WO2012011367A1 - Photocatalyst coating liquid and product having photocatalytic function - Google Patents

Photocatalyst coating liquid and product having photocatalytic function Download PDF

Info

Publication number
WO2012011367A1
WO2012011367A1 PCT/JP2011/064679 JP2011064679W WO2012011367A1 WO 2012011367 A1 WO2012011367 A1 WO 2012011367A1 JP 2011064679 W JP2011064679 W JP 2011064679W WO 2012011367 A1 WO2012011367 A1 WO 2012011367A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
photocatalyst
parts
particles
coating liquid
Prior art date
Application number
PCT/JP2011/064679
Other languages
French (fr)
Japanese (ja)
Inventor
仁 高見
酒谷 能彰
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Publication of WO2012011367A1 publication Critical patent/WO2012011367A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • C09D183/06Polysiloxanes containing silicon bound to oxygen-containing groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/20Vanadium, niobium or tantalum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/30Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/652Chromium, molybdenum or tungsten
    • B01J23/6527Tungsten
    • B01J35/39
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/006Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character
    • C03C17/007Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character containing a dispersed phase, e.g. particles, fibres or flakes, in a continuous phase
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D1/00Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/43Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/70Properties of coatings
    • C03C2217/71Photocatalytic coatings

Definitions

  • the present invention relates to a photocatalyst coating liquid and a photocatalytic functional product.
  • tungsten oxide is a photocatalyst that exhibits high photocatalytic action under illumination of a fluorescent lamp.
  • Patent Document 1 an adhesive layer is provided on a substrate, a binder component made of a metal oxide gel or a metal hydroxide gel is mixed with a photocatalyst coating liquid containing a photocatalyst, and the photocatalyst coating liquid is applied to the adhesive layer. It is disclosed that a photocatalyst-supporting structure in which photocatalyst particles are less likely to fall off when applied on top is obtained.
  • the adhesive strength between the adhesive layer and the base material or the adhesive strength between the photocatalyst body layer and the adhesive layer is not always sufficient, and the photocatalyst body is easily peeled off from the base material, and a high photocatalyst. No activity was expressed.
  • the problem of the present invention is that when a photocatalyst layer is formed on the surface of the substrate, a photocatalyst layer having excellent adhesion to the substrate is obtained, and the photocatalyst layer is irradiated with a practical light source such as a fluorescent lamp.
  • a photocatalyst coating liquid exhibiting high photocatalytic activity and a photocatalytic functional product having a photocatalyst layer on the surface are provided.
  • this invention consists of the following structures.
  • the oxide equivalent content is 0 to 200 parts by mass with respect to 100 parts by mass of the oxide equivalent of (4), and the oxide equivalent content of (3) is the oxidation of (4).
  • the present invention is also a photocatalytic functional product comprising a photocatalyst layer on a substrate surface, wherein the photocatalyst layer is formed using the photocatalyst coating liquid according to any one of (I) to (IV).
  • a photocatalytic functional product comprising a photocatalyst layer on a substrate surface, wherein the photocatalyst layer is formed using the photocatalyst coating liquid according to any one of (I) to (IV).
  • the photocatalyst coating liquid of the present invention since it contains niobium oxide, colloidal silica, and silicon alkoxide as binders in an optimum composition, it can be adhered even if directly applied to a substrate without providing an adhesive layer on the substrate. It is possible to form a photocatalyst layer that exhibits excellent strength and exhibits sufficient photocatalytic activity. Furthermore, the photocatalyst layer can also provide a photocatalytic functional product that exhibits excellent surface hardness and excellent hydrophilicity and maintains the original excellent photocatalytic action.
  • the photocatalyst coating liquid of the present invention contains photocatalyst particles, niobium oxide sol particles, colloidal silica particles, silicon alkoxide and a solvent in a predetermined ratio, and the solid content of the photocatalyst coating liquid is set to a predetermined ratio.
  • the photocatalyst particles in the present invention are oxides having a photocatalytic action, and examples thereof include titanium oxide particles and tungsten oxide particles.
  • tungsten oxide particles are irradiated with visible light (wavelength of about 400 nm to about 800 nm). Since it exhibits high photocatalytic activity, it is suitable for the present invention.
  • Titanium oxide particles are particulate titanium oxides that exhibit particularly high photocatalytic activity when irradiated with ultraviolet light.
  • examples of the titanium oxide particles include metatitanic acid particles, titanium dioxide [TiO 2 ] particles whose crystal types are anatase type, brookite type, rutile type, and the like.
  • Metatitanic acid particles can be obtained, for example, by the following method (A).
  • the titanium dioxide particles can be obtained, for example, by any one of the following methods (B-1) to (B-3).
  • Method (B-1) A method of obtaining a precipitate by adding a base to an aqueous solution of titanyl sulfate or titanium chloride without heating, and firing the obtained precipitate.
  • Method of (B-3) Method of calcining metatitanic acid by adding water, aqueous solution of acid or base solution to obtain precipitate, and calcining the resulting precipitate
  • the titanium dioxide particles obtained by the above methods (B-1) to (B-3) can be obtained as anatase type, brookite type or rutile type crystal types depending on the baking temperature and baking time at the time of baking.
  • titanium oxide can be obtained by, for example, the sulfuric acid method and the chlorine method described in “Titanium oxide” (Gaku Kiyono, published by Gihodo Publishing), JP-A-2001-72419, No. 2001-190953, JP-A No. 2001-316116, JP-A No. 2001-322816, JP-A No. 2002-29749, JP-A No. 2002-97019, WO 01/10552, JP-A No. 2001. No. -21457, JP 2002-239395 A, WO 03/080244, WO 02/053501, JP 2007-69093 A, Chemistry Letters, Vol.32, No.2, P.196.
  • the titanium oxide obtained by the above method may be used alone or in combination of two or more.
  • the average dispersed particle size is used as the particle size of the titanium oxide particles. From the viewpoint of effectively exhibiting photocatalytic action, the average dispersed particle size is usually 20 nm to 150 nm, preferably 40 nm to 100 nm.
  • the BET specific surface area of the titanium oxide particles is usually 100 m 2 / g to 500 m 2 / g, preferably 300 m 2 / g to 400 m 2 / g, from the viewpoint of effectively exhibiting photocatalytic action.
  • the tungsten oxide particles are particulate tungsten oxides that exhibit high photocatalytic action even when irradiated with visible light (wavelength of about 400 nm to about 800 nm).
  • the tungsten oxide particles usually include tungsten trioxide [WO 3 ] particles.
  • the tungsten trioxide particles can be obtained, for example, by adding an acid to an aqueous solution of tungstate to obtain tungstic acid as a precipitate, and firing the obtained tungstic acid. Moreover, it can also obtain by the method of thermally decomposing by heating ammonium metatungstate and ammonium paratungstate.
  • the average dispersed particle size is used as the particle size of the tungsten oxide particles. From the viewpoint of effectively exhibiting photocatalytic action, the average dispersed particle size is usually 50 nm to 200 nm, preferably 80 nm to 130 nm.
  • the BET specific surface area of the tungsten oxide particles is usually 5 m 2 / g to 100 m 2 / g, preferably 20 m 2 / g to 50 m 2 / g, from the viewpoint of effectively exhibiting photocatalytic action.
  • the average particle diameter of the niobium oxide sol particles in the present invention is usually 50 nm or less, preferably 30 nm or less, and may be crystalline or amorphous. Further, in order to improve the dispersion stability of the niobium oxide sol particles, a material in which the surface of the niobium oxide sol particles is appropriately modified with a dispersant may be used. Examples of such niobium oxide sol particles include niobium oxide sol “Nb-X-10” manufactured by Taki Chemical Co., Ltd.
  • the oxide equivalent content of the niobium oxide sol particles is 0 to 200 parts by mass, preferably 20 to 140 parts by mass, and more preferably 30 to 80 parts by mass with respect to 100 parts by mass of the oxide equivalent of the silicon alkoxide. It is.
  • the content of the niobium oxide sol particles in terms of oxide exceeds 200 parts by mass, the adhesion between the resulting photocatalyst layer and the substrate is lowered, and the photocatalyst layer is too soft and may cause a problem.
  • the oxide equivalent content of the niobium oxide sol particles exceeds 140 parts by mass, the photocatalyst layer is easily damaged, and when the oxide equivalent content of the niobium oxide sol particles is less than 20 parts by mass, the photocatalyst is obtained.
  • the hydrophilicity of the body layer is significantly reduced.
  • the oxide equivalent content of the niobium oxide sol particles exceeds 80 parts by mass, the hydrophilicity corresponding to the hardness of the photocatalyst layer cannot be obtained, and the oxide equivalent content of the niobium oxide sol particles is 30 masses. If it is less than the part, the hydrophilicity of the photocatalyst layer is lowered.
  • the oxide equivalent content of niobium oxide sol particles means the content of Nb 2 O 5 when all the niobium components in the niobium oxide sol are converted to Nb 2 O 5 , and the oxide equivalent of silicon alkoxide, all the silicon component in the silicon alkoxide means the content of SiO 2 in the case of conversion into SiO 2, and so on.
  • colloidal silica particles The average particle size of the colloidal silica particles in the present invention is usually 50 nm or less, preferably 30 nm or less.
  • the oxide equivalent content of the colloidal silica particles is 0 to 280 parts by mass, preferably 160 to 260 parts by mass, more preferably 170 to 230 parts by mass with respect to 100 parts by mass of the oxide equivalent of the silicon alkoxide. It is. When the content of the colloidal silica particles in terms of oxide exceeds 280 parts by mass, the adhesion between the resulting photocatalyst layer and the substrate is lowered, and the photocatalyst layer is too soft and may cause problems.
  • the oxide equivalent content of the colloidal silica particles exceeds 260 parts by mass, the adhesion of the photocatalyst layer is lowered, and when the oxide equivalent content of the colloidal silica particles is less than 160 parts by mass, The hydrophilicity of the photocatalyst layer is significantly reduced. Further, when the oxide equivalent content of the colloidal silica particles exceeds 230 parts by mass, the photocatalyst layer tends to be damaged, and when the oxide equivalent content of the colloidal silica particles is less than 170 parts by mass, The hydrophilicity of the body layer is reduced. Note that the oxide equivalent of the colloidal silica particles, all silicon component in the colloidal silica means a content of SiO 2 in the case of conversion into SiO 2, and so on.
  • the total oxide content of the niobium oxide sol particles and colloidal silica particles in the photocatalyst coating liquid of the present invention is 0 to 480 parts by mass with respect to 100 parts by mass of the oxide equivalent of silicon alkoxide, The amount is preferably 200 to 330 parts by mass, more preferably 210 to 310 parts by mass. If the total oxide content of the niobium oxide sol particles and colloidal silica particles exceeds 480 parts by mass, the adhesion between the resulting photocatalyst layer and the substrate will be lowered, and the photocatalyst layer will be too soft. May occur.
  • niobium oxide sol particles and colloidal silica particles exceeds 330 parts by mass, the hydrophilicity of the photocatalyst layer is remarkably reduced, and the oxide conversion of niobium oxide sol particles and colloidal silica particles is also reduced. If the sum total of content is less than 200 mass parts, the adhesiveness of a photocatalyst body layer will fall, and also a photocatalyst body layer will become easy to be damaged.
  • the hydrophilicity of the photocatalyst layer is lowered, and the oxide conversion of niobium oxide sol particles and colloidal silica particles is reduced.
  • the photocatalyst layer is easily damaged.
  • the total of the oxide equivalent content of niobium oxide sol particles, colloidal silica particles, and silicon alkoxide in the photocatalyst coating liquid of the present invention is 100 parts by mass of the photocatalyst particle content in the photocatalyst coating liquid of the present invention.
  • it is usually 20 to 500 parts by mass, but the photocatalyst layer obtained from the photocatalyst coating liquid may be 100 to 450 parts by mass for the purpose of obtaining good adhesion to the substrate.
  • niobium oxide sol particles, colloidal silica particles, and silicon alkoxide in terms of oxides is less than 20 parts by mass, the adhesion between the photocatalyst layer and the substrate decreases, while 500 parts by mass is reduced. If it exceeds, the photocatalyst particles are buried in a binder component such as niobium oxide sol particles, making it difficult to obtain a photocatalyst layer having sufficient photocatalytic activity.
  • silicon alkoxide examples include tetraethoxysilane (ethyl silicate), tetramethoxysilane (methyl silicate), methyltriethoxysilane, methyltriethoxysilane, and hydrolyzates and polymers such as silicon alkoxide. .
  • an aqueous medium containing water as a main component specifically, a solvent containing 50% by mass or more of water is used, water may be used alone, or a mixed solvent of water and a water-soluble organic solvent. May be used.
  • the water-soluble organic solvent include water-soluble alcohol solvents such as methanol, ethanol, propanol, and butanol, acetone, methyl ethyl ketone, methyl cellosolve, and ethyl cellosolve.
  • the content in terms of solid oxide obtained by volatilizing a volatile component such as a solvent from the photocatalyst coating liquid is usually 0. 5 to 30 parts by weight (that is, 0.5 to 30% by weight with respect to the total amount of the photocatalyst coating liquid), preferably 1 to 20 parts by weight (1 to 20% by weight), more preferably Is used by diluting with water or other solvent so as to be about 2 to 10 parts by mass (2 to 10% by mass).
  • the solid content is less than 0.5 parts by mass, it becomes difficult to form a photocatalyst layer having a sufficient thickness, and when the solid content exceeds 30 parts by mass, the transparency of the resulting photocatalyst layer is impaired.
  • the mixing order and mixing method of the photocatalyst particles, niobium oxide sol particles, colloidal silica particles, silicon alkoxide and solvent when preparing the photocatalyst coating liquid of the present invention are not particularly limited.
  • colloidal silica particles A method of mixing niobium oxide sol particles with a binder liquid in which silicon alkoxide and a solvent are mixed, and further mixing a photocatalyst dispersion liquid in which the photocatalyst particles are dispersed in a solvent alone, (b) the photocatalyst particles are a solvent alone
  • the photocatalyst particles are a solvent alone
  • examples include a method in which niobium oxide sol particles, colloidal silica particles, and silicon alkoxide are sequentially added to the photocatalyst dispersion dispersed in and mixed, and may be performed with stirring or heating as necessary. May be.
  • the hydrogen ion concentration of the photocatalyst dispersion in which the photocatalyst particles are dispersed alone in a solvent is usually pH 2.0 to pH 7.0, preferably pH 3.0 to pH 6.0.
  • the hydrogen ion concentration is less than pH 2.0, the acidity is too strong and the handling is troublesome.
  • the pH exceeds 7.0 when the photocatalyst particles are tungsten oxide particles, the tungsten oxide particles may be dissolved.
  • the hydrogen ion concentration of the photocatalyst dispersion liquid can be usually adjusted by adding an acid. Examples of the acid that can be used include nitric acid, hydrochloric acid, sulfuric acid, phosphoric acid, formic acid, acetic acid, and succinic acid.
  • the photocatalyst dispersion liquid can be obtained by adding a photocatalyst particle to a solvent in the presence of a suitable dispersant as necessary and subjecting it to a dispersion treatment.
  • the dispersion treatment can be performed, for example, by an ordinary method using a medium stirring type disperser.
  • the addition of the photocatalyst particles to the solvent may be performed, for example, by adding the photocatalyst particles directly to the solvent and mixing them. Usually, however, the photocatalyst particles are dispersed in the dispersion medium in advance in the solvent.
  • dispersion medium examples include the solvents described above.
  • the photocatalyst particles in the present invention preferably have a noble metal supported on the surface in order to improve the photocatalytic activity.
  • a method for supporting the noble metal on the surface of the photocatalyst particles for example, a method in which a sacrificial agent is dissolved in the above-described photocatalyst dispersion liquid and light irradiation is performed on the photocatalyst particle dispersion, or And a method of irradiating with light in an aqueous solution in which is dissolved.
  • the noble metal precursor one that can be dissolved in a solvent is used.
  • the noble metal element constituting the precursor usually becomes a noble metal ion having a positive charge and exists in the solvent.
  • the noble metal ions are reduced to zero-valent noble metal by the photocatalytic action of the photocatalyst particles by light irradiation, and are supported on the surfaces of the photocatalyst particles.
  • the noble metal include Cu, Pt, Au, Pd, Ag, Ru, Ir, and Rh.
  • the precursor include hydroxides, nitrates, sulfates, halides, organic acid salts, carbonates, and phosphates of these noble metals.
  • the noble metal is preferably Cu, Pt, Au, or Pd.
  • Examples of the Cu precursor include copper nitrate (Cu (NO 3 ) 2 ), copper sulfate (CuSO 4 ), copper chloride (CuCl 2 , CuCl), copper bromide (CuBr 2 , CuBr), copper iodide ( CuI), copper iodate (CuI 2 O 6 ), ammonium copper chloride (Cu (NH 4 ) 2 Cl 4 ), copper oxychloride (Cu 2 Cl (OH) 3 ), copper acetate (CH 3 COOCu, (CH 3 COO) 2 Cu), copper formate ((HCOO) 2 Cu), copper carbonate (CuCO 3 ), copper oxalate (CuC 2 O 4 ), copper citrate (Cu 2 C 6 H 4 O 7 ), copper phosphate ( CuPO 4 ) and the like.
  • Examples of the precursor of Pt include platinum chloride (PtCl 2 , PtCl 4 ), platinum bromide (PtBr 2 , PtBr 4 ), platinum iodide (PtI 2 , PtI 4 ), and platinum potassium chloride (K 2 (PtCl 4).
  • Au precursor examples include gold chloride (AuCl), gold bromide (AuBr), gold iodide (AuI), gold hydroxide (Au (OH) 2 ), tetrachloroauric acid (HAuCl 4 ), tetra
  • Au precursor examples include gold chloride (AuCl), gold bromide (AuBr), gold iodide (AuI), gold hydroxide (Au (OH) 2 ), tetrachloroauric acid (HAuCl 4 ), tetra
  • Au precursor examples include gold chloride (AuCl), gold bromide (AuBr), gold iodide (AuI), gold hydroxide (Au (OH) 2 ), tetrachloroauric acid (HAuCl 4 ), tetra
  • K chloroaurate K tetrabromoaurate (KAuBr 4 ).
  • Examples of the precursor of Pd include palladium acetate ((CH 3 COO) 2 Pd), palladium chloride (PdCl 2 ), palladium bromide (PdBr 2 ), palladium iodide (PdI 2 ), palladium hydroxide (Pd ( OH) 2 ), palladium nitrate (Pd (NO 3 ) 2 ), palladium sulfate (PdSO 4 ), potassium tetrachloropalladate (K 2 (PdCl 4 )), potassium tetrabromopalladate (K 2 (PdBr 4 )) , Tetraammine palladium chloride (Pd (NH 3 ) 4 Cl 2 ), tetraammine palladium bromide (Pd (NH 3 ) 4 Br 2 ), tetraammine palladium nitrate (Pd (NH 3 ) 4 (NO 3 ) 2 ), tetraammine palladium tetra
  • Precious metal precursors may be used alone or in combination of two or more.
  • the amount used is usually 0.01 parts by mass or more, in terms of cost, in terms of sufficiently improving the photocatalytic action with respect to 100 parts by mass of the photocatalyst particles in terms of precious metal atoms. Is usually 1 part by mass or less, preferably 0.05 to 0.6 parts by mass.
  • a sacrificial agent When a noble metal is supported on the surface of the photocatalyst particles, a sacrificial agent is used, for example, added to the photocatalyst dispersion.
  • the sacrificial agent include alcohols such as ethanol, methanol, and propanol, ketones such as acetone, and carboxylic acids such as oxalic acid.
  • the sacrificial agent is added after the photocatalyst dispersion liquid is irradiated with light for a certain period of time, and further irradiated with light.
  • the amount of the sacrificial agent is usually 0.001 to 0.3 times by mass, preferably 0.005 to 0.1 times by mass, with respect to the solvent in the photocatalyst dispersion. If the amount of the sacrificial agent used is less than 0.001 times by mass, the noble metal is insufficiently supported on the photocatalyst particles, and if it exceeds 0.3 times by mass, the amount of sacrificial agent is excessive and an effect commensurate with the cost cannot be obtained. .
  • the photocatalyst dispersion liquid may be irradiated with light while stirring the photocatalyst dispersion liquid. Irradiation may be performed from inside or outside the tube while passing through a transparent glass or plastic tube, or this may be repeated.
  • the light source is not particularly limited as long as it can irradiate light having energy higher than the band gap of the photocatalyst particles. Specific examples include a germicidal lamp, a mercury lamp, a light emitting diode, a fluorescent lamp, a halogen lamp, a xenon lamp, and a solar light. Light or the like can be used.
  • the wavelength of the irradiated light is usually 180 nm to 500 nm.
  • the time for performing the light irradiation is such that a sufficient amount of noble metal can be supported on the photocatalyst particles, so that it is usually 20 minutes or longer, preferably 1 hour or longer, usually 24 hours or shorter, preferably 6 hours or shorter before and after the addition of the sacrificial agent. is there.
  • the time exceeds 24 hours most of the precursors of the noble metal have become noble metals and are supported on the photocatalyst particles, and an effect commensurate with the cost of light irradiation cannot be obtained.
  • noble metal is not uniformly supported on the photocatalyst particles, and high photocatalytic activity cannot be obtained.
  • Examples of the base include aqueous solutions of ammonia, sodium hydroxide, potassium hydroxide, magnesium hydroxide, calcium hydroxide, strontium hydroxide, barium hydroxide, lanthanum hydroxide, etc. Among them, ammonia water and water Sodium oxide is preferably used.
  • Noble metal-supported photocatalyst particles Irradiate light while adjusting the pH, and after adding the sacrificial agent, further irradiate light, whereby the noble metal precursor becomes a noble metal and is supported on the surface of the photocatalyst particle to obtain the desired noble metal-supported photocatalyst particle. .
  • the noble metal-supported photocatalyst particles are dispersed in the solvent used without settling.
  • the photocatalyst coating liquid prepared as described above may contain an additive as long as the dispersibility of the photocatalyst particles and / or noble metal-supported photocatalyst particles is not impaired.
  • the additive examples include those added for the purpose of improving the photocatalytic action, specifically, silicon compounds such as water glass, aluminum compounds such as amorphous alumina, alumina sol, and aluminum hydroxide, zeolites Alkaline earth metal oxides such as kaolinite, magnesium oxide, calcium oxide, strontium oxide, barium oxide, magnesium hydroxide, calcium hydroxide, strontium hydroxide, barium hydroxide, etc.
  • alkaline earth metal water examples thereof include oxides, calcium phosphates, molecular sieves, activated carbon, polycondensates of organic polysiloxane compounds, phosphates, fluorine-based polymers, silicon-based polymers, acrylic resins, polyester resins, melamine resins, urethane resins, and alkyd resins. These additives are used alone or in combination of two or more.
  • the photocatalyst functional product of the present invention has a photocatalyst layer formed on the surface using the photocatalyst coating liquid obtained as described above.
  • the photocatalyst layer is formed, for example, by applying a photocatalyst coating liquid onto the surface of a substrate (product) by spin coating, dip coating, doctor blade, spraying or brushing, and then room temperature to 150 ° C., preferably room temperature to 90 ° It can be formed by a conventionally known film forming method such as drying and evaporating the solvent in the temperature range of ° C. and volatilizing the volatile component.
  • the film thickness of the photocatalyst body layer is not particularly limited, and it is usually set appropriately from several hundred nm to several mm according to its use.
  • the photocatalyst layer may be formed on any part as long as it is an inner surface or an outer surface of the base material (product).
  • the photocatalyst layer is a surface irradiated with light (visible light), and a malodorous substance. It is preferably formed on a surface that is continuously or intermittently connected to a place where the occurrence of a pathogen or a pathogen is present.
  • the material of the base material (product) is not particularly limited as long as the formed photocatalyst layer can be held at a strength that can be practically used.
  • a known barrier layer made of, for example, a silica component can be formed between the photocatalyst layer and the substrate.
  • thermosetting resin for example, aramid resin, polyimide resin, epoxy resin, unsaturated polyester resin, phenol resin, urea resin, polyurethane resin, melamine resin, benzoguanamine resin, silicone resin, melamine urea resin
  • thermoplastic resin examples thereof include a condensation polymerization resin and a resin obtained by polymerizing a vinyl monomer.
  • condensation polymerization resin examples include polyester resins such as polyethylene terephthalate, polyethylene naphthalate, polylactic acid, biodegradable polyester, and polyester liquid crystal polymer; ethylenediamine-adipic acid polycondensate (nylon-66), nylon-6 And polyamide resins such as nylon-12 and polyamide liquid crystal polymers; polyether resins such as polycarbonate resins, polyphenylene oxide, polymethylene oxide, and acetal resins; polysaccharide resins such as cellulose and derivatives thereof;
  • resins obtained by polymerizing vinyl monomers include polyolefin resins; polystyrene, poly- ⁇ -methylstyrene, styrene-ethylene-propylene copolymers (polystyrene-poly (ethylene / propylene) block copolymers), Styrene-ethylene-butene copolymer (polystyrene-poly (ethylene / butene) block copolymer), styrene-ethylene-propylene-styrene copolymer (polystyrene-poly (ethylene / propylene) -polystyrene block copolymer), Unsaturated aromatic-containing resins such as ethylene-styrene copolymers; polyvinyl alcohol resins such as polyvinyl alcohol and polyvinyl butyral; polymethyl methacrylate, methacrylic acid ester, acrylic acid ester, methacrylic acid amide as monomers Acrylic resins
  • the photocatalytic functional product of the present invention has a high photocatalytic effect by light irradiation not only outdoors but also in an indoor environment that receives only light from a visible light source such as a fluorescent lamp, an incandescent bulb, a light emitting diode, and a sodium lamp.
  • a visible light source such as a fluorescent lamp, an incandescent bulb, a light emitting diode, and a sodium lamp.
  • the photocatalyst coating liquid of the present invention is, for example, a building material such as a ceiling material, tile, glass, wallpaper, wall material, floor, automobile interior material (automobile instrument panel, automobile seat, automobile ceiling material), Light applied by indoor lighting when applied to the surface of base materials that are in contact with an unspecified number of people, such as household appliances such as refrigerators and air conditioners, textile products such as clothes and curtains, train straps, elevator buttons, etc.
  • Irradiation reduces the concentration of volatile organic substances such as formaldehyde and acetaldehyde, aldehydes, mercaptans, ammonia and other malodorous substances, nitrogen oxides, and Staphylococcus aureus, Escherichia coli, anthrax, tuberculosis, cholera, diphtheria , Kill, decompose, and remove pathogens such as tetanus, plague, shigella, botulinum, and legionella Bets can be can be further harmless allergens such as mite allergen and cedar pollen allergen.
  • volatile organic substances such as formaldehyde and acetaldehyde, aldehydes, mercaptans, ammonia and other malodorous substances, nitrogen oxides, and Staphylococcus aureus, Escherichia coli, anthrax, tuberculosis, cholera, diphtheria , Kill, decompose, and remove pathogen
  • the photocatalytic functional product of the present invention is not only capable of exhibiting sufficient hydrophilicity and exhibiting antifogging properties when irradiated with visible light, but also can be easily wiped off by simply applying water to the dirt. In addition, charging can be prevented.
  • BET Specific Surface Area The BET specific surface area of the platinum-supported tungsten oxide particles was measured by a nitrogen adsorption method using a specific surface area measuring device [“Monosorb” manufactured by Yuasa Ionics Co., Ltd.].
  • Average dispersed particle size Measure the particle size distribution of the sample using a sub-micron particle size distribution analyzer (“N4Plus” manufactured by Coulter, Inc.), and automatically disperse the result of monodisperse mode analysis using the software provided with this device. The diameter.
  • Hardness test The hardness of the photocatalyst layer was measured by a pencil hardness test method (JIS 5600-5-4).
  • Adhesiveness of the photocatalyst layer to the base material is determined when the adhesive cellophane tape ("CT405AP-24" manufactured by Nichiban Co., Ltd.) is applied to the surface of the photocatalyst layer and then quickly peeled off. It evaluated by whether it peeled simultaneously.
  • the lifting speed of the dip coater was 10 mm / second, and the immersion time was 10 seconds.
  • the test piece coated with oleic acid was included in the fluorescent lamp from the top of the photocatalyst layer through an acrylic resin plate (“N169” manufactured by Nitto Resin Co., Ltd.) using a commercially available white fluorescent lamp as a light source.
  • the measurement was performed so that the visible light was irradiated, and the contact angle ⁇ of the water droplet after a predetermined time elapsed was measured using a contact angle meter (“CA-A type” manufactured by Kyowa Interface Science Co., Ltd.).
  • the measurement of the contact angle ⁇ of the water droplet was performed 5 seconds after the water droplet (about 0.4 ⁇ L) was placed on the photocatalyst layer of the test piece in each case.
  • the irradiation with visible light was such that the illuminance in the vicinity of the photocatalyst layer was 6000 lux (measured with an illuminometer “T-10” manufactured by Minolta).
  • T-10 illuminometer manufactured by Minolta
  • oleic acid is decomposed by the photocatalytic action of the photocatalyst body layer, and the contact angle of the water droplet decreases.
  • the angle at which the decrease in the contact angle reaches saturation is defined as the critical contact angle. It can be said that the smaller the limit contact angle, the higher the photocatalytic activity of the photocatalyst layer, that is, the photoinduced hydrophilicity and the organic substance decomposing performance.
  • Volatile organic matter decomposition activity (measurement of acetaldehyde resolution) The photocatalytic activity was evaluated by measuring a first-order reaction rate constant in the decomposition reaction of acetaldehyde under irradiation of light from a fluorescent lamp. That is, in a glass petri dish (outer diameter 70 mm, inner diameter 66 mm, height 14 mm, capacity about 48 mL), the obtained photocatalyst coating liquid has a dripping amount in terms of solid content per unit area of the bottom surface of 1 g / m 2. It was dripped so that it was uniformly formed on the entire bottom of the petri dish. Next, the petri dish was dried by holding it in the air at 110 ° C.
  • the photocatalyst layer is irradiated with UV light from a black light so that the UV intensity is 2 mW / cm 2 (measured by attaching a UV receiver “UD-36” to Topcon's UV intensity meter “UVR-2”). This was irradiated for 16 hours and used as a photocatalytic activity measurement sample.
  • the sample for photocatalytic activity measurement is placed in a gas bag (internal volume 1 L) together with the petri dish, and then the inside of the gas bag is evacuated, and then the volume ratio of oxygen to nitrogen is 1: 4.
  • the volume ratio of oxygen to nitrogen is 1: 4.
  • the illuminance in the vicinity of the measurement sample is 1000 lux through the acrylic resin plate (“N169” manufactured by Nitto Resin Co., Ltd.) (illuminance meter “T-10 manufactured by Minolta Co., Ltd.).
  • Example 1 Preparation of precious metal-supported photocatalyst dispersion
  • tungsten oxide particles manufactured by Nippon Inorganic Chemical Industry Co., Ltd.
  • ion-exchanged water 4 kg
  • This mixture was dispersed using a wet medium stirring mill to obtain a tungsten oxide particle dispersion.
  • tungsten oxide particle dispersion To this tungsten oxide particle dispersion, an aqueous solution of hexachloroplatinic acid (H 2 PtCl 6 ) is added so that hexachloroplatinic acid is 0.12 parts by mass with respect to 100 parts by mass of tungsten oxide particles in terms of platinum atoms, A hexachloroplatinic acid-containing tungsten oxide particle dispersion was obtained as a raw material dispersion.
  • the solid content (amount of tungsten oxide particles) contained in 100 parts by mass of this dispersion was 17.6 parts by mass (solid content concentration 17.6% by mass). Thereafter, the pH of this dispersion was 2.0.
  • a light irradiation device comprising a glass tube (inner diameter: 37 mm, height: 360 mm) equipped with a pot and equipped with an underwater sterilization lamp (“GLD15MQ” manufactured by Sankyo Electric Co., Ltd.) While dispersing 1200 g of the raw material dispersion adjusted to a solid content concentration of 12.0% by mass at a rate of 1 L / min, the pH of the dispersion was adjusted to 3.5.
  • Light irradiation (ultraviolet irradiation) is performed for 2 hours while circulating the raw material dispersion, and methanol is further added so that the concentration thereof is 1% by mass of the total solvent, and light irradiation is performed for 3 hours while circulating the raw material dispersion.
  • methanol is further added so that the concentration thereof is 1% by mass of the total solvent
  • light irradiation is performed for 3 hours while circulating the raw material dispersion.
  • the pH was constant at 3.5.
  • An aqueous ethanol solution was added to the obtained platinum-supported tungsten oxide particle dispersion to obtain a platinum-supported photocatalyst dispersion.
  • the content of the platinum-supported tungsten oxide particles with respect to 100 parts by mass of the platinum-supported photocatalyst dispersion liquid was 5 parts by mass, and the content of ethanol was 30 parts by mass.
  • Niobium oxide sol particles ("Nb-X-10" manufactured by Taki Chemical Industry Co., Ltd., solid content concentration of 10% by mass in terms of oxide) were diluted with an aqueous ethanol solution to obtain an ethanol-containing niobium oxide sol.
  • the contents of ethanol and niobium oxide sol particles in terms of oxide with respect to 100 parts by mass of the ethanol-containing niobium oxide sol were 30 parts by mass and 5 parts by mass, respectively.
  • ethanol-containing niobium oxide sol 100 g was added to 700 g of binder, and 200 g of a platinum-supported photocatalyst dispersion (solid content concentration 5 mass%) was further added to obtain a photocatalyst coating liquid. All of these were performed at room temperature and in the atmosphere, and each component was added with stirring.
  • the total solid content concentration in terms of oxide in the obtained photocatalyst coating liquid was 5 parts by mass (5% by mass) with respect to 100 parts by mass of the photocatalyst coating liquid. Further, the total solid content of 100 parts by mass includes platinum-supported tungsten oxide particles, niobium oxide sol particles, colloidal silica particles, and ethyl silicate oxide conversions of 20 parts by mass, 10 parts by mass, 47 parts by mass, and 23, respectively. Part by mass was included.
  • the niobium oxide sol particles, colloidal silica particles, and the total content thereof were 43 parts by mass, 204 parts by mass, and 248 parts by mass, respectively, in terms of oxide with respect to 100 parts by mass of oxide silicate in ethyl silicate. It was.
  • the total content of niobium oxide sol particles, colloidal silica particles, and ethyl silicate in terms of oxide was 400 parts by mass in terms of oxide with respect to 100 parts by mass of platinum-supported tungsten oxide particles.
  • Example 2 The content of platinum-supported tungsten oxide particles, niobium oxide sol particles, colloidal silica particles, and ethyl silicate in 100 parts by mass of the total solid content in terms of oxide in the photocatalyst coating liquid is 20 parts by mass and 10 parts by mass, respectively.
  • a photocatalyst coating liquid was prepared in the same manner as in Example 1 except that the content was 45 parts by mass and 25 parts by mass. Moreover, the total solid content concentration in terms of oxide in the obtained photocatalyst coating liquid was 5 parts by mass with respect to 100 parts by mass of the photocatalyst coating liquid.
  • Niobium oxide sol particles, colloidal silica particles, and the total content thereof were 40 parts by mass, 180 parts by mass, and 220 parts by mass, respectively, in terms of oxides with respect to 100 parts by mass of ethyl silicate in terms of oxides. It was.
  • the total content of niobium oxide sol particles, colloidal silica particles, and ethyl silicate in terms of oxide was 400 parts by mass in terms of oxide with respect to 100 parts by mass of platinum-supported tungsten oxide particles.
  • a photocatalyst layer was prepared in the same manner as in Example 1, and the pencil hardness was measured to be 5-6H. Further, when the adhesion of the photocatalyst layer was examined using an adhesive cellophane tape, no peeling of the photocatalyst layer was observed, and the adhesion was good. Further, when the limit contact angle was measured in the same manner as in Example 1, it was 4 degrees.
  • Example 3 The content of platinum-supported tungsten oxide particles, niobium oxide sol particles, colloidal silica particles, and ethyl silicate in 100 parts by mass of the total solid content in terms of oxide in the photocatalyst coating liquid is 20 parts by mass and 10 parts by mass, respectively.
  • a photocatalyst coating liquid was prepared in the same manner as in Example 1 except that the content was 50 parts by mass and 20 parts by mass. Moreover, the total solid content concentration in terms of oxide in the obtained photocatalyst coating liquid was 5 parts by mass with respect to 100 parts by mass of the photocatalyst coating liquid.
  • the niobium oxide sol particles, colloidal silica particles, and the total content thereof were 50 parts by mass, 250 parts by mass, and 300 parts by mass, respectively, in terms of oxide with respect to 100 parts by mass of ethyl silicate in terms of oxide. It was.
  • the total content of niobium oxide sol particles, colloidal silica particles, and ethyl silicate in terms of oxide was 400 parts by mass in terms of oxide with respect to 100 parts by mass of platinum-supported tungsten oxide particles.
  • a photocatalyst layer was prepared in the same manner as in Example 1, and the pencil hardness was measured to be 3-4H. Moreover, when the adhesiveness of the photocatalyst layer was examined using an adhesive cellophane tape, no peeling of the photocatalyst layer was observed, and the adhesiveness was good. Further, when the limit contact angle was measured in the same manner as in Example 1, it was 4 degrees.
  • Example 4 The content of platinum-supported tungsten oxide particles, niobium oxide sol particles, colloidal silica particles, and ethyl silicate in 100 parts by mass of the total solid content in terms of oxide in the photocatalyst coating liquid is 20 parts by mass and 20 parts by mass, respectively.
  • a photocatalyst coating liquid was prepared in the same manner as in Example 1 except that the content was 40 parts by mass and 20 parts by mass.
  • the total solid content concentration in terms of oxide in the obtained photocatalyst coating liquid was 5 parts by mass with respect to 100 parts by mass of the photocatalyst coating liquid.
  • the niobium oxide sol particles, colloidal silica particles, and the total content thereof were 100 parts by mass, 200 parts by mass, and 300 parts by mass, respectively, in terms of oxides with respect to 100 parts by mass of ethyl silicate in terms of oxides. It was.
  • the total content of niobium oxide sol particles, colloidal silica particles, and ethyl silicate in terms of oxide was 400 parts by mass in terms of oxide with respect to 100 parts by mass of platinum-supported tungsten oxide particles.
  • a photocatalyst layer was prepared in the same manner as in Example 1, and the pencil hardness was measured to be 5-6H. Further, when the adhesion of the photocatalyst layer was examined using an adhesive cellophane tape, no peeling of the photocatalyst layer was observed, and the adhesion was good. Further, when the limit contact angle was measured in the same manner as in Example 1, it was 6 degrees.
  • Example 5 The content of platinum-supported tungsten oxide particles, niobium oxide sol particles, colloidal silica particles, and ethyl silicate in 100 parts by mass of the total solid content in terms of oxide in the photocatalyst coating liquid is 20 parts by mass and 30 parts by mass, respectively.
  • a photocatalyst coating liquid was prepared in the same manner as in Example 1 except that the content was 33 parts by mass and 17 parts by mass. Moreover, the total solid content concentration in terms of oxide in the obtained photocatalyst coating liquid was 5 parts by mass with respect to 100 parts by mass of the photocatalyst coating liquid.
  • the niobium oxide sol particles, colloidal silica particles, and the total content thereof were 176 parts by mass, 194 parts by mass, and 371 parts by mass, respectively, in terms of oxide with respect to 100 parts by mass of ethyl silicate in terms of oxide. It was.
  • the total content of niobium oxide sol particles, colloidal silica particles, and ethyl silicate in terms of oxide was 400 parts by mass in terms of oxide with respect to 100 parts by mass of platinum-supported tungsten oxide particles.
  • a photocatalyst layer was prepared in the same manner as in Example 1, and the pencil hardness was measured to be 3-4H. Moreover, when the adhesiveness of the photocatalyst layer was examined using an adhesive cellophane tape, no peeling of the photocatalyst layer was observed, and the adhesiveness was good. Further, when the limit contact angle was measured in the same manner as in Example 1, it was 12 degrees.
  • the content of platinum-supported tungsten oxide particles, niobium oxide sol particles, colloidal silica particles, and ethyl silicate in 100 parts by mass of the total solid content in terms of oxide in the photocatalyst coating liquid is 20 parts by mass and 40 parts by mass, respectively.
  • a photocatalyst coating liquid was prepared in the same manner as in Example 1 except that the content was 27 parts by mass and 13 parts by mass.
  • the total solid content concentration in terms of oxide in the obtained photocatalyst coating liquid was 5 parts by mass with respect to 100 parts by mass of the photocatalyst coating liquid.
  • the niobium oxide sol particles, colloidal silica particles, and the total content thereof were 308 parts by mass, 208 parts by mass, and 515 parts by mass, respectively, in terms of oxide with respect to 100 parts by mass of ethyl silicate in terms of oxide. It was.
  • the total content of niobium oxide sol particles, colloidal silica particles, and ethyl silicate in terms of oxide was 400 parts by mass in terms of oxide with respect to 100 parts by mass of platinum-supported tungsten oxide particles.
  • a photocatalyst layer was prepared in the same manner as in Example 1, and when pencil hardness was measured, scratches were generated just by rubbing with an eraser, and the pencil hardness was less than 6B. .
  • the content of platinum-supported tungsten oxide particles, niobium oxide sol particles, colloidal silica particles, and ethyl silicate in 100 parts by mass of the total solid content in terms of oxide in the photocatalyst coating liquid is 20 parts by mass and 50 parts by mass, respectively.
  • a photocatalyst coating liquid was prepared in the same manner as in Example 1 except that the content was 20 parts by mass and 10 parts by mass.
  • the total solid content concentration in terms of oxide in the obtained photocatalyst coating liquid was 5 parts by mass with respect to 100 parts by mass of the photocatalyst coating liquid.
  • the niobium oxide sol particles, colloidal silica particles, and the total content thereof were 500 parts by mass, 200 parts by mass, and 700 parts by mass, respectively, in terms of oxides with respect to 100 parts by mass of ethyl silicate in terms of oxides. It was.
  • the total content of niobium oxide sol particles, colloidal silica particles, and ethyl silicate in terms of oxide was 400 parts by mass in terms of oxide with respect to 100 parts by mass of platinum-supported tungsten oxide particles.
  • a photocatalyst layer was prepared in the same manner as in Example 1, and when pencil hardness was measured, scratches were generated just by rubbing with an eraser, and the pencil hardness was less than 6B. .
  • the content of platinum-supported tungsten oxide particles, niobium oxide sol particles, colloidal silica particles, and ethyl silicate in 100 parts by mass of the total solid content in terms of oxide in the photocatalyst coating liquid is 20 parts by mass and 10 parts by mass, respectively.
  • a photocatalyst coating liquid was prepared in the same manner as in Example 1 except that 52.5 parts by mass and 17.5 parts by mass were used. Moreover, the total solid content concentration in terms of oxide in the obtained photocatalyst coating liquid was 5 parts by mass with respect to 100 parts by mass of the photocatalyst coating liquid.
  • the niobium oxide sol particles, colloidal silica particles, and the total content thereof were 57 parts by mass, 300 parts by mass, and 357 parts by mass, respectively, in terms of oxide with respect to 100 parts by mass of ethyl silicate in terms of oxide. It was.
  • the total content of niobium oxide sol particles, colloidal silica particles, and ethyl silicate in terms of oxide was 400 parts by mass in terms of oxide with respect to 100 parts by mass of platinum-supported tungsten oxide particles.
  • a photocatalyst layer was prepared in the same manner as in Example 1, and when pencil hardness was measured, scratches were generated just by rubbing with an eraser, and the pencil hardness was less than 6B. .
  • the content of platinum-supported tungsten oxide particles, niobium oxide sol particles, colloidal silica particles, and ethyl silicate in 100 parts by mass of the total solid content in terms of oxide in the photocatalyst coating liquid is 20 parts by mass and 20 parts by mass, respectively.
  • a photocatalyst coating liquid was prepared in the same manner as in Example 1 except that the content was 45 parts by mass and 15 parts by mass.
  • the total solid content concentration in terms of oxide in the obtained photocatalyst coating liquid was 5 parts by mass with respect to 100 parts by mass of the photocatalyst coating liquid.
  • the niobium oxide sol particles, colloidal silica particles, and the total content thereof were 133 parts by mass, 300 parts by mass, and 433 parts by mass, respectively, in terms of oxide with respect to 100 parts by mass of ethyl silicate in terms of oxide. It was.
  • the total content of niobium oxide sol particles, colloidal silica particles, and ethyl silicate in terms of oxide was 400 parts by mass in terms of oxide with respect to 100 parts by mass of platinum-supported tungsten oxide particles.
  • a photocatalyst layer was prepared in the same manner as in Example 1, and when pencil hardness was measured, scratches were generated just by rubbing with an eraser, and the pencil hardness was less than 6B. .
  • the content of platinum-supported tungsten oxide particles, niobium oxide sol particles, colloidal silica particles, and ethyl silicate in 100 parts by mass of the total solid content in terms of oxide in the photocatalyst coating liquid is 20 parts by mass and 30 parts by mass, respectively.
  • a photocatalyst coating liquid was prepared in the same manner as in Example 1 except that the amount was 37.5 parts by mass and 12.5 parts by mass. Moreover, the total solid content concentration in terms of oxide in the obtained photocatalyst coating liquid was 5 parts by mass with respect to 100 parts by mass of the photocatalyst coating liquid.
  • the niobium oxide sol particles, colloidal silica particles, and the total content thereof were 240 parts by mass, 300 parts by mass, and 540 parts by mass, respectively, in terms of oxides with respect to 100 parts by mass of ethyl silicate in terms of oxides. It was.
  • the total content of niobium oxide sol particles, colloidal silica particles, and ethyl silicate in terms of oxide was 400 parts by mass in terms of oxide with respect to 100 parts by mass of platinum-supported tungsten oxide particles.
  • a photocatalyst layer was prepared in the same manner as in Example 1, and when pencil hardness was measured, scratches were generated just by rubbing with an eraser, and the pencil hardness was less than 6B. .
  • the content of platinum-supported tungsten oxide particles, niobium oxide sol particles, colloidal silica particles, and ethyl silicate in 100 parts by mass of the total solid content in terms of oxide in the photocatalyst coating liquid is 20 parts by mass and 0 parts by mass, respectively.
  • a photocatalyst coating liquid was prepared in the same manner as in Example 1 except that the amount was 65 parts by mass and 15 parts by mass. Moreover, the total solid content concentration in terms of oxide in the obtained photocatalyst coating liquid was 5 parts by mass with respect to 100 parts by mass of the photocatalyst coating liquid.
  • the niobium oxide sol particles, colloidal silica particles, and the total content thereof were 0 parts by mass, 433 parts by mass, and 433 parts by mass, respectively, in terms of oxide with respect to 100 parts by mass of ethyl silicate in terms of oxide. It was.
  • the total content of niobium oxide sol particles, colloidal silica particles, and ethyl silicate in terms of oxide was 400 parts by mass in terms of oxide with respect to 100 parts by mass of platinum-supported tungsten oxide particles.
  • a photocatalyst layer was prepared in the same manner as in Example 1, and the pencil hardness was measured to be 5-6H. Further, when the adhesion of the photocatalyst layer was examined using an adhesive cellophane tape, the photocatalyst layer was not peeled and the adhesion was good, but the limit contact angle was measured in the same manner as in Example 1. Then, it was 20 degrees.
  • the content of platinum-supported tungsten oxide particles, niobium oxide sol particles, colloidal silica particles, and ethyl silicate in 100 parts by mass of the total solid content in terms of oxide in the photocatalyst coating liquid is 25 parts by mass and 10 parts by mass, respectively.
  • a photocatalyst coating liquid was prepared in the same manner as in Example 1 except that the content was 65 parts by mass and 0 parts by mass. Moreover, the total solid content concentration in terms of oxide in the obtained photocatalyst coating liquid was 5 parts by mass with respect to 100 parts by mass of the photocatalyst coating liquid.
  • the total content of niobium oxide sol particles, colloidal silica particles, and oxide-converted ethyl silicate was 300 parts by mass in terms of oxide with respect to 100 parts by mass of platinum-supported tungsten oxide particles.
  • a photocatalyst layer was prepared in the same manner as in Example 1, and when pencil hardness was measured, scratches were generated just by rubbing with an eraser, and the pencil hardness was less than 6B. .
  • Example 6 When the photocatalytic activity of the photocatalyst layer formed using the photocatalyst coating liquid obtained in Example 1 was evaluated, the first-order rate constant was 0.11 h ⁇ 1 .
  • a photocatalyst layer By applying and drying the photocatalyst coating liquid obtained in Examples 1 to 5 on the tiles applied to the indoor wall surface, a photocatalyst layer can be formed on the tile surface.
  • Light irradiation can reduce the concentration of volatile organic substances (for example, formaldehyde, acetaldehyde, acetone, toluene, etc.) and malodorous substances in indoor spaces, can kill pathogenic bacteria such as Staphylococcus aureus and Escherichia coli, Allergens such as mite allergens and cedar pollen allergens can also be rendered harmless.
  • the surface of the tile becomes hydrophilic, so that dirt can be easily wiped off, and charging can be prevented.
  • a photocatalyst layer By applying the photocatalyst coating liquid obtained in Examples 1 to 5 to the indoor side surface of the window glass and drying, a photocatalyst layer can be formed on the glass surface, whereby light irradiation by indoor lighting is performed.
  • allergens such as cedar pollen allergens can also be rendered harmless.
  • the surface of the window glass becomes hydrophilic, so that dirt can be easily wiped off, and further charging can be prevented.
  • a photocatalyst layer By applying the photocatalyst coating liquid obtained in Examples 1 to 5 to the indoor floor surface and drying, a photocatalyst layer can be formed on the floor surface, and thus, indoors can be formed by light irradiation with indoor lighting. It can reduce the concentration of volatile organic substances (for example, formaldehyde, acetaldehyde, acetone, toluene, etc.) and malodorous substances in the space, kill pathogenic bacteria such as Staphylococcus aureus and Escherichia coli, and mite allergens and cedar Allergens such as pollen allergens can also be rendered harmless. Furthermore, the surface of the floor becomes hydrophilic, so that dirt can be easily wiped off and charging can be prevented.
  • volatile organic substances for example, formaldehyde, acetaldehyde, acetone, toluene, etc.
  • kill pathogenic bacteria such as Staphylococcus aureus and Escherichia
  • a photocatalyst layer By applying the photocatalyst coating liquid obtained in Examples 1 to 5 to the surface of the air conditioner and drying it, a photocatalyst layer can be formed on the surface of the air conditioner. It can reduce the concentration of volatile organic substances (for example, formaldehyde, acetaldehyde, acetone, toluene, etc.) and malodorous substances in the space, kill pathogenic bacteria such as Staphylococcus aureus and Escherichia coli, and mite allergens and cedar Allergens such as pollen allergens can also be rendered harmless. Furthermore, the surface of the air conditioner becomes hydrophilic, so that dirt can be easily wiped off, and charging can be prevented.
  • volatile organic substances for example, formaldehyde, acetaldehyde, acetone, toluene, etc.
  • kill pathogenic bacteria such as Staphylococcus aureus and Escherichia coli
  • a photocatalyst layer can be formed in the refrigerator by applying the photocatalyst coating liquid obtained in Examples 1 to 5 to the refrigerator and drying it.
  • the surface in the refrigerator compartment becomes hydrophilic, so that dirt can be easily wiped off and charging can be prevented.
  • a photocatalyst layer can be formed on the inside, thereby reducing the concentration of volatile organic substances (for example, formaldehyde, acetaldehyde, acetone, toluene, etc.) and malodorous substances in the indoor space by light irradiation by indoor lighting, Pathogens such as Staphylococcus aureus and Escherichia coli can be killed, and allergens such as mite allergens and cedar pollen allergens can be rendered harmless. Further, the surface of the base material becomes hydrophilic, so that dirt can be easily wiped off, and charging can be prevented.
  • volatile organic substances for example, formaldehyde, acetaldehyde, acetone, toluene, etc.
  • Pathogens such as Staphylococcus aureus and Escherichia coli can be killed, and allergens such as mite allergens and cedar pollen allergens can be rendered harmless.
  • the surface of the base material becomes hydrophilic,

