WO2013008807A1 - Anti-viral agent capable of inactivating virus, and method for inactivating virus - Google Patents

Anti-viral agent capable of inactivating virus, and method for inactivating virus Download PDF

Info

Publication number
WO2013008807A1
WO2013008807A1 PCT/JP2012/067559 JP2012067559W WO2013008807A1 WO 2013008807 A1 WO2013008807 A1 WO 2013008807A1 JP 2012067559 W JP2012067559 W JP 2012067559W WO 2013008807 A1 WO2013008807 A1 WO 2013008807A1
Authority
WO
WIPO (PCT)
Prior art keywords
virus
photocatalyst
noble metal
antiviral agent
particles
Prior art date
Application number
PCT/JP2012/067559
Other languages
French (fr)
Japanese (ja)
Inventor
酒谷 能彰
仁 高見
康平 曽我部
一明 竹原
Original Assignee
住友化学株式会社
国立大学法人東京農工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社, 国立大学法人東京農工大学 filed Critical 住友化学株式会社
Publication of WO2013008807A1 publication Critical patent/WO2013008807A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • A01N59/16Heavy metals; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/652Chromium, molybdenum or tungsten
    • B01J23/6527Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/66Silver or gold
    • B01J23/68Silver or gold with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/683Silver or gold with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with chromium, molybdenum or tungsten
    • B01J23/687Silver or gold with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with chromium, molybdenum or tungsten with tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper
    • B01J35/39
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/02Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using physical phenomena
    • A61L2/08Radiation
    • A61L2/10Ultra-violet radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst

Definitions

  • the present invention relates to an antiviral agent for inactivating viruses and a method for inactivating viruses.
  • Non-Patent Document 1 Non-Patent Document 1
  • an antiviral agent in which a photocatalyst of a bowl-shaped crystal particle and a photocatalyst of a spherical crystal particle are bonded through an OH group inactivates avian influenza virus under irradiation of a fluorescent lamp.
  • Patent Document 1 An antiviral agent in which a photocatalyst of a bowl-shaped crystal particle and a photocatalyst of a spherical crystal particle are bonded through an OH group inactivates avian influenza virus under irradiation of a fluorescent lamp.
  • An object of the present invention is to provide an antiviral agent capable of expressing a high antiviral property even under irradiation with visible light and inactivating a virus having high resistance, and a method for inactivating the virus. .
  • the present inventors inactivate even a relatively small virus having no extremely high envelope by supporting a predetermined amount of noble metal on the photocatalyst particles.
  • the present invention has been completed. That is, the present invention (1) An antiviral agent comprising a photocatalyst structure provided on the surface with a photocatalyst layer comprising a photocatalyst particle carrying a noble metal particle and a binder, and the antiviral agent comprising 100 parts by mass of the photocatalyst particle 0.01 to 1 part by mass of noble metal particles are supported, An antiviral agent that inactivates a virus having a size of 15 to 30 nm and having no envelope; (2) The antiviral agent according to (1), wherein the photocatalyst particles are tungsten oxide particles, (3) The antiviral agent according to (1) or (2), wherein the noble metal is at least one kind of noble metal selected from the group consisting of Cu, Pt, Au, Pd,
  • Method (8) The method for inactivating the virus according to any one of (5) to (7), wherein the binder comprises a silicon alkoxide, (9) Ceiling material, tile, glass, wallpaper, wall material, film, floor, fence, tatami, shoji selected from the group consisting of shoji, or automotive instrument panel, car seat, car ceiling material Automotive interior materials selected from the group consisting of automotive glass, or the group consisting of refrigerators, air conditioners, personal computers, printers, scanners, photocopiers, fax machines, telephones, TVs, stereos, washing machines, stoves, dryers, microwave ovens More selected household appliances, furniture selected from the group consisting of desks, chairs, tables, bags, storage shelves, textiles selected from the group consisting of clothes, curtains, railings, trains Any one of (1) to (4) for a base material that can be contacted by an unspecified number of people selected from the group consisting of straps and elevator buttons Use of anti-viral agents described, It is in.
  • inactivating the virus means that when the virus titer (50% tissue culture infectious amount per ml: TCID 50 / ml) is calculated by the Behrens Kerber method, the virus titer is calculated. This means that the logarithmic value (log 10) of ⁇ decreases by 1.5 or more, preferably by 2.5 or more.
  • an antiviral agent capable of expressing a high antiviral property even under visible light irradiation and inactivating a virus having high resistance, and a method of inactivating the virus. Can do.
  • Embodiment 1 illustrates the antiviral agent of this invention, Comprising: This invention is not limited to the following.
  • the antiviral agent according to Embodiment 1 is an antiviral agent comprising a photocatalyst structure having on its surface a photocatalyst layer comprising a photocatalyst particle carrying precious metal particles and a binder.
  • the precious metal particles are supported in an amount of 0.01 to 1 part by mass with respect to 100 parts by mass of the particles, and inactivate viruses having a size of 15 to 30 nm and having no envelope. To do.
  • the photocatalyst particle used in the present invention refers to a particulate photocatalyst.
  • the photocatalyst include a compound of a metal element and oxygen, nitrogen, sulfur, and fluorine.
  • metal elements include Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Tc, Re, Fe, Co, Ni, Ru, Rh, Pd, Os, Ir, Pt, and Cu. , Ag, Au, Zn, Cd, Ga, In, Tl, Ge, Sn, Pd, Bi, La, and Ce.
  • Examples of the compound include one or more oxides, nitrides, sulfides, oxynitrides, oxysulfides, nitrofluorides, oxyfluorides, and oxynitrofluorides of these metal elements.
  • tungsten oxide is preferably used in the present invention because it exhibits high antiviral activity when irradiated with visible light (wavelength of about 400 nm to about 800 nm).
  • the photocatalyst particles usually have an average dispersed particle diameter of 40 nm to 250 nm.
  • the tungsten oxide particles include, for example, (i) a method of adding tungstic acid as a precipitate by adding an acid to an aqueous solution of tungstate, and firing this tungstic acid, (ii) meta It can be obtained by a method of thermally decomposing by heating ammonium tungstate or ammonium paratungstate, or (iii) a method of firing metallic tungsten particles.
  • the photocatalyst particles are usually mixed with a binder in the state of a photocatalyst dispersion dispersed in an appropriate dispersion medium.
  • the photocatalyst dispersion liquid may be prepared by dispersing photocatalyst particles in a dispersion medium.
  • a dispersion treatment with a known apparatus such as a wet medium stirring mill.
  • the aqueous solvent which has water as a main component is used.
  • the dispersion medium may be water alone or a mixed solvent of water and a water-soluble organic solvent.
  • a mixed solvent of water and a water-soluble organic solvent is used, the content of water is preferably 50% by mass or more.
  • the water-soluble organic solvent include water-soluble alcohol solvents such as methanol, ethanol, propanol, and butanol, acetone, methyl ethyl ketone, ethyl cellosolve, butyl cellosolve, ethyl acetate, diethyl ether, and the like.
  • a dispersion medium may be used independently and may use 2 or more types together.
  • the amount of the dispersion medium used is usually 2 to 200 times the mass of the photocatalyst particles. If the amount of the dispersion medium used is less than 2 mass times, the photocatalyst particles are likely to settle, and if it exceeds 200 mass times, it is disadvantageous in terms of volume efficiency.
  • Noble metal particles are supported on the photocatalyst particles of the present invention.
  • the noble metal particles can be supported by a known method such as an impregnation method, a coprecipitation method, or a photo-deposition method using a precursor of a noble metal.
  • the noble metal particles are dispersed in a highly dispersed state in the photocatalyst particles. Since it can carry
  • the precious metal precursor one that can be dissolved in a dispersion medium is used.
  • the noble metal element constituting the precursor usually becomes a noble metal ion having a positive charge and exists in the dispersion medium.
  • this noble metal ion is reduced to a zero-valent noble metal by light irradiation and is supported on the surface of the photocatalyst particles.
  • the noble metal include Cu, Pt, Au, Pd, Ag, Ru, Ir, and Rh.
  • the precursor include hydroxides, nitrates, sulfates, halides, organic acid salts, carbonates, and phosphates of these noble metals.
  • the noble metal is preferably Cu, Pt, Au, or Pd, and among these, Pt is particularly preferable.
  • Cu As a precursor of Cu, for example, copper nitrate (Cu (NO 3 ) 2 ), copper sulfate (CuSO 4 ), copper chloride (CuCl 2 , CuCl), copper bromide (CuBr 2 , CuBr), copper iodide (CuI) , Copper iodate (CuI 2 O 6 ), copper copper chloride (Cu (NH 4 ) 2 Cl 4 ), copper oxychloride (Cu 2 Cl (OH) 3 ), copper acetate (CH 3 COOCu, (CH 3 COO) 2 Cu), copper formate ((HCOO) 2 Cu), copper carbonate (CuCO 3 ), copper oxalate (CuC 2 O 4 ), copper citrate (Cu 2 C 6 H 4 O 7 ), copper phosphate (CuPO 4) ).
  • Pt precursors include platinum chloride (PtCl 2 , PtCl 4 ), platinum bromide (PtBr 2 , PtBr 4 ), platinum iodide (PtI 2 , PtI 4 ), potassium tetrachloroplatinate (K 2 PtCl 4 ).
