酸塩を含む水溶液の粘性を上昇させることなく、二層分離を抑制することができるので、粘性上昇により蓄熱剤中の熱移動が緩慢になり、蓄熱剤と外部との熱交換速度が低下する性能上の問題や、高粘性により蓄熱容器への蓄熱剤の充填が難しくなるなどの取扱い上の問題が生じることを避けることができた。

Figure 2011111496
Therefore, since the two-layer separation can be suppressed without increasing the viscosity of the aqueous solution containing the quaternary ammonium salt and the alkali metal phosphate, the heat transfer in the heat storage agent becomes slow due to the viscosity increase, and the heat storage It was possible to avoid problems in performance such as a decrease in the rate of heat exchange between the agent and the outside, and problems in handling such as difficulty in filling the heat storage container into the heat storage container due to high viscosity.
Figure 2011111496

[比較例3〜6]
TBAB33重量%、リン酸水素二ナトリウム2重量%、ポリビニルアルコール2重量%の濃度で原料水溶液を約40℃で調製し、比較例3の原料水溶液とした。さらに、ポリビニルアルコールの代わりにポリエチレンオキシド、メチルセルロース、ポリアクリル酸ナトリウムをそれぞれ2重量%又は1重量%の濃度で添加したものを比較例4、5、及び6の原料水溶液とした。
[Comparative Examples 3 to 6]
A raw material aqueous solution was prepared at a concentration of 33% by weight of TBAB, 2% by weight of disodium hydrogen phosphate, and 2% by weight of polyvinyl alcohol at about 40 ° C. to obtain a raw material aqueous solution of Comparative Example 3. Furthermore, what added polyethylene oxide, methylcellulose, and sodium polyacrylate at the density | concentration of 2 weight% or 1 weight%, respectively instead of polyvinyl alcohol was used as raw material aqueous solution of Comparative Examples 4, 5, and 6.

比較例3、4、5、及び6の原料水溶液は多少濁っており、静置すると液相が二層に分離した。下層の割合は、全体の1体積%未満であった。   The raw material aqueous solutions of Comparative Examples 3, 4, 5, and 6 were somewhat turbid, and the liquid phase separated into two layers when allowed to stand. The proportion of the lower layer was less than 1% by volume of the whole.

比較例3、4、5、及び6の原料水溶液を入れたガラス容器を4℃の冷却液に挿入し、水溶液を静置した状態で冷却した。水溶液温度が約4℃に到達してしばらくして水和物結晶生成が確認された。60分経過した時点で、原料水溶液の多くの部分が結晶化していることが確認された。   The glass containers containing the raw material aqueous solutions of Comparative Examples 3, 4, 5, and 6 were inserted into a 4 ° C. cooling liquid, and the aqueous solution was allowed to cool in a stationary state. Hydrate crystal formation was confirmed after a while after the aqueous solution temperature reached about 4 ° C. When 60 minutes passed, it was confirmed that many parts of the raw material aqueous solution were crystallized.

次に、水溶液温度が4℃から12℃に到達するまでのヒータ加熱量を求め、4℃から12℃での蓄熱量を求めたところ、いずれも水溶液1gあたり約30カロリーであった。12℃に到達した水溶液の中に少量の結晶が残存していることが確認された。次に、水溶液を50℃に加熱した。水溶液中の残存していた少量の結晶はなくなり、水溶液は二層に分離していた。下層の割合は、全体の1体積%未満であった。   Next, when the heater heating amount until the aqueous solution temperature reached 4 ° C. to 12 ° C. was obtained, and the heat storage amount at 4 ° C. to 12 ° C. was obtained, all were about 30 calories per gram of the aqueous solution. It was confirmed that a small amount of crystals remained in the aqueous solution that reached 12 ° C. The aqueous solution was then heated to 50 ° C. The small amount of crystals remaining in the aqueous solution disappeared, and the aqueous solution was separated into two layers. The proportion of the lower layer was less than 1% by volume of the whole.