Abstract

Provided are: a photocatalyst coating liquid capable of obtaining a photocatalyst layer which has excellent adhesion to the substrate when forming the photocatalyst layer on a surface of a substrate, the photocatalyst layer exhibiting high photocatalytic activity through the irradiation of a practical light source such as fluorescent light; and a product having a photocatalytic function provided with a photocatalyst layer on the surface. The photocatalyst coating liquid comprises, in a predetermined ratio, (1) photocatalyst particles, (2) niobium oxide sol particles, (3) colloidal silica particles, (4) silicon alkoxides, and (5) a solvent, and the solid content obtained by volatilizing volatile components from the photocatalyst coating liquid is in a predetermined ratio relative to the photocatalyst coating liquid.

Description

光触媒体コーティング液、および光触媒機能製品Photocatalyst body coating liquid and photocatalyst functional product
 本発明は、光触媒体コーティング液、および光触媒機能製品に関する。 The present invention relates to a photocatalyst coating liquid and a photocatalytic functional product.
 半導体にバンドギャップ以上のエネルギーを持つ光を照射すると、価電子帯の電子が伝導帯に励起され、価電子帯に正孔が生成される。このようにして生成された正孔は強い酸化力を有し、励起された電子は強い還元力を有することから、半導体に接触した物質に酸化還元作用を及ぼす。この酸化還元作用によりOHラジカルをはじめとする活性酸素種が生成され、有機物等を分解することができる。このような作用を示し得る半導体は光触媒体と呼ばれており、光触媒体として酸化チタンや酸化タングステンが知られている。これらの中でも特に、酸化タングステンは蛍光灯の照明下で高い光触媒作用を示す光触媒体である。 When a semiconductor is irradiated with light having energy higher than the band gap, electrons in the valence band are excited to the conduction band and holes are generated in the valence band. The holes generated in this way have a strong oxidizing power, and the excited electrons have a strong reducing power, so that they exert a redox action on a substance in contact with the semiconductor. This redox action generates active oxygen species such as OH radicals, and can decompose organic substances and the like. A semiconductor capable of exhibiting such an action is called a photocatalyst, and titanium oxide and tungsten oxide are known as the photocatalyst. Among these, tungsten oxide is a photocatalyst that exhibits high photocatalytic action under illumination of a fluorescent lamp.
 特許文献1には、基材上に接着層を設け、光触媒体を含む光触媒体コーティング液に金属酸化物ゲルもしくは金属水酸化物ゲルからなるバインダー成分を混合して、光触媒体コーティング液を接着層上に塗布すると、光触媒体粒子が脱落し難い光触媒担持構造体が得られることが開示されている。 In Patent Document 1, an adhesive layer is provided on a substrate, a binder component made of a metal oxide gel or a metal hydroxide gel is mixed with a photocatalyst coating liquid containing a photocatalyst, and the photocatalyst coating liquid is applied to the adhesive layer. It is disclosed that a photocatalyst-supporting structure in which photocatalyst particles are less likely to fall off when applied on top is obtained.
国際公開第97/000134号International Publication No. 97/000134
 しかしながら、上記のような光触媒担持構造体では、接着層と基材との接着強度または光触媒体層と接着層との密着強度が必ずしも十分ではなく、基材から光触媒体が剥離しやすく、高い光触媒活性が発現しなかった。 However, in the photocatalyst carrying structure as described above, the adhesive strength between the adhesive layer and the base material or the adhesive strength between the photocatalyst body layer and the adhesive layer is not always sufficient, and the photocatalyst body is easily peeled off from the base material, and a high photocatalyst. No activity was expressed.
 そこで、本発明の課題は、基材の表面に光触媒体層を形成したときに、基材との密着性に優れる光触媒体層が得られ、しかも光触媒体層が蛍光灯などの実用光源の照射によって、高い光触媒活性を示す光触媒体コーティング液、および光触媒体層を表面に備える光触媒機能製品を提供することである。 Thus, the problem of the present invention is that when a photocatalyst layer is formed on the surface of the substrate, a photocatalyst layer having excellent adhesion to the substrate is obtained, and the photocatalyst layer is irradiated with a practical light source such as a fluorescent lamp. Thus, a photocatalyst coating liquid exhibiting high photocatalytic activity and a photocatalytic functional product having a photocatalyst layer on the surface are provided.
 本発明者らは、上記課題を解決すべく鋭意研究を重ねた結果、以下に示す本発明を完成するに至った。 As a result of intensive studies to solve the above problems, the present inventors have completed the present invention shown below.
 すなわち、本発明は、以下の構成からなる。
 (I)(1)光触媒体粒子、(2)酸化ニオブゾル粒子、(3)コロイダルシリカ粒子、(4)シリコンアルコキシド、及び(5)溶媒を含む光触媒体コーティング液であって、前記(2)の酸化物換算の含有量が前記(4)の酸化物換算の含有量100質量部に対して0~200質量部であり、前記(3)の酸化物換算の含有量が前記(4)の酸化物換算の含有量100質量部に対して0~280質量部であり、前記(2)と(3)の酸化物換算の含有量の合計が前記(4)の酸化物換算の含有量100質量部に対して0~480質量部であり、前記(2)、(3)および(4)の酸化物換算の含有量の合計が前記(1)100質量部に対して20~500質量部であり、前記光触媒体コーティング液から揮発成分を揮発させて得られる固形分の酸化物換算の含有量が前記光触媒体コーティング液100質量部に対して0.5質量部~30質量部である、ことを特徴とする光触媒活性を有する光触媒体層を形成するための光触媒体コーティング液を提供する。
 (II)前記光触媒体層が少なくとも可視光線の照射で光触媒活性を示す前記(I)に記載の光触媒体コーティング液。
 (III)前記光触媒体粒子が酸化タングステン粒子である前記(I)または(II)に記載の光触媒体コーティング液。
 (IV)前記光触媒体粒子が貴金属を担持している前記(I)~(III)のいずれかに記載の光触媒体コーティング液。
That is, this invention consists of the following structures.
(I) (1) photocatalyst particles, (2) niobium oxide sol particles, (3) colloidal silica particles, (4) silicon alkoxide, and (5) a photocatalyst coating liquid comprising (2) The oxide equivalent content is 0 to 200 parts by mass with respect to 100 parts by mass of the oxide equivalent of (4), and the oxide equivalent content of (3) is the oxidation of (4). 0 to 280 parts by mass with respect to 100 parts by mass in terms of product, and the total of oxides in terms of (2) and (3) is 100 parts by mass in terms of oxide in (4) 0 to 480 parts by mass with respect to parts, and the total of the oxide equivalents of (2), (3) and (4) is 20 to 500 parts by mass with respect to (1) 100 parts by mass. Yes, solid solution obtained by volatilizing volatile components from the photocatalyst coating liquid A photocatalyst for forming a photocatalyst layer having photocatalytic activity, characterized in that the content in terms of oxide is 0.5 to 30 parts by mass with respect to 100 parts by mass of the photocatalyst coating liquid Provide body coating fluid.
(II) The photocatalyst coating liquid according to (I), wherein the photocatalyst layer exhibits photocatalytic activity when irradiated with at least visible light.
(III) The photocatalyst coating liquid according to (I) or (II), wherein the photocatalyst particles are tungsten oxide particles.
(IV) The photocatalyst coating liquid according to any one of (I) to (III), wherein the photocatalyst particles carry a noble metal.
 また、本発明は、基材表面に光触媒体層を備える光触媒機能製品であって、前記光触媒体層が前記(I)~(IV)のいずれかに記載の光触媒体コーティング液を用いて形成されていることを特徴とする光触媒機能製品を提供する。 The present invention is also a photocatalytic functional product comprising a photocatalyst layer on a substrate surface, wherein the photocatalyst layer is formed using the photocatalyst coating liquid according to any one of (I) to (IV). Provided is a photocatalytic functional product.
 本発明の光触媒体コーティング液によれば、バインダーとして酸化ニオブ、コロイダルシリカ、及びシリコンアルコキシドを最適な組成で含むため、基材上に接着層を設けずに、直接基材に塗布しても密着力に優れ、十分な光触媒活性を示す光触媒体層を形成することができる。さらに、該光触媒体層は、優れた表面硬度と優れた親水性をも示し、本来の優れた光触媒作用を維持する光触媒機能製品を提供することができる。 According to the photocatalyst coating liquid of the present invention, since it contains niobium oxide, colloidal silica, and silicon alkoxide as binders in an optimum composition, it can be adhered even if directly applied to a substrate without providing an adhesive layer on the substrate. It is possible to form a photocatalyst layer that exhibits excellent strength and exhibits sufficient photocatalytic activity. Furthermore, the photocatalyst layer can also provide a photocatalytic functional product that exhibits excellent surface hardness and excellent hydrophilicity and maintains the original excellent photocatalytic action.
 本発明の光触媒体コーティング液は、光触媒体粒子、酸化ニオブゾル粒子、コロイダルシリカ粒子、シリコンアルコキシド及び溶媒を所定の割合で含有し、光触媒体コーティング液の固形分を所定の割合としたものである。 The photocatalyst coating liquid of the present invention contains photocatalyst particles, niobium oxide sol particles, colloidal silica particles, silicon alkoxide and a solvent in a predetermined ratio, and the solid content of the photocatalyst coating liquid is set to a predetermined ratio.
〔光触媒体粒子〕
 本発明における光触媒体粒子は、光触媒作用を有する酸化物であって、例えば、酸化チタン粒子や酸化タングステン粒子が挙げられ、特に酸化タングステン粒子では可視光線(波長約400nm~約800nm)を照射したとき、高い光触媒活性を示すことから、本発明に好適である。
[Photocatalyst particles]
The photocatalyst particles in the present invention are oxides having a photocatalytic action, and examples thereof include titanium oxide particles and tungsten oxide particles. In particular, tungsten oxide particles are irradiated with visible light (wavelength of about 400 nm to about 800 nm). Since it exhibits high photocatalytic activity, it is suitable for the present invention.
〔酸化チタン粒子〕
 酸化チタン粒子は、紫外光線を照射したときに、特に高い光触媒作用を示す粒子状の酸化チタンである。
 酸化チタン粒子としては、例えば、メタチタン酸粒子、結晶型がアナターゼ型、ブルッカイト型、ルチル型などである二酸化チタン〔TiO〕粒子などが挙げられる。
[Titanium oxide particles]
Titanium oxide particles are particulate titanium oxides that exhibit particularly high photocatalytic activity when irradiated with ultraviolet light.
Examples of the titanium oxide particles include metatitanic acid particles, titanium dioxide [TiO 2 ] particles whose crystal types are anatase type, brookite type, rutile type, and the like.
 メタチタン酸粒子は、例えば、下記方法(A)により得ることができる。
 方法(A):硫酸チタニルの水溶液を加熱することにより、加水分解する方法
Metatitanic acid particles can be obtained, for example, by the following method (A).
Method (A): Method of hydrolysis by heating an aqueous solution of titanyl sulfate
 二酸化チタン粒子は、例えば、下記方法(B-1)~方法(B-3)のいずれかの方法により得ることができる。
 方法(B-1):硫酸チタニルまたは塩化チタンの水溶液を加熱することなく、これに塩基を加えることにより沈殿物を得、得られた沈殿物を焼成する方法
 方法(B-2):チタンアルコキシドに水、酸の水溶液または塩基の水溶液を加えて沈殿物を得、得られた沈殿物を焼成する方法
 方法(B-3):メタチタン酸を焼成する方法
The titanium dioxide particles can be obtained, for example, by any one of the following methods (B-1) to (B-3).
Method (B-1): A method of obtaining a precipitate by adding a base to an aqueous solution of titanyl sulfate or titanium chloride without heating, and firing the obtained precipitate. Method (B-2): Titanium alkoxide Method of (B-3): Method of calcining metatitanic acid by adding water, aqueous solution of acid or base solution to obtain precipitate, and calcining the resulting precipitate
 前記方法(B-1)~方法(B-3)により得られる二酸化チタン粒子は、焼成する際の焼成温度、焼成時間により、アナターゼ型、ブルッカイト型またはルチル型の結晶型として得ることができる。 The titanium dioxide particles obtained by the above methods (B-1) to (B-3) can be obtained as anatase type, brookite type or rutile type crystal types depending on the baking temperature and baking time at the time of baking.
 また、酸化チタンを得るには、前記方法の他にも、例えば、「酸化チタン」(清野学著、技報堂出版)に記載されている硫酸法や塩素法、特開2001-72419号公報、特開2001-190953号公報、特開2001-316116号公報、特開2001-322816号公報、特開2002-29749号公報、特開2002-97019号公報、国際公開第01/10552号、特開2001-212457公報、特開2002-239395号公報、国際公開第03/080244号、国際公開第02/053501号、特開2007-69093号公報、Chemistry Letters, Vol.32, No.2, P.196-197(2003)、Chemistry Letters, Vol.32, No.4, P.364-365(2003)、Chemistry Letters, Vol.32, No.8, P.772-773(2003)、Chem. Mater., 17, P.1548-1552(2005)、特開2001-278625号公報、特開2001-278626号公報、特開2001-278627号公報、特開2001-302241号公報、特開2001-335321号公報、特開2001-354422号公報、特開2002-29750号公報、特開2002-47012号公報、特開2002-60221号公報、特開2002-193618号公報、特開2002-249319号公報などに記載の方法が挙げられる。 In addition to the above-described method, titanium oxide can be obtained by, for example, the sulfuric acid method and the chlorine method described in “Titanium oxide” (Gaku Kiyono, published by Gihodo Publishing), JP-A-2001-72419, No. 2001-190953, JP-A No. 2001-316116, JP-A No. 2001-322816, JP-A No. 2002-29749, JP-A No. 2002-97019, WO 01/10552, JP-A No. 2001. No. -21457, JP 2002-239395 A, WO 03/080244, WO 02/053501, JP 2007-69093 A, Chemistry Letters, Vol.32, No.2, P.196. -197 (2003), Chemistry Letters, Vol.32, No.4, P.364-365 (2003), Chemistry Letters, Vol.32, No.8, P.772-773 (2003), Chem. Mater. , 17, P.1548-1552 (2005), JP 2001 278625, JP-A-2001-278626, JP-A-2001-278627, JP-A-2001-30241, JP-A-2001-335321, JP-A-2001-354422, JP-A-2002-29750 Examples thereof include methods described in JP-A No. 2002-47012, JP-A No. 2002-60221, JP-A No. 2002-193618, JP-A No. 2002-249319, and the like.
 前記方法などで得られた酸化チタンは、それぞれ単独で用いても、2種以上組み合わせて用いてもよい。 The titanium oxide obtained by the above method may be used alone or in combination of two or more.
 酸化チタン粒子の粒子径として、平均分散粒子径が用いられるが、効果的に光触媒作用を発現させる観点から、上記平均分散粒子径は通常20nm~150nm、好ましくは40nm~100nmである。 The average dispersed particle size is used as the particle size of the titanium oxide particles. From the viewpoint of effectively exhibiting photocatalytic action, the average dispersed particle size is usually 20 nm to 150 nm, preferably 40 nm to 100 nm.
 酸化チタン粒子のBET比表面積は、効果的に光触媒作用を発現させる観点から、通常100m/g~500m/g、好ましくは300m/g~400m/gである。 The BET specific surface area of the titanium oxide particles is usually 100 m 2 / g to 500 m 2 / g, preferably 300 m 2 / g to 400 m 2 / g, from the viewpoint of effectively exhibiting photocatalytic action.
〔酸化タングステン粒子〕
 酸化タングステン粒子は、可視光線(波長約400nm~約800nm)を照射したときにでも高い光触媒作用を示す、粒子状の酸化タングステンである。
 酸化タングステン粒子としては、通常は三酸化タングステン〔WO〕粒子が挙げられる。
 三酸化タングステン粒子は、例えば、タングステン酸塩の水溶液に酸を加えることにより、沈殿物としてタングステン酸を得、得られたタングステン酸を焼成する方法により得ることができる。また、メタタングステン酸アンモニウム、パラタングステン酸アンモニウムを加熱することにより熱分解する方法により得ることもできる。
[Tungsten oxide particles]
The tungsten oxide particles are particulate tungsten oxides that exhibit high photocatalytic action even when irradiated with visible light (wavelength of about 400 nm to about 800 nm).
The tungsten oxide particles usually include tungsten trioxide [WO 3 ] particles.
The tungsten trioxide particles can be obtained, for example, by adding an acid to an aqueous solution of tungstate to obtain tungstic acid as a precipitate, and firing the obtained tungstic acid. Moreover, it can also obtain by the method of thermally decomposing by heating ammonium metatungstate and ammonium paratungstate.
 酸化タングステン粒子の粒子径としては、平均分散粒子径が用いられるが、効果的に光触媒作用を発現させる観点から、上記平均分散粒子径は通常50nm~200nm、好ましくは80nm~130nmである。 The average dispersed particle size is used as the particle size of the tungsten oxide particles. From the viewpoint of effectively exhibiting photocatalytic action, the average dispersed particle size is usually 50 nm to 200 nm, preferably 80 nm to 130 nm.
 酸化タングステン粒子のBET比表面積は、効果的に光触媒作用を発現させる観点から、通常5m/g~100m/g、好ましくは20m/g~50m/gである。 The BET specific surface area of the tungsten oxide particles is usually 5 m 2 / g to 100 m 2 / g, preferably 20 m 2 / g to 50 m 2 / g, from the viewpoint of effectively exhibiting photocatalytic action.
〔酸化ニオブゾル粒子〕
 本発明における酸化ニオブゾル粒子の平均粒子径は、通常50nm以下、好ましくは30nm以下であり、結晶質系のものでも非晶質系のものでもよい。
 また、酸化ニオブゾル粒子の分散安定性を向上させるために、適宜分散剤で酸化ニオブゾル粒子の表面が修飾されたものを用いてもよい。このような酸化ニオブゾル粒子としては、例えば、多木化学(株)製の酸化ニオブゾル「Nb―X―10」などが挙げられる。
[Niobium oxide sol particles]
The average particle diameter of the niobium oxide sol particles in the present invention is usually 50 nm or less, preferably 30 nm or less, and may be crystalline or amorphous.
Further, in order to improve the dispersion stability of the niobium oxide sol particles, a material in which the surface of the niobium oxide sol particles is appropriately modified with a dispersant may be used. Examples of such niobium oxide sol particles include niobium oxide sol “Nb-X-10” manufactured by Taki Chemical Co., Ltd.
 酸化ニオブゾル粒子の酸化物換算の含有量は、シリコンアルコキシドの酸化物換算の含有量100質量部に対して、0~200質量部、好ましくは20~140質量部、より好ましくは30~80質量部である。酸化ニオブゾル粒子の酸化物換算の含有量が200質量部を超えると、得られる光触媒体層と基材との密着性が低下すると共に、光触媒体層が軟らかくなり過ぎて不具合が生じるおそれがある。また、酸化ニオブゾル粒子の酸化物換算の含有量が140質量部を超えると、光触媒体層が傷つき易くなり、また、酸化ニオブゾル粒子の酸化物換算の含有量が20質量部未満であると、光触媒体層の親水性が著しく低下する。また、酸化ニオブゾル粒子の酸化物換算の含有量が80質量部を超えると、光触媒体層の硬さに見合う親水性が得られず、また、酸化ニオブゾル粒子の酸化物換算の含有量が30質量部未満であれば、光触媒体層の親水性が低下する。なお、酸化ニオブゾル粒子の酸化物換算の含有量とは、酸化ニオブゾル中のニオブ成分を全てNbに変換した場合のNbの含有量を、シリコンアルコキシドの酸化物換算とは、シリコンアルコキシド中の珪素成分を全てSiOに変換した場合のSiOの含有量を意味し、以下同様である。 The oxide equivalent content of the niobium oxide sol particles is 0 to 200 parts by mass, preferably 20 to 140 parts by mass, and more preferably 30 to 80 parts by mass with respect to 100 parts by mass of the oxide equivalent of the silicon alkoxide. It is. When the content of the niobium oxide sol particles in terms of oxide exceeds 200 parts by mass, the adhesion between the resulting photocatalyst layer and the substrate is lowered, and the photocatalyst layer is too soft and may cause a problem. Further, when the oxide equivalent content of the niobium oxide sol particles exceeds 140 parts by mass, the photocatalyst layer is easily damaged, and when the oxide equivalent content of the niobium oxide sol particles is less than 20 parts by mass, the photocatalyst is obtained. The hydrophilicity of the body layer is significantly reduced. Further, when the oxide equivalent content of the niobium oxide sol particles exceeds 80 parts by mass, the hydrophilicity corresponding to the hardness of the photocatalyst layer cannot be obtained, and the oxide equivalent content of the niobium oxide sol particles is 30 masses. If it is less than the part, the hydrophilicity of the photocatalyst layer is lowered. The oxide equivalent content of niobium oxide sol particles means the content of Nb 2 O 5 when all the niobium components in the niobium oxide sol are converted to Nb 2 O 5 , and the oxide equivalent of silicon alkoxide, all the silicon component in the silicon alkoxide means the content of SiO 2 in the case of conversion into SiO 2, and so on.
〔コロイダルシリカ粒子〕
 本発明におけるコロイダルシリカ粒子の平均粒子径は、通常50nm以下、好ましくは30nm以下であり、例えば、日産化学工業(株)製のコロイダルシリカ、「ST-OXS」、「ST-OS」、「ST-O」などを用いることができる。
[Colloidal silica particles]
The average particle size of the colloidal silica particles in the present invention is usually 50 nm or less, preferably 30 nm or less. For example, colloidal silica manufactured by Nissan Chemical Industries, Ltd., “ST-OXS”, “ST-OS”, “ST -O "can be used.
 コロイダルシリカ粒子の酸化物換算の含有量は、シリコンアルコキシドの酸化物換算の含有量100質量部に対して、0~280質量部、好ましくは160~260質量部、より好ましくは170~230質量部である。コロイダルシリカ粒子の酸化物換算の含有量が280質量部を超えると、得られる光触媒体層と基材との密着性が低下すると共に、光触媒体層が軟らかくなり過ぎて不具合が生じるおそれがある。また、コロイダルシリカ粒子の酸化物換算の含有量が260質量部を超えると光触媒体層の密着性が低下し、また、コロイダルシリカ粒子の酸化物換算の含有量が160質量部未満であると、光触媒体層の親水性が著しく低下する。また、コロイダルシリカ粒子の酸化物換算の含有量が230質量部を超えると、光触媒体層が傷つき易くなり、また、コロイダルシリカ粒子の酸化物換算の含有量が170質量部未満であると、光触媒体層の親水性が低下する。
 なお、コロイダルシリカ粒子の酸化物換算とは、コロイダルシリカ中の珪素成分を全てSiOに変換した場合のSiOの含有量を意味し、以下同様である。
The oxide equivalent content of the colloidal silica particles is 0 to 280 parts by mass, preferably 160 to 260 parts by mass, more preferably 170 to 230 parts by mass with respect to 100 parts by mass of the oxide equivalent of the silicon alkoxide. It is. When the content of the colloidal silica particles in terms of oxide exceeds 280 parts by mass, the adhesion between the resulting photocatalyst layer and the substrate is lowered, and the photocatalyst layer is too soft and may cause problems. Further, when the oxide equivalent content of the colloidal silica particles exceeds 260 parts by mass, the adhesion of the photocatalyst layer is lowered, and when the oxide equivalent content of the colloidal silica particles is less than 160 parts by mass, The hydrophilicity of the photocatalyst layer is significantly reduced. Further, when the oxide equivalent content of the colloidal silica particles exceeds 230 parts by mass, the photocatalyst layer tends to be damaged, and when the oxide equivalent content of the colloidal silica particles is less than 170 parts by mass, The hydrophilicity of the body layer is reduced.
Note that the oxide equivalent of the colloidal silica particles, all silicon component in the colloidal silica means a content of SiO 2 in the case of conversion into SiO 2, and so on.