  • Au precursor examples include gold chloride (AuCl), gold bromide (AuBr), gold iodide (AuI), gold hydroxide (Au (OH) 2 ), tetrachloroauric acid (HAuCl 4 ), tetra
  • Au precursor examples include gold chloride (AuCl), gold bromide (AuBr), gold iodide (AuI), gold hydroxide (Au (OH) 2 ), tetrachloroauric acid (HAuCl 4 ), tetra
  • Au precursor examples include gold chloride (AuCl), gold bromide (AuBr), gold iodide (AuI), gold hydroxide (Au (OH) 2 ), tetrachloroauric acid (HAuCl 4 ), tetra
  • K chloroaurate K tetrabromoaurate (KAuBr 4 ).
  • Examples of the precursor of Pd include palladium acetate ((CH 3 COO) 2 Pd), palladium chloride (PdCl 2 ), palladium bromide (PdBr 2 ), palladium iodide (PdI 2 ), palladium hydroxide (Pd ( OH) 2 ), palladium nitrate (Pd (NO 3 ) 2 ), palladium sulfate (PdSO 4 ), potassium tetrachloropalladate (K 2 (PdCl 4 )), potassium tetrabromopalladate (K 2 (PdBr 4 )) , Tetraammine palladium chloride (Pd (NH 3 ) 4 Cl 2 ), tetraammine palladium bromide (Pd (NH 3 ) 4 Br 2 ), tetraammine palladium nitrate (Pd (NH 3 ) 4 (NO 3 ) 2 ), tetraammine palladium tetra
  • the noble metal precursors may be used alone or in combination of two or more.
  • the amount used is usually 0.01 parts by mass or more in terms of the amount of photocatalyst particles used in terms of 100 parts by mass in terms of noble metal atoms, and usually 1 part by mass or less in that an effect commensurate with the cost is obtained. It is.
  • the amount of the noble metal precursor used is 0.05 to 0.6 parts by mass, more preferably, with respect to 100 parts by mass of the photocatalyst particles in terms of noble metal atoms. 0.05 to 0.2 parts by mass.
  • the amount of the precursor of the noble metal converted to a noble metal atom is not less than 0.01 parts by mass with respect to the amount of photocatalyst particles used of 100 parts by mass.
  • the virus titer of a virus having an envelope and not having an envelope can be reduced by 1.5 (Log 10 TCID 50 / ml) or more, and such a virus can be inactivated.
  • the photocatalyst particle dispersion in which the precursor of the noble metal is dissolved is used as a raw material dispersion.
  • a sacrificial agent is added to the raw material dispersion.
  • the sacrificial agent include alcohols such as ethanol, methanol, and propanol, ketones such as acetone, and carboxylic acids such as oxalic acid.
  • the sacrificial agent may be used by dissolving in a suitable solvent, or may be used as a solid.
  • the sacrificial agent is added to the raw material dispersion after light irradiation for a certain period of time, and further light irradiation is performed.
  • the amount of the sacrificial agent is usually 0.001 to 0.3 times by mass, preferably 0.005 to 0.1 times by mass with respect to the dispersion medium. If the amount of the sacrificial agent used is less than 0.001 times by mass, the noble metal is insufficiently supported on the photocatalyst particles, and if it exceeds 0.3 times by mass, the amount of sacrificial agent is excessive and an effect commensurate with the cost cannot be obtained. .
  • the raw material dispersion is irradiated with light.
  • You may perform irradiation of the light to a raw material dispersion liquid, stirring. Irradiation may be performed from inside or outside the tube while passing the raw material dispersion through a transparent glass or plastic tube, or this may be repeated.
  • the light source is not particularly limited as long as it can irradiate light having energy higher than the band gap of the photocatalyst particles, and specific examples include germicidal lamps, mercury lamps, light emitting diodes, fluorescent lamps, halogen lamps, xenon lamps, solar Light can be used.
  • the wavelength of the irradiated light is usually 180 nm to 500 nm.
  • the light irradiation time is usually 20 minutes or longer, preferably 1 hour or longer, and usually 24 hours or shorter, preferably 6 hours or shorter, before and after the addition of the sacrificial agent.
  • the time exceeds 24 hours, most of the precursors of the noble metal have been supported as noble metals by that time, and an effect commensurate with the cost of light irradiation cannot be obtained.
  • the precious metal is not uniformly supported, and high antiviral activity cannot be obtained.
  • PH adjustment In the present invention, light irradiation is performed while maintaining the pH of the raw material dispersion at 2.5 to 4.5, preferably 2.8 to 4.0.
  • the pH of the dispersion gradually changes to acidic, so that a base is usually added to maintain the pH within the range specified in the present invention. do it. Thereby, a noble metal-supported photocatalyst dispersion with excellent dispersibility is obtained.
  • Examples of the base include aqueous solutions of ammonia, sodium hydroxide, potassium hydroxide, magnesium hydroxide, calcium hydroxide, strontium hydroxide, barium hydroxide, lanthanum hydroxide, etc. Among them, ammonia and sodium hydroxide are used. It is preferable to use it.
  • the amount of dissolved oxygen in the raw material dispersion is adjusted to 1.0 mg / L or less, preferably 0.7 mg / L or less as necessary.
  • the amount of dissolved oxygen can be adjusted, for example, by blowing a gas containing no oxygen into the raw material dispersion, and examples of the gas include nitrogen and rare gases (helium, neon, argon, krypton, etc.). .
  • the amount of dissolved oxygen exceeds 1.0 mg / L, a reduction reaction of dissolved oxygen occurs in addition to the loading of the precursor of the noble metal, the loading of the noble metal becomes uneven, and high antiviral activity cannot be obtained.
  • the amount of dissolved oxygen is reduced to a predetermined value or less, light irradiation is performed, and after addition of the sacrificial agent, the light is further irradiated, so that the noble metal precursor becomes a noble metal, which becomes the photocatalyst particles.
  • Noble metal-supported photocatalyst particles are obtained by being supported on the surface.
  • the noble metal-supported photocatalyst particles are dispersed in the used dispersion medium without settling. Further, the dispersion liquid in which the noble metal-supported photocatalyst particles are dispersed is easy to handle because of the excellent dispersibility of the noble metal-supported photocatalyst particles, and also exhibits high antiviral activity.
  • the photocatalyst particles of the present invention are 4.0 ⁇ 10 17 or more, preferably 6.0 ⁇ 10 17 per 1 g of photocatalyst particles when irradiated with visible light in a dispersion state in which the photocatalyst particles are dispersed in water. As described above, more preferably 7.5 ⁇ 10 17 or more OH radicals are generated. When the amount of OH radicals produced is less than 4.0 ⁇ 10 17 , sufficient antiviral properties cannot be obtained under visible light irradiation. Therefore, when the amount of OH radicals produced is 4.0 ⁇ 10 17 or more, sufficient antiviral properties can be obtained under irradiation with visible light.
  • the amount of radical generated is determined by observing the ESR spectrum after irradiating the noble metal-supported photocatalyst dispersion with visible light in the presence of DMPO (5,5-dimethyl-1-pyrroline-N-oxide), which is a radical scavenger. Then, an area value of a signal is obtained for the obtained spectrum and calculated from the area value.
  • DMPO 5,5-dimethyl-1-pyrroline-N-oxide
  • irradiation with visible light is performed at room temperature and in the atmosphere for 20 minutes using a white light emitting diode as a light source and an illuminance of 20000 lux.
  • the measurement of the ESR spectrum is performed in a state in which the light from a fluorescent lamp having an illuminance of less than 500 lux is irradiated as room light using EMX-Plus (manufactured by BRUKER) after irradiation with visible light for 20 minutes.
  • the measurement conditions of the ESR spectrum are as follows. Temperature: Room temperature, Pressure: Atmospheric pressure, Microwave Frequncy: 9.86GHz, Microwave Power: 3.99mW, Center Field: 3515G, Sweep Width: 100G, Conv.
  • the ESR spectrum of DMPO-OH which is an OH radical adduct of DMPO, is compared with the ESR spectrum of a substance having a known number of radicals.
  • a relational expression between the area obtained from the ESR spectrum and the number of radical species is obtained by the following procedure.
  • 4-hydroxy-TEMPO is used as a substance with a known radical number.
  • 0.17621 g of 4-hydroxy-TEMPO (4-Hydroxy-2,2,6,6-tetramethyl-piperidine-1-oxyl) (purity 98%) is dissolved in 100 mL of water.
  • the liquid obtained is designated as A.
  • B Take 1 mL of B and add water to make 100 mL.
  • C be the resulting liquid.
  • the concentration is 0.001 mM.
  • the number y1 of OH radicals after irradiation with the white light-emitting diode is calculated from the ESR spectrum of DMPO-OH and the first-order linear approximation calculated using the known concentration of 4-hydroxy-TEMPO. Further, the number of OH radicals y2 contained in the noble metal-supported photocatalyst dispersion before light irradiation is calculated in the same manner, and the difference (y1-y2) is the number of OH radicals generated by irradiation of the white light emitting diode.
  • the photocatalyst particle dispersion or the noble metal-supported photocatalyst dispersion used in the present invention may contain various known additives as long as the effects of the present invention are not impaired.
  • additives include silicon compounds such as amorphous silica, silica sol, water glass, alkoxysilane, and organopolysiloxane, aluminum compounds such as amorphous alumina, alumina sol, and aluminum hydroxide, and aluminosilicates such as zeolite and kaolinite.