さらに、4℃冷却、12℃加熱、50℃加熱のサイクルを9回繰り返した。繰り返しの9回目の4℃冷却時には、60分が経過した時点で、原料水溶液のうち下部の一部が結晶化していることが確認された。4℃から12℃での蓄熱量は、下記表2に示すように、水溶液1gあたり比較例3は約18カロリー、比較例4は約19カロリー、比較例5は約16カロリー、比較例6は約18カロリーであった。水溶液を50℃に加熱したところ、水溶液中の少量の結晶はなくなり、水溶液は二層に分離しており、下層の割合は、全体の3体積%程度であった。   Further, the cycle of 4 ° C. cooling, 12 ° C. heating, and 50 ° C. heating was repeated nine times. During the 9th repeated cooling at 4 ° C., it was confirmed that a part of the lower part of the raw material aqueous solution was crystallized when 60 minutes passed. As shown in Table 2 below, the amount of heat stored at 4 ° C. to 12 ° C. is about 18 calories in 1 g of aqueous solution, about 19 calories in Comparative Example 4, about 16 calories in Comparative Example 5, and Comparative Example 6 There were about 18 calories. When the aqueous solution was heated to 50 ° C., a small amount of crystals in the aqueous solution disappeared, the aqueous solution was separated into two layers, and the proportion of the lower layer was about 3% by volume of the whole.

下記表2に、常温にて計測した粘度を示すが、実施例1と同等あるいはより大きな粘性であっても二層分離を防止できない結果であった。

Figure 2011111496
The viscosity measured at room temperature is shown in Table 2 below, and it was a result that the two-layer separation could not be prevented even when the viscosity was equal to or larger than that of Example 1.
Figure 2011111496

上記表2に示すように、TBABにリン酸水素二ナトリウムを添加し、ポリビニルアルコール、ポリエチレンオキシド、メチルセルロース、ポリアクリル酸ナトリウムのうちの何れかを添加した水溶液の場合、水溶液は二層に分離しており、水和物結晶は生成するものの、冷却加熱のサイクル数を重ねるにつれ蓄えられる潜熱量が低下した。
本発明の技術的範囲は、上記の実施形態によって限定されるものではなく、発明の要旨を変更することなく様々な形態で実施することができる。また、本発明の技術的範囲は、均等の範囲にまで及ぶものである。本明細書における各用語の意味又は解釈は、本発明の技術的範囲が均等の範囲にまで及ぶことを妨げるものではない。
As shown in Table 2 above, in the case of an aqueous solution obtained by adding disodium hydrogen phosphate to TBAB and adding any of polyvinyl alcohol, polyethylene oxide, methylcellulose, and sodium polyacrylate, the aqueous solution is separated into two layers. However, although hydrate crystals were formed, the amount of latent heat stored was decreased as the number of cycles of cooling and heating was repeated.
The technical scope of the present invention is not limited by the above embodiments, and can be implemented in various forms without changing the gist of the invention. Further, the technical scope of the present invention extends to an equivalent range. The meaning or interpretation of each term in this specification does not preclude the technical scope of the present invention from reaching an equivalent range.

Claims (3)

第四級アンモニウム塩、水、アルカリ金属リン酸塩及び水溶性多糖類を含む蓄熱剤であって、前記水溶性多糖類がカルボキシル基およびカルボキシメチル基のうちの少なくとも一つを有する水溶性多糖類であることを特徴とする蓄熱剤。   A heat storage agent comprising a quaternary ammonium salt, water, an alkali metal phosphate and a water-soluble polysaccharide, wherein the water-soluble polysaccharide has at least one of a carboxyl group and a carboxymethyl group A heat storage agent characterized by 第四級アンモニウム塩、水、アルカリ金属リン酸塩及び水溶性多糖類を含む蓄熱剤であって、前記水溶性多糖類がカルボキシル基並びにカルボキシメチル基のうちの少なくとも一つ、及びアルカリ金属を有する水溶性多糖類であることを特徴とする蓄熱剤。   A heat storage agent comprising a quaternary ammonium salt, water, an alkali metal phosphate and a water-soluble polysaccharide, wherein the water-soluble polysaccharide has at least one of a carboxyl group and a carboxymethyl group, and an alkali metal A heat storage agent characterized by being a water-soluble polysaccharide. 前記アルカリ金属リン酸塩がリン酸水素二ナトリウムであることを特徴とする請求項1又は2に記載の蓄熱剤。   The heat storage agent according to claim 1 or 2, wherein the alkali metal phosphate is disodium hydrogen phosphate.
JP2009267667A 2009-11-25 2009-11-25 Heat storage agent Expired - Fee Related JP5573122B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009267667A JP5573122B2 (en) 2009-11-25 2009-11-25 Heat storage agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009267667A JP5573122B2 (en) 2009-11-25 2009-11-25 Heat storage agent

Publications (2)

Publication Number Publication Date
JP2011111496A true JP2011111496A (en) 2011-06-09
JP5573122B2 JP5573122B2 (en) 2014-08-20

Family

ID=44234085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009267667A Expired - Fee Related JP5573122B2 (en) 2009-11-25 2009-11-25 Heat storage agent

Country Status (1)