 さらに、本発明の光触媒体コーティング液における酸化ニオブゾル粒子およびコロイダルシリカ粒子の酸化物換算の含有量の合計は、シリコンアルコキシドの酸化物換算の含有量100質量部に対して、0~480質量部、好ましくは200~330質量部、より好ましくは210~310質量部である。酸化ニオブゾル粒子およびコロイダルシリカ粒子の酸化物換算の含有量の合計が480質量部を超えると、得られる光触媒体層と基材との密着性が低下すると共に、光触媒体層が軟らかくなり過ぎて不具合が生じるおそれがある。また、酸化ニオブゾル粒子およびコロイダルシリカ粒子の酸化物換算の含有量の合計が330質量部を超えると、光触媒体層の親水性が著しく低下し、また、酸化ニオブゾル粒子およびコロイダルシリカ粒子の酸化物換算の含有量の合計が200質量部未満であれば、光触媒体層の密着性が低下して、さらに光触媒体層は傷つき易くなる。また、酸化ニオブゾル粒子およびコロイダルシリカ粒子の酸化物換算の含有量の合計が310質量部を超えると、光触媒体層の親水性が低下し、また、酸化ニオブゾル粒子およびコロイダルシリカ粒子の酸化物換算の含有量の合計が210質量部未満であると、光触媒体層は傷つき易くなる。 Further, the total oxide content of the niobium oxide sol particles and colloidal silica particles in the photocatalyst coating liquid of the present invention is 0 to 480 parts by mass with respect to 100 parts by mass of the oxide equivalent of silicon alkoxide, The amount is preferably 200 to 330 parts by mass, more preferably 210 to 310 parts by mass. If the total oxide content of the niobium oxide sol particles and colloidal silica particles exceeds 480 parts by mass, the adhesion between the resulting photocatalyst layer and the substrate will be lowered, and the photocatalyst layer will be too soft. May occur. In addition, when the total oxide content of niobium oxide sol particles and colloidal silica particles exceeds 330 parts by mass, the hydrophilicity of the photocatalyst layer is remarkably reduced, and the oxide conversion of niobium oxide sol particles and colloidal silica particles is also reduced. If the sum total of content is less than 200 mass parts, the adhesiveness of a photocatalyst body layer will fall, and also a photocatalyst body layer will become easy to be damaged. Further, when the total oxide content of niobium oxide sol particles and colloidal silica particles exceeds 310 parts by mass, the hydrophilicity of the photocatalyst layer is lowered, and the oxide conversion of niobium oxide sol particles and colloidal silica particles is reduced. When the total content is less than 210 parts by mass, the photocatalyst layer is easily damaged.
 さらに、本発明の光触媒体コーティング液における酸化ニオブゾル粒子、コロイダルシリカ粒子、およびシリコンアルコキシドの酸化物換算の含有量の合計は、本発明の光触媒体コーティング液における光触媒体粒子の含有量100質量部に対して通常20~500質量部であるが、光触媒体コーティング液から得られる光触媒体層が、基材との良好な密着性を得る目的で、100~450質量部であってもよい。酸化ニオブゾル粒子、コロイダルシリカ粒子、およびシリコンアルコキシドの酸化物換算の含有量の合計が、20質量部未満であると、光触媒体層と基材との密着性が低下し、一方、500質量部を超えると、光触媒体粒子が酸化ニオブゾル粒子などのバインダー成分中に埋没してしまい、十分な光触媒活性の光触媒体層が得られにくくなる。 Furthermore, the total of the oxide equivalent content of niobium oxide sol particles, colloidal silica particles, and silicon alkoxide in the photocatalyst coating liquid of the present invention is 100 parts by mass of the photocatalyst particle content in the photocatalyst coating liquid of the present invention. On the other hand, it is usually 20 to 500 parts by mass, but the photocatalyst layer obtained from the photocatalyst coating liquid may be 100 to 450 parts by mass for the purpose of obtaining good adhesion to the substrate. When the total content of niobium oxide sol particles, colloidal silica particles, and silicon alkoxide in terms of oxides is less than 20 parts by mass, the adhesion between the photocatalyst layer and the substrate decreases, while 500 parts by mass is reduced. If it exceeds, the photocatalyst particles are buried in a binder component such as niobium oxide sol particles, making it difficult to obtain a photocatalyst layer having sufficient photocatalytic activity.
〔シリコンアルコキシド〕
 シリコンアルコキシドとしては、例えば、テトラエトキシシラン(ケイ酸エチル)、テトラメトキシシラン(ケイ酸メチル)、メチルトリエトキシシラン、メチルトリエトキシシランや、シリコンアルコキシドなどの加水分解物や重合物等が挙げられる。
[Silicon alkoxide]
Examples of the silicon alkoxide include tetraethoxysilane (ethyl silicate), tetramethoxysilane (methyl silicate), methyltriethoxysilane, methyltriethoxysilane, and hydrolyzates and polymers such as silicon alkoxide. .
〔溶媒〕
 溶媒としては通常、水を主成分とする水性媒体、具体的には水を50質量%以上含むものが用いられ、水を単独で用いてもよいし、水と水溶性有機溶媒との混合溶媒を用いてもよい。
 水溶性有機溶媒としては、例えば、メタノール、エタノール、プロパノール、ブタノールなどの水溶性アルコール溶媒、アセトン、メチルエチルケトン、メチルセルソルブ、およびエチルセルソルブなどが挙げられる。
〔solvent〕
As the solvent, an aqueous medium containing water as a main component, specifically, a solvent containing 50% by mass or more of water is used, water may be used alone, or a mixed solvent of water and a water-soluble organic solvent. May be used.
Examples of the water-soluble organic solvent include water-soluble alcohol solvents such as methanol, ethanol, propanol, and butanol, acetone, methyl ethyl ketone, methyl cellosolve, and ethyl cellosolve.
 本発明の光触媒体コーティング液は、光触媒体コーティング液から溶媒などの揮発成分を揮発させて得られる固形分の酸化物換算の含有量が、光触媒体コーティング液100質量部に対して、通常0.5質量部~30質量部(すなわち、光触媒体コーティング液総量に対して0.5質量%~30質量%)、好ましくは1質量部~20質量部(1質量%~20質量%)、より好ましくは2質量部~10質量部(2質量%~10質量%)程度となるように水やその他の溶媒で希釈されて用いられる。固形分含有量が0.5質量部未満では、十分な厚さの光触媒体層を形成しにくくなり、また固形分含有量が30質量部を超えると、得られる光触媒体層の透明性が損なわれ易くなる。また、固形分含有量が20質量部を超えると、光触媒体層の層厚が厚くなり過ぎ、光触媒体層がひび割れする不具合が生じることがある。また、固形分含有量が1質量部未満であると、必要な厚さの光触媒体層を得るのに重ね塗り等をする必要がある為、コストが高くなる。また、固形分含有量が10質量部を超えると、透明な基材に塗布した場合、基材の透明性を損なうことがある。また、固形分含有量が2質量部未満であると、塗布後の乾燥工程等に時間がかかり、コストに見合う性能が得られない。 In the photocatalyst coating liquid of the present invention, the content in terms of solid oxide obtained by volatilizing a volatile component such as a solvent from the photocatalyst coating liquid is usually 0. 5 to 30 parts by weight (that is, 0.5 to 30% by weight with respect to the total amount of the photocatalyst coating liquid), preferably 1 to 20 parts by weight (1 to 20% by weight), more preferably Is used by diluting with water or other solvent so as to be about 2 to 10 parts by mass (2 to 10% by mass). When the solid content is less than 0.5 parts by mass, it becomes difficult to form a photocatalyst layer having a sufficient thickness, and when the solid content exceeds 30 parts by mass, the transparency of the resulting photocatalyst layer is impaired. It will be easier. Moreover, when solid content exceeds 20 mass parts, the layer thickness of a photocatalyst body layer will become thick too much, and the malfunction that a photocatalyst body layer cracks may arise. On the other hand, when the solid content is less than 1 part by mass, it is necessary to perform overcoating or the like to obtain a photocatalyst layer having a required thickness, which increases the cost. Moreover, when solid content exceeds 10 mass parts, when apply | coating to a transparent base material, the transparency of a base material may be impaired. Moreover, when solid content is less than 2 mass parts, the drying process after application | coating takes time and the performance corresponding to cost cannot be obtained.
(光触媒体コーティング液の調整)
 本発明の光触媒体コーティング液を調整する際の、光触媒体粒子、酸化ニオブゾル粒子、コロイダルシリカ粒子、シリコンアルコキシド及び溶媒の混合順序や混合方法は、特に制限されないが、例えば、(a)コロイダルシリカ粒子、シリコンアルコキシド、および溶媒を混合したバインダー液に酸化ニオブゾル粒子を混合し、さらに光触媒体粒子を単独で溶媒に分散させた光触媒体分散液を混合する方法、(b)光触媒体粒子を単独で溶媒に分散させた光触媒体分散液に酸化ニオブゾル粒子、コロイダルシリカ粒子、およびシリコンアルコキシドを順次添加して混合する方法などが挙げられ、必要に応じて撹拌しながら行ってもよいし、加熱しながら行ってもよい。さらに光触媒体分散液を調製する際に、酸化ニオブゾル粒子、コロイダルシリカ粒子、シリコンアルコキシドの他にバインダーを構成する成分を添加することも可能である。
(Adjustment of photocatalyst coating liquid)
The mixing order and mixing method of the photocatalyst particles, niobium oxide sol particles, colloidal silica particles, silicon alkoxide and solvent when preparing the photocatalyst coating liquid of the present invention are not particularly limited. For example, (a) colloidal silica particles , A method of mixing niobium oxide sol particles with a binder liquid in which silicon alkoxide and a solvent are mixed, and further mixing a photocatalyst dispersion liquid in which the photocatalyst particles are dispersed in a solvent alone, (b) the photocatalyst particles are a solvent alone Examples include a method in which niobium oxide sol particles, colloidal silica particles, and silicon alkoxide are sequentially added to the photocatalyst dispersion dispersed in and mixed, and may be performed with stirring or heating as necessary. May be. Furthermore, when preparing the photocatalyst dispersion liquid, it is possible to add a component constituting the binder in addition to the niobium oxide sol particles, colloidal silica particles, and silicon alkoxide.
〔光触媒体分散液〕
 光触媒体粒子を単独で溶媒に分散させた光触媒体分散液の水素イオン濃度は、通常pH2.0~pH7.0、好ましくはpH3.0~pH6.0である。水素イオン濃度がpH2.0未満では酸性が強すぎて取扱いが面倒であり、pH7.0を越えると、光触媒体粒子が酸化タングステン粒子の場合、酸化タングステン粒子が溶解するおそれがある。光触媒体分散液の水素イオン濃度は通常、酸を加えることにより調整できる。酸としては、例えば硝酸、塩酸、硫酸、リン酸、ギ酸、酢酸、蓚酸などが使用できる。
[Photocatalyst dispersion]
The hydrogen ion concentration of the photocatalyst dispersion in which the photocatalyst particles are dispersed alone in a solvent is usually pH 2.0 to pH 7.0, preferably pH 3.0 to pH 6.0. When the hydrogen ion concentration is less than pH 2.0, the acidity is too strong and the handling is troublesome. When the pH exceeds 7.0, when the photocatalyst particles are tungsten oxide particles, the tungsten oxide particles may be dissolved. The hydrogen ion concentration of the photocatalyst dispersion liquid can be usually adjusted by adding an acid. Examples of the acid that can be used include nitric acid, hydrochloric acid, sulfuric acid, phosphoric acid, formic acid, acetic acid, and succinic acid.
〔光触媒体分散液の製造〕
 光触媒体分散液は、必要に応じて適当な分散剤存在下で光触媒体粒子を溶媒に添加し、分散処理を施して得ることができる。分散処理は、例えば、媒体撹拌式分散機を用いる通常の方法により行うことができる。
 光触媒体粒子の溶媒への添加は、例えば、光触媒体粒子をそのまま溶媒へ添加し混合する方法で行なってもよいが、通常は、あらかじめ光触媒体粒子を分散媒中に分散させた状態で溶媒に混合する方法で行なわれ、好ましくはあらかじめ光触媒体粒子を分散媒中に分散させた状態でさらに分散処理を施してから、溶媒に混合する方法で行なわれる。
 分散媒としては、例えば、前述した溶媒などが挙げられる。
[Production of photocatalyst dispersion]
The photocatalyst dispersion liquid can be obtained by adding a photocatalyst particle to a solvent in the presence of a suitable dispersant as necessary and subjecting it to a dispersion treatment. The dispersion treatment can be performed, for example, by an ordinary method using a medium stirring type disperser.
The addition of the photocatalyst particles to the solvent may be performed, for example, by adding the photocatalyst particles directly to the solvent and mixing them. Usually, however, the photocatalyst particles are dispersed in the dispersion medium in advance in the solvent. It is carried out by a method of mixing, and is preferably carried out by a method of further dispersing the photocatalyst particles previously dispersed in a dispersion medium and then mixing them with a solvent.
Examples of the dispersion medium include the solvents described above.
〔貴金属担持光触媒体分散液の製造〕
 本発明における光触媒体粒子は、光触媒活性を向上させるために表面に貴金属が担持されているものが好ましい。
 光触媒体粒子の表面に貴金属を担持させる方法としては、例えば、前述した光触媒体分散液に犠牲剤を溶解させ、これに光照射を行う方法、または光触媒体粒子を貴金属の前駆体と犠牲剤とが溶解した水溶液中に分散させ、これに光照射を行う方法などがあげられる。
[Production of precious metal-supported photocatalyst dispersion]
The photocatalyst particles in the present invention preferably have a noble metal supported on the surface in order to improve the photocatalytic activity.
As a method for supporting the noble metal on the surface of the photocatalyst particles, for example, a method in which a sacrificial agent is dissolved in the above-described photocatalyst dispersion liquid and light irradiation is performed on the photocatalyst particle dispersion, or And a method of irradiating with light in an aqueous solution in which is dissolved.
〔貴金属の前駆体〕
 貴金属の前駆体としては、溶媒中に溶解し得るものが使用される。かかる前駆体が溶解すると、これを構成する貴金属元素は通常、プラスの電荷を帯びた貴金属イオンとなって、溶媒中に存在する。そして、この貴金属イオンが、光の照射による光触媒体粒子の光触媒作用で0価の貴金属に還元されて、光触媒体粒子の表面に担持される。
 貴金属としては、例えば、Cu、Pt、Au、Pd、Ag、Ru、Ir、Rhなどが挙げられる。その前駆体としては、これら貴金属の水酸化物、硝酸塩、硫酸塩、ハロゲン化物、有機酸塩、炭酸塩、リン酸塩などが挙げられる。これらの中でも高い光触媒活性を得る目的で、貴金属は、Cu、Pt、Au、Pdが好ましい。
[Precursor of precious metal]
As the noble metal precursor, one that can be dissolved in a solvent is used. When such a precursor is dissolved, the noble metal element constituting the precursor usually becomes a noble metal ion having a positive charge and exists in the solvent. The noble metal ions are reduced to zero-valent noble metal by the photocatalytic action of the photocatalyst particles by light irradiation, and are supported on the surfaces of the photocatalyst particles.
Examples of the noble metal include Cu, Pt, Au, Pd, Ag, Ru, Ir, and Rh. Examples of the precursor include hydroxides, nitrates, sulfates, halides, organic acid salts, carbonates, and phosphates of these noble metals. Among these, for the purpose of obtaining high photocatalytic activity, the noble metal is preferably Cu, Pt, Au, or Pd.
 Cuの前駆体としては、例えば、硝酸銅(Cu(NO))、硫酸銅(CuSO)、塩化銅(CuCl、CuCl)、臭化銅(CuBr,CuBr)、沃化銅(CuI)、沃素酸銅(CuI)、塩化アンモニウム銅(Cu(NH)Cl)、オキシ塩化銅(CuCl(OH))、酢酸銅(CHCOOCu、(CHCOO)Cu)、蟻酸銅((HCOO)Cu)、炭酸銅(CuCO)、蓚酸銅(CuC)、クエン酸銅(Cu)、リン酸銅(CuPO)などが挙げられる。 Examples of the Cu precursor include copper nitrate (Cu (NO 3 ) 2 ), copper sulfate (CuSO 4 ), copper chloride (CuCl 2 , CuCl), copper bromide (CuBr 2 , CuBr), copper iodide ( CuI), copper iodate (CuI 2 O 6 ), ammonium copper chloride (Cu (NH 4 ) 2 Cl 4 ), copper oxychloride (Cu 2 Cl (OH) 3 ), copper acetate (CH 3 COOCu, (CH 3 COO) 2 Cu), copper formate ((HCOO) 2 Cu), copper carbonate (CuCO 3 ), copper oxalate (CuC 2 O 4 ), copper citrate (Cu 2 C 6 H 4 O 7 ), copper phosphate ( CuPO 4 ) and the like.
 Ptの前駆体としては、例えば、塩化白金(PtCl、PtCl)、臭化白金(PtBr、PtBr)、沃化白金(PtI、PtI)、塩化白金カリウム(K(PtCl))、ヘキサクロロ白金酸(HPtCl)、亜硫酸白金(HPt(SO)OH)、塩化テトラアンミン白金(Pt(NH)Cl)、炭酸水素テトラアンミン白金(C14Pt)、テトラアンミン白金リン酸水素(Pt(NH)HPO)、水酸化テトラアンミン白金(Pt(NH)(OH))、硝酸テトラアンミン白金(Pt(NO)(NH))、テトラアンミン白金テトラクロロ白金((Pt(NH))(PtCl))、ジニトロジアミン白金(Pt(NO)(NH)などが挙げられる。 Examples of the precursor of Pt include platinum chloride (PtCl 2 , PtCl 4 ), platinum bromide (PtBr 2 , PtBr 4 ), platinum iodide (PtI 2 , PtI 4 ), and platinum potassium chloride (K 2 (PtCl 4). )), Hexachloroplatinic acid (H 2 PtCl 6 ), platinum sulfite (H 3 Pt (SO 3 ) 2 OH), tetraammineplatinum chloride (Pt (NH 3 ) 4 Cl 2 ), tetraammineplatinum hydrogen carbonate (C 2 H 14) N 4 O 6 Pt), tetraammine platinum hydrogen phosphate (Pt (NH 3 ) 4 HPO 4 ), tetraammine platinum hydroxide (Pt (NH 3 ) 4 (OH) 2 ), tetraammine platinum nitrate (Pt (NO 3 ) 2 (NH 3 ) 4 ), tetraammineplatinum tetrachloroplatinum ((Pt (NH 3 ) 4 ) (PtCl 4 )), dinitrodiamine platinum (Pt (NO 2 ) 2 (NH 3 ) 2 ) And the like.
 Auの前駆体としては、例えば、塩化金(AuCl)、臭化金(AuBr)、沃化金(AuI)、水酸化金(Au(OH))、テトラクロロ金酸(HAuCl)、テトラクロロ金酸カリウム(KAuCl)、テトラブロモ金酸カリウム(KAuBr)などが挙げられる。 Examples of the Au precursor include gold chloride (AuCl), gold bromide (AuBr), gold iodide (AuI), gold hydroxide (Au (OH) 2 ), tetrachloroauric acid (HAuCl 4 ), tetra Examples thereof include potassium chloroaurate (KAuCl 4 ) and potassium tetrabromoaurate (KAuBr 4 ).
 Pdの前駆体としては、例えば、酢酸パラジウム((CHCOO)Pd)、塩化パラジウム(PdCl)、臭化パラジウム(PdBr)、沃化パラジウム(PdI)、水酸化パラジウム(Pd(OH))、硝酸パラジウム(Pd(NO))、硫酸パラジウム(PdSO)、テトラクロロパラジウム酸カリウム(K(PdCl))、テトラブロモパラジウム酸カリウム(K(PdBr))、テトラアンミンパラジウム塩化物(Pd(NHCl)、テトラアンミンパラジウム臭化物(Pd(NHBr)、テトラアンミンパラジウム硝酸塩(Pd(NH(NO)、テトラアンミンパラジウムテトラクロロパラジウム酸((Pd(NH)(PdCl))、テトラクロロパラジウム酸アンモニウム((NHPdCl)等が挙げられる。 Examples of the precursor of Pd include palladium acetate ((CH 3 COO) 2 Pd), palladium chloride (PdCl 2 ), palladium bromide (PdBr 2 ), palladium iodide (PdI 2 ), palladium hydroxide (Pd ( OH) 2 ), palladium nitrate (Pd (NO 3 ) 2 ), palladium sulfate (PdSO 4 ), potassium tetrachloropalladate (K 2 (PdCl 4 )), potassium tetrabromopalladate (K 2 (PdBr 4 )) , Tetraammine palladium chloride (Pd (NH 3 ) 4 Cl 2 ), tetraammine palladium bromide (Pd (NH 3 ) 4 Br 2 ), tetraammine palladium nitrate (Pd (NH 3 ) 4 (NO 3 ) 2 ), tetraammine palladium tetra chloropalladate acid ((Pd (NH 3) 4 ) (PdCl 4)), Te Etc. La chloro palladium ammonium ((NH 4) 2 PdCl 4 ) and the like.
 貴金属の前駆体は、それぞれ単独で、または2種類以上を組み合わせて使用される。その使用量は、貴金属原子に換算して、光触媒体粒子の使用量100質量部に対して、光触媒作用の向上効果が十分に得られる点で通常0.01質量部以上、コストに見合った効果が得られる点で通常1質量部以下であり、好ましくは0.05質量部~0.6質量部である。 Precious metal precursors may be used alone or in combination of two or more. The amount used is usually 0.01 parts by mass or more, in terms of cost, in terms of sufficiently improving the photocatalytic action with respect to 100 parts by mass of the photocatalyst particles in terms of precious metal atoms. Is usually 1 part by mass or less, preferably 0.05 to 0.6 parts by mass.
〔犠牲剤〕
 光触媒体粒子の表面に貴金属を担持させる場合には、犠牲剤を用い、例えば、光触媒体分散液に添加する。
 犠牲剤としては、例えば、エタノール、メタノール、プロパノール等のアルコール、アセトン等のケトン、蓚酸等のカルボン酸などが用いられる。
 犠牲剤は、光触媒体分散液に一定時間光照射を行った後に添加し、さらに光照射を行う。犠牲剤の量は光触媒体分散液における溶媒に対して、通常0.001質量倍~0.3質量倍、好ましくは0.005質量倍~0.1質量倍である。犠牲剤の使用量が0.001質量倍未満では光触媒体粒子への貴金属の担持が不十分となり、0.3質量倍を超えると犠牲剤の量が過剰量となりコストに見合う効果が得られない。
[Sacrificial agent]
When a noble metal is supported on the surface of the photocatalyst particles, a sacrificial agent is used, for example, added to the photocatalyst dispersion.
Examples of the sacrificial agent include alcohols such as ethanol, methanol, and propanol, ketones such as acetone, and carboxylic acids such as oxalic acid.
The sacrificial agent is added after the photocatalyst dispersion liquid is irradiated with light for a certain period of time, and further irradiated with light. The amount of the sacrificial agent is usually 0.001 to 0.3 times by mass, preferably 0.005 to 0.1 times by mass, with respect to the solvent in the photocatalyst dispersion. If the amount of the sacrificial agent used is less than 0.001 times by mass, the noble metal is insufficiently supported on the photocatalyst particles, and if it exceeds 0.3 times by mass, the amount of sacrificial agent is excessive and an effect commensurate with the cost cannot be obtained. .
〔光の照射〕
 光触媒体分散液への光の照射は、光触媒体分散液を撹拌しながら行ってもよい。透明なガラスやプラスチック製の管内を通過させながら管の内外から照射してもよく、これを繰り返してもよい。
 光源は、光触媒体粒子のバンドギャップ以上のエネルギーを有する光を照射できるものであれば特に制限はなく、具体例としては、殺菌灯、水銀灯、発光ダイオード、蛍光灯、ハロゲンランプ、キセノンランプ、太陽光などを用いることができる。
 照射する光の波長は通常、180nm~500nmである。
 光照射を行う時間は、十分な量の貴金属を光触媒体粒子に担持できることから、犠牲剤の添加前後において、通常20分以上、好ましくは1時間以上、通常24時間以下、好ましくは6時間以下である。24時間を越える場合、それまでに貴金属の前駆体の殆どは貴金属となって光触媒体粒子に担持されてしまい、光照射にかかるコストに見合う効果が得られない。また、犠牲剤の添加前に光照射を行わない場合、光触媒体粒子への貴金属の担持が不均一となり、高い光触媒活性が得られない。
[Light irradiation]
The photocatalyst dispersion liquid may be irradiated with light while stirring the photocatalyst dispersion liquid. Irradiation may be performed from inside or outside the tube while passing through a transparent glass or plastic tube, or this may be repeated.
The light source is not particularly limited as long as it can irradiate light having energy higher than the band gap of the photocatalyst particles. Specific examples include a germicidal lamp, a mercury lamp, a light emitting diode, a fluorescent lamp, a halogen lamp, a xenon lamp, and a solar light. Light or the like can be used.
The wavelength of the irradiated light is usually 180 nm to 500 nm.
The time for performing the light irradiation is such that a sufficient amount of noble metal can be supported on the photocatalyst particles, so that it is usually 20 minutes or longer, preferably 1 hour or longer, usually 24 hours or shorter, preferably 6 hours or shorter before and after the addition of the sacrificial agent. is there. When the time exceeds 24 hours, most of the precursors of the noble metal have become noble metals and are supported on the photocatalyst particles, and an effect commensurate with the cost of light irradiation cannot be obtained. Moreover, when light irradiation is not performed before the addition of the sacrificial agent, noble metal is not uniformly supported on the photocatalyst particles, and high photocatalytic activity cannot be obtained.
〔pH調整〕
 光触媒体分散液のpHを2.5~5.5、好ましくは3.0~5.0に維持しながら光照射を行う。通常、光照射により貴金属が光触媒体粒子の表面に担持される際には光触媒体分散液のpHが酸性に除々に変化するので、pHを上記範囲内に維持するため、通常塩基を添加すればよい。これにより貴金属が光触媒体粒子の表面に担持された、分散性に優れる貴金属担持光触媒体分散液が得られる。
 塩基としては、例えば、アンモニア、水酸化ナトリウム、水酸化カリウム、水酸化マグネシウム、水酸化カルシウム、水酸化ストロンチウム、水酸化バリウム、水酸化ランタン等の水溶液が挙げられるが、これらの中でもアンモニア水および水酸化ナトリウムを用いるのが好ましい。
[PH adjustment]
Light irradiation is performed while maintaining the pH of the photocatalyst dispersion liquid at 2.5 to 5.5, preferably 3.0 to 5.0. Usually, when noble metal is supported on the surface of the photocatalyst particles by light irradiation, the pH of the photocatalyst dispersion liquid gradually changes to acidic. Therefore, in order to maintain the pH within the above range, a base is usually added. Good. As a result, a noble metal-supported photocatalyst dispersion having excellent dispersibility, in which the noble metal is supported on the surface of the photocatalyst particles, is obtained.
Examples of the base include aqueous solutions of ammonia, sodium hydroxide, potassium hydroxide, magnesium hydroxide, calcium hydroxide, strontium hydroxide, barium hydroxide, lanthanum hydroxide, etc. Among them, ammonia water and water Sodium oxide is preferably used.