  • Alkaline earth metal oxides such as salts, magnesium oxide, calcium oxide, strontium oxide, barium oxide, alkaline earth metal hydroxides such as magnesium hydroxide, calcium hydroxide, strontium hydroxide, barium hydroxide, Ti, Zr , Hf, V, Nb, Ta, Cr, Mo, W, Mn, Tc, Re, Fe, Co, Ni, Ru, Rh, Os, Ir, Ag, Zn, Cd, Ga, In, Tl, Ge, Sn , Pb, Bi, La, Ce and other metal element hydroxides and oxides, zirco oxalate Um, calcium phosphate, molecular sieve, active carbon, a polycondensation product of an organopolysiloxane compound, phosphate, a fluorine-based polymer, silicone-based polymers, acrylic resins, polyester resins, melamine resins, urethane resins, alkyd resins. When these additives are added and used, they can be used alone or in
  • the additive can also be used as a binder for holding the photocatalyst particles more firmly on the surface of the substrate when the photocatalyst layer is formed on the surface of the substrate using the photocatalyst.
  • binder component for the photocatalyst layer examples include zirconium compounds such as zirconium formate, zirconium glycolate, zirconium oxalate, zirconium hydroxide and zirconium oxide; tin compounds such as tin hydroxide and tin oxide; niobium hydroxide and oxide Niobium compounds such as niobium; silicon alkoxides such as tetraethoxysilane (ethyl silicate), tetramethoxysilane (methyl silicate), methyltriethoxysilane, and methyltriethoxysilane; silicon compounds such as colloidal silica and silicon oxide These can be used alone or in combination of two or more.
  • the amount of the binder component contained in the photocatalyst layer is 3 to 40 parts by mass, preferably 4 to 20 parts by mass in terms of oxide with respect to 100 parts by mass of the photocatalyst layer.
  • the amount of the binder is less than 3 parts by mass, the force for holding the photocatalyst particles in the photocatalyst layer becomes weak, and problems such as the photocatalyst particles falling off easily occur.
  • the amount of the binder exceeds 40 parts by mass, the amount of the binder component that covers the surface of the photocatalyst particles increases, and sufficient antiviral performance cannot be obtained.
  • the photocatalyst structure used in the present invention comprises a photocatalyst layer on the surface, and usually comprises a photocatalyst layer on the substrate surface.
  • the photocatalyst layer is prepared by a conventionally known film-forming method such as mixing the noble metal-supported photocatalyst particle dispersion and a binder, applying this to the surface of the substrate (product), and volatilizing the dispersion medium. Can be formed.
  • the film thickness of the photocatalyst body layer is not particularly limited, and may usually be appropriately set in the range of several tens of nanometers to several millimeters according to the application.
  • the photocatalyst layer may be formed on any part as long as it is an inner surface or an outer surface of the base material (product).
  • the photocatalyst layer is a surface irradiated with light (visible light) and a virus It is preferably formed on a surface that is continuously or intermittently connected to an existing location.
  • the material of the base material is not particularly limited as long as the formed photocatalyst layer can be held with sufficient strength to be practically used.
  • any material such as plastic, metal, ceramics, wood, concrete, paper, etc. It can target products consisting of
  • antiviral agents can be used for building materials such as ceiling materials, tiles, glass, wallpaper, wall materials, films, floors, etc., automotive interior materials (automobile instrument panels, automotive seats, automotive ceiling materials, automotive products).
  • Parvovirus B19 of the family Parvoviridae, cat parvo which is a virus with a size of 15 to 30 nm and no envelope when used as a base material that can be contacted by an unspecified number of people, such as straps, elevator buttons, etc.
  • Viruses canine parvovirus, goose parvovirus, swine parvovirus, picornaviridae poliovirus, Telovirus, human bar echovirus, human rhinovirus AB, hepatitis A virus, encephalomyocarditis virus, equine rhinitis virus B, swine teshovirus, aichivirus, Astroviridae human astrovirus, ubiastrovirus, It can inactivate turkey astrovirus, duck astrovirus, porcine circovirus of the circoviridae, chicken anemia virus, torque tenovirus (TT virus).
  • TT virus torque tenovirus
  • BET specific surface area The BET specific surface area of the photocatalyst particles was measured by a nitrogen adsorption method using a specific surface area measuring device (“Monosorb” manufactured by Yuasa Ionics).
  • Average dispersed particle size (nm) The particle size distribution was measured using a submicron particle size distribution measuring device (“N4Plus” manufactured by Coulter, Inc.), and the result obtained by automatically performing the monodisperse mode analysis with the software attached to this device was used as the average dispersed particle size. .
  • Crystalline X-ray diffraction spectrum was measured using an X-ray diffractometer (“RINT2000 / PC” manufactured by Rigaku Corporation), and the crystal form was determined from the spectrum.
  • Dissolved oxygen The dissolved oxygen in the raw material dispersion was measured using a dissolved oxygen meter ("OM-51" manufactured by Horiba, Ltd.).
  • Antiviral properties were evaluated by measuring the virus titer of goose parvovirus by irradiation with visible light from a fluorescent lamp. That is, spin coater (“1H-Mikasa” manufactured by Mikasa Co., Ltd.) was applied to a glass plate (5 cm ⁇ 5 cm ⁇ 2 mm) so that the obtained photocatalyst coating liquid was 1 g / m 2 in terms of solid content conversion per unit area. D7 ”) and uniformly formed on one side of the glass plate. Next, this glass plate was dried by holding it in the air at 130 ° C. for 10 minutes in the air, thereby forming a photocatalyst layer on one side of the glass plate.
  • the photocatalyst layer has an ultraviolet intensity of 2 mW / cm 2 (measured by attaching a UV receiver “UD-36” to Topcon's UV intensity meter “UVR-2”). This was irradiated for a period of time and used as a sample for measuring antiviral activity.
  • GPV-IHC (DE15DEF25 2011/2/23) was used for the goose parvovirus. That is, inoculate the photocatalyst layer with a test solution containing a virus, put a coating film on the photocatalyst layer, and make a close contact, and store it at room temperature (25 ⁇ 5 ° C.) under visible light irradiation or shading for 6 hours.
  • the virus titer was determined as the logarithmic value (Log TCID 50 / ml) of 50% tissue culture infectious amount using Muscovy duck embryo fibroblast (MDEF).
  • a test solution containing virus and MDEF were prepared in the following maintenance medium (MM) or growth medium (GM).
  • MM maintenance medium
  • FBS fetal bovine serum
  • GM growth medium
  • CPE cytopathic effect
  • the recovered virus solution was transferred to a microtube, treated with a centrifuge at 15000 rpm for 3 minutes, and the titer of the remaining virus was measured on the supernatant.
  • the virus titer was measured by inoculating a 96-well tissue culture plate with 4 wells of each diluted dilution of the virus solution 10 times with MM. Before inoculation, GM was removed from MDEF, and 100 ⁇ l of diluted virus solution was inoculated therein. The CPE at 7 days after the inoculation was observed, and the virus titer (50% tissue culture infectious dose per ml: TCID 50 / ml) was calculated from the number of positive holes at each dilution by the Behrens Kerber method. )
  • Evaluation of antiviral property was performed simultaneously using three samples for measuring antiviral activity, and the evaluation was performed using the average value of logarithmic values of these three virus titers.
  • Irradiation with visible light uses a commercially available white fluorescent lamp (20 W, 2) as a light source, and is included in the fluorescent lamp from above the photocatalyst layer on which the coating film is placed through an acrylic resin plate (“N113” manufactured by Nitto Resin Kogyo). The visible light was irradiated. At this time, irradiation in the vicinity of the coating film was set to 1000 lux (measured by Minolta “T-10”).
  • the measurement limit of the logarithmic value of the virus titer was 1.5.
  • Example 1 1 kg of tungsten oxide particles (manufactured by Nippon Inorganic Chemical Co., Ltd.) was added to 4 kg of ion exchange water as a dispersion medium and mixed to obtain a mixture. This mixture was dispersed using a wet medium stirring mill to obtain a tungsten oxide particle dispersion.
  • the average dispersed particle diameter of the tungsten oxide particles in the obtained tungsten oxide particle dispersion was 118 nm. Moreover, when a part of this dispersion was vacuum-dried to obtain a solid content, the BET specific surface area of the obtained solid content was 40 m 2 / g.
  • the mixture before dispersion treatment was similarly vacuum dried to obtain a solid content, and the solid content of the mixture before dispersion treatment and the solid content after dispersion treatment were measured and compared with each other, The peak shape was the same, and no change in crystal form due to dispersion treatment was observed. At this time, when the obtained dispersion was kept at 20 ° C. for 24 hours, no solid-liquid separation was observed during storage.
  • tungsten oxide particle dispersion To this tungsten oxide particle dispersion, an aqueous solution of hexachloroplatinic acid (H 2 PtCl 6 ) is added so that hexachloroplatinic acid is 0.12 parts by mass with respect to 100 parts by mass of tungsten oxide particles in terms of platinum atoms, A hexachloroplatinic acid-containing tungsten oxide particle dispersion was obtained as a raw material dispersion.
  • the solid content (amount of tungsten oxide particles) contained in 100 parts by mass of this dispersion was 17.6 parts by mass (solid content concentration 17.6% by mass).
  • This is a light irradiation device consisting of a glass tube (inner diameter: 37 mm, height: 360 mm) with an underwater sterilization lamp (manufactured by Sankyo Electric Co., Ltd., GLD15MQ), and while distributing 1200 g of the raw material dispersion at a rate of 1 liter per minute, The pH of the dispersion was adjusted to 3.0. Nitrogen was blown at a rate of 2 L / min.
  • 83.28 g of high purity ethyl silicate (manufactured by Tama Chemical) was added to a solution obtained by mixing 86.52 g of ethanol with 30.2 g of water, and mixed and stirred to obtain a binder for a photocatalyst layer.
  • the amount of the binder component contained in the photocatalyst layer obtained from this photocatalyst coating liquid was 5 parts by mass with respect to 100 parts by mass of the photocatalyst layer in terms of oxide.
  • the virus titer against goose parvovirus that was 4.2 (Log 10 TCID 50 / ml) when the light irradiation time was 0 hour was 1.5 (Log 10 TCID 50 / ml) (below detection limit).
  • Viral titer decreased over 2.7.
  • Example 1 When antiviral properties were evaluated in the same manner as in Example 1 except that raw glass without a photocatalyst layer was used, the goose was 4.2 when the light irradiation time was 0 hour. The virus titer against parvovirus was 3.9 after 6 hours of light irradiation. The decrease in virus titer was 0.3.
  • parvovirus B19 By using the antiviral agent obtained in Example 1 as a ceiling material constituting the ceiling, parvovirus B19, cat parvovirus, dog parvovirus, goose parvovirus, swine parvovirus in indoor space by light irradiation with indoor lighting.
  • Poliovirus, enterovirus, human bar echovirus, human rhinovirus AB, hepatitis A virus, encephalomyocarditis virus, equine rhinitis virus B, swine teshovirus, aichi virus, human astrovirus, siastrovirus, turkey Astroviruses, duck astroviruses, porcine circoviruses, and chicken anemia viruses can be inactivated.
  • parvovirus B19 By using the antiviral agent obtained in Example 1 on an indoor wall surface, parvovirus B19, cat parvovirus, dog parvovirus, goose parvovirus, swine parvovirus, poliovirus in indoor space by light irradiation with indoor lighting.
  • Enterovirus human bar echo virus, human rhinovirus AB, hepatitis A virus, encephalomyocarditis virus, equine rhinitis virus B, swine teshovirus, aichi virus, human astrovirus, ubiastrovirus, turkey astrovirus, It can inactivate duck astrovirus, porcine circovirus and chicken anemia virus.
  • B19 cat parvovirus, dog parvovirus, goose parvovirus, swine parvovirus, poliovirus, enterovirus, human bar echovirus, human rhinovirus AB, hepatitis A virus, encephalomyocarditis virus, equine rhinitis B virus, It can inactivate swine tesovirus, aichi virus, human astrovirus, usciatrovirus, turkey astrovirus, duck astrovirus, porcine circovirus and chicken anemia virus.
  • a photocatalyst layer can be formed on the surface of the wallpaper.
  • Parvovirus B19 cat parvovirus, dog parvovirus, goose parvovirus, swine parvovirus, poliovirus, enterovirus, human bar echo virus, human rhinovirus A to B, A type in indoor space by light irradiation by indoor lighting Inactivate hepatitis virus, encephalomyocarditis virus, equine rhinitis virus B, swine teshovirus, eye virus, human astrovirus, siastrovirus, turkey astrovirus, duck astrovirus, porcine circovirus, chicken anemia virus Can do.
  • the antiviral agent obtained in Example 1 can be used on an indoor floor surface or applied to the floor surface to form a photocatalyst layer on the floor surface.
  • Parvovirus B19 cat parvovirus, canine parvovirus, goose parvovirus, swine parvovirus, poliovirus, enterovirus, human bar echovirus, human rhinovirus AB, hepatitis A virus, encephalomyocarditis virus in indoor space , Equine rhinitis B virus, swine teshovirus, ichi virus, human astrovirus, ussia trovirus, turkey astrovirus, duck astrovirus, porcine circovirus, chicken anemia virus can be inactivated.
  • Example 6 By applying the antiviral agent obtained in Example 1 to the surface of an automotive interior material such as an automotive instrument panel, an automotive seat, an automotive ceiling material, or the interior of an automotive glass, It is possible to form a photocatalyst layer on the surface, and thereby, in the interior space by light irradiation by interior illumination, parvovirus B19, cat parvovirus, dog parvovirus, goose parvovirus, swine parvovirus, poliovirus, enterovirus, Human bar echo virus, human rhinovirus AB, hepatitis A virus, encephalomyocarditis virus, equine rhinitis virus B, swine teshovirus, eye virus, human astrovirus, siastrovirus, turkey astrovirus, duck astrovirus , Porcine circovirus, chicken Capable of inactivating the blood virus.
  • parvovirus B19 cat parvovirus
  • dog parvovirus dog parvovirus
  • goose parvovirus swine parvovirus
  • Parvovirus B19 cat parvovirus
  • Parvovirus B19 cat parvovirus, dog parvovirus, goose parvovirus, swine parvovirus, poliovirus, enterovirus, human bar echovirus, human rhinovirus AB, hepatitis A virus, encephalomyocarditis virus, horse It can inactivate rhinitis B virus, swine tesovirus, ichi virus, human astrovirus, ussia trovirus, turkey astrovirus, duck astrovirus, porcine circovirus and chicken anemia virus.
  • parvovirus B19 cat parvovirus, dog parvovirus, goose parvovirus, swine parvovirus, poliovirus, enterovirus, human bar echovirus, human rhinovirus on the surface of the base material by light irradiation with indoor lighting.
  • Virus A to B Hepatitis A virus, Encephalomyocarditis virus, Equine rhinitis virus B, Swine teshovirus, Aichi virus, Human astrovirus, Ussia trovirus, Turkey astrovirus, Duck astrovirus, Porcine circovirus, Chicken anemia Viruses can be inactivated.
  • a photocatalyst layer can be formed on the substrate surface, Parvovirus B19, cat parvovirus, canine parvovirus, goose parvovirus, swine parvovirus, poliovirus, enterovirus, human bar echovirus, human rhinovirus A to B, A on the surface of the substrate by light irradiation with indoor lighting Inactivate hepatitis B virus, encephalomyocarditis virus, equine rhinitis B virus, swine teshovirus, aichi virus, human astrovirus, ussia trovirus, turkey astrovirus, duck astrovirus, porcine circovirus, chicken anemia virus be able to.
  • Example 11 By providing or affixing the antiviral agent obtained in Example 1 on the surface of home appliances such as personal computers, printers, scanners, copiers, fax machines, telephones, televisions, stereos, washing machines, stoves, dryers, microwave ovens, etc.
  • a photocatalyst layer can be formed on the surface of the base material, whereby parvovirus B19, cat parvovirus, dog parvovirus, goose parvovirus, swine parvovirus on the base material surface by light irradiation with indoor lighting.
  • Poliovirus, enterovirus, human bar echovirus, human rhinovirus AB, hepatitis A virus, encephalomyocarditis virus, equine rhinitis virus B, swine teshovirus, aichi virus, human astrovirus, siastrovirus, turkey Astrovirus, duck ass B virus, porcine circovirus, a chicken anemia virus may be inactivated.
  • a photocatalyst layer By applying and drying the antiviral agent obtained in Example 1 on the surface of cocoons, tatami mats, shoji, etc., a photocatalyst layer can be formed on the surface of the base material.
  • the parvovirus B19 cat parvovirus
  • canine parvovirus canine parvovirus, goose parvovirus, swine parvovirus, poliovirus, enterovirus, human bar echovirus, human rhinovirus AB, hepatitis A virus, brain It can inactivate myocarditis virus, equine rhinitis B virus, swine teshovirus, ichi virus, human astrovirus, ussia trovirus, turkey astrovirus, duck astrovirus, porcine circovirus and chicken anemia virus.
  • a photocatalyst layer By forming or sticking the antiviral agent obtained in Example 1 on the surface of the film, a photocatalyst layer can be formed on the surface of the film, and this film can be used as a building material, furniture, wall, floor, ceiling, Parvovirus B19, cat parvovirus, dog parvovirus on the surface of the film by irradiating light with indoor lighting by constructing it on the touch panel, equipment buttons, doors, door knobs, handrails of stairs, interior walls of aircraft and train cabins, etc.

Abstract

Provided are: an anti-viral agent which can exhibit a high anti-viral activity even under the irradiation with visible light and can inactivate a virus; and a method for inactivating a virus. An anti-viral agent containing a photocatalyst structure that has, formed on the surface thereof, a photocatalyst layer comprising photocatalyst particles on which noble metal particles are supported and a binder, the anti-viral agent being characterized in that the noble metal particles are supported in an amount of 0.01 to 1 part by mass relative to 100 parts by mass of the photocatalyst particles and the anti-viral agent can inactivate a virus having a size of 15 to 30 nm and having no envelope.

Description

ウイルスを不活性化する抗ウイルス剤及びウイルスを不活性化する方法Antiviral agent for inactivating virus and method for inactivating virus
 本発明は、ウイルスを不活性化する抗ウイルス剤及びウイルスを不活性化する方法に関する。 The present invention relates to an antiviral agent for inactivating viruses and a method for inactivating viruses.
 エンベロープを有さないウイルスは、インフルエンザウイルス等のエンベロープを有するウイルスと比べて高い耐性を持ち、一般的なアルコール系の消毒薬では不活性化できないことが知られている。例えば、ガチョウパルボウイルスにおいては、濃度4,000ppmの高濃度の次亜塩素酸ナトリウムでようやく不活性化することができるが、このような高濃度の消毒薬を居住空間に散布することは、実質的に不可能である。(非特許文献1) It is known that viruses having no envelope have higher resistance than viruses having an envelope such as influenza virus, and cannot be inactivated by general alcohol-based disinfectants. For example, in goose parvovirus, it can finally be inactivated with a high concentration of sodium hypochlorite at a concentration of 4,000 ppm. Is impossible. (Non-Patent Document 1)
 また、鑓型形状の結晶粒子の光触媒体と球型形状の結晶粒子の光触媒体とがOH基を通じて結合した抗ウイルス剤が、蛍光灯の照射下で鳥インフルエンザウイルスを不活性化することが知られている(特許文献1)。しかし、このような従来の光触媒体を含む抗ウイルス剤では、可視光照射下での活性酸素種の生成量が少ない為、パルボウイルス科、ピコルナウイルス科、アストロウイルス科等の大きさが15~30nmと小さく、しかもエンベロープを有さない高い耐性をもつウイルスでは殆ど不活性化できない。 It is also known that an antiviral agent in which a photocatalyst of a bowl-shaped crystal particle and a photocatalyst of a spherical crystal particle are bonded through an OH group inactivates avian influenza virus under irradiation of a fluorescent lamp. (Patent Document 1). However, since the antiviral agent containing such a conventional photocatalyst has a small amount of reactive oxygen species generated under visible light irradiation, the size of Parvoviridae, Picornaviridae, Astroviridae, etc. is 15 A virus with a small resistance of ˜30 nm and a high resistance without an envelope can hardly be inactivated.
 このため、高濃度の塩素系消毒薬を使うことなく通常の居住空間で利用できる抗抗ウイルス剤及びウイルスを不活性化する方法であって、高い耐性をもつウイルスを不活性化する抗ウイルス剤及びウイルスを不活性化する方法が求められていた。 Therefore, it is a method for inactivating an anti-antiviral agent and a virus that can be used in a normal living space without using a high-concentration chlorine-based disinfectant, and an anti-viral agent that inactivates a virus with high resistance There has also been a need for a method of inactivating viruses.
特開2008-44869号公報JP 2008-44869 A
 本発明は、可視光照射下でも高い抗ウイルス性を発現して、高い耐性をもつウイルスを不活性化することのできる抗ウイルス剤及びウイルスを不活性化する方法を提供することを目的とする。 An object of the present invention is to provide an antiviral agent capable of expressing a high antiviral property even under irradiation with visible light and inactivating a virus having high resistance, and a method for inactivating the virus. .
 本発明者らは、上記課題を解決すべく鋭意検討した結果、所定量の貴金属を光触媒体粒子に担持させることにより抵抗力の極めて高いエンベロープを有しない比較的小さなウイルスに対しても不活性化することができることを見出し、本発明を完成するに至った。
 すなわち、本発明は、
(1)貴金属粒子が担持された光触媒体粒子とバインダーとを含んでなる光触媒体層を表面に備える光触媒構造体を含有する抗ウイルス剤であって、前記光触媒体粒子100質量部に対して前記貴金属粒子が0.01質量部~1質量部担持されており、
 15~30nmの大きさを有しかつエンベロープを有さないウイルスを不活性化させる抗ウイルス剤、
(2)前記光触媒体粒子が酸化タングステン粒子である、(1)に記載の抗ウイルス剤、
(3)前記貴金属がCu、Pt、Au、Pd、Ag、Ru、Ir及びRhからなる群より選ばれる少なくとも1種の貴金属である、(1)又は(2)に記載の抗ウイルス剤、
(4)前記バインダーがシリコンアルコキシドまたは酸化ジルコニウムからなる、(1)~(3)のいずれかに記載の抗ウイルス剤、
(5)貴金属粒子が担持された光触媒体粒子とバインダーとを含んでなる光触媒体層を表面に備える光触媒構造体を含有する抗ウイルス剤であって、前記光触媒体粒子100質量部に対して前記貴金属粒子が0.01質量部~1質量部担持されている、抗ウイルス剤を準備する工程と、前記抗ウイルス剤を、15~30nmの大きさを有しかつエンベロープをもたないウイルスに接触させる工程と、前記抗ウイルス剤に、光触媒体粒子を光励起させる光を照射する工程と、を備える、ウイルスを不活性化する方法、
(6)前記光触媒体粒子が酸化タングステン粒子である、(5)に記載のウイルスを不活性化する方法、
(7)前記貴金属がCu、Pt、Au、Pd、Ag、Ru、Ir及びRhからなる群より選ばれる少なくとも1種の貴金属である(5)又は(6)に記載のウイルスを不活性化する方法、
(8)前記バインダーがシリコンアルコキシドからなる(5)~(7)のいずれかに記載のウイルスを不活性化する方法、
(9)天井材、タイル、ガラス、壁紙、壁材、フィルム、床、襖、畳、障子からなる群より選択された建築資材、または、自動車用インストルメントパネル、自動車用シート、自動車用天井材、自動車用ガラスからなる群より選択された自動車内装材、または、冷蔵庫、エアコン、パソコン、プリンター、スキャナー、コピー機、ファックス、電話機、テレビ、ステレオ、洗濯機、ストーブ、ドライヤー、電子レンジからなる群より選択された家電製品、または、机、椅子、テーブル、箪笥、収納棚からなる群より選択された家具、または、衣類、カーテンからなる群より選択された繊維製品、または、手摺り、電車のつり革、エレベーターのボタンからなる群より選択された不特定多数の人が接触する基材への、(1)~(4)のいずれかに記載の抗ウイルス剤の使用、
にある。
 なお、本発明において、「ウイルスを不活性化する」とは、ベーレンス・ケルベル法でウイルス力価(1mlあたりの50%組織培養感染量:TCID50/ml)を算出した場合に、ウイルス力価の対数値(log10)が1.5以上、好ましくは2.5以上低下することを意味する。
As a result of intensive studies to solve the above problems, the present inventors inactivate even a relatively small virus having no extremely high envelope by supporting a predetermined amount of noble metal on the photocatalyst particles. As a result, the present invention has been completed.
That is, the present invention
(1) An antiviral agent comprising a photocatalyst structure provided on the surface with a photocatalyst layer comprising a photocatalyst particle carrying a noble metal particle and a binder, and the antiviral agent comprising 100 parts by mass of the photocatalyst particle 0.01 to 1 part by mass of noble metal particles are supported,
An antiviral agent that inactivates a virus having a size of 15 to 30 nm and having no envelope;
(2) The antiviral agent according to (1), wherein the photocatalyst particles are tungsten oxide particles,
(3) The antiviral agent according to (1) or (2), wherein the noble metal is at least one kind of noble metal selected from the group consisting of Cu, Pt, Au, Pd, Ag, Ru, Ir and Rh,
(4) The antiviral agent according to any one of (1) to (3), wherein the binder comprises silicon alkoxide or zirconium oxide,
(5) An antiviral agent comprising a photocatalyst structure provided on the surface with a photocatalyst layer comprising a photocatalyst particle carrying a noble metal particle and a binder, and the antiviral agent comprising 100 parts by mass of the photocatalyst particle A step of preparing an antiviral agent in which 0.01 to 1 part by mass of noble metal particles are supported, and the antiviral agent is brought into contact with a virus having a size of 15 to 30 nm and having no envelope And a step of irradiating the antiviral agent with light for photoexcitation of the photocatalyst particles, a method for inactivating a virus,
(6) The method for inactivating the virus according to (5), wherein the photocatalyst particles are tungsten oxide particles,
(7) Inactivate the virus according to (5) or (6), wherein the noble metal is at least one noble metal selected from the group consisting of Cu, Pt, Au, Pd, Ag, Ru, Ir, and Rh. Method,
(8) The method for inactivating the virus according to any one of (5) to (7), wherein the binder comprises a silicon alkoxide,
(9) Ceiling material, tile, glass, wallpaper, wall material, film, floor, fence, tatami, shoji selected from the group consisting of shoji, or automotive instrument panel, car seat, car ceiling material Automotive interior materials selected from the group consisting of automotive glass, or the group consisting of refrigerators, air conditioners, personal computers, printers, scanners, photocopiers, fax machines, telephones, TVs, stereos, washing machines, stoves, dryers, microwave ovens More selected household appliances, furniture selected from the group consisting of desks, chairs, tables, bags, storage shelves, textiles selected from the group consisting of clothes, curtains, railings, trains Any one of (1) to (4) for a base material that can be contacted by an unspecified number of people selected from the group consisting of straps and elevator buttons Use of anti-viral agents described,
It is in.
In the present invention, “inactivating the virus” means that when the virus titer (50% tissue culture infectious amount per ml: TCID 50 / ml) is calculated by the Behrens Kerber method, the virus titer is calculated. This means that the logarithmic value (log 10) of γ decreases by 1.5 or more, preferably by 2.5 or more.
 本発明によれば、光触媒体粒子に所定量の貴金属が担持されているため、光触媒構造体の表面に高い耐性をもつウイルスを接触させ、光触媒構造体に蛍光灯等の実用光源を照射するだけで、容易に高い耐性をもつウイルスを不活性化することができる。
 したがって、本発明によれば、可視光照射下でも高い抗ウイルス性を発現して、高い耐性をもつウイルスを不活性化することのできる抗ウイルス剤及びウイルスを不活性化する方法を提供することができる。
According to the present invention, since a predetermined amount of noble metal is supported on the photocatalyst particles, a virus having high resistance is brought into contact with the surface of the photocatalyst structure, and the photocatalyst structure is simply irradiated with a practical light source such as a fluorescent lamp. Thus, it is possible to easily inactivate viruses having high resistance.
Therefore, according to the present invention, there are provided an antiviral agent capable of expressing a high antiviral property even under visible light irradiation and inactivating a virus having high resistance, and a method of inactivating the virus. Can do.
 本発明を実施するための形態を詳細に説明する。以下に示す実施の形態は、本発明の抗ウイルス剤を例示するものであって、本発明を以下に限定するものではない。
(実施の形態1)
 実施の形態1に係る抗ウイルス剤は、貴金属粒子が担持された光触媒体粒子とバインダーとを含んでなる光触媒体層を表面に備える光触媒構造体を含有する抗ウイルス剤であって、前記光触媒体粒子100質量部に対して前記貴金属粒子が0.01質量部~1質量部担持されており、15~30nmの大きさを有しかつエンベロープを有さないウイルスを不活性化させることを特徴とする。
A mode for carrying out the present invention will be described in detail. Embodiment shown below illustrates the antiviral agent of this invention, Comprising: This invention is not limited to the following.
(Embodiment 1)
The antiviral agent according to Embodiment 1 is an antiviral agent comprising a photocatalyst structure having on its surface a photocatalyst layer comprising a photocatalyst particle carrying precious metal particles and a binder. The precious metal particles are supported in an amount of 0.01 to 1 part by mass with respect to 100 parts by mass of the particles, and inactivate viruses having a size of 15 to 30 nm and having no envelope. To do.
 (光触媒体粒子)
 本発明で用いる光触媒体粒子とは、粒子状の光触媒をいう。光触媒としては、金属元素と酸素、窒素、硫黄および弗素との化合物が挙げられる。金属元素としては、例えば、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Mn、Tc、Re、Fe、Co、Ni、Ru、Rh、Pd、Os、Ir、Pt、Cu、Ag、Au、Zn、Cd、Ga、In、Tl、Ge、Sn、Pd、Bi、La、Ceが挙げられる。その化合物としては、これら金属元素の1種類または2種類以上の酸化物、窒化物、硫化物、酸窒化物、酸硫化物、窒弗化物、酸弗化物、酸窒弗化物などが挙げられる。なかでも、酸化タングステンは、可視光線(波長約400nm~約800nm)を照射したとき、高い抗ウイルス活性を示すことから、本発明に好適に用いられる。
(Photocatalyst particles)
The photocatalyst particle used in the present invention refers to a particulate photocatalyst. Examples of the photocatalyst include a compound of a metal element and oxygen, nitrogen, sulfur, and fluorine. Examples of metal elements include Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Tc, Re, Fe, Co, Ni, Ru, Rh, Pd, Os, Ir, Pt, and Cu. , Ag, Au, Zn, Cd, Ga, In, Tl, Ge, Sn, Pd, Bi, La, and Ce. Examples of the compound include one or more oxides, nitrides, sulfides, oxynitrides, oxysulfides, nitrofluorides, oxyfluorides, and oxynitrofluorides of these metal elements. Among these, tungsten oxide is preferably used in the present invention because it exhibits high antiviral activity when irradiated with visible light (wavelength of about 400 nm to about 800 nm).
 この光触媒体粒子は、通常、40nm~250nmの平均分散粒子径を有する。粒子径は小さいほど分散媒中での分散性は向上し、沈降を抑制することが出来るので好ましく、例えば200nm以下が好ましい。 The photocatalyst particles usually have an average dispersed particle diameter of 40 nm to 250 nm. The smaller the particle size, the better the dispersibility in the dispersion medium and the better the suppression of sedimentation. For example, 200 nm or less is preferable.
 かかる光触媒体粒子のうちで、酸化タングステン粒子は、例えば、(i)タングステン酸塩の水溶液に酸を加えることにより、沈殿物としてタングステン酸を得、このタングステン酸を焼成する方法、(ii)メタタングステン酸アンモニウム、パラタングステン酸アンモニウムを加熱することにより熱分解させる方法、(iii)金属状のタングステン粒子を焼成する方法、などによって得ることができる。 Among such photocatalyst particles, the tungsten oxide particles include, for example, (i) a method of adding tungstic acid as a precipitate by adding an acid to an aqueous solution of tungstate, and firing this tungstic acid, (ii) meta It can be obtained by a method of thermally decomposing by heating ammonium tungstate or ammonium paratungstate, or (iii) a method of firing metallic tungsten particles.
(光触媒体分散液)
 光触媒体粒子は、通常、適当な分散媒に分散した光触媒体分散液の状態で、バインダーと混合される。光触媒体分散液は、分散媒中に光触媒体粒子を分散させて調製すればよい。光触媒体粒子を分散媒に分散させる際には湿式媒体撹拌ミルなどの公知の装置で分散処理を施すことが好ましい。
(Photocatalyst dispersion)
The photocatalyst particles are usually mixed with a binder in the state of a photocatalyst dispersion dispersed in an appropriate dispersion medium. The photocatalyst dispersion liquid may be prepared by dispersing photocatalyst particles in a dispersion medium. When dispersing the photocatalyst particles in the dispersion medium, it is preferable to perform a dispersion treatment with a known apparatus such as a wet medium stirring mill.
(分散媒)
 分散媒としては、特に制限はなく、通常は、水を主成分とする水性溶媒が用いられる。具体的には、分散媒は、水単独であってもよいし、水と水溶性有機溶媒との混合溶媒であってもよい。水と水溶性有機溶媒との混合溶媒を用いる場合には、水の含有量が50質量%以上であることが好ましい。水溶性有機溶媒としては、例えば、メタノール、エタノール、プロパノール、ブタノールなどの水溶性アルコール溶媒、アセトン、メチルエチルケトン、エチルセロソルブ、ブチルセロソルブ、酢酸エチル、ジエチルエーテル、等が挙げられる。なお、分散媒は、単独で用いてもよいし、2種以上を併用してもよい。分散媒の使用量は、光触媒体粒子に対して、通常2質量倍~200質量倍である。分散媒の使用量が2質量倍未満では光触媒体粒子が沈降し易くなり、200質量倍を超えると容積効率の点で不利である。
(Dispersion medium)
There is no restriction | limiting in particular as a dispersion medium, Usually, the aqueous solvent which has water as a main component is used. Specifically, the dispersion medium may be water alone or a mixed solvent of water and a water-soluble organic solvent. When a mixed solvent of water and a water-soluble organic solvent is used, the content of water is preferably 50% by mass or more. Examples of the water-soluble organic solvent include water-soluble alcohol solvents such as methanol, ethanol, propanol, and butanol, acetone, methyl ethyl ketone, ethyl cellosolve, butyl cellosolve, ethyl acetate, diethyl ether, and the like. In addition, a dispersion medium may be used independently and may use 2 or more types together. The amount of the dispersion medium used is usually 2 to 200 times the mass of the photocatalyst particles. If the amount of the dispersion medium used is less than 2 mass times, the photocatalyst particles are likely to settle, and if it exceeds 200 mass times, it is disadvantageous in terms of volume efficiency.
(貴金属の前駆体)
 本発明の光触媒体粒子には、貴金属粒子が担持されている。貴金属粒子を担持することにより、光励起により生成した励起電子による酸素の還元反応が促進され、OHラジカル等の活性酸素種の生成量が増加して高い抗ウイルス性能を得ることができる。貴金属粒子の担持は、貴金属の前駆体を用いて、含浸法、共沈法、光電着法等、公知の方法で行うことができるが、これらの中でも貴金属粒子を高分散状態で光触媒体粒子の表面に担持できることから、光電着法で行うのが好ましい。
(Precious metal precursor)
Noble metal particles are supported on the photocatalyst particles of the present invention. By supporting the noble metal particles, the reduction reaction of oxygen by excited electrons generated by photoexcitation is promoted, and the amount of active oxygen species such as OH radicals generated is increased, so that high antiviral performance can be obtained. The noble metal particles can be supported by a known method such as an impregnation method, a coprecipitation method, or a photo-deposition method using a precursor of a noble metal. Among these, the noble metal particles are dispersed in a highly dispersed state in the photocatalyst particles. Since it can carry | support on the surface, it is preferable to carry out by the photo-deposition method.
 貴金属の前駆体としては、分散媒中に溶解し得るものが使用される。かかる前駆体が溶解すると、これを構成する貴金属元素は通常、プラスの電荷を帯びた貴金属イオンとなって、分散媒中に存在する。そして、この貴金属イオンが、光電着の場合、光の照射により0価の貴金属に還元されて、光触媒体粒子の表面に担持される。貴金属としては、例えばCu、Pt、Au、Pd、Ag、Ru、IrおよびRhが挙げられる。その前駆体としては、これら貴金属の水酸化物、硝酸塩、硫酸塩、ハロゲン化物、有機酸塩、炭酸塩、リン酸塩などが挙げられる。これらの中でも高い抗ウイルス活性を得る点から、貴金属は、Cu、Pt、Au、Pdが好ましく、これらの中でも特にPtが好ましい。 As the precious metal precursor, one that can be dissolved in a dispersion medium is used. When such a precursor is dissolved, the noble metal element constituting the precursor usually becomes a noble metal ion having a positive charge and exists in the dispersion medium. In the case of photo-deposition, this noble metal ion is reduced to a zero-valent noble metal by light irradiation and is supported on the surface of the photocatalyst particles. Examples of the noble metal include Cu, Pt, Au, Pd, Ag, Ru, Ir, and Rh. Examples of the precursor include hydroxides, nitrates, sulfates, halides, organic acid salts, carbonates, and phosphates of these noble metals. Among these, from the viewpoint of obtaining high antiviral activity, the noble metal is preferably Cu, Pt, Au, or Pd, and among these, Pt is particularly preferable.
 Cuの前駆体として、例えば硝酸銅(Cu(NO))、硫酸銅(CuSO)、塩化銅(CuCl、CuCl)、臭化銅(CuBr,CuBr)、沃化銅(CuI)、沃素酸銅(CuI)、塩化アンモニウム銅(Cu(NH)Cl)、オキシ塩化銅(CuCl(OH))、酢酸銅(CHCOOCu、(CHCOO)Cu)、蟻酸銅((HCOO)Cu)、炭酸銅(CuCO)、蓚酸銅(CuC)、クエン酸銅(Cu)、リン酸銅(CuPO)が挙げられる。 As a precursor of Cu, for example, copper nitrate (Cu (NO 3 ) 2 ), copper sulfate (CuSO 4 ), copper chloride (CuCl 2 , CuCl), copper bromide (CuBr 2 , CuBr), copper iodide (CuI) , Copper iodate (CuI 2 O 6 ), copper copper chloride (Cu (NH 4 ) 2 Cl 4 ), copper oxychloride (Cu 2 Cl (OH) 3 ), copper acetate (CH 3 COOCu, (CH 3 COO) 2 Cu), copper formate ((HCOO) 2 Cu), copper carbonate (CuCO 3 ), copper oxalate (CuC 2 O 4 ), copper citrate (Cu 2 C 6 H 4 O 7 ), copper phosphate (CuPO 4) ).
 また、Ptの前駆体として、例えば塩化白金(PtCl、PtCl)、臭化白金(PtBr、PtBr)、沃化白金(PtI、PtI)、テトラクロロ白金酸カリウム(KPtCl)、ヘキサクロロ白金酸カリウム(KPtCl)、ヘキサクロロ白金酸(HPtCl)、亜硫酸白金(HPt(SO)OH)、塩化テトラアンミン白金(Pt(NH)Cl)、炭酸水素テトラアンミン白金(C14Pt)、テトラアンミン白金リン酸水素(Pt(NH)HPO)、水酸化テトラアンミン白金(Pt(NH)(OH))、硝酸テトラアンミン白金(Pt(NO)(NH))、テトラアンミン白金テトラクロロ白金((Pt(NH))(PtCl))、ジニトロジアミン白金(Pt(NO)(NH)が挙げられる。 Examples of Pt precursors include platinum chloride (PtCl 2 , PtCl 4 ), platinum bromide (PtBr 2 , PtBr 4 ), platinum iodide (PtI 2 , PtI 4 ), potassium tetrachloroplatinate (K 2 PtCl 4 ). 4 ), potassium hexachloroplatinate (K 2 PtCl 6 ), hexachloroplatinic acid (H 2 PtCl 6 ), platinum sulfite (H 3 Pt (SO 3 ) 2 OH), tetraammineplatinum chloride (Pt (NH 3 ) 4 Cl 2 ), Tetraammineplatinum hydrogen carbonate (C 2 H 14 N 4 O 6 Pt), tetraammineplatinum hydrogen phosphate (Pt (NH 3 ) 4 HPO 4 ), tetraammineplatinum hydroxide (Pt (NH 3 ) 4 (OH) 2 ) , Tetraammineplatinum nitrate (Pt (NO 3 ) 2 (NH 3 ) 4 ), tetraammineplatinum tetrachloroplatinum ((Pt (NH 3 ) 4 ) (PtCl 4 )), dinitrodiamine platinum (Pt (NO 2 ) 2 (NH 3 ) 2 ).
 また、Auの前駆体として、例えば塩化金(AuCl)、臭化金(AuBr)、沃化金(AuI)、水酸化金(Au(OH))、テトラクロロ金酸(HAuCl)、テトラクロロ金酸カリウム(KAuCl)、テトラブロモ金酸カリウム(KAuBr)が挙げられる。 Examples of the Au precursor include gold chloride (AuCl), gold bromide (AuBr), gold iodide (AuI), gold hydroxide (Au (OH) 2 ), tetrachloroauric acid (HAuCl 4 ), tetra Examples thereof include potassium chloroaurate (KAuCl 4 ) and potassium tetrabromoaurate (KAuBr 4 ).
 また、Pdの前駆体として、例えば酢酸パラジウム((CHCOO)Pd)、塩化パラジウム(PdCl)、臭化パラジウム(PdBr)、沃化パラジウム(PdI)、水酸化パラジウム(Pd(OH))、硝酸パラジウム(Pd(NO))、硫酸パラジウム(PdSO)、テトラクロロパラジウム酸カリウム(K(PdCl))、テトラブロモパラジウム酸カリウム(K(PdBr))、テトラアンミンパラジウム塩化物(Pd(NHCl)、テトラアンミンパラジウム臭化物(Pd(NHBr)、テトラアンミンパラジウム硝酸塩(Pd(NH(NO)、テトラアンミンパラジウムテトラクロロパラジウム酸((Pd(NH)(PdCl))、テトラクロロパラジウム酸アンモニウム((NHPdCl)等が挙げられる。 Examples of the precursor of Pd include palladium acetate ((CH 3 COO) 2 Pd), palladium chloride (PdCl 2 ), palladium bromide (PdBr 2 ), palladium iodide (PdI 2 ), palladium hydroxide (Pd ( OH) 2 ), palladium nitrate (Pd (NO 3 ) 2 ), palladium sulfate (PdSO 4 ), potassium tetrachloropalladate (K 2 (PdCl 4 )), potassium tetrabromopalladate (K 2 (PdBr 4 )) , Tetraammine palladium chloride (Pd (NH 3 ) 4 Cl 2 ), tetraammine palladium bromide (Pd (NH 3 ) 4 Br 2 ), tetraammine palladium nitrate (Pd (NH 3 ) 4 (NO 3 ) 2 ), tetraammine palladium tetra chloropalladate acid ((Pd (NH 3) 4 ) (PdCl 4)), Tiger and chloromethylstyrene palladium ammonium ((NH 4) 2 PdCl 4 ) and the like.
 貴金属の前駆体は、それぞれ単独で、または2種類以上を組み合わせて使用される。その使用量は、貴金属原子に換算して、光触媒体粒子の使用量100質量部に対して、通常0.01質量部以上であり、コストに見合った効果が得られる点で通常1質量部以下である。好ましくは、貴金属の前駆体の使用量は、貴金属原子に換算して、光触媒体粒子の使用量100質量部に対して、0.05質量部~0.6質量部であり、さらに好ましくは、0.05~0.2質量部である。貴金属の前駆体の使用量が、貴金属原子に換算して、光触媒粒子の使用量100質量部に対して、0.01質量部以上とすることにより、耐性の極めて高い、15~30nmの大きさを有しかつエンベロープを有さないウイルスのウイルス力価を1.5(Log10TCID50/ml)以上低下させることができ、このようなウイルスを不活性化することができる。 The noble metal precursors may be used alone or in combination of two or more. The amount used is usually 0.01 parts by mass or more in terms of the amount of photocatalyst particles used in terms of 100 parts by mass in terms of noble metal atoms, and usually 1 part by mass or less in that an effect commensurate with the cost is obtained. It is. Preferably, the amount of the noble metal precursor used is 0.05 to 0.6 parts by mass, more preferably, with respect to 100 parts by mass of the photocatalyst particles in terms of noble metal atoms. 0.05 to 0.2 parts by mass. The amount of the precursor of the noble metal converted to a noble metal atom is not less than 0.01 parts by mass with respect to the amount of photocatalyst particles used of 100 parts by mass. The virus titer of a virus having an envelope and not having an envelope can be reduced by 1.5 (Log 10 TCID 50 / ml) or more, and such a virus can be inactivated.
 以下に、光電着法で貴金属粒子を光触媒体粒子に担持する方法を詳しく述べる。本発明では、前記貴金属の前駆体が溶解した前記光触媒体粒子分散液を原料分散液として用いる。 Hereinafter, a method for supporting the noble metal particles on the photocatalyst particles by the photo-deposition method will be described in detail. In the present invention, the photocatalyst particle dispersion in which the precursor of the noble metal is dissolved is used as a raw material dispersion.
(犠牲剤)
 本発明では、犠牲剤を原料分散液に添加する。犠牲剤としては、例えばエタノール、メタノール、プロパノール等のアルコール、アセトン等のケトン、蓚酸等のカルボン酸が用いられる。犠牲剤が固体の場合、この犠牲剤を適当な溶媒に溶解して用いてもよいし、固体のまま用いてもよい。尚、犠牲剤は、原料分散液に一定時間光照射を行った後に添加し、さらに光照射を行う。犠牲剤の量は分散媒に対して、通常0.001質量倍~0.3質量倍、好ましくは0.005質量倍~0.1質量倍である。犠牲剤の使用量が0.001質量倍未満では光触媒体粒子への貴金属の担持が不十分となり、0.3質量倍を超えると犠牲剤の量が過剰量となりコストに見合う効果が得られない。
(Sacrificial agent)
In the present invention, a sacrificial agent is added to the raw material dispersion. Examples of the sacrificial agent include alcohols such as ethanol, methanol, and propanol, ketones such as acetone, and carboxylic acids such as oxalic acid. When the sacrificial agent is a solid, the sacrificial agent may be used by dissolving in a suitable solvent, or may be used as a solid. The sacrificial agent is added to the raw material dispersion after light irradiation for a certain period of time, and further light irradiation is performed. The amount of the sacrificial agent is usually 0.001 to 0.3 times by mass, preferably 0.005 to 0.1 times by mass with respect to the dispersion medium. If the amount of the sacrificial agent used is less than 0.001 times by mass, the noble metal is insufficiently supported on the photocatalyst particles, and if it exceeds 0.3 times by mass, the amount of sacrificial agent is excessive and an effect commensurate with the cost cannot be obtained. .