Country Link
JP (1) JP5573122B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018097183A1 (en) * 2016-11-22 2018-05-31 シャープ株式会社 Heat-storage material, cooling pack, packing container for logistics, and cooling unit

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1180721A (en) * 1997-09-05 1999-03-26 Sumika Purasutetsuku Kk Heat storage material using disodium hydrogen phosphate heptahydrate
JPH1180722A (en) * 1997-09-05 1999-03-26 Sumika Purasutetsuku Kk Sodium phosphate-based heat storage material
JP2008214527A (en) * 2007-03-06 2008-09-18 Jfe Engineering Kk Aqueous solution having property for producing clathrate hydrate, clathrate hydrate containing quaternary ammonium salt as guest and slurry of the clathrate hydrate and, method for producing clathrate hydrate, method for increasing rate for producing or growing clathrate hydrate, method for preventing or controlling supercooling phenomenon on production or growth of clathrate hydrate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1180721A (en) * 1997-09-05 1999-03-26 Sumika Purasutetsuku Kk Heat storage material using disodium hydrogen phosphate heptahydrate
JPH1180722A (en) * 1997-09-05 1999-03-26 Sumika Purasutetsuku Kk Sodium phosphate-based heat storage material
JP2008214527A (en) * 2007-03-06 2008-09-18 Jfe Engineering Kk Aqueous solution having property for producing clathrate hydrate, clathrate hydrate containing quaternary ammonium salt as guest and slurry of the clathrate hydrate and, method for producing clathrate hydrate, method for increasing rate for producing or growing clathrate hydrate, method for preventing or controlling supercooling phenomenon on production or growth of clathrate hydrate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018097183A1 (en) * 2016-11-22 2018-05-31 シャープ株式会社 Heat-storage material, cooling pack, packing container for logistics, and cooling unit
JPWO2018097183A1 (en) * 2016-11-22 2019-11-07 シャープ株式会社 Thermal storage material, cooler, logistics packaging container and cooler unit

Also Published As

Publication number Publication date
JP5573122B2 (en) 2014-08-20

Similar Documents

Publication Publication Date Title
JP5003213B2 (en) Method to increase heat storage rate of heat storage agent, clathrate hydrate
WO2016204284A1 (en) Cold storage material composition, cold storage material, and transport container
JP2018059676A (en) Heat storage device
JP6598076B2 (en) Latent heat storage material
US20100187467A1 (en) Aqueous solution for formation of clathrate hydrate, heat storage agent, method for producing clathrate hydrate or its slurry, heat accumulating and radiating method and method for preparing aqueous solution to produce latent heat storage agent or its major component
JP2000119643A (en) Heat storage composition and heat storage container
Carlsson Phase change behaviour of some latent heat storage media based on calcium chloride hexahydrate
CN102746829A (en) Ultralow temperature energy storage material composition
JP5573122B2 (en) Heat storage agent
CN114958309A (en) Phase-change material with phase-change temperature of 18-20 ℃ and preparation method thereof
CN106221675A (en) A kind of phase-change and energy-storage medium
JP6389891B2 (en) Strontium bromide phase change material
JP5691861B2 (en) Heat storage agent
JP5104160B2 (en) Aqueous solution for producing clathrate hydrate, heat storage agent, clathrate hydrate or manufacturing method thereof, slurry storage method, and method for preparing aqueous solution for generating latent heat storage agent or main component thereof
JP2009051905A (en) Aqueous solution having property for forming clathrate hydrate, clathrate hydrate containing quaternary ammonium salt as guest compound, slurry of the clathrate hydrate, method for producing clathrate hydrate, method for increasing rate of generating or growing clathrate hydrate, and method for preventing or reducing supercooling phenomenon caused when generating or growing clathrate hydrate
WO2021182388A1 (en) Heat-storage material composition
WO2012169549A1 (en) Heat storage agent
JP5590102B2 (en) Method of increasing the heat storage rate of clathrate hydrate, method of increasing the rate of clathrate hydrate formation or growth, clathrate hydrate and clathrate hydrate slurry
JP2007204517A (en) Heat storage material, heat storage apparatus, heat pump system and solar system
JP7137654B1 (en) Latent heat storage material composition
JP5691862B2 (en) Heat storage agent
JP4100590B2 (en) Latent heat storage material composition and heat storage method
WO2017165715A1 (en) Thermal energy storage systems having phase change materials and organic nucleating agents and methods for making and using them
WO2024060036A1 (en) Phase change material having phase change temperature of 2-8°c and preparation method therefor
JP2001192650A (en) Cold storage material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140603

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140616

R150 Certificate of patent or registration of utility model

Ref document number: 5573122

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees