JP2011110542A - Method for cleaning space and facilities for cleaning space - Google Patents

Method for cleaning space and facilities for cleaning space Download PDF

Info

Publication number
JP2011110542A
JP2011110542A JP2009272343A JP2009272343A JP2011110542A JP 2011110542 A JP2011110542 A JP 2011110542A JP 2009272343 A JP2009272343 A JP 2009272343A JP 2009272343 A JP2009272343 A JP 2009272343A JP 2011110542 A JP2011110542 A JP 2011110542A
Authority
JP
Japan
Prior art keywords
photocatalyst
space
flooring
excitation light
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009272343A
Other languages
Japanese (ja)
Inventor
Shinichiro Miki
慎一郎 三木
孝一 ▲高▼濱
Koichi Takahama
Kensaku Kinukawa
謙作 絹川
Kazuhito Hashimoto
和仁 橋本
Kunio Yokoyama
邦雄 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
University of Tokyo NUC
Original Assignee
Panasonic Electric Works Co Ltd
University of Tokyo NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Electric Works Co Ltd, University of Tokyo NUC filed Critical Panasonic Electric Works Co Ltd
Priority to JP2009272343A priority Critical patent/JP2011110542A/en
Publication of JP2011110542A publication Critical patent/JP2011110542A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a space-cleaning method for efficiently cleaning space using a photocatalyst. <P>SOLUTION: The method comprises causing the surface of a flooring material within a space where the floor material is provided on the bottom part to carry a photocatalyst and irradiating the photocatalyst with exciting light for activating the photocatalyst. Thus, the photocatalyst on the surface of the floor material is excited by exciting light, so that objects to be cleaned, such as pathogens sedimented on the flooring material in the space where the flooring material is provided, are inactivated through oxidation and/or degradation by the optical activity of the photocatalyst, and thus the space can be cleaned. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、光触媒の光活性により空間を浄化する空間の浄化方法及び空間の浄化設備に関する。   The present invention relates to a space purification method and a space purification facility for purifying a space by photoactivity of a photocatalyst.

近年、グローバル化の推進で国際的な人の移動が活発化していることにより、SARS(重症急性呼吸器症候群)やインフルエンザ等、飛沫感染を主として感染が拡大する感染症のリスクが強く懸念されている。   In recent years, the movement of international people has become active due to the promotion of globalization, and there is a strong concern about the risk of infectious diseases such as SARS (Severe Acute Respiratory Syndrome), influenza, etc. that spread mainly by droplet infection. Yes.

飛沫感染とは、病原体が患者の咳・くしゃみ・会話などによって空気中に飛び散り、他者がこれを吸入することにより感染することであり、感染予防としてはマスクの着用や、うがいやいわゆる咳エチケットの励行等が行われてきた。   Splash infection is when a pathogen scatters in the air due to a patient's coughing, sneezing, conversation, etc., and others infect it by inhaling it. For infection prevention, wearing a mask, gargle, so-called cough etiquette Has been carried out.

しかし、マスクによる飛沫感染の予防は、マスクと皮膚の間の空隙から病原体が侵入することを防ごうとすると、着用時に不快感を感じるほどマスクを密着させることが必要である。また、一般にマスクに用いられているフィルターの細孔サイズは、細菌やウイルス等の病原体よりも大きく、完全な捕集効果を期待できないものである。   However, in order to prevent splash infection with a mask, if it is intended to prevent pathogens from invading from the gap between the mask and the skin, it is necessary to bring the mask into close contact so that the user feels uncomfortable. Moreover, the pore size of the filter generally used for the mask is larger than that of pathogens such as bacteria and viruses, and a complete trapping effect cannot be expected.

また、うがいや咳エチケットの励行は、個人の意識によるものであって、徹底することは難しい。   In addition, the practice of gargle and cough etiquette is based on individual consciousness and is difficult to thoroughly enforce.

また、一般に、咳やくしゃみにより発生する飛沫は、一般に5μm以上の微粒子であり、1〜2m程度の範囲までしか浮遊せず、数分以下の時間で床面や地面に落下するとされている。しかし、空気中であるいは落下後に水分が蒸発して5μm以下の微粒子になって飛散あるいは再飛散すると、長時間にわたって広範囲に拡散する危険性がある。このような5μm以下の微粒子を飛沫核と呼び、この飛沫核に含まれる病原体を吸入することにより感染することを飛沫核感染と呼ぶ。   In general, splashes generated by coughing or sneezing are generally fine particles of 5 μm or more, float only up to a range of about 1 to 2 m, and fall on the floor or ground in a few minutes or less. However, if the water evaporates in air or after falling into fine particles of 5 μm or less and then scattered or re-scattered, there is a risk of spreading over a wide range for a long time. Such fine particles of 5 μm or less are referred to as droplet nuclei, and infection by inhaling a pathogen contained in the droplet nuclei is referred to as droplet nucleus infection.

よって、飛沫感染を主とする感染症の罹患リスクを低減するには、空間に存在する飛沫あるいは飛沫核の感染リスクを低減させる必要がある。   Therefore, in order to reduce the risk of infections mainly involving droplet infection, it is necessary to reduce the risk of infection of droplets or droplet nuclei existing in the space.

一方、感染症のリスクを低減する方法として、光触媒材料の利用が期待されている。光触媒材料は、エネルギー源として低コストかつ環境負荷が非常に小さい光を利用して、有機物や、窒素酸化物等の一部無機物を、酸化・分解する活性を発現することから、近年、環境浄化、脱臭、防汚、殺菌などの応用が進められている(特許文献1参照)。   On the other hand, use of a photocatalytic material is expected as a method for reducing the risk of infectious diseases. In recent years, photocatalytic materials have been shown to have the ability to oxidize and decompose organic substances and some inorganic substances such as nitrogen oxides by using light as an energy source at a low cost and with a very low environmental impact. Applications such as deodorization, antifouling, and sterilization are being promoted (see Patent Document 1).

光触媒としては、紫外線照射下で活性を発現する酸化チタンなどが広く知られているが、感染症のリスクを強く懸念される空間は、屋内あるいはそれに準じる空間であり、太陽光に含まれる紫外線の利用が難しい。そのため、可視光照射下で活性を発現する光触媒材料が必要であり、その研究・開発が進められている。   As a photocatalyst, titanium oxide that exhibits activity under ultraviolet irradiation is widely known, but the space where the risk of infection is strongly concerned is indoor or a space equivalent to it, and the ultraviolet rays contained in sunlight are It is difficult to use. Therefore, a photocatalytic material that exhibits activity under visible light irradiation is necessary, and its research and development are underway.

特許第3601532号公報Japanese Patent No. 3601532

しかし、光触媒による酸化・分解活性は、光触媒が担持された表面でしか発現しない。このため、たとえば手すりやドアノブなどの表面を感染症患者が触れて病原体が付着し、それを他の人が触れて感染する接触感染については、そのような表面に光触媒を担持することで、感染リスクの低減が期待できるが、空間における飛沫あるいは飛沫核感染のリスク低減には、効果を発現することが難しいと考えられてきた。   However, the oxidation / decomposition activity by the photocatalyst is expressed only on the surface on which the photocatalyst is supported. For this reason, for contact infections in which a pathogen adheres to the surface of a handrail or doorknob when a pathogen adheres to it and other people touch it, the infection is achieved by carrying a photocatalyst on such a surface. Although it can be expected to reduce the risk, it has been considered difficult to produce an effect in reducing the risk of droplets or droplet nuclear infection in space.

本発明は上記事由に鑑みてなされたものであり、その目的とするところは、光触媒を利用して空間を効率良く浄化する空間の浄化方法、及び空間の浄化設備を提供することにある。   This invention is made | formed in view of the said reason, The place made into the objective is to provide the purification method of the space which cleans a space efficiently using a photocatalyst, and the purification equipment of a space.

本発明に係る空間の浄化方法は、底部に床材が設置された空間の前記床材表面に光触媒を担持させ、前記光触媒にこの光触媒を活性化させる励起光を照射することを特徴とする。   The space purification method according to the present invention is characterized in that a photocatalyst is supported on the floor material surface in a space where a floor material is installed at the bottom, and the photocatalyst is irradiated with excitation light that activates the photocatalyst.

このため、励起光により床材表面の光触媒を励起し、この床材が設置されている空間において床材に沈降した病原体などの浄化対象物を、光触媒の光活性により酸化・分解するなどして不活性化して、この空間を浄化することができる。   For this reason, the photocatalyst on the floor material surface is excited by excitation light, and a purification target such as a pathogen settled on the floor material in the space where the floor material is installed is oxidized and decomposed by the photoactivity of the photocatalyst. This space can be purified by inactivation.

本発明において、前記床材上の人及び物の移動が10分間以上途絶えた状態が維持された後に、前記前記光触媒に励起光を照射することが好ましい。   In this invention, it is preferable to irradiate the said photocatalyst with excitation light, after the state which the movement of the person and the thing on the said floor material stopped for 10 minutes or more was maintained.

この場合、床材上に沈降した浄化対象物が人や物の移動によって舞い上がらない状態が維持されて多くの浄化対象物が床材上に沈降した状態で励起光を光触媒へ照射することで、浄化対象物を更に効率良く不活性化することができる。   In this case, by irradiating the photocatalyst with excitation light while maintaining the state where the purification target settled on the flooring material does not rise due to the movement of people or objects, many purification objects settled on the flooring material, The purification object can be inactivated more efficiently.

本発明において、前記床材表面にかかる圧力と振動のうち少なくとも一方を検知する検知デバイスを用い、前記検知デバイスで検知される圧力が一定時間以上変化しない状態、或いは前記検知デバイスで振動が一定時間以上検知されない状態が維持された後に、前記光触媒に励起光を照射することも好ましい。   In the present invention, a detection device that detects at least one of pressure and vibration applied to the floor material surface is used, and the pressure detected by the detection device does not change for a certain period of time, or the detection device vibrates for a certain period of time. It is also preferable to irradiate the photocatalyst with excitation light after the state that has not been detected is maintained.

この場合、検知デバイスによって床材上の人及び物の移動の有無を検知して、光触媒への励起光の照射を開始するための情報を得て、この情報に基づいて、床材上に沈降した浄化対象物が人や物の移動によって舞い上がらない状態が維持されて多くの浄化対象物が床材上に沈降した状態で励起光を光触媒へ照射することができ、浄化対象物を更に効率良く不活性化することができる。   In this case, the detection device detects the presence or absence of movement of people and objects on the floor material, obtains information for starting the irradiation of excitation light to the photocatalyst, and settles on the floor material based on this information The state in which the purified object is not raised by the movement of people or objects can be maintained, and the excitation light can be irradiated to the photocatalyst while many purified objects have settled on the flooring material. Can be inactivated.

本発明において、前記床材内に、励起光を放射する光源と、この光源から放射された励起光を前記光触媒まで導波する光導波路とを設け、この光源から光触媒へ励起光を照射することも好ましい。   In the present invention, a light source that emits excitation light and an optical waveguide that guides the excitation light emitted from the light source to the photocatalyst are provided in the flooring, and the excitation light is irradiated from the light source to the photocatalyst. Is also preferable.

この場合、別途に一般照明用の照明器具の光源などを使用することなく、光触媒へ励起光を照射することができる。   In this case, it is possible to irradiate the photocatalyst with excitation light without separately using a light source of a lighting fixture for general illumination.

本発明において、前記床材に、この床材にかけられた圧力と振動のうち少なくとも一方によって発電する発電デバイスと、前記発電デバイスで発電された電力を蓄電する蓄電デバイスとを設け、前記蓄電デバイスから供給される電力で光源を発光させてこの光源から放射される励起光を前記光触媒に照射することも好ましい。   In the present invention, the flooring is provided with a power generation device that generates power by at least one of pressure and vibration applied to the flooring, and a power storage device that stores the power generated by the power generation device, from the power storage device It is also preferable to irradiate the photocatalyst with excitation light emitted from the light source by emitting light from the supplied power.

この場合、床材上の人や物の移動によって床材に圧力がかけられたり床が振動したりした場合に発電デバイスで発電して蓄電デバイスで蓄電することができ、この電力を光源から光触媒への励起光の照射に利用することができる。   In this case, when pressure is applied to the flooring due to movement of people or objects on the flooring or the floor vibrates, the power generation device can generate electricity and store it with the storage device. It can be used for irradiation of excitation light.

本発明において、前記光触媒が可視光応答型光触媒であり、前記励起光が500nm以下の波長を含む可視光であることも好ましい。   In the present invention, the photocatalyst is preferably a visible light responsive photocatalyst, and the excitation light is preferably visible light having a wavelength of 500 nm or less.

この場合、光子のエネルギーが充分に高い励起光を光触媒に照射して、光触媒に病原体の感染力を低減させるなどの浄化対象物の不活性化のために十分な酸化力を発揮させることができる。   In this case, the photocatalyst is irradiated with excitation light having sufficiently high photon energy, and the photocatalyst can exhibit sufficient oxidizing power for inactivating the purification target such as reducing the infectivity of the pathogen. .

本発明において、前記可視光応答型光触媒の価電子帯の電位が3V(vs.SHE,pH=0)以上であることも好ましい。   In the present invention, the valence band potential of the visible light responsive photocatalyst is preferably 3 V (vs. SHE, pH = 0) or more.

この場合、可視光応答型光触媒の励起により生成する正孔の酸化力が強くなり、酸化・分解活性が高くなって、浄化対象物を更に効率良く不活性化させることができる。   In this case, the oxidizing power of the holes generated by the excitation of the visible light responsive photocatalyst is increased, the oxidation / decomposition activity is increased, and the purification target can be inactivated more efficiently.

本発明において、前記床材の表面が凹凸を有し、この床材の表面における直径10cmの球体と接触し得ない領域の平面視投影面積が、床材の表面全体の平面視投影面積の10%以上であることも好ましい。   In the present invention, the surface of the flooring has irregularities, and the planar projection area of the area that cannot contact the 10 cm diameter sphere on the surface of the flooring is 10 of the planar projection area of the entire surface of the flooring. % Or more is also preferable.

この場合、床材の表面には人の歩行時に足裏と接触しにくい領域が多く形成され、この領域に沈着した浄化対象物が人の歩行等によって巻き上げられにくくなり、このため、床材の表面の光触媒に励起光を照射することで、浄化対象物が更に効率的に不活性化される。   In this case, the surface of the flooring material is often formed with a region that is difficult to come into contact with the soles of a person when walking, and the purification target deposited in this region is less likely to be rolled up by a person walking or the like. By irradiating the photocatalyst on the surface with excitation light, the purification target is more efficiently inactivated.

本発明に係る空間の浄化設備は、表面に光触媒を担持する床材と、前記光触媒にこの光触媒を活性化させる励起光を照射する光源とを備えることを特徴とする。   The space purification facility according to the present invention includes a floor material carrying a photocatalyst on a surface, and a light source that irradiates the photocatalyst with excitation light that activates the photocatalyst.

このため、光源からの励起光により床材表面の光触媒を励起し、この床材が設置されている空間において床材に沈降した病原体などの浄化対象物を、光触媒の光活性により酸化・分解するなどして不活性化して、この空間を浄化することができる。   For this reason, the photocatalyst on the floor material surface is excited by the excitation light from the light source, and a purification target such as a pathogen settled on the floor material is oxidized and decomposed by the photoactivity of the photocatalyst in the space where the floor material is installed. This space can be purified by inactivation.

本発明によれば、床材が設置されている空間を、この床材に担持させた光触媒の光触媒活性を利用して、効率良く浄化することができる。   According to the present invention, the space in which the flooring is installed can be efficiently purified by utilizing the photocatalytic activity of the photocatalyst carried on the flooring.

以下、本発明の実施形態について説明する。   Hereinafter, embodiments of the present invention will be described.

本実施形態に係る空間の浄化方法では、表面に光触媒を担持する床材で構成される浄化設備を用いて、底部にこの床材が設置されている空間の浄化をおこなう。浄化設備による浄化対象(浄化対象物)としては、床材が担持する光触媒の光触媒活性によって不活性化される種々のものが挙げられるが、例えば細菌やウイルス等の病原体、吸入性アレルゲンと呼ばれる室内塵、フケ、花粉、真菌、昆虫などに含まれるアレルゲンなどが挙げられる。   In the space purification method according to the present embodiment, the space in which the floor material is installed at the bottom is purified using the purification equipment composed of the floor material carrying the photocatalyst on the surface. Examples of the purification target (purification target) by the purification equipment include various things that are inactivated by the photocatalytic activity of the photocatalyst carried by the flooring material. For example, pathogens such as bacteria and viruses, indoors called inhalable allergens Allergens contained in dust, dandruff, pollen, fungi, insects and the like.

このような表面に光触媒を担持する床材の前記光触媒へ向けて光源から励起光を照射することで、この床材が設置されている空間において床材に沈降した浄化対象物を酸化・分解するなどして不活性化し、この空間を浄化することができる。例えば床材の表面に沈降した病原体を含む微粒子において、光触媒の酸化・分解作用により前記病原体の感染力が低下する。そのため、空間内での人や車両等の通行等により微粒子が舞い上げられて再飛散する際、あるいは微粒子に含まれている水分が蒸発して飛沫核として再飛散する際にも、病原体の感染力が低下しているため、空間における感染症の罹患リスクを低減することができる。   By irradiating excitation light from a light source toward the photocatalyst of the flooring material carrying the photocatalyst on such a surface, the purification target settled on the flooring material is oxidized and decomposed in the space where the flooring material is installed. This space can be purified by inactivation. For example, in microparticles containing a pathogen that has settled on the surface of a flooring material, the infectivity of the pathogen is reduced by the oxidation / decomposition action of the photocatalyst. For this reason, infection of pathogens also occurs when particulates are lifted and re-sprayed by traffic of people or vehicles in the space, or when moisture contained in the particulates evaporates and re-sprays as droplet nuclei. Since the force is reduced, the risk of suffering from an infection in the space can be reduced.

また、感染症の罹患リスクが高い空間は、室内やそれに準じる空間であり、このような空間を浄化設備を用いて浄化すれば、感染症の罹患リスクが著しく低減された空間を提供することができる。   In addition, a space with a high risk of infection is a room or a space similar to it. Purifying such a space using a purification facility can provide a space with a significantly reduced risk of infection. it can.

床材は、空間の底部に設置されるのであればその種類は特に限定されず、例えば建材としての床材のほか、舗装材なども含まれる。床材が設置される空間は、建築物の室内などの閉じた空間であってもよく、屋外の道路上などの開放された空間であってもよい。   The flooring material is not particularly limited as long as it is installed at the bottom of the space. For example, the flooring material includes a flooring material as a building material and a paving material. The space in which the flooring is installed may be a closed space such as a building interior, or may be an open space such as on an outdoor road.

また、床材は表面に凹凸を有することが好ましく、特にこのような凹凸により、この床材の表面上に直径10cmの球体を配置した場合に床材表面に前記球体と常に接触し得ない領域が形成され、且つこの領域の平面視投影面積(見付け面積)が、床材の表面全体の平面視投影面積(見付け面積)の10%以上となっていることが好ましい。床材の表面に前記のような凹凸を付与すると、床材の表面には人の歩行時に足裏と接触しにくい領域が多く形成され、この領域に沈着した浄化対象物は人の歩行等によって巻き上げられにくくなる。このため、床材の表面の光触媒に励起光を照射することで、浄化対象物が効率的に不活性化される。   Moreover, it is preferable that the flooring has irregularities on the surface, and in particular, due to such irregularities, when a sphere having a diameter of 10 cm is arranged on the surface of the flooring, an area where the sphere cannot always come into contact with the flooring surface. It is preferable that the planar projection area (finding area) of this region is 10% or more of the planar projection area (finding area) of the entire surface of the flooring. When the above unevenness is given to the surface of the flooring material, many areas are formed on the surface of the flooring that are difficult to come into contact with the soles of the person when walking. It becomes difficult to wind up. For this reason, the purification target is efficiently inactivated by irradiating the photocatalyst on the surface of the floor with excitation light.

床の表面に凹凸を付与する方法は特に限定されないが、例えば床材に凹凸プレスを施すなどして床材表面に凹凸形状を転写すること、床材の表面を切削して凹凸を形成すること、繊維束などで床材の少なくとも表層を形成すること、床材をレンガ状やタイル状に形成することで凹部を形成することなどが挙げられる。   The method for providing unevenness on the floor surface is not particularly limited. For example, the uneven shape is transferred to the floor material surface by applying an uneven press to the floor material, or the unevenness is formed by cutting the surface of the floor material. , Forming at least the surface layer of the flooring with a fiber bundle or the like, and forming the recesses by forming the flooring in a brick shape or a tile shape.

光触媒は、その伝導帯と価電子帯との間のエネルギーギャップよりも大きなエネルギーの光(励起光)が照射された場合に、価電子帯中の電子の励起が生じて、伝導電子と正孔を生成しうる物質であれば特に限定されない。光触媒の具体例としては、酸化チタン、酸化タングステン、酸化亜鉛、酸化錫、酸化ジルコニウム、酸化クロム、酸化モリブデン、酸化ルテニウム、酸化ゲルマニウム、酸化鉛、酸化カドミウム、酸化銅、酸化バナジウム、酸化ニオブ、酸化タンタル、酸化マンガン、酸化コバルト、酸化ロジウム、酸化ニッケル、酸化レニウム、酸化ストロンチウムなどの酸化物;前記のような金属を複数含む金属酸化物;前記のような酸化物に窒素や金属イオンがドープされた金属酸化物などが挙げられる。また、光触媒として、前記のような金属酸化物の表面に金属や金属塩などの助触媒、光増感色素などを担持させたものであってもよい。   When a photocatalyst is irradiated with light (excitation light) with energy larger than the energy gap between its conduction band and valence band, excitation of electrons in the valence band occurs, resulting in conduction electrons and holes. The substance is not particularly limited as long as it is a substance capable of generating. Specific examples of the photocatalyst include titanium oxide, tungsten oxide, zinc oxide, tin oxide, zirconium oxide, chromium oxide, molybdenum oxide, ruthenium oxide, germanium oxide, lead oxide, cadmium oxide, copper oxide, vanadium oxide, niobium oxide, and oxide. Oxides such as tantalum, manganese oxide, cobalt oxide, rhodium oxide, nickel oxide, rhenium oxide, strontium oxide; metal oxides containing a plurality of such metals; such oxides doped with nitrogen or metal ions And metal oxides. In addition, the photocatalyst may be one in which a promoter such as a metal or a metal salt, a photosensitizing dye or the like is supported on the surface of the metal oxide as described above.

この光触媒は、特に可視光応答型光触媒であることが好ましい。この場合、太陽光からの紫外線の利用が困難な空間を浄化する場合でも、光触媒の活性化のために照明用途に用いられている可視光を利用することができ、特に室内あるいはそれに準じる空間などのように感染症の罹患リスクの高い空間の浄化に適する。   This photocatalyst is particularly preferably a visible light responsive photocatalyst. In this case, even when purifying a space where it is difficult to use ultraviolet rays from sunlight, visible light used for lighting purposes can be used for activation of the photocatalyst, especially indoors or spaces conforming thereto. It is suitable for purification of the space with high risk of infection.

可視光応答型光触媒は、可視光領域に含まれる波長400nm以上の光を受けて価電子帯中の電子の励起が生じる光触媒であれば特に限定されないが、価電子帯の電位が3V(vs.SHE,pH=0)以上であることが特に好ましい。可視光応答型光触媒の価電子帯の電位は、可視光応答型光触媒が励起された際に生成する正孔の酸化力に影響し、価電子帯の電位が3V(vs.SHE,pH=0)以上であると生成した正孔の酸化力が強くなり、酸化・分解活性が高くなって、浄化対象物を更に効率良く不活性化させることができる。このような可視光応答型光触媒の具体例としては、酸化タングステン、助触媒を担持した酸化チタン、助触媒を担持した酸化タングステン、助触媒を担持したセリウム等の金属イオンがドープされた酸化チタンなどが挙げられる。   The visible light responsive photocatalyst is not particularly limited as long as it is a photocatalyst that receives light having a wavelength of 400 nm or more contained in the visible light region and causes excitation of electrons in the valence band. However, the potential of the valence band is 3 V (vs. SHE, pH = 0) or higher is particularly preferable. The potential of the valence band of the visible light responsive photocatalyst affects the oxidizing power of holes generated when the visible light responsive photocatalyst is excited, and the valence band potential is 3 V (vs. SHE, pH = 0). ) If this is the case, the oxidizing power of the generated holes becomes stronger, the oxidation / decomposition activity becomes higher, and the object to be purified can be inactivated more efficiently. Specific examples of such a visible light responsive photocatalyst include tungsten oxide, titanium oxide supporting a promoter, tungsten oxide supporting a promoter, titanium oxide doped with metal ions such as cerium supporting a promoter, etc. Is mentioned.

床材の表面に光触媒を担持させる方法は特に限定されないが、具体例としては、光触媒を含有するコーティング材を床材の表面に塗布あるいは含浸させて乾燥・硬化させるなどのコーティング処理を施すことや、床材を作製する際に床材の表面を構成する材料に光触媒を練りこむことなどが挙げられる。   The method for supporting the photocatalyst on the surface of the flooring is not particularly limited. Specific examples include applying a coating material containing the photocatalyst to the surface of the flooring or applying a coating treatment such as drying and curing. For example, a photocatalyst is kneaded into a material constituting the surface of the flooring when the flooring is produced.

励起光の光源は、励起光を含む光を放射するのであれば特に限定されない。光源の具体例としては太陽や、蛍光灯、白熱電球、キセノンランプ、ハロゲンランプ、ブラックライト蛍光灯、発光ダイオード、有機エレクトロルミネッセンスを利用する照明器具などが挙げられる。   The light source of the excitation light is not particularly limited as long as it emits light including excitation light. Specific examples of the light source include the sun, a fluorescent lamp, an incandescent lamp, a xenon lamp, a halogen lamp, a black light fluorescent lamp, a light emitting diode, and a lighting device using organic electroluminescence.

特に光触媒が可視光応答型光触媒である場合には、励起光として500nm以下の波長を含む可視光を放射する光源を用いることが好ましい。この場合、光子のエネルギーが充分に高い励起光を光触媒に照射して、光触媒に病原体の感染力を低減させるなどの浄化対象物の不活性化のために十分な酸化力を発揮させることができる。このような光源としては、太陽、蛍光灯、白熱電球、キセノンランプ、ハロゲンランプ、青色の発光を含む発光ダイオード、青色の発光を含む有機エレクトロルミネッセンスを利用する光源などが挙げられる。   In particular, when the photocatalyst is a visible light responsive photocatalyst, it is preferable to use a light source that emits visible light including a wavelength of 500 nm or less as excitation light. In this case, the photocatalyst is irradiated with excitation light having sufficiently high photon energy, and the photocatalyst can exhibit sufficient oxidizing power for inactivating the purification target such as reducing the infectivity of the pathogen. . Examples of such a light source include the sun, a fluorescent lamp, an incandescent lamp, a xenon lamp, a halogen lamp, a light emitting diode including blue light emission, and a light source using organic electroluminescence including blue light emission.

光触媒へ光源から励起光を照射する方法としては、例えば励起光を放射する照明器具等の光源を浄化設備に設け、この光源から床材の表面へ向けて光を照射することが挙げられる。また床材が設置されている空間を太陽光に曝露することで、床材表面に太陽光を照射することも挙げられる。   As a method for irradiating the photocatalyst with excitation light from a light source, for example, a light source such as a luminaire that emits excitation light is provided in the purification facility, and light is emitted from the light source toward the surface of the flooring. Moreover, irradiating sunlight to the flooring surface by exposing the space in which the flooring is installed to sunlight is also mentioned.

また、励起光を放射する照明器具などの光源を床材に埋設するなどして設けると共に、床材に前記光源から光触媒へ向けて励起光を導波する光導波路を設けてもよい。この場合、別途に一般照明用の照明器具の光源などを使用することなく、光触媒へ励起光を照射することができる。このため、例えば一般照明用の照明器具を人や車両等の通行が途絶えて照明が不要となった場合にこの照明器具を光触媒への励起光の照射だけのために使用する必要がなくなる。また、例えば床材内の光源を、たとえば避難誘導のための照明サインとして利用することも可能となる。床材に光導波路を設ける方法としては、特に限定されないが、床材の少なくとも表層をガラス等の光を透過する素材で形成すること、床材内に光源から光触媒まで励起光を伝送する光ファイバー等の光伝送デバイスを設けることなどが挙げられる。   Further, a light source such as a luminaire that emits excitation light may be provided by being embedded in a floor material, and an optical waveguide that guides excitation light from the light source toward the photocatalyst may be provided on the floor material. In this case, it is possible to irradiate the photocatalyst with excitation light without separately using a light source of a lighting fixture for general illumination. For this reason, it is not necessary to use the lighting fixture for general lighting only for the irradiation of the excitation light to the photocatalyst when the lighting of the lighting fixture for general lighting is interrupted and the lighting becomes unnecessary. Further, for example, the light source in the flooring can be used as an illumination sign for evacuation guidance, for example. The method of providing the optical waveguide on the flooring is not particularly limited, but at least the surface layer of the flooring is formed of a material that transmits light such as glass, the optical fiber that transmits excitation light from the light source to the photocatalyst in the flooring, etc. Providing an optical transmission device.

空間を効率良く浄化するためには、励起光の照射前に空間内で床材上の人及び物(車両など)の移動が一定時間以上途絶えた状態が維持された後に、光触媒へ励起光を照射することが好ましい。更に前記人及び物の移動が途絶えた状態において、この空間内に空調設備や通風装置等による人工的な気流が発生していないことが好ましい。   In order to purify the space efficiently, the excitation light is applied to the photocatalyst after the movement of people and objects (vehicles, etc.) on the floor material is stopped in the space for a certain period of time before the irradiation of the excitation light. Irradiation is preferred. Furthermore, it is preferable that no artificial airflow is generated in the space by an air conditioner, a ventilation device, or the like in a state where the movement of the person and the object is interrupted.

病原体や吸引性アレルゲンなどの浄化対象物は空間内に気流が発生しているとこの気流に舞い上げられて空間内を浮遊する。例えば感染者の咳やくしゃみによって飛散した病原体は、咳やくしゃみに含まれる水分とともに微粒子として存在し、或いは空間に浮遊している埃等の微粒子に付着し、これらの微粒子は気流によって舞い上げられ、空間内に浮遊している。空間内での人や車両等の通行が途絶えていると、これらの浄化対象物は数分程度の時間で床材上に沈降するが、人や車両等の通行等が再開されると、再び床材上から舞い上げられ、空中に再飛散してしまい、また床材上に沈降してから長時間が経過すると、微粒子に含まれている水分が蒸発して、5μm以下の微粒子、すなわち飛沫核になって再飛散する危険性がある。   When an air current is generated in a space, an object to be purified, such as a pathogen or an aspirating allergen, is lifted by the air current and floats in the space. For example, pathogens scattered by coughing and sneezing of infected persons are present as fine particles together with the water contained in the coughing and sneezing, or adhere to fine particles such as dust floating in the space, and these fine particles are lifted by the air current. , Floating in space. If the traffic of people or vehicles in the space is interrupted, these purification objects will settle on the flooring in a few minutes, but once the traffic of people or vehicles resumes, When it is soared from the flooring material and re-sprayed into the air, or after a long time has passed since it settled on the flooring material, the water contained in the fine particles evaporates, and the fine particles of 5 μm or less, that is, splashes There is a risk of re-scattering as a nucleus.

しかし、前記のように床材上の人及び物(車両など)の移動、或いは更に人工的な気流が途絶えた状態が一定時間以上維持されてから、光触媒へ励起光を照射すると、床材上に沈降した浄化対象物が人や物の移動等によって舞い上がらない状態を一定時間以上維持することができる。このため多くの浄化対象物が床材上に沈降した状態で励起光を光触媒へ照射して、浄化対象物を効率良く不活性化することができる。前記のように浄化対象物は数分程度の時間で床材上に沈降するので、励起光の照射前に床材上の人及び物の移動が途絶えた状態が維持される時間が10分間以上維持されていれば、浄化対象物が床材上に充分に沈降した状態で励起光を光触媒へ照射することができ、空間の浄化の一層の効率化を図ることができる。尚、光源として一般照明用の照明器具を利用する場合には、人及び物(車両など)の移動がなければ通常は照明を点灯する必要はないが、この場合でも空間の浄化のためには、人などの移動が途絶えた状態が一定時間以上経過したら、照明を点灯することが好ましい。   However, if the photocatalyst is irradiated with excitation light after the movement of people and objects (vehicles, etc.) on the flooring material or the state where the artificial air flow is interrupted for a certain period of time or longer as described above, It is possible to maintain a state in which the object to be purified that has settled on the surface does not rise due to movement of a person or an object for a certain period of time. For this reason, it is possible to efficiently inactivate the purification target object by irradiating the photocatalyst with excitation light in a state where many purification target objects have settled on the flooring material. As described above, the object to be purified settles on the floor material in a time of about several minutes. Therefore, the time during which the movement of the person and the object on the floor material is stopped before irradiation with the excitation light is maintained for 10 minutes or more. If maintained, the excitation light can be irradiated to the photocatalyst in a state where the purification target is sufficiently settled on the flooring material, and the efficiency of the purification of the space can be further improved. In addition, when using a lighting fixture for general lighting as a light source, it is not usually necessary to turn on the lighting unless there is a movement of people and objects (vehicles, etc.). It is preferable to turn on the illumination when a state in which the movement of a person or the like has stopped is over a certain period of time.

床材上の人及び物の移動が一定時間以上途絶えた状態が維持される時間を検出するために、浄化設備に、床材表面にかかる圧力と振動のうち少なくとも一方を検知する検知デバイスを設けてもよい。この場合、検知デバイスの検知結果から、光源からの励起光の放射を開始するための情報を得ることができる。この検知デバイスとしては、圧力センサ、加速度センサ、振動センサ等の適宜のセンサデバイスが挙げられる。このような検知デバイスを用いると、床材上の人及び物の移動が途絶えている場合には、床材上の人及び物の移動が途絶えていれば、検知デバイスでは床材表面の圧力変化や床材の振動が検知されない。このような圧力変化や振動が検知されない状態が一定時間以上維持された後、励起光を光触媒へ照射することで、空間を効率良く浄化することができる。   In order to detect the time during which the movement of people and objects on the flooring is stopped for a certain period of time or longer, a detection device that detects at least one of pressure and vibration applied to the surface of the flooring is provided in the purification equipment. May be. In this case, information for starting emission of excitation light from the light source can be obtained from the detection result of the detection device. Examples of the detection device include appropriate sensor devices such as a pressure sensor, an acceleration sensor, and a vibration sensor. When such a detection device is used, if the movement of people and objects on the flooring is interrupted, if the movement of people and objects on the flooring is interrupted, the detection device will change the pressure on the floor surface. Or vibration of flooring is not detected. The space can be efficiently purified by irradiating the photocatalyst with excitation light after such a state in which no pressure change or vibration is detected is maintained for a certain period of time or longer.

また、前記検知デバイスを用いる場合に、更に浄化設備にCPUなどを備える制御装置を設け、この制御装置で光触媒へ励起光を放射する照明器具を、検知デバイスにより圧力変化や振動が検知されない状態が一定時間以上維持された時点で点灯するように制御してもよい。この場合、空間の浄化を自動制御により効率的におこなうことができる。   Moreover, when using the said detection device, the control apparatus provided with CPU etc. is further provided in purification equipment, and the state by which a pressure change and a vibration are not detected by the detection device in the lighting fixture which radiates | emits excitation light to this photocatalyst with this control apparatus. You may control to light up, when it maintains for a fixed time or more. In this case, the space can be purified efficiently by automatic control.

また、浄化設備には、床材にかけられた圧力と振動のうち少なくとも一方によって発電する発電デバイスを設けると共に、この発電デバイスで発電された電力を蓄電する蓄電デバイスを床材に埋設するなどして設けてもよい。この場合、床材上の人や物の移動によって床材に圧力がかけられたり床が振動したりした場合に発電デバイスで発電し、電力を蓄電デバイスで蓄電することができる。発電デバイスとしては圧電素子が組み込まれた圧電発電装置が挙げられ、蓄電デバイスとしては適宜の二次電池が挙げられる。   In addition, the purification equipment is provided with a power generation device that generates electric power by at least one of pressure and vibration applied to the flooring, and an electric storage device that stores electric power generated by the power generation device is embedded in the flooring. It may be provided. In this case, when pressure is applied to the flooring due to movement of a person or an object on the flooring or the floor vibrates, the power generation device can generate electric power, and the electric power can be stored by the electric storage device. Examples of the power generation device include a piezoelectric power generation device in which a piezoelectric element is incorporated, and examples of the power storage device include an appropriate secondary battery.

更に、蓄電デバイスで蓄電された電力を、光触媒へ励起光を照射する照明器具などの光源へ供給し、この電力によって光源を点灯させてもよい。この場合、光源へ別途に電力を供給することを削減し、或いは省略することができ、特に光源を床材に埋設する場合には外部から床材へ電力を供給する困難さや煩雑さを解消することができる。また、床材上を人や物が移動している間に発電及び蓄電をし、床材上の人及び物の移動が途絶えてから前記蓄電された電力を利用して光源から励起光を光触媒へ照射すれば、発電、蓄電、及び電力の利用を効率良くおこなうことができる。   Furthermore, the power stored in the power storage device may be supplied to a light source such as a lighting fixture that irradiates the photocatalyst with excitation light, and the light source may be turned on by this power. In this case, supply of power separately to the light source can be reduced or omitted, and particularly when the light source is embedded in the flooring, the difficulty and complexity of supplying power from the outside to the flooring is eliminated. be able to. In addition, power and electricity are stored while people and objects are moving on the flooring material, and after the movement of people and objects on the flooring is stopped, the stored power is used to photocatalyze excitation light from a light source. Can efficiently generate power, store electricity, and use power.

本発明の具体的な実施例について説明する。尚、本発明は下記の実施例に限定されない。   Specific examples of the present invention will be described. The present invention is not limited to the following examples.

下記の実施例、比較例及び参考例における、空中浮遊菌数の測定法及び床面の生菌数の測定法は、次の通りである。   In the following Examples, Comparative Examples and Reference Examples, the method for measuring the number of airborne bacteria and the method for measuring the number of viable bacteria on the floor are as follows.

(空中浮遊菌数測定法)
空中浮遊菌サンプラー(ミドリ安全株式会社製 バイオサンプMBS−1000)にて吸引流量毎分100L、吸引時間1分、サンプリング量100Lの条件で床面から高さ1mの空気を捕集し、この空気をサンプラー中の寒天培地に吹きつけることで、空中浮遊菌を採取した。その後、寒天培地を35℃環境下にて48時間保持することで採取した細菌を培養した後、可視コロニー数(CFU)をカウントすることで、空中浮遊菌数を測定した。
(Airborne count method)
Air with a height of 1 m was collected from the floor surface with an airborne microbe sampler (Biosamp MBS-1000 manufactured by Midori Safety Co., Ltd.) under the conditions of a suction flow rate of 100 L / min, a suction time of 1 min, and a sampling volume of 100 L. Were sprayed on the agar medium in the sampler to collect airborne bacteria. Then, after culture | cultivating the bacteria extract | collected by hold | maintaining an agar medium on 35 degreeC environment for 48 hours, the number of airborne bacteria was measured by counting the number of visible colonies (CFU).

(床面生菌数測定法)
対象とする床面に一般生菌数測定用スタンプ法培地(日水製薬株式会社製 クリーンスタンプ「ニッスイ」SCD寒天)を軽く押しつけることで、床面の細菌を採取し、35℃環境下にて48時間保持することで採取した細菌を培養した後、可視コロニー数(CFU)をカウントすることで、床面生菌数を測定した。
(Measurement method of floor viable count)
Bacteria on the floor surface are collected by lightly pressing the standard viable count medium (Niisui Pharmaceutical Co., Ltd. clean stamp “Nissui” SCD agar) on the target floor surface in a 35 ° C environment. After culturing the bacteria collected by holding for 48 hours, the number of visible colonies (CFU) was counted to measure the viable cell count.

[実施例1]
反応容器中にテトラエトキシシラン(和光純薬工業株式会社製)5質量部、イオン交換水0.8質量部、濃度0.1mol/lのHCl水溶液0.07質量部、エタノール94.13質量部を混合し、16時間攪拌して、テトラエトキシシランの部分加水分解縮重合物の溶液を得た。
[Example 1]
In a reaction vessel, 5 parts by mass of tetraethoxysilane (manufactured by Wako Pure Chemical Industries, Ltd.), 0.8 parts by mass of ion-exchanged water, 0.07 parts by mass of HCl aqueous solution having a concentration of 0.1 mol / l, 94.13 parts by mass of ethanol And stirred for 16 hours to obtain a solution of a partially hydrolyzed polycondensation product of tetraethoxysilane.

このテトラエトキシシランの部分加水分解縮重合物の溶液100質量部と、アナターゼ型酸化チタン水分散液(石原産業株式会社製のSTS−01、二酸化チタンの含有量30質量%、価電子帯の電位3V(vs.SHE,pH=0))10質量部を混合し、1時間攪拌して、紫外光応答型光触媒コーティング材を得た。   100 parts by mass of this tetraethoxysilane partially hydrolyzed polycondensation product, anatase-type titanium oxide aqueous dispersion (STS-01 made by Ishihara Sangyo Co., Ltd., titanium dioxide content of 30% by mass, valence band potential) 10 parts by mass of 3V (vs. SHE, pH = 0)) were mixed and stirred for 1 hour to obtain an ultraviolet light responsive photocatalyst coating material.

この紫外光応答型光触媒コーティング材を300mm角のアルマイト板上に乾燥後の固形分量が0.5g/mとなるようスプレー塗装し、100℃で30分間加熱して乾燥・硬化させることで、評価サンプルである紫外光応答型光触媒コーティング処理板を得た。 By spray coating this ultraviolet light responsive photocatalyst coating material on a 300 mm square anodized plate so that the solid content after drying is 0.5 g / m 2 , heating at 100 ° C. for 30 minutes to dry and cure, An ultraviolet light responsive photocatalyst coating treated plate as an evaluation sample was obtained.

この紫外光応答型光触媒コーティング処理板を東京大学駒場リサーチキャンパス内に存在する実験用住宅(木造2階建て)の2階の居室(6畳洋室)の床全面に亘って設置した。設置してから24時間後に、消毒用エタノールにより裏面が消毒されたスリッパを着用した成年男性に、居室内の床面全体を歩行させた。この成年男性には歩幅70cm、秒速1mで、床全体を蛇行(横方向に往復しながら順次縦方向に移動)するように歩行させた。歩行開始から終了まで約40秒間を要した。歩行が終了してから30分が経過した時点で、ブラックライトから紫外線光を、床面の平均紫外線放射照度が1mW/cmとなるように4時間照射した。 This ultraviolet light responsive photocatalyst coating treatment board was installed over the entire floor of the second floor room (6 tatami mat room) of the experimental house (wooden 2 floors) in the Komaba Research Campus of the University of Tokyo. 24 hours after installation, an adult man wearing slippers whose back surface was disinfected with ethanol for disinfection was allowed to walk the entire floor of the room. The adult man was allowed to walk at a step length of 70 cm and a speed of 1 m per second, meandering (moving in the vertical direction while reciprocating in the horizontal direction). It took about 40 seconds from the start to the end of walking. When 30 minutes had passed since the end of walking, ultraviolet light was irradiated from the black light for 4 hours so that the average ultraviolet irradiance on the floor surface was 1 mW / cm 2 .

紫外線照射後、消毒用エタノールにより裏面が消毒されたスリッパを着用した成年男性に、前記と同じ条件で消毒用エタノールにより裏面が消毒されたスリッパを着用した成年男性に、居室内の床面全体を歩行させた。この歩行終了直後と、歩行終了から1時間経過した時点に、居室内の空中浮遊菌数を測定した。   For adult males wearing slippers whose backs were disinfected with ethanol for disinfection after UV irradiation, for adults wearing slippers whose backs were disinfected with ethanol for disinfection under the same conditions as above, Walked. The number of airborne bacteria in the room was measured immediately after the end of walking and 1 hour after the end of walking.

空中浮遊菌を測定してから更に1時間が経過した時点で、居室内の紫外光応答型光触媒コーティング処理板上の床面中央における生菌数を測定した。   When one hour passed after measuring the airborne bacteria, the number of viable bacteria at the center of the floor on the ultraviolet light-responsive photocatalyst coating treatment plate in the room was measured.

[実施例2]
アナターゼ型二酸化チタン(石原産業株式会社製のST−01)をアンモニア気流中(1SCCM)、550℃で3時間アニールすることによって、3V(vs.SHE,pH=0)未満の電位に孤立準位を有する窒素ドープ二酸化チタン微粒子を得た。
[Example 2]
Anatase type titanium dioxide (ST-01 manufactured by Ishihara Sangyo Co., Ltd.) is isolated in a potential of less than 3 V (vs. SHE, pH = 0) by annealing in an ammonia stream (1 SCCM) at 550 ° C. for 3 hours. Nitrogen-doped titanium dioxide fine particles having the following were obtained.

この窒素ドープ二酸化チタン微粒子を蒸留水へ、この蒸留水に対する割合が10質量%になるように加え、超音波分散により懸濁させた後、24時間静置した。この静置後の液から上澄みを採取することで、窒素ドープ二酸化チタン微粒子分散液を得た。この分散液の一部を加熱乾燥して分散液中の窒素ドープ二酸化チタン微粒子の含有量を確認したところ、2.5質量%であった。   The nitrogen-doped titanium dioxide fine particles were added to distilled water so that the ratio to the distilled water was 10% by mass, suspended by ultrasonic dispersion, and allowed to stand for 24 hours. By collecting the supernatant from the liquid after standing, a nitrogen-doped titanium dioxide fine particle dispersion was obtained. A part of this dispersion was heated and dried, and the content of nitrogen-doped titanium dioxide fine particles in the dispersion was confirmed to be 2.5% by mass.

次に、反応容器中にテトラエトキシシラン(和光純薬工業株式会社製)を5質量部、イオン交換水を0.8質量部、濃度0.1mol/lのHCl水溶液0.07質量部、及びエタノール94.13質量部を混合し、16時間攪拌することで、テトラエトキシシランの部分加水分解縮重合物の溶液を得た。   Next, 5 parts by mass of tetraethoxysilane (manufactured by Wako Pure Chemical Industries, Ltd.), 0.8 parts by mass of ion-exchanged water, 0.07 parts by mass of HCl aqueous solution having a concentration of 0.1 mol / l, and A solution of partially hydrolyzed polycondensation product of tetraethoxysilane was obtained by mixing 94.13 parts by mass of ethanol and stirring for 16 hours.

このテトラエトキシシランの部分加水分解縮重合物の溶液100質量部と、上記窒素ドープ二酸化チタン微粒子分散液150質量部とを混合し、1時間攪拌して、可視光応答型光触媒コーティング材を得た。   100 parts by mass of this tetraethoxysilane partially hydrolyzed polycondensation solution and 150 parts by mass of the nitrogen-doped titanium dioxide fine particle dispersion were mixed and stirred for 1 hour to obtain a visible light responsive photocatalyst coating material. .

この可視光応答型光触媒コーティング材を300mm角のアルマイト板上に乾燥後の固形分量が0.5g/mとなるようスプレー塗装し、100℃で30分間加熱して乾燥・硬化させることで、評価サンプルである可視光応答型光触媒コーティング処理板を得た。 By spray coating this visible light responsive photocatalyst coating material on a 300 mm square anodized plate so that the solid content after drying is 0.5 g / m 2 , heating at 100 ° C. for 30 minutes to dry and cure, A visible light responsive photocatalyst coating treated plate as an evaluation sample was obtained.

この可視光応答型光触媒コーティング処理板を東京大学駒場リサーチキャンパス内に存在する実験用住宅(木造2階建て)の2階の居室(6畳洋室)の床全面に亘って設置した。設置してから24時間後に、消毒用エタノールにより裏面が消毒されたスリッパを着用した成年男性に、居室内の床面全体を歩行させた。この成年男性には歩幅70cm、秒速1mで、床全体を蛇行(横方向に往復しながら順次縦方向に移動)するように歩行させた。歩行開始から終了まで約40秒間を要した。歩行が終了してから30分が経過した時点で、白色蛍光灯から400nm以下の波長をカットするUVカットフィルターを通して可視光を、床面での平均照度が3000Lxとなるように4時間照射した。   This visible light responsive photocatalyst coating treatment board was installed over the entire floor of the second floor room (6 tatami mat room) of the experimental house (wooden 2 floors) in the Komaba Research Campus of the University of Tokyo. 24 hours after installation, an adult man wearing slippers whose back surface was disinfected with ethanol for disinfection was allowed to walk the entire floor of the room. The adult man was allowed to walk at a step length of 70 cm and a speed of 1 m per second, meandering (moving in the vertical direction while reciprocating in the horizontal direction). It took about 40 seconds from the start to the end of walking. When 30 minutes had passed since the end of walking, visible light was irradiated from a white fluorescent lamp through a UV cut filter that cuts a wavelength of 400 nm or less for 4 hours so that the average illuminance on the floor surface was 3000 Lx.

可視光照射後、消毒用エタノールにより裏面が消毒されたスリッパを着用した成年男性に、前記と同じ条件で消毒用エタノールにより裏面が消毒されたスリッパを着用した成年男性に、居室内の床面全体を歩行させた。この歩行終了直後と、歩行終了から1時間経過した時点に、居室内の空中浮遊菌数を測定した。   After exposure to visible light, adult men who wear slippers whose surfaces are sterilized with ethanol for disinfection, and adult men who wear slippers whose surfaces are sterilized with ethanol for disinfection under the same conditions as above, Was allowed to walk. The number of airborne bacteria in the room was measured immediately after the end of walking and 1 hour after the end of walking.

空中浮遊菌を測定してから更に1時間が経過した時点で、居室内の可視光応答型光触媒コーティング処理板上の床面中央における生菌数を測定した。   When one hour passed after measuring airborne bacteria, the number of viable bacteria at the center of the floor surface on the visible light responsive photocatalyst coating treatment plate in the room was measured.

[実施例3]
WO粉末(平均粒径250nm、株式会社高純度化学研究所製、価電子帯の電位3.1〜3.2V(vs.SHE,pH=0))をフィルターに通して粒径1μm以上の粒子を除去した後、650℃で3時間焼成する前処理を行なうことによって、三酸化タングステン微粒子を得た。
[Example 3]
WO 3 powder (average particle size 250 nm, manufactured by Kojundo Chemical Laboratory Co., Ltd., valence band potential 3.1 to 3.2 V (vs. SHE, pH = 0)) is passed through a filter and the particle size is 1 μm or more. After removing the particles, a pretreatment of firing at 650 ° C. for 3 hours was performed to obtain tungsten trioxide fine particles.

この三酸化タングステン微粒子を蒸留水中に、この蒸留水に対する割合が10質量%になるように加えて懸濁させた。この懸濁液にCu(NO・3HO(和光純薬工業株式会社製)を、銅イオンの三酸化タングステン微粒子に対する割合が0.1質量%になるように加え、攪拌しながら90℃に加熱して1時間保持した。次に、この懸濁液を吸引濾過した後に、残渣を蒸留水によって洗浄し、さらにこの残渣を110℃で加熱乾燥することによって、銅二価塩を担持した三酸化タングステン微粒子を得た。 The tungsten trioxide fine particles were added and suspended in distilled water so that the ratio to the distilled water was 10% by mass. To this suspension, Cu (NO 3 ) 2 .3H 2 O (manufactured by Wako Pure Chemical Industries, Ltd.) was added so that the ratio of copper ions to tungsten trioxide fine particles was 0.1% by mass, while stirring. Heat to 90 ° C. and hold for 1 hour. Next, the suspension was subjected to suction filtration, the residue was washed with distilled water, and the residue was further heated and dried at 110 ° C. to obtain tungsten trioxide fine particles supporting a copper divalent salt.

この銅二価塩担持三酸化タングステン微粒子を乳鉢にて粉末化した後、蒸留水へ、この蒸留水に対する割合が10質量%になるように加え、超音波分散により懸濁させた後、24時間静置した。この静置後の液から上澄みを採取することで、銅二価塩担持三酸化タングステン微粒子分散液を得た。この分散液の一部を加熱乾燥して分散液中の銅二価塩担持三酸化タングステン微粒子の含有量を確認したところ、3.6質量%であった。   The copper divalent salt-supported tungsten trioxide fine particles are pulverized in a mortar, and then added to distilled water so that the ratio to the distilled water is 10% by mass, and suspended by ultrasonic dispersion for 24 hours. Left to stand. By collecting the supernatant from the liquid after standing, a copper trivalent salt-supported tungsten trioxide fine particle dispersion was obtained. A part of this dispersion was heated and dried, and the content of copper divalent salt-supported tungsten trioxide fine particles in the dispersion was confirmed to be 3.6% by mass.

次に、反応容器中にテトラエトキシシラン(和光純薬工業株式会社製)を5質量部、イオン交換水を0.8質量部、濃度0.1mol/lのHCl水溶液0.07質量部、及びエタノール94.13質量部を混合し、16時間攪拌することで、テトラエトキシシランの部分加水分解縮重合物の溶液を得た。   Next, 5 parts by mass of tetraethoxysilane (manufactured by Wako Pure Chemical Industries, Ltd.), 0.8 parts by mass of ion-exchanged water, 0.07 parts by mass of HCl aqueous solution having a concentration of 0.1 mol / l, and A solution of partially hydrolyzed polycondensation product of tetraethoxysilane was obtained by mixing 94.13 parts by mass of ethanol and stirring for 16 hours.

このテトラエトキシシランの部分加水分解縮重合物の溶液100質量部と、上記の銅二価塩担持三酸化タングステン微粒子分散液100質量部とを混合し、1時間攪拌することで、可視光応答型光触媒コーティング材を得た。   By mixing 100 parts by mass of this tetraethoxysilane partially hydrolyzed polycondensate solution and 100 parts by mass of the above-mentioned copper divalent salt-supported tungsten trioxide fine particle dispersion and stirring for 1 hour, a visible light response type A photocatalytic coating material was obtained.

この可視光応答型光触媒コーティング材を300mm角のアルマイト板上に乾燥後の固形分量が0.5g/mとなるようスプレー塗装し、100℃で30分間加熱して乾燥・硬化させることで、評価用の可視光応答型光触媒コーティング処理板を得た。 By spray coating this visible light responsive photocatalyst coating material on a 300 mm square anodized plate so that the solid content after drying is 0.5 g / m 2 , heating at 100 ° C. for 30 minutes to dry and cure, A visible light responsive photocatalyst-coated plate for evaluation was obtained.

この可視光応答型光触媒コーティング処理板について、実施例2と同様にして空中浮遊菌数および床面生菌数の測定を行った。   About this visible light response type photocatalyst coating processing board, it carried out similarly to Example 2, and measured the number of airborne microbes and the number of living surface bacteria.

[実施例4]
実施例3と同じ方法で可視光応答型光触媒コーティング材を得た。
[Example 4]
A visible light responsive photocatalyst coating material was obtained in the same manner as in Example 3.

この可視光応答型光触媒コーティング材を、線径2mm、目開き4.35mm、開口率47%の平織りステンレスメッシュに、平板換算で乾燥後の固形分量が0.5g/mとなるようにスプレー塗装し、100℃で30分間加熱して乾燥・硬化させることで、評価用の可視光応答型光触媒コーティング処理メッシュを得た。 This visible light responsive photocatalyst coating material is sprayed onto a plain woven stainless steel mesh having a wire diameter of 2 mm, an opening of 4.35 mm, and an aperture ratio of 47% so that the solid content after drying is 0.5 g / m 2 on a flat plate basis. It was painted, heated at 100 ° C. for 30 minutes, dried and cured to obtain a visible light responsive photocatalyst coating mesh for evaluation.

この可視光応答型光触媒コーティング処理メッシュを東京大学駒場リサーチキャンパス内に存在する実験用住宅(木造2階建て)の2階の居室(6畳洋室)の床全面に亘って設置した。設置してから24時間後に、消毒用エタノールにより裏面が消毒されたスリッパを着用した成年男性に、居室内の床面全体を歩行させた。この成年男性には歩幅70cm、秒速1mで、床全体を蛇行(横方向に往復しながら順次縦方向に移動)するように歩行させた。歩行開始から終了まで約40秒間を要した。歩行が終了してから30分が経過した時点で、白色蛍光灯から400nm以下の波長をカットする紫外線カットフィルターを通して可視光を、床面での平均照度が3000Lxとなるように4時間照射した。   This visible light responsive photocatalyst coating mesh was installed over the entire floor of the second floor room (6 tatami mat room) of the experimental house (wooden 2 floors) in the Komaba Research Campus of the University of Tokyo. 24 hours after installation, an adult man wearing slippers whose back surface was disinfected with ethanol for disinfection was allowed to walk the entire floor of the room. The adult man was allowed to walk at a step length of 70 cm and a speed of 1 m per second, meandering (moving in the vertical direction while reciprocating in the horizontal direction). It took about 40 seconds from the start to the end of walking. When 30 minutes had elapsed since the end of walking, visible light was irradiated from a white fluorescent lamp through an ultraviolet cut filter that cuts a wavelength of 400 nm or less for 4 hours so that the average illuminance on the floor surface was 3000 Lx.

可視光照射後、消毒用エタノールにより裏面が消毒されたスリッパを着用した成年男性に、前記と同じ条件で消毒用エタノールにより裏面が消毒されたスリッパを着用した成年男性に、居室内の床面全体を歩行させた。この歩行終了直後と、歩行終了から1時間経過した時点に、居室内の空中浮遊菌数を測定した。   After exposure to visible light, adult men who wear slippers whose surfaces are sterilized with ethanol for disinfection, and adult men who wear slippers whose surfaces are sterilized with ethanol for disinfection under the same conditions as above, Was allowed to walk. The number of airborne bacteria in the room was measured immediately after the end of walking and 1 hour after the end of walking.

尚、床面生菌数の測定は、床面が不連続面となっていることから採取が困難であり、行わなかった。   In addition, since the floor surface was a discontinuous surface, collection | recovery was difficult and the measurement of the viable count of a floor surface was not performed.

[実施例5]
実施例3において、可視光を照射する際のUVカットフィルターを500nm以下の波長をカットするものに変更した。それ以外は実施例3と同様にして、空中浮遊菌数および床面生菌数の測定を行った。
[Example 5]
In Example 3, the UV cut filter for irradiation with visible light was changed to one that cuts a wavelength of 500 nm or less. Other than that was carried out similarly to Example 3, and measured the airborne microbe count and the floor viable count.

なお、500nm以下の波長をカットすると、照度の測定に大きな影響があるため、照度の制御は行わず、光源の種類・数・位置を実施例3から変更しないこととした。   It should be noted that if the wavelength of 500 nm or less is cut, the measurement of illuminance has a large effect, so the illuminance is not controlled and the type, number, and position of the light source are not changed from those in Example 3.

[比較例]
消毒用エタノールにより裏面が消毒されたスリッパを着用した成年男性に、東京大学駒場リサーチキャンパス内に存在する実験用住宅(木造2階建て)の2階の居室(6畳洋室)内のフローリングの床面全体を歩行させた。この成年男性には歩幅70cm、秒速1mで、床全体を蛇行(横方向に往復しながら順次縦方向に移動)するように歩行させた。歩行開始から終了まで約40秒間を要した。歩行が終了してから30分が経過した時点で、ブラックライトから紫外線光を、床面の平均紫外線放射照度が1mW/cmとなるように4時間照射した。
[Comparative example]
Flooring floor in the second-floor room (6 tatami mat room) of the experimental house (two-story wooden building) in the Komaba Research Campus of the University of Tokyo for an adult man wearing slippers whose back side is disinfected with disinfectant ethanol The entire surface was walked. The adult man was allowed to walk at a step length of 70 cm and a speed of 1 m per second, meandering (moving in the vertical direction while reciprocating in the horizontal direction). It took about 40 seconds from the start to the end of walking. When 30 minutes had passed since the end of walking, ultraviolet light was irradiated from the black light for 4 hours so that the average ultraviolet irradiance on the floor surface was 1 mW / cm 2 .

紫外線照射後、消毒用エタノールにより裏面が消毒されたスリッパを着用した成年男性に、前記と同じ条件で消毒用エタノールにより裏面が消毒されたスリッパを着用した成年男性に、居室内の床面全体を歩行させた。この歩行終了直後と、歩行終了から1時間経過した時点に、居室内の空中浮遊菌数を測定した。   For adult males wearing slippers whose backs were disinfected with ethanol for disinfection after UV irradiation, for adults wearing slippers whose backs were disinfected with ethanol for disinfection under the same conditions as above, Walked. The number of airborne bacteria in the room was measured immediately after the end of walking and 1 hour after the end of walking.

空中浮遊菌を測定してから更に1時間が経過した時点で、居室内の床面中央における生菌数を測定した。   When one hour passed after measuring airborne bacteria, the number of viable bacteria at the center of the floor in the room was measured.

[性能評価]
上記実施例1〜5及び比較例で得られた評価サンプルについての菌数測定の結果を下記表1に示す。これにより空間の感染症リスクの低減度合いを評価する。
[Performance evaluation]
Table 1 shows the results of the bacterial count measurement for the evaluation samples obtained in Examples 1 to 5 and the comparative example. This evaluates the degree of reduction of the risk of infection in the space.

Figure 2011110542
Figure 2011110542

表1における非接触領域比率は、床材の表面における直径10cmの球体と接触し得ない領域の平面視投影面積の、床材の表面全体の平面視投影面積に対する割合である。   The non-contact area ratio in Table 1 is the ratio of the planar projection area of the area that cannot contact the sphere having a diameter of 10 cm on the floor material surface to the planar projection area of the entire floor material surface.

表1に示されるように、比較例では歩行終了から1時間後の空中浮遊菌数が歩行終了直後の空中浮遊菌数に比べて少ない。これは、歩行終了直後では室内を人が移動することで床面に沈降していた細菌が飛散して空中浮遊菌数が増大するが、歩行終了から1時間後では浮遊菌の大部分が沈降したためと考えられる。   As shown in Table 1, in the comparative example, the number of airborne bacteria 1 hour after the end of walking is smaller than the number of airborne bacteria immediately after the end of walking. Immediately after the end of walking, the bacteria that had settled on the floor scattered as a result of the movement of people inside the room and the number of airborne bacteria increased. However, most of the suspended bacteria settled one hour after the end of walking. It is thought that it was because.

実施例1〜5では、歩行直後の空中浮遊菌数および床面生菌数が比較例に比べて大きく減少した。これは、床材に沈降した微粒子に付着している細菌の繁殖力が、光触媒によって抑制されたためと考えられる。   In Examples 1 to 5, the number of airborne bacteria and the number of floor surface bacteria immediately after walking were greatly reduced as compared with the comparative example. This is thought to be because the fertility of bacteria adhering to the fine particles settled on the flooring was suppressed by the photocatalyst.

以上から、実施例1〜5では、人の歩行直後の空中浮遊菌数および床材上の生菌数を低減させることが明らかとなった。すなわち、実施例1〜5では、人が空間において吸引する可能性のある細菌を優位に減少させていることから、空間を効率良く浄化して空間における感染症罹患リスクを低減できることが確認された。   As mentioned above, in Examples 1-5, it became clear that the number of airborne microbes immediately after a person's walk and the number of living microbes on a flooring are reduced. In other words, in Examples 1 to 5, it was confirmed that bacteria that could possibly be sucked in the space were significantly reduced, so that the space could be efficiently purified to reduce the risk of suffering from infectious diseases in the space. .

Claims (9)

底部に床材が設置された空間の前記床材表面に光触媒を担持させ、前記光触媒にこの光触媒を活性化させる励起光を照射することを特徴とする空間の浄化方法。   A method for purifying a space, comprising supporting a photocatalyst on the floor material surface of a space in which a floor material is installed at the bottom, and irradiating the photocatalyst with excitation light that activates the photocatalyst. 請求項1において、前記床材上の人及び物の移動が10分間以上途絶えた状態が維持された後に、前記前記光触媒に励起光を照射する空間の浄化方法。   2. The method for purifying a space according to claim 1, wherein the photocatalyst is irradiated with excitation light after the state in which movement of persons and objects on the flooring is interrupted for 10 minutes or more is maintained. 請求項1又は2において、前記床材表面にかかる圧力と振動のうち少なくとも一方を検知する検知デバイスを用い、前記検知デバイスで検知される圧力が一定時間以上変化しない状態、或いは前記検知デバイスで振動が一定時間以上検知されない状態が維持された後に、前記光触媒に励起光を照射する空間の浄化方法。   The detection device according to claim 1 or 2, wherein a detection device that detects at least one of pressure and vibration applied to the surface of the flooring is used, and the pressure detected by the detection device does not change for a certain period of time or vibrates with the detection device. A method for purifying a space in which the photocatalyst is irradiated with excitation light after a state in which no is detected for a certain period of time is maintained. 請求項1乃至3のいずれか一項において、前記床材内に、励起光を放射する光源と、この光源から放射された励起光を前記光触媒まで導波する光導波路とを設け、この光源から光触媒へ励起光を照射する空間の浄化方法。   4. The light source according to claim 1, wherein a light source that emits excitation light and an optical waveguide that guides the excitation light emitted from the light source to the photocatalyst are provided in the flooring. A method for purifying a space in which excitation light is irradiated to a photocatalyst. 請求項1乃至4のいずれか一項において、前記床材に、この床材にかけられた圧力と振動のうち少なくとも一方によって発電する発電デバイスと、前記発電デバイスで発電された電力を蓄電する蓄電デバイスとを設け、前記蓄電デバイスから供給される電力で光源を発光させてこの光源から放射される励起光を前記光触媒に照射する空間の浄化方法。   5. The power generation device according to claim 1, wherein a power generation device that generates power by at least one of pressure and vibration applied to the floor material, and a power storage device that stores power generated by the power generation device. And a method of purifying a space in which a light source is caused to emit light with electric power supplied from the power storage device and the photocatalyst is irradiated with excitation light emitted from the light source. 請求項1乃至5のいずれか一項において、前記光触媒が可視光応答型光触媒であり、前記励起光が500nm以下の波長を含む可視光である空間の浄化方法。   The method for purifying a space according to any one of claims 1 to 5, wherein the photocatalyst is a visible light responsive photocatalyst, and the excitation light is visible light having a wavelength of 500 nm or less. 請求項1乃至6のいずれか一項において、前記可視光応答型光触媒の価電子帯の電位が3V(vs.SHE,pH=0)以上である空間の浄化方法。   The method for purifying a space according to any one of claims 1 to 6, wherein a potential of a valence band of the visible light responsive photocatalyst is 3 V (vs. SHE, pH = 0) or more. 請求項1乃至7のいずれか一項において、前記床材の表面が凹凸を有し、この床材の表面における直径10cmの球体と接触し得ない領域の平面視投影面積が、床材の表面全体の平面視投影面積の10%以上である空間の浄化方法。   The surface area of the flooring material according to any one of claims 1 to 7, wherein a surface area of the flooring material has irregularities, and a projected area of a region in the surface of the flooring material that cannot contact a sphere having a diameter of 10 cm is a surface of the flooring material. A method for purifying a space that is 10% or more of the entire projected area in plan view. 表面に光触媒を担持する床材と、前記光触媒にこの光触媒を活性化させる励起光を照射する光源とを備えることを特徴とする空間の浄化設備。   A space purification facility comprising: a floor material carrying a photocatalyst on a surface; and a light source that irradiates the photocatalyst with excitation light that activates the photocatalyst.
JP2009272343A 2009-11-30 2009-11-30 Method for cleaning space and facilities for cleaning space Pending JP2011110542A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009272343A JP2011110542A (en) 2009-11-30 2009-11-30 Method for cleaning space and facilities for cleaning space

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009272343A JP2011110542A (en) 2009-11-30 2009-11-30 Method for cleaning space and facilities for cleaning space

Publications (1)

Publication Number Publication Date
JP2011110542A true JP2011110542A (en) 2011-06-09

Family

ID=44233310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009272343A Pending JP2011110542A (en) 2009-11-30 2009-11-30 Method for cleaning space and facilities for cleaning space

Country Status (1)

Country Link
JP (1) JP2011110542A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012011367A1 (en) * 2010-07-23 2012-01-26 住友化学株式会社 Photocatalyst coating liquid and product having photocatalytic function
WO2015005346A1 (en) * 2013-07-09 2015-01-15 日東電工株式会社 Organic electroluminescent device, and refrigerator

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10296888A (en) * 1997-04-23 1998-11-10 Tao:Kk Photocatalytic body
JP2000189807A (en) * 1999-01-01 2000-07-11 Toto Ltd Tile having photocatalytic function
JP2001096168A (en) * 1999-09-28 2001-04-10 Kankyo Device Kenkyusho:Kk Photocatalyst coating and article having coating thereon
JP2001327836A (en) * 2000-05-24 2001-11-27 Kawasaki Heavy Ind Ltd Transporting apparatus
JP2005194865A (en) * 2003-12-11 2005-07-21 Nakagawa Masato Shoten:Kk Facing of tatami mat, its surface treatment method and device
JP2006239477A (en) * 2005-02-28 2006-09-14 Central Res Inst Of Electric Power Ind Sanitary product and washing system for sanitary product provided with carbon-doped titanium oxide surface layer
JP2006314915A (en) * 2005-05-12 2006-11-24 Taiheiyo Cement Corp Polluted air cleaning system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10296888A (en) * 1997-04-23 1998-11-10 Tao:Kk Photocatalytic body
JP2000189807A (en) * 1999-01-01 2000-07-11 Toto Ltd Tile having photocatalytic function
JP2001096168A (en) * 1999-09-28 2001-04-10 Kankyo Device Kenkyusho:Kk Photocatalyst coating and article having coating thereon
JP2001327836A (en) * 2000-05-24 2001-11-27 Kawasaki Heavy Ind Ltd Transporting apparatus
JP2005194865A (en) * 2003-12-11 2005-07-21 Nakagawa Masato Shoten:Kk Facing of tatami mat, its surface treatment method and device
JP2006239477A (en) * 2005-02-28 2006-09-14 Central Res Inst Of Electric Power Ind Sanitary product and washing system for sanitary product provided with carbon-doped titanium oxide surface layer
JP2006314915A (en) * 2005-05-12 2006-11-24 Taiheiyo Cement Corp Polluted air cleaning system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012011367A1 (en) * 2010-07-23 2012-01-26 住友化学株式会社 Photocatalyst coating liquid and product having photocatalytic function
WO2015005346A1 (en) * 2013-07-09 2015-01-15 日東電工株式会社 Organic electroluminescent device, and refrigerator
EP3021640A1 (en) * 2013-07-09 2016-05-18 Nitto Denko Corporation Organic electroluminescent device, and refrigerator
US9587877B2 (en) 2013-07-09 2017-03-07 Nitto Denko Corporation Organic electroluminescent device having a photocatalyst layer
EP3021640A4 (en) * 2013-07-09 2017-03-29 Nitto Denko Corporation Organic electroluminescent device, and refrigerator

Similar Documents

Publication Publication Date Title
US9974881B2 (en) Air purifying apparatus using ultra violet light emitting diode
JP5567828B2 (en) Visible light responsive photocatalyst coating material, coated product and allergen inactivation method
AU2013213528B2 (en) A mobile disinfection unit for disinfecting a given facility or equipment and a method of using said unit
KR101351485B1 (en) Fibrous filter and air purification device
KR101260937B1 (en) System for ventilating barn and cleaning air
US20050238551A1 (en) Electro-kinetic air transporter-conditioner system and method to oxidize volatile organic compounds
WO1994011092A1 (en) Air treating method using photocatalyst under interior illumination
KR20130125436A (en) Light having interior air sterilizing function, and interior air sterilizing and lighting method
JP2012517862A (en) Ultraviolet light air treatment method and ultraviolet light air treatment apparatus
CN201880486U (en) Air-purifying device
KR102228831B1 (en) Purifying lamp for environmental sanitation
EP3050577A1 (en) Led photocatalyst module using photocatalyst
KR20180035419A (en) Pleated photocatalyst unit and air cleaning apparatus comprising the same
CN102462857A (en) Air purifying device
JP2011110542A (en) Method for cleaning space and facilities for cleaning space
JP3693663B2 (en) Air conditioner
Kim et al. Development of air purification device through application of thin-film photocatalyst
JP2017192546A (en) Room sterilization structure
KR102265975B1 (en) Smart led prevention system
US20230277716A1 (en) Photocatalytic and photo(electro)catalytic approaches for viral decontamination
RU104460U1 (en) PHOTOCATALYTIC FILTER AIR CLEANER
JP2004159842A (en) Cleanness maintaining/promoting method of photocatalytically treated substance or product, and cleanness maintaining/promoting system of photocatalyst activation type therefor
CN103657401A (en) Photocatalyst air filter and manufacturing method thereof
JP2007289382A (en) Harmful substance-decomposing room
KR20220101608A (en) Automatic garbage chute air evacuation method to improve air quality

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120113

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120910

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120910

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130815

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130820

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140617

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150113