〔貴金属担持光触媒体粒子〕
 pHを調整しながら光照射を行い、犠牲剤添加後、さらに光を照射することにより、貴金属前駆体が貴金属となって光触媒体粒子の表面に担持されて、目的の貴金属担持光触媒体粒子を得る。この貴金属担持光触媒体粒子は、用いた溶媒中に、沈降することなく分散されている。
[Noble metal-supported photocatalyst particles]
Irradiate light while adjusting the pH, and after adding the sacrificial agent, further irradiate light, whereby the noble metal precursor becomes a noble metal and is supported on the surface of the photocatalyst particle to obtain the desired noble metal-supported photocatalyst particle. . The noble metal-supported photocatalyst particles are dispersed in the solvent used without settling.
〔添加剤〕
 上記のようにして調整された光触媒体コーティング液は、光触媒体粒子および/または貴金属担持光触媒体粒子の分散性を損なわない範囲で、添加剤を含んでいてもよい。
〔Additive〕
The photocatalyst coating liquid prepared as described above may contain an additive as long as the dispersibility of the photocatalyst particles and / or noble metal-supported photocatalyst particles is not impaired.
 添加剤としては、例えば、光触媒作用を向上させる目的で添加されるものが挙げられ、具体的には、水ガラスなどの珪素化合物、非晶質アルミナ、アルミナゾル、水酸化アルミニウムなどのアルミニウム化合物、ゼオライト、カオリナイトなどのアルミノ珪酸塩、酸化マグネシウム、酸化カルシウム、酸化ストロンチウム、酸化バリウム、水酸化マグネシウム、水酸化カルシウム、水酸化ストロンチウム、水酸化バリウムなどのアルカリ土類金属酸化物またはアルカリ土類金属水酸化物、リン酸カルシウム、モレキュラーシーブ、活性炭、有機ポリシロキサン化合物の重縮合物、リン酸塩、フッ素系ポリマー、シリコン系ポリマー、アクリル樹脂、ポリエステル樹脂、メラミン樹脂、ウレタン樹脂、アルキド樹脂などが挙げられる。これらの添加剤はそれぞれ単独で、または2種以上を組合せて用いられる。 Examples of the additive include those added for the purpose of improving the photocatalytic action, specifically, silicon compounds such as water glass, aluminum compounds such as amorphous alumina, alumina sol, and aluminum hydroxide, zeolites Alkaline earth metal oxides such as kaolinite, magnesium oxide, calcium oxide, strontium oxide, barium oxide, magnesium hydroxide, calcium hydroxide, strontium hydroxide, barium hydroxide, etc. or alkaline earth metal water Examples thereof include oxides, calcium phosphates, molecular sieves, activated carbon, polycondensates of organic polysiloxane compounds, phosphates, fluorine-based polymers, silicon-based polymers, acrylic resins, polyester resins, melamine resins, urethane resins, and alkyd resins. These additives are used alone or in combination of two or more.
〔光触媒機能製品〕
 本発明の光触媒機能製品は、上記のようにして得られた光触媒体コーティング液を用いて形成された光触媒体層を表面に備える。
 光触媒体層は、例えば、光触媒体コーティング液を、スピンコート、ディップコート、ドクターブレード、スプレーまたはハケ塗りなどにより基材(製品)の表面に塗布した後に、室温~150℃、好ましくは室温~90℃の温度範囲で溶媒を乾燥蒸発させ、揮発成分を揮発させるなど、従来公知の成膜方法によって形成することができる。
 光触媒体層の膜厚は、特に制限されるものではなく、通常、その用途等に応じて、数百nm~数mmまで適宜設定すればよい。光触媒体層は、基材(製品)の内表面または外表面であれば、どの部分に形成されていてもよいが、例えば、光(可視光線)が照射される面であって、かつ悪臭物質が発生する箇所や、病原菌が存在する箇所と連続または断続して空間的につながる面に形成されていることが好ましい。
 なお、基材(製品)の材質は、形成される光触媒体層を実用に耐えうる強度で保持できる限り、特に制限されるものではなく、例えば、プラスチック、金属、セラミックス、木材、コンクリート、紙などのあらゆる材料からなる製品を対象にすることができる。尚、光触媒作用による光触媒体層と基材との密着性の劣化を抑制するために、光触媒体層と基材の間に、例えばシリカ成分等からなる公知のバリア層を形成することができる。
[Photocatalytic functional products]
The photocatalyst functional product of the present invention has a photocatalyst layer formed on the surface using the photocatalyst coating liquid obtained as described above.
The photocatalyst layer is formed, for example, by applying a photocatalyst coating liquid onto the surface of a substrate (product) by spin coating, dip coating, doctor blade, spraying or brushing, and then room temperature to 150 ° C., preferably room temperature to 90 ° It can be formed by a conventionally known film forming method such as drying and evaporating the solvent in the temperature range of ° C. and volatilizing the volatile component.
The film thickness of the photocatalyst body layer is not particularly limited, and it is usually set appropriately from several hundred nm to several mm according to its use. The photocatalyst layer may be formed on any part as long as it is an inner surface or an outer surface of the base material (product). For example, the photocatalyst layer is a surface irradiated with light (visible light), and a malodorous substance. It is preferably formed on a surface that is continuously or intermittently connected to a place where the occurrence of a pathogen or a pathogen is present.
The material of the base material (product) is not particularly limited as long as the formed photocatalyst layer can be held at a strength that can be practically used. For example, plastic, metal, ceramics, wood, concrete, paper, etc. Products made of any material can be targeted. In addition, in order to suppress the deterioration of the adhesion between the photocatalyst layer and the substrate due to the photocatalytic action, a known barrier layer made of, for example, a silica component can be formed between the photocatalyst layer and the substrate.
 プラスチックとしては、熱硬化性樹脂の場合には、例えば、アラミド樹脂、ポリイミド樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、フェノール樹脂、ユリア樹脂、ポリウレタン樹脂、メラミン樹脂、ベンゾグアナミン樹脂、シリコーン樹脂、メラミンユリア樹脂などがあげられ、熱可塑性樹脂の場合には、例えば、縮重合系樹脂やビニルモノマーを重合して得られる樹脂などがあげられる。 As the plastic, in the case of a thermosetting resin, for example, aramid resin, polyimide resin, epoxy resin, unsaturated polyester resin, phenol resin, urea resin, polyurethane resin, melamine resin, benzoguanamine resin, silicone resin, melamine urea resin In the case of a thermoplastic resin, examples thereof include a condensation polymerization resin and a resin obtained by polymerizing a vinyl monomer.
 縮重合系樹脂としては、例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリ乳酸、生分解性ポリエステル、ポリエステル系液晶ポリマーなどのポリエステル系樹脂;エチレンジアミン-アジピン酸重縮合体(ナイロン-66)、ナイロン-6、ナイロン-12、ポリアミド系液晶ポリマーなどのポリアミド樹脂;ポリカーボネート樹脂、ポリフェニレンオキシド、ポリメチレンオキシド、アセタール樹脂などのポリエーテル系樹脂;セルロースおよびその誘導体などの多糖類系樹脂;などがあげられる。 Examples of the condensation polymerization resin include polyester resins such as polyethylene terephthalate, polyethylene naphthalate, polylactic acid, biodegradable polyester, and polyester liquid crystal polymer; ethylenediamine-adipic acid polycondensate (nylon-66), nylon-6 And polyamide resins such as nylon-12 and polyamide liquid crystal polymers; polyether resins such as polycarbonate resins, polyphenylene oxide, polymethylene oxide, and acetal resins; polysaccharide resins such as cellulose and derivatives thereof;
 ビニルモノマーを重合して得られる樹脂としては、例えば、ポリオレフィン系樹脂;ポリスチレン、ポリ-α-メチルスチレン、スチレン-エチレン-プロピレン共重合体(ポリスチレン-ポリ(エチレン/プロピレン)ブロック共重合体)、スチレン-エチレン-ブテン共重合体(ポリスチレン-ポリ(エチレン/ブテン)ブロック共重合体)、スチレン-エチレン-プロピレン-スチレン共重合体(ポリスチレン-ポリ(エチレン/プロピレン)-ポリスチレンブロック共重合体)、エチレン-スチレン共重合体などの不飽和芳香族含有樹脂;ポリビニルアルコール、ポリビニルブチラールなどのポリビニルアルコール系樹脂;ポリメチルメタクリレート、モノマーとしてメタクリル酸エステル、アクリル酸エステル、メタクリル酸アミド、アクリル酸アミドを含むアクリル系樹脂;ポリ塩化ビニル、ポリ塩化ビニリデンなどの塩素系樹脂;ポリテトラフルオロエチレン、エチレン-テトラフルオロエチレン共重合体、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体、エチレン-テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体、ポリフッ化ビニリデンなどのフッ素系樹脂;などがあげられる。 Examples of resins obtained by polymerizing vinyl monomers include polyolefin resins; polystyrene, poly-α-methylstyrene, styrene-ethylene-propylene copolymers (polystyrene-poly (ethylene / propylene) block copolymers), Styrene-ethylene-butene copolymer (polystyrene-poly (ethylene / butene) block copolymer), styrene-ethylene-propylene-styrene copolymer (polystyrene-poly (ethylene / propylene) -polystyrene block copolymer), Unsaturated aromatic-containing resins such as ethylene-styrene copolymers; polyvinyl alcohol resins such as polyvinyl alcohol and polyvinyl butyral; polymethyl methacrylate, methacrylic acid ester, acrylic acid ester, methacrylic acid amide as monomers Acrylic resins containing acrylic amides; Chlorine resins such as polyvinyl chloride and polyvinylidene chloride; polytetrafluoroethylene, ethylene-tetrafluoroethylene copolymer, tetrafluoroethylene-hexafluoropropylene copolymer, ethylene-tetra And fluororesin such as fluoroethylene-hexafluoropropylene copolymer and polyvinylidene fluoride.
 本発明の光触媒機能製品は、屋外においては勿論のこと、蛍光灯、白熱球、発光ダイオード、およびナトリウムランプのような可視光源からの光しか受けない屋内環境においても、光照射によって高い光触媒作用を示す。したがって、本発明の光触媒体コーティング液を、例えば、天井材、タイル、ガラス、壁紙、壁材、床等の建築資材、自動車内装材(自動車インストルメントパネル、自動車用シート、自動車用天井材)、冷蔵庫やエアコン等の家電製品、衣類やカーテン等の繊維製品、電車のつり革、エレベーターのボタン等、不特定多数の人が接触する基材表面などに塗布して乾燥させると、屋内照明による光照射によって、ホルムアルデヒドやアセトアルデヒドなどの揮発性有機物、アルデヒド類、メルカプタン類、アンモニアなどの悪臭物質、窒素酸化物の濃度を低減させ、黄色ブドウ球菌、大腸菌、炭疽菌、結核菌、コレラ菌、ジフテリア菌、破傷風菌、ペスト菌、赤痢菌、ボツリヌス菌、およびレジオネラ菌等の病原菌等を死滅、分解、除去することができ、さらに、ダニアレルゲンやスギ花粉アレルゲン等のアレルゲンを無害化することができる。
また、本発明の光触媒機能製品は、可視光線を照射すれば、充分な親水性を発揮し、防曇性を発現するだけでなく、汚れに水をかけるだけで容易に拭き取ることができるようになり、さらに帯電をも防止できる。
The photocatalytic functional product of the present invention has a high photocatalytic effect by light irradiation not only outdoors but also in an indoor environment that receives only light from a visible light source such as a fluorescent lamp, an incandescent bulb, a light emitting diode, and a sodium lamp. Show. Therefore, the photocatalyst coating liquid of the present invention is, for example, a building material such as a ceiling material, tile, glass, wallpaper, wall material, floor, automobile interior material (automobile instrument panel, automobile seat, automobile ceiling material), Light applied by indoor lighting when applied to the surface of base materials that are in contact with an unspecified number of people, such as household appliances such as refrigerators and air conditioners, textile products such as clothes and curtains, train straps, elevator buttons, etc. Irradiation reduces the concentration of volatile organic substances such as formaldehyde and acetaldehyde, aldehydes, mercaptans, ammonia and other malodorous substances, nitrogen oxides, and Staphylococcus aureus, Escherichia coli, anthrax, tuberculosis, cholera, diphtheria , Kill, decompose, and remove pathogens such as tetanus, plague, shigella, botulinum, and legionella Bets can be can be further harmless allergens such as mite allergen and cedar pollen allergen.
In addition, the photocatalytic functional product of the present invention is not only capable of exhibiting sufficient hydrophilicity and exhibiting antifogging properties when irradiated with visible light, but also can be easily wiped off by simply applying water to the dirt. In addition, charging can be prevented.
 以下、実施例を挙げて本発明をより詳細に説明するが、本発明はこれらの実施例によって限定されるものではない。
 各実施例における測定法を、以下に示す。
EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated in detail, this invention is not limited by these Examples.
The measurement method in each example is shown below.
1.BET比表面積
 白金担持酸化タングステン粒子のBET比表面積は、比表面積測定装置〔湯浅アイオニクス社製の「モノソーブ」〕を用いて窒素吸着法により測定した。
1. BET Specific Surface Area The BET specific surface area of the platinum-supported tungsten oxide particles was measured by a nitrogen adsorption method using a specific surface area measuring device [“Monosorb” manufactured by Yuasa Ionics Co., Ltd.].
2.平均分散粒子径(nm)
 サブミクロン粒度分布測定装置〔コールター社製「N4Plus」〕を用いて試料の粒度分布を測定し、この装置に付属のソフトで、自動的に単分散モード解析して得られた結果を平均分散粒子径とした。
2. Average dispersed particle size (nm)
Measure the particle size distribution of the sample using a sub-micron particle size distribution analyzer (“N4Plus” manufactured by Coulter, Inc.), and automatically disperse the result of monodisperse mode analysis using the software provided with this device. The diameter.
3.硬度試験
 光触媒体層の硬度は、鉛筆硬度試験法(JIS5600-5-4)により測定した。
3. Hardness test The hardness of the photocatalyst layer was measured by a pencil hardness test method (JIS 5600-5-4).
4.密着性
 基材に対する光触媒体層の密着性は、粘着セロファンテープ(ニチバン(株)製の「CT405AP-24」)を光触媒体層の表面に貼着した後、素早く剥したときに、光触媒体層が同時に剥れるか否かにより評価した。
4). Adhesiveness Adhesiveness of the photocatalyst layer to the base material is determined when the adhesive cellophane tape ("CT405AP-24" manufactured by Nichiban Co., Ltd.) is applied to the surface of the photocatalyst layer and then quickly peeled off. It evaluated by whether it peeled simultaneously.
5.限界接触角測定
〔試験片の作製(光触媒体層形成)〕
 得られた光触媒体コーティング液を、縦50mm、横50mm、厚さ2mmのガラス板上にスピンコーター(商品名「1H-D7」、ミカサ(株)製)を用いて、回転数1000rpmで塗布し、室温で乾燥させた後、この硝子板を70℃で60分乾燥させて、硝子板の片面全体に光触媒体層を形成して試験片を作製した。
5. Limit contact angle measurement [test specimen preparation (photocatalyst layer formation)]
The obtained photocatalyst coating liquid was applied on a glass plate having a length of 50 mm, a width of 50 mm, and a thickness of 2 mm using a spin coater (trade name “1H-D7”, manufactured by Mikasa Co., Ltd.) at a rotation speed of 1000 rpm. After drying at room temperature, this glass plate was dried at 70 ° C. for 60 minutes to form a photocatalyst layer on one side of the glass plate to prepare a test piece.
〔疎水性有機物付着時の親水性評価試験条件〕
 試験片の光触媒体層の上から、市販のブラックライトを光源として、室温、大気中で、2日間紫外線を照射した。このとき、光触媒体層近傍での紫外線強度が約2mW/cm(トプコン社製の紫外線強度計「UVR-2」に、同社製受光部「UD-36」を取り付けて測定)となるようにした。
 次いで、オレイン酸の濃度が0.5容量%のn-ヘプタンを、試験片にディップコーター(SDI社製の「DT-0303-S1」)で塗布した後、70℃で15分乾燥させた。
 ディップコーターの引き上げ速度は10mm/秒で、浸漬時間は10秒であった。その後、このオレイン酸を塗布した試験片に、市販の白色蛍光灯を光源とし、アクリル樹脂板(日東樹脂工業(株)製の「N169」)を通して、光触媒体層の上から、蛍光灯に含まれる可視光が照射されるようにして測定を行い、所定時間経過後の水滴の接触角θを接触角計(協和界面科学(株)製の「CA-A型」)を用いて測定した。水滴の接触角θの測定は、いずれの場合も、水滴(約0.4μL)を試験片の光触媒体層上に設置してから5秒後に行なった。なお、可視光の照射は、このとき、光触媒体層近傍での照度が6000ルクス(ミノルタ社製の照度計「T-10」で測定)となるようにした。蛍光灯照射後、光触媒体層の光触媒作用でオレイン酸が分解され、水滴の接触角が低下するが、この接触角の低下が飽和に達した角度を限界接触角とした。限界接触角が小さいほど、光触媒体層の光触媒活性、すなわち光誘起親水性と有機物分解性能が高いといえる。
[Hydrophilicity evaluation test conditions for hydrophobic organic substances]
From the top of the photocatalyst layer of the test piece, ultraviolet rays were irradiated for 2 days at room temperature in the atmosphere using a commercially available black light as a light source. At this time, the UV intensity in the vicinity of the photocatalyst layer is about 2 mW / cm 2 (measured by attaching the UV receiver “UD-36” to Topcon UV intensity meter “UVR-2”). did.
Next, n-heptane having an oleic acid concentration of 0.5% by volume was applied to the test piece with a dip coater (“DT-0303-S1” manufactured by SDI), and then dried at 70 ° C. for 15 minutes.
The lifting speed of the dip coater was 10 mm / second, and the immersion time was 10 seconds. Thereafter, the test piece coated with oleic acid was included in the fluorescent lamp from the top of the photocatalyst layer through an acrylic resin plate (“N169” manufactured by Nitto Resin Co., Ltd.) using a commercially available white fluorescent lamp as a light source. The measurement was performed so that the visible light was irradiated, and the contact angle θ of the water droplet after a predetermined time elapsed was measured using a contact angle meter (“CA-A type” manufactured by Kyowa Interface Science Co., Ltd.). The measurement of the contact angle θ of the water droplet was performed 5 seconds after the water droplet (about 0.4 μL) was placed on the photocatalyst layer of the test piece in each case. In this case, the irradiation with visible light was such that the illuminance in the vicinity of the photocatalyst layer was 6000 lux (measured with an illuminometer “T-10” manufactured by Minolta). After irradiation with a fluorescent lamp, oleic acid is decomposed by the photocatalytic action of the photocatalyst body layer, and the contact angle of the water droplet decreases. The angle at which the decrease in the contact angle reaches saturation is defined as the critical contact angle. It can be said that the smaller the limit contact angle, the higher the photocatalytic activity of the photocatalyst layer, that is, the photoinduced hydrophilicity and the organic substance decomposing performance.
6.揮発性有機物分解活性
〔アセトアルデヒド分解能の測定〕
 光触媒活性は、蛍光灯の光の照射下でのアセトアルデヒドの分解反応における一次反応速度定数を測定することにより評価した。すなわち、ガラス製シャーレ(外径70mm、内径66mm、高さ14mm、容量約48mL)に、得られた光触媒体コーティング液を底面の単位面積あたりの固形分換算の滴下量が1g/mとなるように滴下し、シャーレの底面全体に均一に形成した。次いで、このシャーレを110℃の乾燥機内で大気中で1時間保持することにより乾燥させて、ガラス製シャーレの底面に光触媒体層を形成した。この光触媒体層に紫外線強度が2mW/cm(トプコン社製の紫外線強度計「UVR-2」に同社製受光部「UD-36」を取り付けて測定)となるようにブラックライトからの紫外線を16時間照射して、これを光触媒活性測定用試料とした。
6). Volatile organic matter decomposition activity (measurement of acetaldehyde resolution)
The photocatalytic activity was evaluated by measuring a first-order reaction rate constant in the decomposition reaction of acetaldehyde under irradiation of light from a fluorescent lamp. That is, in a glass petri dish (outer diameter 70 mm, inner diameter 66 mm, height 14 mm, capacity about 48 mL), the obtained photocatalyst coating liquid has a dripping amount in terms of solid content per unit area of the bottom surface of 1 g / m 2. It was dripped so that it was uniformly formed on the entire bottom of the petri dish. Next, the petri dish was dried by holding it in the air at 110 ° C. for 1 hour in the air to form a photocatalyst layer on the bottom of the glass petri dish. The photocatalyst layer is irradiated with UV light from a black light so that the UV intensity is 2 mW / cm 2 (measured by attaching a UV receiver “UD-36” to Topcon's UV intensity meter “UVR-2”). This was irradiated for 16 hours and used as a photocatalytic activity measurement sample.
 次に、この光触媒活性測定用試料をシャーレごとガスバッグ(内容積1L)の中に入れて密閉し、次いで、このガスバッグ内を真空にした後、酸素と窒素との体積比が1:4である混合ガス0.6Lを封入し、さらにその中に1%アセトアルデヒドを含む窒素ガス3mLを封入して、暗所で室温下1時間保持した。その後、市販の白色蛍光灯を光源とし、アクリル樹脂板(日東樹脂工業(株)製の「N169」)を通して、測定用試料近傍での照度が1000ルクス(ミノルタ社製の照度計「T-10」で測定)となるようにガスバッグの外から可視光を照射し、アセトアルデヒドの分解反応を行った。蛍光灯の光照射を開始してから1.5時間毎にガスバッグ内のガスをサンプリングし、アセトアルデヒドの濃度をガスクロマトグラフ((株)島津製作所製の「GC-14A」)にて測定した。そして照射時間に対するアセトアルデヒドの濃度から一次反応速度定数を算出し、これをアセトアルデヒド分解能として評価した。この一次反応速度定数が大きいほど、アセトアルデヒドの分解能、すなわち光触媒活性が高いと言える。 Next, the sample for photocatalytic activity measurement is placed in a gas bag (internal volume 1 L) together with the petri dish, and then the inside of the gas bag is evacuated, and then the volume ratio of oxygen to nitrogen is 1: 4. Was mixed with 0.6 L of a mixed gas, and 3 mL of nitrogen gas containing 1% acetaldehyde was sealed therein, and the mixture was kept in the dark at room temperature for 1 hour. Thereafter, using a commercially available white fluorescent lamp as a light source, the illuminance in the vicinity of the measurement sample is 1000 lux through the acrylic resin plate (“N169” manufactured by Nitto Resin Co., Ltd.) (illuminance meter “T-10 manufactured by Minolta Co., Ltd.). ) Was irradiated with visible light from the outside of the gas bag to cause acetaldehyde decomposition reaction. The gas in the gas bag was sampled every 1.5 hours after the light irradiation of the fluorescent lamp was started, and the concentration of acetaldehyde was measured with a gas chromatograph (“GC-14A” manufactured by Shimadzu Corporation). Then, a first-order rate constant was calculated from the concentration of acetaldehyde with respect to the irradiation time, and this was evaluated as acetaldehyde resolution. It can be said that the higher the first-order rate constant, the higher the resolution of acetaldehyde, that is, the photocatalytic activity.
(実施例1)
〔貴金属担持光触媒体分散液の調製〕
 溶媒としてイオン交換水4kgに、酸化タングステン粒子(日本無機化学工業(株)製)1kgを加えて混合して混合物を得た。この混合物を湿式媒体撹拌ミルを用いて分散処理して酸化タングステン粒子分散液を得た。
Example 1
[Preparation of precious metal-supported photocatalyst dispersion]
As a solvent, 1 kg of tungsten oxide particles (manufactured by Nippon Inorganic Chemical Industry Co., Ltd.) was added to 4 kg of ion-exchanged water and mixed to obtain a mixture. This mixture was dispersed using a wet medium stirring mill to obtain a tungsten oxide particle dispersion.
 この酸化タングステン粒子分散液にヘキサクロロ白金酸(HPtCl)の水溶液をヘキサクロロ白金酸が白金原子換算で酸化タングステン粒子の使用量100質量部に対して0.12質量部になるように加え、原料分散液としてヘキサクロロ白金酸含有酸化タングステン粒子分散液を得た。この分散液100質量部中に含まれる固形分(酸化タングステン粒子の量)は、17.6質量部(固形分濃度17.6質量%)であった。その後、この分散液のpHは2.0であった。 To this tungsten oxide particle dispersion, an aqueous solution of hexachloroplatinic acid (H 2 PtCl 6 ) is added so that hexachloroplatinic acid is 0.12 parts by mass with respect to 100 parts by mass of tungsten oxide particles in terms of platinum atoms, A hexachloroplatinic acid-containing tungsten oxide particle dispersion was obtained as a raw material dispersion. The solid content (amount of tungsten oxide particles) contained in 100 parts by mass of this dispersion was 17.6 parts by mass (solid content concentration 17.6% by mass). Thereafter, the pH of this dispersion was 2.0.
 次いで、pH電極と、このpH電極に接続され、0.1質量%のアンモニア水を供給してpHを一定に調節する制御機構を有するpHコントローラ(pH=3.5に設定)と、窒素吹込み菅を備え、水中殺菌灯(三共電気(株)製の「GLD15MQ」)を設置したガラス管(内径37mm,高さ360mm)からなる光照射装置と、により、濃度を水で12質量部(固形分濃度12.0質量%)に調整した原料分散液1200gを、毎分1Lの速度で流通させながら、この分散液のpHを3.5にした。原料分散液を流通させながら光照射(紫外線照射)を2時間行い、更にメタノールをその濃度が全溶媒の1質量%となるように加えて、原料分散液を流通させながら光照射を3時間行って粗粒を含む白金担持酸化タングステン粒子分散液を得た。光照射中、pHは3.5で一定であった。その後遠心分離機にて粗粒を分離し、更に透析処理により白金担持酸化タングステン粒子分散液中に含まれる陽イオンと陰イオンの除去を行ったところ、pHが3.8で平均分散粒子径が101nmの白金担持酸化タングステン粒子分散液を得た。 Next, a pH electrode, a pH controller (set to pH = 3.5) connected to the pH electrode and having a control mechanism for adjusting the pH to a constant level by supplying 0.1 mass% ammonia water, A light irradiation device comprising a glass tube (inner diameter: 37 mm, height: 360 mm) equipped with a pot and equipped with an underwater sterilization lamp (“GLD15MQ” manufactured by Sankyo Electric Co., Ltd.) While dispersing 1200 g of the raw material dispersion adjusted to a solid content concentration of 12.0% by mass at a rate of 1 L / min, the pH of the dispersion was adjusted to 3.5. Light irradiation (ultraviolet irradiation) is performed for 2 hours while circulating the raw material dispersion, and methanol is further added so that the concentration thereof is 1% by mass of the total solvent, and light irradiation is performed for 3 hours while circulating the raw material dispersion. Thus, a platinum-supported tungsten oxide particle dispersion containing coarse particles was obtained. During light irradiation, the pH was constant at 3.5. Thereafter, coarse particles were separated by a centrifugal separator, and further, cation and anion contained in the platinum-supported tungsten oxide particle dispersion were removed by dialysis, and the pH was 3.8 and the average dispersed particle size was A 101 nm platinum-supported tungsten oxide particle dispersion was obtained.
 得られた白金担持酸化タングステン粒子分散液にエタノール水溶液を加えて白金担持光触媒体分散液を得た。白金担持光触媒体分散液100質量部に対する白金担持酸化タングステン粒子の含有量は5質量部で、エタノールの含有量は30質量部であった。 An aqueous ethanol solution was added to the obtained platinum-supported tungsten oxide particle dispersion to obtain a platinum-supported photocatalyst dispersion. The content of the platinum-supported tungsten oxide particles with respect to 100 parts by mass of the platinum-supported photocatalyst dispersion liquid was 5 parts by mass, and the content of ethanol was 30 parts by mass.
 この白金担持光触媒体分散液を20℃で24時間保管したところ、保管後に固液分離は見られなかった。また、白金担持酸化タングステン粒子分散液の一部を真空乾燥させて固形分を得たところ、得られた固形分のBET比表面積は45m/gであった。 When this platinum-supported photocatalyst dispersion was stored at 20 ° C. for 24 hours, no solid-liquid separation was observed after storage. Moreover, when a part of platinum carrying | support tungsten oxide particle dispersion was vacuum-dried and solid content was obtained, the BET specific surface area of the obtained solid content was 45 m < 2 > / g.
〔光触媒体コーティング液の調製〕
 高純度正ケイ酸エチル(多摩化学工業(株)製)40gにエタノール210gと水335gを添加した。その後コロイダルシリカ粒子(日産化学工業(株)製の「ST―OS」,酸化物換算での固形分濃度20質量%)を117.5g添加してバインダーを得た。
[Preparation of photocatalyst coating liquid]
210 g of ethanol and 335 g of water were added to 40 g of high purity ethyl silicate (manufactured by Tama Chemical Co., Ltd.). Thereafter, 117.5 g of colloidal silica particles (“ST-OS” manufactured by Nissan Chemical Industries, Ltd., solid content concentration of 20% by mass in terms of oxide) was added to obtain a binder.
 酸化ニオブゾル粒子(多木化学工業(株)製の「Nb―X―10」,酸化物換算での固形分濃度10質量%)をエタノール水溶液で希釈し、エタノール含有酸化ニオブゾルを得た。エタノール含有酸化ニオブゾル100質量部に対するエタノールおよび酸化物換算での酸化ニオブゾル粒子の含有量は、それぞれ30質量部および5質量部であった。 Niobium oxide sol particles ("Nb-X-10" manufactured by Taki Chemical Industry Co., Ltd., solid content concentration of 10% by mass in terms of oxide) were diluted with an aqueous ethanol solution to obtain an ethanol-containing niobium oxide sol. The contents of ethanol and niobium oxide sol particles in terms of oxide with respect to 100 parts by mass of the ethanol-containing niobium oxide sol were 30 parts by mass and 5 parts by mass, respectively.
 次に、バインダー700gにエタノール含有酸化ニオブゾル100gを添加し、さらに白金担持光触媒体分散液(固形分濃度5質量%)を200g加えて光触媒体コーティング液を得た。尚、これらは全て室温、大気下で行い、各成分の添加は攪拌しながら行った。 Next, 100 g of ethanol-containing niobium oxide sol was added to 700 g of binder, and 200 g of a platinum-supported photocatalyst dispersion (solid content concentration 5 mass%) was further added to obtain a photocatalyst coating liquid. All of these were performed at room temperature and in the atmosphere, and each component was added with stirring.
 得られた光触媒体コーティング液中の酸化物換算での全固形分濃度は、光触媒体コーティング液100質量部に対し、5質量部(5質量%)であった。また、全固形分100質量部には、白金担持酸化タングステン粒子、酸化ニオブゾル粒子、コロイダルシリカ粒子、およびケイ酸エチルの酸化物換算が、それぞれ20質量部、10質量部、47質量部、および23質量部含まれていた。 The total solid content concentration in terms of oxide in the obtained photocatalyst coating liquid was 5 parts by mass (5% by mass) with respect to 100 parts by mass of the photocatalyst coating liquid. Further, the total solid content of 100 parts by mass includes platinum-supported tungsten oxide particles, niobium oxide sol particles, colloidal silica particles, and ethyl silicate oxide conversions of 20 parts by mass, 10 parts by mass, 47 parts by mass, and 23, respectively. Part by mass was included.
 酸化ニオブゾル粒子、コロイダルシリカ粒子、およびこれらの合計の含有量は、酸化物換算のケイ酸エチル100質量部に対し、酸化物換算でそれぞれ、43質量部、204質量部、および248質量部であった。また、酸化ニオブゾル粒子、コロイダルシリカ粒子、およびケイ酸エチルの酸化物換算の合計の含有量は、白金担持酸化タングステン粒子100質量部に対し、酸化物換算で400質量部であった。 The niobium oxide sol particles, colloidal silica particles, and the total content thereof were 43 parts by mass, 204 parts by mass, and 248 parts by mass, respectively, in terms of oxide with respect to 100 parts by mass of oxide silicate in ethyl silicate. It was. The total content of niobium oxide sol particles, colloidal silica particles, and ethyl silicate in terms of oxide was 400 parts by mass in terms of oxide with respect to 100 parts by mass of platinum-supported tungsten oxide particles.
〔光触媒体層の形成〕
 上記で得られた光触媒体コーティング液を、縦50mm、横50mm、厚さ2mmの十分に脱脂した硝子板に塗布した後、スピンコーター(商品名「1H-D7」、ミカサ(株)製)を用いて、回転数1000rpmで塗布し、室温で乾燥させた後、この硝子板を70℃で60分乾燥させて、硝子板の片面全体に光触媒体層を形成した。光触媒体層の鉛筆硬度を調べたところ、5-6Hであった。また、光触媒体層の密着性を、粘着セロファンテープを用いて調べたところ、光触媒体層の剥離は見られず密着性は良好であった。
[Formation of photocatalyst layer]
After applying the photocatalyst coating liquid obtained above to a fully degreased glass plate having a length of 50 mm, a width of 50 mm, and a thickness of 2 mm, a spin coater (trade name “1H-D7”, manufactured by Mikasa Co., Ltd.) is used. The glass plate was applied at a rotation speed of 1000 rpm and dried at room temperature, and then the glass plate was dried at 70 ° C. for 60 minutes to form a photocatalyst layer on one side of the glass plate. When the pencil hardness of the photocatalyst layer was examined, it was 5-6H. Further, when the adhesion of the photocatalyst layer was examined using an adhesive cellophane tape, no peeling of the photocatalyst layer was observed, and the adhesion was good.
 上記と同様にして光触媒体層を得て、この光触媒体層を用いて疎水性有機物付着時の親水性評価試験を行うと、限界接触角は5度であった。 When a photocatalyst layer was obtained in the same manner as described above and a hydrophilicity evaluation test was performed using this photocatalyst layer when a hydrophobic organic substance was adhered, the limit contact angle was 5 degrees.
(実施例2)
 光触媒体コーティング液中の酸化物換算での全固形分100質量部における、白金担持酸化タングステン粒子、酸化ニオブゾル粒子、コロイダルシリカ粒子、およびケイ酸エチルの含有量を、それぞれ20質量部、10質量部、45質量部、および25質量部としたこと以外は実施例1と同様の方法で光触媒体コーティング液を調製した。また、得られた光触媒体コーティング液中の酸化物換算での全固形分濃度は、光触媒体コーティング液100質量部に対し、5質量部であった。
(Example 2)
The content of platinum-supported tungsten oxide particles, niobium oxide sol particles, colloidal silica particles, and ethyl silicate in 100 parts by mass of the total solid content in terms of oxide in the photocatalyst coating liquid is 20 parts by mass and 10 parts by mass, respectively. A photocatalyst coating liquid was prepared in the same manner as in Example 1 except that the content was 45 parts by mass and 25 parts by mass. Moreover, the total solid content concentration in terms of oxide in the obtained photocatalyst coating liquid was 5 parts by mass with respect to 100 parts by mass of the photocatalyst coating liquid.
 酸化ニオブゾル粒子、コロイダルシリカ粒子、およびこれらの合計の含有量は、酸化物換算のケイ酸エチル100質量部に対し、酸化物換算でそれぞれ、40質量部、180質量部、および220質量部であった。また、酸化ニオブゾル粒子、コロイダルシリカ粒子、およびケイ酸エチルの酸化物換算の合計の含有量は、白金担持酸化タングステン粒子100質量部に対し、酸化物換算で400質量部であった。 Niobium oxide sol particles, colloidal silica particles, and the total content thereof were 40 parts by mass, 180 parts by mass, and 220 parts by mass, respectively, in terms of oxides with respect to 100 parts by mass of ethyl silicate in terms of oxides. It was. The total content of niobium oxide sol particles, colloidal silica particles, and ethyl silicate in terms of oxide was 400 parts by mass in terms of oxide with respect to 100 parts by mass of platinum-supported tungsten oxide particles.
 上記で得られた光触媒体コーティング液を用いて実施例1と同様にして光触媒体層を作成し、鉛筆硬度を測定すると5-6Hであった。また、光触媒体層の密着性を、粘着セロファンテープを用いて調べたところ、光触媒体層の剥離は見られず密着性は良好であった。さらに、実施例1と同様にして限界接触角を測定すると、4度であった。 Using the photocatalyst coating liquid obtained above, a photocatalyst layer was prepared in the same manner as in Example 1, and the pencil hardness was measured to be 5-6H. Further, when the adhesion of the photocatalyst layer was examined using an adhesive cellophane tape, no peeling of the photocatalyst layer was observed, and the adhesion was good. Further, when the limit contact angle was measured in the same manner as in Example 1, it was 4 degrees.
(実施例3)
 光触媒体コーティング液中の酸化物換算での全固形分100質量部における、白金担持酸化タングステン粒子、酸化ニオブゾル粒子、コロイダルシリカ粒子、およびケイ酸エチルの含有量を、それぞれ20質量部、10質量部、50質量部、および20質量部としたこと以外は実施例1と同様の方法で光触媒体コーティング液を調製した。また、得られた光触媒体コーティング液中の酸化物換算での全固形分濃度は、光触媒体コーティング液100質量部に対し、5質量部であった。
(Example 3)
The content of platinum-supported tungsten oxide particles, niobium oxide sol particles, colloidal silica particles, and ethyl silicate in 100 parts by mass of the total solid content in terms of oxide in the photocatalyst coating liquid is 20 parts by mass and 10 parts by mass, respectively. A photocatalyst coating liquid was prepared in the same manner as in Example 1 except that the content was 50 parts by mass and 20 parts by mass. Moreover, the total solid content concentration in terms of oxide in the obtained photocatalyst coating liquid was 5 parts by mass with respect to 100 parts by mass of the photocatalyst coating liquid.
 酸化ニオブゾル粒子、コロイダルシリカ粒子、およびこれらの合計の含有量は、酸化物換算のケイ酸エチル100質量部に対し、酸化物換算でそれぞれ、50質量部、250質量部、および300質量部であった。また、酸化ニオブゾル粒子、コロイダルシリカ粒子、およびケイ酸エチルの酸化物換算の合計の含有量は、白金担持酸化タングステン粒子100質量部に対し、酸化物換算で400質量部であった。 The niobium oxide sol particles, colloidal silica particles, and the total content thereof were 50 parts by mass, 250 parts by mass, and 300 parts by mass, respectively, in terms of oxide with respect to 100 parts by mass of ethyl silicate in terms of oxide. It was. The total content of niobium oxide sol particles, colloidal silica particles, and ethyl silicate in terms of oxide was 400 parts by mass in terms of oxide with respect to 100 parts by mass of platinum-supported tungsten oxide particles.
 上記で得られた光触媒体コーティング液を用いて実施例1と同様にして光触媒体層を作成し、鉛筆硬度を測定すると3-4Hであった。また、光触媒体層の密着性を粘着セロファンテープを用いて調べたところ、光触媒体層の剥離は見られず密着性は良好であった。さらに、実施例1と同様にして限界接触角を測定すると、4度であった。 Using the photocatalyst coating liquid obtained above, a photocatalyst layer was prepared in the same manner as in Example 1, and the pencil hardness was measured to be 3-4H. Moreover, when the adhesiveness of the photocatalyst layer was examined using an adhesive cellophane tape, no peeling of the photocatalyst layer was observed, and the adhesiveness was good. Further, when the limit contact angle was measured in the same manner as in Example 1, it was 4 degrees.
(実施例4)
 光触媒体コーティング液中の酸化物換算での全固形分100質量部における、白金担持酸化タングステン粒子、酸化ニオブゾル粒子、コロイダルシリカ粒子、およびケイ酸エチルの含有量を、それぞれ20質量部、20質量部、40質量部、および20質量部としたこと以外は実施例1と同様の方法で光触媒体コーティング液を調製した。また、得られた光触媒体コーティング液中の酸化物換算での全固形分濃度は、光触媒体コーティング液100質量部に対し、5質量部であった。
Example 4
The content of platinum-supported tungsten oxide particles, niobium oxide sol particles, colloidal silica particles, and ethyl silicate in 100 parts by mass of the total solid content in terms of oxide in the photocatalyst coating liquid is 20 parts by mass and 20 parts by mass, respectively. A photocatalyst coating liquid was prepared in the same manner as in Example 1 except that the content was 40 parts by mass and 20 parts by mass. Moreover, the total solid content concentration in terms of oxide in the obtained photocatalyst coating liquid was 5 parts by mass with respect to 100 parts by mass of the photocatalyst coating liquid.
 酸化ニオブゾル粒子、コロイダルシリカ粒子、およびこれらの合計の含有量は、酸化物換算のケイ酸エチル100質量部に対し、酸化物換算でそれぞれ、100質量部、200質量部、および300質量部であった。また、酸化ニオブゾル粒子、コロイダルシリカ粒子、およびケイ酸エチルの酸化物換算の合計の含有量は、白金担持酸化タングステン粒子100質量部に対し、酸化物換算で400質量部であった。 The niobium oxide sol particles, colloidal silica particles, and the total content thereof were 100 parts by mass, 200 parts by mass, and 300 parts by mass, respectively, in terms of oxides with respect to 100 parts by mass of ethyl silicate in terms of oxides. It was. The total content of niobium oxide sol particles, colloidal silica particles, and ethyl silicate in terms of oxide was 400 parts by mass in terms of oxide with respect to 100 parts by mass of platinum-supported tungsten oxide particles.
 上記で得られた光触媒体コーティング液を用いて実施例1と同様にして光触媒体層を作成し、鉛筆硬度を測定すると5-6Hであった。また、光触媒体層の密着性を、粘着セロファンテープを用いて調べたところ、光触媒体層の剥離は見られず密着性は良好であった。さらに、実施例1と同様にして限界接触角を測定すると、6度であった。 Using the photocatalyst coating liquid obtained above, a photocatalyst layer was prepared in the same manner as in Example 1, and the pencil hardness was measured to be 5-6H. Further, when the adhesion of the photocatalyst layer was examined using an adhesive cellophane tape, no peeling of the photocatalyst layer was observed, and the adhesion was good. Further, when the limit contact angle was measured in the same manner as in Example 1, it was 6 degrees.
(実施例5)
 光触媒体コーティング液中の酸化物換算での全固形分100質量部における、白金担持酸化タングステン粒子、酸化ニオブゾル粒子、コロイダルシリカ粒子、およびケイ酸エチルの含有量を、それぞれ20質量部、30質量部、33質量部、および17質量部としたこと以外は実施例1と同様の方法で光触媒体コーティング液を調製した。また、得られた光触媒体コーティング液中の酸化物換算での全固形分濃度は、光触媒体コーティング液100質量部に対し、5質量部であった。
(Example 5)
The content of platinum-supported tungsten oxide particles, niobium oxide sol particles, colloidal silica particles, and ethyl silicate in 100 parts by mass of the total solid content in terms of oxide in the photocatalyst coating liquid is 20 parts by mass and 30 parts by mass, respectively. A photocatalyst coating liquid was prepared in the same manner as in Example 1 except that the content was 33 parts by mass and 17 parts by mass. Moreover, the total solid content concentration in terms of oxide in the obtained photocatalyst coating liquid was 5 parts by mass with respect to 100 parts by mass of the photocatalyst coating liquid.
 酸化ニオブゾル粒子、コロイダルシリカ粒子、およびこれらの合計の含有量は、酸化物換算のケイ酸エチル100質量部に対し、酸化物換算でそれぞれ、176質量部、194質量部、および371質量部であった。また、酸化ニオブゾル粒子、コロイダルシリカ粒子、およびケイ酸エチルの酸化物換算の合計の含有量は、白金担持酸化タングステン粒子100質量部に対し、酸化物換算で400質量部であった。 The niobium oxide sol particles, colloidal silica particles, and the total content thereof were 176 parts by mass, 194 parts by mass, and 371 parts by mass, respectively, in terms of oxide with respect to 100 parts by mass of ethyl silicate in terms of oxide. It was. The total content of niobium oxide sol particles, colloidal silica particles, and ethyl silicate in terms of oxide was 400 parts by mass in terms of oxide with respect to 100 parts by mass of platinum-supported tungsten oxide particles.
 上記で得られた光触媒体コーティング液を用いて実施例1と同様にして光触媒体層を作成し、鉛筆硬度を測定すると3-4Hであった。また、光触媒体層の密着性を粘着セロファンテープを用いて調べたところ、光触媒体層の剥離は見られず密着性は良好であった。さらに、実施例1と同様にして限界接触角を測定すると、12度であった。 Using the photocatalyst coating liquid obtained above, a photocatalyst layer was prepared in the same manner as in Example 1, and the pencil hardness was measured to be 3-4H. Moreover, when the adhesiveness of the photocatalyst layer was examined using an adhesive cellophane tape, no peeling of the photocatalyst layer was observed, and the adhesiveness was good. Further, when the limit contact angle was measured in the same manner as in Example 1, it was 12 degrees.
(比較例1)
 光触媒体コーティング液中の酸化物換算での全固形分100質量部における、白金担持酸化タングステン粒子、酸化ニオブゾル粒子、コロイダルシリカ粒子、およびケイ酸エチルの含有量を、それぞれ20質量部、40質量部、27質量部、および13質量部としたこと以外は実施例1と同様の方法で光触媒体コーティング液を調製した。また、得られた光触媒体コーティング液中の酸化物換算での全固形分濃度は、光触媒体コーティング液100質量部に対し、5質量部であった。
(Comparative Example 1)
The content of platinum-supported tungsten oxide particles, niobium oxide sol particles, colloidal silica particles, and ethyl silicate in 100 parts by mass of the total solid content in terms of oxide in the photocatalyst coating liquid is 20 parts by mass and 40 parts by mass, respectively. A photocatalyst coating liquid was prepared in the same manner as in Example 1 except that the content was 27 parts by mass and 13 parts by mass. Moreover, the total solid content concentration in terms of oxide in the obtained photocatalyst coating liquid was 5 parts by mass with respect to 100 parts by mass of the photocatalyst coating liquid.
 酸化ニオブゾル粒子、コロイダルシリカ粒子、およびこれらの合計の含有量は、酸化物換算のケイ酸エチル100質量部に対し、酸化物換算でそれぞれ、308質量部、208質量部、および515質量部であった。また、酸化ニオブゾル粒子、コロイダルシリカ粒子、およびケイ酸エチルの酸化物換算の合計の含有量は、白金担持酸化タングステン粒子100質量部に対し、酸化物換算で400質量部であった。 The niobium oxide sol particles, colloidal silica particles, and the total content thereof were 308 parts by mass, 208 parts by mass, and 515 parts by mass, respectively, in terms of oxide with respect to 100 parts by mass of ethyl silicate in terms of oxide. It was. The total content of niobium oxide sol particles, colloidal silica particles, and ethyl silicate in terms of oxide was 400 parts by mass in terms of oxide with respect to 100 parts by mass of platinum-supported tungsten oxide particles.
 上記で得られた光触媒体コーティング液を用いて実施例1と同様にして光触媒体層を作成し、鉛筆硬度を測定すると、消しゴムで擦るだけで傷が生じ、鉛筆硬度としては6B未満であった。 Using the photocatalyst coating liquid obtained above, a photocatalyst layer was prepared in the same manner as in Example 1, and when pencil hardness was measured, scratches were generated just by rubbing with an eraser, and the pencil hardness was less than 6B. .
(比較例2)
 光触媒体コーティング液中の酸化物換算での全固形分100質量部における、白金担持酸化タングステン粒子、酸化ニオブゾル粒子、コロイダルシリカ粒子、およびケイ酸エチルの含有量を、それぞれ20質量部、50質量部、20質量部、および10質量部としたこと以外は実施例1と同様の方法で光触媒体コーティング液を調製した。また、得られた光触媒体コーティング液中の酸化物換算での全固形分濃度は、光触媒体コーティング液100質量部に対し、5質量部であった。
(Comparative Example 2)
The content of platinum-supported tungsten oxide particles, niobium oxide sol particles, colloidal silica particles, and ethyl silicate in 100 parts by mass of the total solid content in terms of oxide in the photocatalyst coating liquid is 20 parts by mass and 50 parts by mass, respectively. A photocatalyst coating liquid was prepared in the same manner as in Example 1 except that the content was 20 parts by mass and 10 parts by mass. Moreover, the total solid content concentration in terms of oxide in the obtained photocatalyst coating liquid was 5 parts by mass with respect to 100 parts by mass of the photocatalyst coating liquid.
 酸化ニオブゾル粒子、コロイダルシリカ粒子、およびこれらの合計の含有量は、酸化物換算のケイ酸エチル100質量部に対し、酸化物換算でそれぞれ、500質量部、200質量部、および700質量部であった。また、酸化ニオブゾル粒子、コロイダルシリカ粒子、およびケイ酸エチルの酸化物換算の合計の含有量は、白金担持酸化タングステン粒子100質量部に対し、酸化物換算で400質量部であった。 The niobium oxide sol particles, colloidal silica particles, and the total content thereof were 500 parts by mass, 200 parts by mass, and 700 parts by mass, respectively, in terms of oxides with respect to 100 parts by mass of ethyl silicate in terms of oxides. It was. The total content of niobium oxide sol particles, colloidal silica particles, and ethyl silicate in terms of oxide was 400 parts by mass in terms of oxide with respect to 100 parts by mass of platinum-supported tungsten oxide particles.
 上記で得られた光触媒体コーティング液を用いて実施例1と同様にして光触媒体層を作成し、鉛筆硬度を測定すると、消しゴムで擦るだけで傷が生じ、鉛筆硬度としては6B未満であった。 Using the photocatalyst coating liquid obtained above, a photocatalyst layer was prepared in the same manner as in Example 1, and when pencil hardness was measured, scratches were generated just by rubbing with an eraser, and the pencil hardness was less than 6B. .
(比較例3)
 光触媒体コーティング液中の酸化物換算での全固形分100質量部における、白金担持酸化タングステン粒子、酸化ニオブゾル粒子、コロイダルシリカ粒子、およびケイ酸エチルの含有量を、それぞれ20質量部、10質量部、52.5質量部、および17.5質量部とした以外は実施例1と同様の方法で光触媒体コーティング液を調製した。また、得られた光触媒体コーティング液中の酸化物換算での全固形分濃度は、光触媒体コーティング液100質量部に対し、5質量部であった。
(Comparative Example 3)
The content of platinum-supported tungsten oxide particles, niobium oxide sol particles, colloidal silica particles, and ethyl silicate in 100 parts by mass of the total solid content in terms of oxide in the photocatalyst coating liquid is 20 parts by mass and 10 parts by mass, respectively. A photocatalyst coating liquid was prepared in the same manner as in Example 1 except that 52.5 parts by mass and 17.5 parts by mass were used. Moreover, the total solid content concentration in terms of oxide in the obtained photocatalyst coating liquid was 5 parts by mass with respect to 100 parts by mass of the photocatalyst coating liquid.
 酸化ニオブゾル粒子、コロイダルシリカ粒子、およびこれらの合計の含有量は、酸化物換算のケイ酸エチル100質量部に対し、酸化物換算でそれぞれ、57質量部、300質量部、および357質量部であった。また、酸化ニオブゾル粒子、コロイダルシリカ粒子、およびケイ酸エチルの酸化物換算の合計の含有量は、白金担持酸化タングステン粒子100質量部に対し、酸化物換算で400質量部であった。 The niobium oxide sol particles, colloidal silica particles, and the total content thereof were 57 parts by mass, 300 parts by mass, and 357 parts by mass, respectively, in terms of oxide with respect to 100 parts by mass of ethyl silicate in terms of oxide. It was. The total content of niobium oxide sol particles, colloidal silica particles, and ethyl silicate in terms of oxide was 400 parts by mass in terms of oxide with respect to 100 parts by mass of platinum-supported tungsten oxide particles.
 上記で得られた光触媒体コーティング液を用いて実施例1と同様にして光触媒体層を作成し、鉛筆硬度を測定すると、消しゴムで擦るだけで傷が生じ、鉛筆硬度としては6B未満であった。 Using the photocatalyst coating liquid obtained above, a photocatalyst layer was prepared in the same manner as in Example 1, and when pencil hardness was measured, scratches were generated just by rubbing with an eraser, and the pencil hardness was less than 6B. .
(比較例4)
 光触媒体コーティング液中の酸化物換算での全固形分100質量部における、白金担持酸化タングステン粒子、酸化ニオブゾル粒子、コロイダルシリカ粒子、およびケイ酸エチルの含有量を、それぞれ20質量部、20質量部、45質量部、および15質量部としたこと以外は実施例1と同様の方法で光触媒体コーティング液を調製した。また、得られた光触媒体コーティング液中の酸化物換算での全固形分濃度は、光触媒体コーティング液100質量部に対し、5質量部であった。
(Comparative Example 4)
The content of platinum-supported tungsten oxide particles, niobium oxide sol particles, colloidal silica particles, and ethyl silicate in 100 parts by mass of the total solid content in terms of oxide in the photocatalyst coating liquid is 20 parts by mass and 20 parts by mass, respectively. A photocatalyst coating liquid was prepared in the same manner as in Example 1 except that the content was 45 parts by mass and 15 parts by mass. Moreover, the total solid content concentration in terms of oxide in the obtained photocatalyst coating liquid was 5 parts by mass with respect to 100 parts by mass of the photocatalyst coating liquid.
 酸化ニオブゾル粒子、コロイダルシリカ粒子、およびこれらの合計の含有量は、酸化物換算のケイ酸エチル100質量部に対し、酸化物換算でそれぞれ、133質量部、300質量部、および433質量部であった。また、酸化ニオブゾル粒子、コロイダルシリカ粒子、およびケイ酸エチルの酸化物換算の合計の含有量は、白金担持酸化タングステン粒子100質量部に対し、酸化物換算で400質量部であった。 The niobium oxide sol particles, colloidal silica particles, and the total content thereof were 133 parts by mass, 300 parts by mass, and 433 parts by mass, respectively, in terms of oxide with respect to 100 parts by mass of ethyl silicate in terms of oxide. It was. The total content of niobium oxide sol particles, colloidal silica particles, and ethyl silicate in terms of oxide was 400 parts by mass in terms of oxide with respect to 100 parts by mass of platinum-supported tungsten oxide particles.
 上記で得られた光触媒体コーティング液を用いて実施例1と同様にして光触媒体層を作成し、鉛筆硬度を測定すると、消しゴムで擦るだけで傷が生じ、鉛筆硬度としては6B未満であった。 Using the photocatalyst coating liquid obtained above, a photocatalyst layer was prepared in the same manner as in Example 1, and when pencil hardness was measured, scratches were generated just by rubbing with an eraser, and the pencil hardness was less than 6B. .
(比較例5)
 光触媒体コーティング液中の酸化物換算での全固形分100質量部における、白金担持酸化タングステン粒子、酸化ニオブゾル粒子、コロイダルシリカ粒子、およびケイ酸エチルの含有量を、それぞれ20質量部、30質量部、37.5質量部、および12.5質量部としたこと以外は実施例1と同様の方法で光触媒体コーティング液を調製した。また、得られた光触媒体コーティング液中の酸化物換算での全固形分濃度は、光触媒体コーティング液100質量部に対し、5質量部であった。
(Comparative Example 5)
The content of platinum-supported tungsten oxide particles, niobium oxide sol particles, colloidal silica particles, and ethyl silicate in 100 parts by mass of the total solid content in terms of oxide in the photocatalyst coating liquid is 20 parts by mass and 30 parts by mass, respectively. A photocatalyst coating liquid was prepared in the same manner as in Example 1 except that the amount was 37.5 parts by mass and 12.5 parts by mass. Moreover, the total solid content concentration in terms of oxide in the obtained photocatalyst coating liquid was 5 parts by mass with respect to 100 parts by mass of the photocatalyst coating liquid.
 酸化ニオブゾル粒子、コロイダルシリカ粒子、およびこれらの合計の含有量は、酸化物換算のケイ酸エチル100質量部に対し、酸化物換算でそれぞれ、240質量部、300質量部、および540質量部であった。また、酸化ニオブゾル粒子、コロイダルシリカ粒子、およびケイ酸エチルの酸化物換算の合計の含有量は、白金担持酸化タングステン粒子100質量部に対し、酸化物換算で400質量部であった。 The niobium oxide sol particles, colloidal silica particles, and the total content thereof were 240 parts by mass, 300 parts by mass, and 540 parts by mass, respectively, in terms of oxides with respect to 100 parts by mass of ethyl silicate in terms of oxides. It was. The total content of niobium oxide sol particles, colloidal silica particles, and ethyl silicate in terms of oxide was 400 parts by mass in terms of oxide with respect to 100 parts by mass of platinum-supported tungsten oxide particles.
 上記で得られた光触媒体コーティング液を用いて実施例1と同様にして光触媒体層を作成し、鉛筆硬度を測定すると、消しゴムで擦るだけで傷が生じ、鉛筆硬度としては6B未満であった。 Using the photocatalyst coating liquid obtained above, a photocatalyst layer was prepared in the same manner as in Example 1, and when pencil hardness was measured, scratches were generated just by rubbing with an eraser, and the pencil hardness was less than 6B. .
(比較例6)
 光触媒体コーティング液中の酸化物換算での全固形分100質量部における、白金担持酸化タングステン粒子、酸化ニオブゾル粒子、コロイダルシリカ粒子、およびケイ酸エチルの含有量を、それぞれ20質量部、0質量部、65質量部、および15質量部としたこと以外は実施例1と同様の方法で光触媒体コーティング液を調製した。また、得られた光触媒体コーティング液中の酸化物換算での全固形分濃度は、光触媒体コーティング液100質量部に対し、5質量部であった。
(Comparative Example 6)
The content of platinum-supported tungsten oxide particles, niobium oxide sol particles, colloidal silica particles, and ethyl silicate in 100 parts by mass of the total solid content in terms of oxide in the photocatalyst coating liquid is 20 parts by mass and 0 parts by mass, respectively. A photocatalyst coating liquid was prepared in the same manner as in Example 1 except that the amount was 65 parts by mass and 15 parts by mass. Moreover, the total solid content concentration in terms of oxide in the obtained photocatalyst coating liquid was 5 parts by mass with respect to 100 parts by mass of the photocatalyst coating liquid.
 酸化ニオブゾル粒子、コロイダルシリカ粒子、およびこれらの合計の含有量は、酸化物換算のケイ酸エチル100質量部に対し、酸化物換算でそれぞれ、0質量部、433質量部、および433質量部であった。また、酸化ニオブゾル粒子、コロイダルシリカ粒子、およびケイ酸エチルの酸化物換算の合計の含有量は、白金担持酸化タングステン粒子100質量部に対し、酸化物換算で400質量部であった。 The niobium oxide sol particles, colloidal silica particles, and the total content thereof were 0 parts by mass, 433 parts by mass, and 433 parts by mass, respectively, in terms of oxide with respect to 100 parts by mass of ethyl silicate in terms of oxide. It was. The total content of niobium oxide sol particles, colloidal silica particles, and ethyl silicate in terms of oxide was 400 parts by mass in terms of oxide with respect to 100 parts by mass of platinum-supported tungsten oxide particles.
 上記で得られた光触媒体コーティング液を用いて実施例1と同様にして光触媒体層を作成し、鉛筆硬度を測定すると5-6Hであった。また、光触媒体層の密着性を、粘着セロファンテープを用いて調べたところ、光触媒体層の剥離は見られず密着性は良好であったが、実施例1と同様にして限界接触角を測定すると、20度であった。 Using the photocatalyst coating liquid obtained above, a photocatalyst layer was prepared in the same manner as in Example 1, and the pencil hardness was measured to be 5-6H. Further, when the adhesion of the photocatalyst layer was examined using an adhesive cellophane tape, the photocatalyst layer was not peeled and the adhesion was good, but the limit contact angle was measured in the same manner as in Example 1. Then, it was 20 degrees.
(比較例7)
 光触媒体コーティング液中の酸化物換算での全固形分100質量部における、白金担持酸化タングステン粒子、酸化ニオブゾル粒子、コロイダルシリカ粒子、およびケイ酸エチルの含有量を、それぞれ25質量部、10質量部、65質量部、および0質量部としたこと以外は実施例1と同様の方法で光触媒体コーティング液を調製した。また、得られた光触媒体コーティング液中の酸化物換算での全固形分濃度は、光触媒体コーティング液100質量部に対し、5質量部であった。
(Comparative Example 7)
The content of platinum-supported tungsten oxide particles, niobium oxide sol particles, colloidal silica particles, and ethyl silicate in 100 parts by mass of the total solid content in terms of oxide in the photocatalyst coating liquid is 25 parts by mass and 10 parts by mass, respectively. A photocatalyst coating liquid was prepared in the same manner as in Example 1 except that the content was 65 parts by mass and 0 parts by mass. Moreover, the total solid content concentration in terms of oxide in the obtained photocatalyst coating liquid was 5 parts by mass with respect to 100 parts by mass of the photocatalyst coating liquid.
 酸化ニオブゾル粒子、コロイダルシリカ粒子、および酸化物換算のケイ酸エチルの合計量の含有量は、白金担持酸化タングステン粒子100質量部に対し、酸化物換算で300質量部であった。 The total content of niobium oxide sol particles, colloidal silica particles, and oxide-converted ethyl silicate was 300 parts by mass in terms of oxide with respect to 100 parts by mass of platinum-supported tungsten oxide particles.
 上記で得られた光触媒体コーティング液を用いて実施例1と同様にして光触媒体層を作成し、鉛筆硬度を測定すると、消しゴムで擦るだけで傷が生じ、鉛筆硬度としては6B未満であった。 Using the photocatalyst coating liquid obtained above, a photocatalyst layer was prepared in the same manner as in Example 1, and when pencil hardness was measured, scratches were generated just by rubbing with an eraser, and the pencil hardness was less than 6B. .
(実施例6)
 実施例1で得られた光触媒体コーティング液を用いて形成した光触媒体層の光触媒活性を評価したところ、一次反応速度定数は0.11h-1であった。
(Example 6)
When the photocatalytic activity of the photocatalyst layer formed using the photocatalyst coating liquid obtained in Example 1 was evaluated, the first-order rate constant was 0.11 h −1 .
(参考例1)
 実施例1~5で得られた光触媒体コーティング液を、天井を構成する天井材の表面に塗布し乾燥させることにより、天井材の表面に光触媒体層を形成することができ、これによって、屋内照明による光照射により屋内空間における揮発性有機物(例えば、ホルムアルデヒド、アセトアルデヒド、アセトン、トルエン等)や悪臭物質の濃度を低減することができ、黄色ブドウ球菌や大腸菌等の病原菌を死滅させることができ、また、ダニアレルゲンやスギ花粉アレルゲン等のアレルゲンを無害化することもできる。さらに、天井材の表面が親水化し、汚れを容易に拭き取ることができるようになり、さらに帯電をも防止できる。
(Reference Example 1)
By applying the photocatalyst coating liquid obtained in Examples 1 to 5 to the surface of the ceiling material constituting the ceiling and drying it, a photocatalyst layer can be formed on the surface of the ceiling material. By irradiating with light, the concentration of volatile organic substances (for example, formaldehyde, acetaldehyde, acetone, toluene, etc.) and malodorous substances in indoor spaces can be reduced, and pathogenic bacteria such as Staphylococcus aureus and Escherichia coli can be killed. In addition, allergens such as mite allergens and cedar pollen allergens can be rendered harmless. Furthermore, the surface of the ceiling material becomes hydrophilic, so that dirt can be easily wiped off, and further, charging can be prevented.
(参考例2)
 実施例1~5で得られた光触媒体コーティング液を、屋内の壁面に施工されたタイルに塗布し乾燥させることにより、タイル表面に光触媒体層を形成することができ、これによって、屋内照明による光照射により屋内空間における揮発性有機物(例えば、ホルムアルデヒド、アセトアルデヒド、アセトン、トルエン等)や悪臭物質の濃度を低減することができ、黄色ブドウ球菌や大腸菌等の病原菌を死滅させることもでき、また、ダニアレルゲンやスギ花粉アレルゲン等のアレルゲンを無害化することもできる。さらに、タイルの表面が親水化し、汚れを容易に拭き取ることができるようになり、さらに帯電をも防止できる。
(Reference Example 2)
By applying and drying the photocatalyst coating liquid obtained in Examples 1 to 5 on the tiles applied to the indoor wall surface, a photocatalyst layer can be formed on the tile surface. Light irradiation can reduce the concentration of volatile organic substances (for example, formaldehyde, acetaldehyde, acetone, toluene, etc.) and malodorous substances in indoor spaces, can kill pathogenic bacteria such as Staphylococcus aureus and Escherichia coli, Allergens such as mite allergens and cedar pollen allergens can also be rendered harmless. Furthermore, the surface of the tile becomes hydrophilic, so that dirt can be easily wiped off, and charging can be prevented.
(参考例3)
 実施例1~5で得られた光触媒体コーティング液を、窓ガラスの屋内側表面に塗布し乾燥させることにより、ガラス表面に光触媒体層を形成することができ、これによって、屋内照明による光照射により屋内空間における揮発性有機物(例えば、ホルムアルデヒド、アセトアルデヒド、アセトン、トルエン等)や悪臭物質の濃度を低減することができ、黄色ブドウ球菌や大腸菌等の病原菌を死滅させることもでき、また、ダニアレルゲンやスギ花粉アレルゲン等のアレルゲンを無害化することもできる。さらに、窓ガラスの表面が親水化し、汚れを容易に拭き取ることができるようになり、さらに帯電をも防止できる。
(Reference Example 3)
By applying the photocatalyst coating liquid obtained in Examples 1 to 5 to the indoor side surface of the window glass and drying, a photocatalyst layer can be formed on the glass surface, whereby light irradiation by indoor lighting is performed. Can reduce the concentration of volatile organic substances (for example, formaldehyde, acetaldehyde, acetone, toluene, etc.) and malodorous substances in indoor spaces, and can kill pathogenic bacteria such as Staphylococcus aureus and Escherichia coli. And allergens such as cedar pollen allergens can also be rendered harmless. Further, the surface of the window glass becomes hydrophilic, so that dirt can be easily wiped off, and further charging can be prevented.
(参考例4)
 実施例1~5で得られた光触媒体コーティング液を、壁紙に塗布し乾燥させることにより、壁紙の表面に光触媒体層を形成することができ、さらにこの壁紙を屋内の壁面に施工することによって、屋内照明による光照射により屋内空間における揮発性有機物(例えば、ホルムアルデヒド、アセトアルデヒド、アセトン、トルエン等)や悪臭物質の濃度を低減することができ、黄色ブドウ球菌や大腸菌等の病原菌を死滅させることもでき、また、ダニアレルゲンやスギ花粉アレルゲン等のアレルゲンを無害化することもできる。さらに、壁紙の表面が親水化し、汚れを容易に拭き取ることができるようになり、さらに帯電をも防止できる。
(Reference Example 4)
By applying the photocatalyst coating liquid obtained in Examples 1 to 5 to the wallpaper and drying it, a photocatalyst layer can be formed on the surface of the wallpaper. In addition, the concentration of volatile organic substances (for example, formaldehyde, acetaldehyde, acetone, toluene, etc.) and malodorous substances in indoor spaces can be reduced by light irradiation by indoor lighting, and pathogenic bacteria such as Staphylococcus aureus and Escherichia coli can be killed. It is also possible to detoxify allergens such as mite allergens and cedar pollen allergens. Furthermore, the surface of the wallpaper becomes hydrophilic, so that dirt can be easily wiped off, and charging can be prevented.
(参考例5)
 実施例1~5で得られた光触媒体コーティング液を、屋内の床面に塗布し乾燥させることにより、床面に光触媒体層を形成することができ、これによって、屋内照明による光照射により屋内空間における揮発性有機物(例えば、ホルムアルデヒド、アセトアルデヒド、アセトン、トルエン等)や悪臭物質の濃度を低減することができ、黄色ブドウ球菌や大腸菌等の病原菌を死滅させることもでき、また、ダニアレルゲンやスギ花粉アレルゲン等のアレルゲンを無害化することもできる。さらに、床面の表面が親水化し、汚れを容易に拭き取ることができるようになり、さらに帯電をも防止できる。
(Reference Example 5)
By applying the photocatalyst coating liquid obtained in Examples 1 to 5 to the indoor floor surface and drying, a photocatalyst layer can be formed on the floor surface, and thus, indoors can be formed by light irradiation with indoor lighting. It can reduce the concentration of volatile organic substances (for example, formaldehyde, acetaldehyde, acetone, toluene, etc.) and malodorous substances in the space, kill pathogenic bacteria such as Staphylococcus aureus and Escherichia coli, and mite allergens and cedar Allergens such as pollen allergens can also be rendered harmless. Furthermore, the surface of the floor becomes hydrophilic, so that dirt can be easily wiped off and charging can be prevented.
(参考例6)
 実施例1~5で得られた光触媒体コーティング液を、自動車用インストルメントパネル、自動車用シート、自動車の天井材、自動車用ガラスの車内側などの自動車内装材の表面に塗布し乾燥させることにより、これら自動車内装材の表面に光触媒体層を形成することができ、これによって、車内照明による光照射により車内空間における揮発性有機物(例えば、ホルムアルデヒド、アセトアルデヒド、アセトン、トルエン等)や悪臭物質の濃度を低減することができ、黄色ブドウ球菌や大腸菌等の病原菌を死滅させることもでき、また、ダニアレルゲンやスギ花粉アレルゲン等のアレルゲンを無害化することもできる。さらに、自動車内装材の表面が親水化し、汚れを容易に拭き取ることができるようになり、さらに帯電をも防止できる。
(Reference Example 6)
By applying and drying the photocatalyst coating liquid obtained in Examples 1 to 5 on the surface of automobile interior materials such as an instrument panel for automobiles, an automobile seat, an automobile ceiling material, and an inside of an automobile glass. A photocatalyst layer can be formed on the surface of these automobile interior materials, and by this, the concentration of volatile organic substances (for example, formaldehyde, acetaldehyde, acetone, toluene, etc.) and malodorous substances in the interior space of the vehicle by light irradiation by interior lighting Pathogens such as Staphylococcus aureus and Escherichia coli can be killed, and allergens such as mite allergens and cedar pollen allergens can be rendered harmless. Furthermore, the surface of the automobile interior material becomes hydrophilic, so that dirt can be easily wiped off, and charging can be prevented.
(参考例7)
 実施例1~5で得られた光触媒体コーティング液を、エアコンの表面に塗布し乾燥させることにより、エアコンの表面に光触媒体層を形成することができ、これによって、屋内照明による光照射により屋内空間における揮発性有機物(例えば、ホルムアルデヒド、アセトアルデヒド、アセトン、トルエン等)や悪臭物質の濃度を低減することができ、黄色ブドウ球菌や大腸菌等の病原菌を死滅させることもでき、また、ダニアレルゲンやスギ花粉アレルゲン等のアレルゲンを無害化することもできる。さらに、エアコンの表面が親水化し、汚れを容易に拭き取ることができるようになり、さらに帯電をも防止できる。
(Reference Example 7)
By applying the photocatalyst coating liquid obtained in Examples 1 to 5 to the surface of the air conditioner and drying it, a photocatalyst layer can be formed on the surface of the air conditioner. It can reduce the concentration of volatile organic substances (for example, formaldehyde, acetaldehyde, acetone, toluene, etc.) and malodorous substances in the space, kill pathogenic bacteria such as Staphylococcus aureus and Escherichia coli, and mite allergens and cedar Allergens such as pollen allergens can also be rendered harmless. Furthermore, the surface of the air conditioner becomes hydrophilic, so that dirt can be easily wiped off, and charging can be prevented.
(参考例8)
 実施例1~5で得られた光触媒体コーティング液を、冷蔵庫の庫内に塗布し乾燥させることにより、冷蔵庫内に光触媒体層を形成することができ、これによって、屋内照明や冷蔵庫内の光源による光照射により冷蔵庫内における揮発性有機物(例えば、エチレン等)や悪臭物質の濃度を低減することができ、黄色ブドウ球菌や大腸菌等の病原菌を死滅させることもでき、また、ダニアレルゲンやスギ花粉アレルゲン等のアレルゲンを無害化することもできる。さらに、冷蔵庫の庫内の表面が親水化し、汚れを容易に拭き取ることができるようになり、さらに帯電をも防止できる。
(Reference Example 8)
A photocatalyst layer can be formed in the refrigerator by applying the photocatalyst coating liquid obtained in Examples 1 to 5 to the refrigerator and drying it. Can reduce the concentration of volatile organic substances (such as ethylene) and malodorous substances in the refrigerator by light irradiation, and can kill pathogenic bacteria such as Staphylococcus aureus and Escherichia coli, and mite allergens and cedar pollen Allergens such as allergens can also be rendered harmless. Furthermore, the surface in the refrigerator compartment becomes hydrophilic, so that dirt can be easily wiped off and charging can be prevented.
(参考例9)
 実施例1~5で得られた光触媒体コーティング液を、タッチパネル、電車のつり革、エレベーターのボタン等、不特定多数の人が接触する基材表面に塗布し乾燥させることにより、これら基材表面に光触媒体層を形成することができ、これによって、屋内照明による光照射により屋内空間における揮発性有機物(例えば、ホルムアルデヒド、アセトアルデヒド、アセトン、トルエン等)や悪臭物質の濃度を低減することができ、黄色ブドウ球菌や大腸菌等の病原菌を死滅させることもでき、また、ダニアレルゲンやスギ花粉アレルゲン等のアレルゲンを無害化することもできる。さらに、基材表面が親水化し、汚れを容易に拭き取ることができるようになり、さらに帯電をも防止できる。
(Reference Example 9)
By applying and drying the photocatalyst coating liquid obtained in Examples 1 to 5 on the surface of a substrate that is in contact with an unspecified number of people, such as a touch panel, a train strap, and an elevator button, these substrate surfaces are dried. A photocatalyst layer can be formed on the inside, thereby reducing the concentration of volatile organic substances (for example, formaldehyde, acetaldehyde, acetone, toluene, etc.) and malodorous substances in the indoor space by light irradiation by indoor lighting, Pathogens such as Staphylococcus aureus and Escherichia coli can be killed, and allergens such as mite allergens and cedar pollen allergens can be rendered harmless. Further, the surface of the base material becomes hydrophilic, so that dirt can be easily wiped off, and charging can be prevented.

Claims (5)

  1.  (1)光触媒体粒子、
     (2)酸化ニオブゾル粒子、
     (3)コロイダルシリカ粒子、
     (4)シリコンアルコキシド、及び
     (5)溶媒、を含む光触媒体コーティング液であって、
     前記(2)の酸化物換算の含有量が、前記(4)の酸化物換算の含有量100質量部に対して0~200質量部であり、
     前記(3)の酸化物換算の含有量が、前記(4)の酸化物換算の含有量100質量部に対して0~280質量部質量部であり、
     前記(2)と(3)の酸化物換算の含有量の合計が、前記(4)の酸化物換算の含有量100質量部に対して0~480質量部であり、
     前記(2)、(3)および(4)の酸化物換算の含有量の合計が、前記(1)100質量部に対して20~500質量部であり、
     前記光触媒体コーティング液から揮発成分を揮発させて得られる固形分の酸化物換算の含有量が、前記光触媒体コーティング液100質量部に対して0.5質量部~30質量部である、ことを特徴とする光触媒活性を有する光触媒体層を形成するための光触媒体コーティング液。
    (1) photocatalyst particles,
    (2) niobium oxide sol particles,
    (3) colloidal silica particles,
    (4) silicon alkoxide, and (5) a photocatalyst coating liquid containing a solvent,
    The oxide equivalent content of (2) is 0 to 200 parts by mass with respect to 100 parts by mass of the oxide equivalent of (4),
    The oxide equivalent content of (3) is 0 to 280 parts by mass with respect to 100 parts by mass of the oxide equivalent of (4),
    The total of the oxide equivalent contents of (2) and (3) is 0 to 480 parts by mass with respect to 100 parts by mass of the oxide equivalent of (4),
    The total of the oxide equivalent content of (2), (3) and (4) is 20 to 500 parts by mass with respect to 100 parts by mass of (1),
    The content in terms of solid oxide obtained by volatilizing a volatile component from the photocatalyst coating liquid is 0.5 to 30 parts by mass with respect to 100 parts by mass of the photocatalyst coating liquid. A photocatalyst coating liquid for forming a photocatalyst layer having photocatalytic activity.
  2.  前記光触媒体層が、少なくとも可視光線の照射で光触媒活性を示す請求項1に記載の光触媒体コーティング液。 The photocatalyst coating liquid according to claim 1, wherein the photocatalyst layer exhibits photocatalytic activity at least by irradiation with visible light.
  3.  前記光触媒体粒子が、酸化タングステン粒子である請求項1または2に記載の光触媒体コーティング液。 The photocatalyst body coating liquid according to claim 1 or 2, wherein the photocatalyst body particles are tungsten oxide particles.
  4.  前記光触媒体粒子が、貴金属を担持している請求項1~3のいずれかに記載の光触媒体コーティング液。 The photocatalyst coating liquid according to any one of claims 1 to 3, wherein the photocatalyst particles carry a noble metal.
  5.  基材表面に光触媒体層を備える光触媒機能製品であって、前記光触媒体層が請求項1~4のいずれかに記載の光触媒体コーティング液を用いて形成されていることを特徴とする光触媒機能製品。 A photocatalytic function product comprising a photocatalyst layer on a substrate surface, wherein the photocatalyst layer is formed using the photocatalyst coating liquid according to any one of claims 1 to 4. Product.
PCT/JP2011/064679 2010-07-23 2011-06-27 Photocatalyst coating liquid and product having photocatalytic function WO2012011367A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-165705 2010-07-23
JP2010165705A JP2012025849A (en) 2010-07-23 2010-07-23 Photocatalyst coating liquid and product having photocatalytic function

Publications (1)

Publication Number Publication Date
WO2012011367A1 true WO2012011367A1 (en) 2012-01-26

Family

ID=45496795

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/064679 WO2012011367A1 (en) 2010-07-23 2011-06-27 Photocatalyst coating liquid and product having photocatalytic function

Country Status (2)

Country Link
JP (1) JP2012025849A (en)
WO (1) WO2012011367A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6624195B2 (en) * 2015-03-03 2019-12-25 株式会社スリーボンド Antifoggant composition
JP7349394B2 (en) 2019-05-28 2023-09-22 シャープ株式会社 Composition, coating method and multilayer structure

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000018504A1 (en) * 1998-09-30 2000-04-06 Nippon Sheet Glass Co., Ltd. Photocatalyst article, article prevented from fogging and fouling, and process for producing article prevented from fogging and fouling
JP2002053772A (en) * 2000-08-08 2002-02-19 Nippon Soda Co Ltd Structural body carrying photocatalyst
WO2006025535A1 (en) * 2004-09-03 2006-03-09 Jsr Corporation Coating composition, undercoating composition, multilayer body having coating film made of such composition, photocatalyst coating film, and molded body
JP2007117999A (en) * 2005-09-29 2007-05-17 Sumitomo Metal Ind Ltd Titanium oxide-based photocatalyst and its use
JP2007168137A (en) * 2005-12-19 2007-07-05 Kubota Matsushitadenko Exterior Works Ltd Coated object
JP2007185556A (en) * 2006-01-11 2007-07-26 Mitsubishi Plastics Ind Ltd Substrate formed with photocatalyst layer and composition for forming photocatalyst layer
JP2010280859A (en) * 2009-06-08 2010-12-16 Toto Ltd Photocatalytic coating composition for high temperature firing, and method for producing photocatalytic material
JP2011083747A (en) * 2009-10-19 2011-04-28 Sumitomo Chemical Co Ltd Noble-metal-carrying photocatalyst-particle-dispersion and photocatalyst functional product
JP2011110542A (en) * 2009-11-30 2011-06-09 Panasonic Electric Works Co Ltd Method for cleaning space and facilities for cleaning space

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000018504A1 (en) * 1998-09-30 2000-04-06 Nippon Sheet Glass Co., Ltd. Photocatalyst article, article prevented from fogging and fouling, and process for producing article prevented from fogging and fouling
JP2002053772A (en) * 2000-08-08 2002-02-19 Nippon Soda Co Ltd Structural body carrying photocatalyst
WO2006025535A1 (en) * 2004-09-03 2006-03-09 Jsr Corporation Coating composition, undercoating composition, multilayer body having coating film made of such composition, photocatalyst coating film, and molded body
JP2007117999A (en) * 2005-09-29 2007-05-17 Sumitomo Metal Ind Ltd Titanium oxide-based photocatalyst and its use
JP2007168137A (en) * 2005-12-19 2007-07-05 Kubota Matsushitadenko Exterior Works Ltd Coated object
JP2007185556A (en) * 2006-01-11 2007-07-26 Mitsubishi Plastics Ind Ltd Substrate formed with photocatalyst layer and composition for forming photocatalyst layer
JP2010280859A (en) * 2009-06-08 2010-12-16 Toto Ltd Photocatalytic coating composition for high temperature firing, and method for producing photocatalytic material
JP2011083747A (en) * 2009-10-19 2011-04-28 Sumitomo Chemical Co Ltd Noble-metal-carrying photocatalyst-particle-dispersion and photocatalyst functional product
JP2011110542A (en) * 2009-11-30 2011-06-09 Panasonic Electric Works Co Ltd Method for cleaning space and facilities for cleaning space

Also Published As

Publication number Publication date
JP2012025849A (en) 2012-02-09

Similar Documents

Publication Publication Date Title
WO2011068095A1 (en) Method for producing liquid dispersion of noble metal-supporting photocatalyst particles, liquid dispersion of noble metal-supporting photocatalyst particles, hydrophilizing agent, and photocatalytic functional product
US20110045964A1 (en) Method for producing noble metal-supported photocatalyst particles
US8298979B2 (en) Zirconium oxalate sol
JP2010180303A (en) Hydrophilizing agent, method of producing the same, and use of the same
US20090305879A1 (en) Photocatalyst dispersion liquid and process for producing the same
WO2011099510A1 (en) Precoat solution for underlayer for photocatalyst layer, organic base material having photocatalyst layer attached thereto, and product having photocatalytic function
JP2011078930A (en) Photocatalyst dispersion and photocatalyst functional product using the same
JP2012035151A (en) Method for manufacturing photocatalyst structure, and photocatalyst functional product
JP7106268B2 (en) SUBSTRATE WITH PHOTOCATALYST, MANUFACTURING METHOD THEREOF, AND PHOTOCATALYST DEVICE
WO2012011367A1 (en) Photocatalyst coating liquid and product having photocatalytic function
JP2011178930A (en) Photocatalytic coating liquid and article having photocatalytic layer coated with the coating liquid
JP5313051B2 (en) Zirconium oxalate sol
JP2013166122A (en) Photocatalyst structure, and photocatalyst functional product using the same, and antiviral functional product
WO2013008807A1 (en) Anti-viral agent capable of inactivating virus, and method for inactivating virus
JP2011050802A (en) Method for producing dispersion liquid of noble metal-deposited photocatalyst particle
JP5512223B2 (en) Noble metal-supported photocatalyst particle dispersion and photocatalyst functional product
JP2010214309A (en) Photocatalytic body-dispersed liquid and application thereof
JP5113723B2 (en) Photocatalyst dispersion
JP2012017238A (en) Method for producing oxide particle dispersion liquid, oxide particle dispersion liquid, and photocatalyst functional product
JP2010120805A (en) Photocatalytic body dispersion
JP2011036825A (en) Tungsten oxide photocatalyst
JP2011092797A (en) Hydrophilizing agent, method for producing the same, and product having hydrophilic function
JP2012071252A (en) Photocatalyst structure, and photocatalytic functional product using the same
JP2012071253A (en) Method for producing dispersion liquid of noble metal-supporting photocatalyst particle, dispersion liquid of noble metal-supporting photocatalyst particle, and product having photocatalytic function
JP2011092847A (en) Dispersion of noble-metal supporting photocatalyst particles, and functional product of photocatalyst

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11809541

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11809541

Country of ref document: EP

Kind code of ref document: A1