(光の照射)
 本発明では、かかる原料分散液に光を照射する。原料分散液への光の照射は、撹拌しながら行ってもよい。透明なガラスやプラスチック製の管内に原料分散液を通過させながら管の内外から照射してもよく、これを繰り返し行なってもよい。光源としては光触媒体粒子のバンドギャップ以上のエネルギーを有する光を照射できるものであれば特に制限はなく、具体例としては、殺菌灯、水銀灯、発光ダイオード、蛍光灯、ハロゲンランプ、キセノンランプ、太陽光を用いることができる。照射する光の波長は通常、180nm~500nmである。光照射を行う時間は、十分な量の貴金属を担持できることから、犠牲剤の添加前後において、通常20分以上、好ましくは1時間以上であり、通常24時間以下、好ましくは6時間以下である。24時間を越える場合、それまでに貴金属の前駆体の殆どは貴金属となって担持されてしまい、光照射にかかるコストに見合う効果が得られない。また、犠牲剤の添加前に光照射を行わない場合、貴金属の担持が不均一となり、高い抗ウイルス活性が得られない。
(Light irradiation)
In the present invention, the raw material dispersion is irradiated with light. You may perform irradiation of the light to a raw material dispersion liquid, stirring. Irradiation may be performed from inside or outside the tube while passing the raw material dispersion through a transparent glass or plastic tube, or this may be repeated. The light source is not particularly limited as long as it can irradiate light having energy higher than the band gap of the photocatalyst particles, and specific examples include germicidal lamps, mercury lamps, light emitting diodes, fluorescent lamps, halogen lamps, xenon lamps, solar Light can be used. The wavelength of the irradiated light is usually 180 nm to 500 nm. Since a sufficient amount of noble metal can be supported, the light irradiation time is usually 20 minutes or longer, preferably 1 hour or longer, and usually 24 hours or shorter, preferably 6 hours or shorter, before and after the addition of the sacrificial agent. When the time exceeds 24 hours, most of the precursors of the noble metal have been supported as noble metals by that time, and an effect commensurate with the cost of light irradiation cannot be obtained. In addition, when light irradiation is not performed before the addition of the sacrificial agent, the precious metal is not uniformly supported, and high antiviral activity cannot be obtained.
(pH調整)
 本発明では、原料分散液のpHを2.5~4.5、好ましくは2.8~4.0に維持しながら光照射を行う。通常、光照射により貴金属が光触媒体粒子の表面に担持される際には分散液のpHが酸性に除々に変化するので、pHを本発明で規定する範囲内に維持するため、通常塩基を添加すればよい。これにより分散性に優れる貴金属担持光触媒体分散液が得られる。塩基としては、アンモニア、水酸化ナトリウム、水酸化カリウム、水酸化マグネシウム、水酸化カルシウム、水酸化ストロンチウム、水酸化バリウム、水酸化ランタン等の水溶液が挙げられるが、これらの中でもアンモニアおよび水酸化ナトリウムを用いるのが好ましい。
(PH adjustment)
In the present invention, light irradiation is performed while maintaining the pH of the raw material dispersion at 2.5 to 4.5, preferably 2.8 to 4.0. Usually, when a noble metal is supported on the surface of the photocatalyst particles by light irradiation, the pH of the dispersion gradually changes to acidic, so that a base is usually added to maintain the pH within the range specified in the present invention. do it. Thereby, a noble metal-supported photocatalyst dispersion with excellent dispersibility is obtained. Examples of the base include aqueous solutions of ammonia, sodium hydroxide, potassium hydroxide, magnesium hydroxide, calcium hydroxide, strontium hydroxide, barium hydroxide, lanthanum hydroxide, etc. Among them, ammonia and sodium hydroxide are used. It is preferable to use it.
(溶存酸素量)
 本発明では、原料分散液への光照射前もしくは光照射中に、必要に応じて原料分散液中の溶存酸素量を1.0mg/L以下、好ましくは0.7mg/L以下に調整する。溶存酸素量の調整は、例えば、原料分散液に酸素を含まないガスを吹き込むことにより行うことができ、前記ガスとしては、窒素、および希ガス(ヘリウム、ネオン、アルゴン、クリプトン等)が挙げられる。溶存酸素量が1.0mg/Lを越える場合、貴金属の前駆体の担持のほかに、溶存酸素の還元反応が起こり、貴金属の担持が不均一となり、高い抗ウイルス活性が得られない。
(Amount of dissolved oxygen)
In the present invention, before or during light irradiation of the raw material dispersion, the amount of dissolved oxygen in the raw material dispersion is adjusted to 1.0 mg / L or less, preferably 0.7 mg / L or less as necessary. The amount of dissolved oxygen can be adjusted, for example, by blowing a gas containing no oxygen into the raw material dispersion, and examples of the gas include nitrogen and rare gases (helium, neon, argon, krypton, etc.). . When the amount of dissolved oxygen exceeds 1.0 mg / L, a reduction reaction of dissolved oxygen occurs in addition to the loading of the precursor of the noble metal, the loading of the noble metal becomes uneven, and high antiviral activity cannot be obtained.
 かくしてpHを調整しながら、必要に応じて溶存酸素量を所定値以下にして光照射を行い、犠牲剤添加後、さらに光を照射することにより、貴金属前駆体が貴金属となってこれが光触媒体粒子の表面に担持されて、貴金属担持光触媒体粒子が得られる。この貴金属担持光触媒体粒子は、用いた分散媒中に沈降することなく分散されている。さらに、この貴金属担持光触媒体粒子が分散された分散液は、貴金属担持光触媒体粒子の分散性に優れているため取り扱いやすく、しかも高い抗ウイルス活性を発現する。 Thus, while adjusting the pH, if necessary, the amount of dissolved oxygen is reduced to a predetermined value or less, light irradiation is performed, and after addition of the sacrificial agent, the light is further irradiated, so that the noble metal precursor becomes a noble metal, which becomes the photocatalyst particles. Noble metal-supported photocatalyst particles are obtained by being supported on the surface. The noble metal-supported photocatalyst particles are dispersed in the used dispersion medium without settling. Further, the dispersion liquid in which the noble metal-supported photocatalyst particles are dispersed is easy to handle because of the excellent dispersibility of the noble metal-supported photocatalyst particles, and also exhibits high antiviral activity.
(ラジカル生成量)
 本発明の光触媒体粒子は、光触媒体粒子が水に分散した分散液の状態で、可視光照射により、光触媒体粒子1g当たり4.0×1017個以上、好ましくは6.0×1017個以上、より好ましくは7.5×1017個以上のOHラジカルを生成する。OHラジカルの生成量が4.0×1017個未満の場合、可視光照射下で十分な抗ウイルス性が得られない。よって、OHラジカルの生成量が4.0×1017個以上の場合、可視光照射下で十分な抗ウイルス性が得られる。
(Radical generation amount)
The photocatalyst particles of the present invention are 4.0 × 10 17 or more, preferably 6.0 × 10 17 per 1 g of photocatalyst particles when irradiated with visible light in a dispersion state in which the photocatalyst particles are dispersed in water. As described above, more preferably 7.5 × 10 17 or more OH radicals are generated. When the amount of OH radicals produced is less than 4.0 × 10 17 , sufficient antiviral properties cannot be obtained under visible light irradiation. Therefore, when the amount of OH radicals produced is 4.0 × 10 17 or more, sufficient antiviral properties can be obtained under irradiation with visible light.
 本発明において、ラジカル生成量は、ラジカル補足剤であるDMPO(5,5-dimethyl-1-pyrroline-N-oxide)存在下で貴金属担持光触媒体分散液に可視光線を照射した後、ESRスペクトルを測定し、次いで、得られたスペクトルについてシグナルの面積値を求め、この面積値から算出する。 In the present invention, the amount of radical generated is determined by observing the ESR spectrum after irradiating the noble metal-supported photocatalyst dispersion with visible light in the presence of DMPO (5,5-dimethyl-1-pyrroline-N-oxide), which is a radical scavenger. Then, an area value of a signal is obtained for the obtained spectrum and calculated from the area value.
 ラジカル数の算出に際して、可視光線の照射は室温、大気下で、白色発光ダイオードを光源とし、照度20000ルクスにて20分間行われる。 When calculating the number of radicals, irradiation with visible light is performed at room temperature and in the atmosphere for 20 minutes using a white light emitting diode as a light source and an illuminance of 20000 lux.
 ESRスペクトルの測定は、可視光線を20分間照射した後、EMX-Plus(BRUKER製)を用い、照度500ルクス未満の蛍光灯の光が室内光として当たった状態で行われる。尚、ESRスペクトルの測定条件は以下の通りである。温度:室温、圧力:大気圧、Microwave Frequncy:9.86GHz、Microwave Power:3.99mW、Center Field:3515G、Sweep Width:100G、Conv. Time:20.00mSec、Time Const.:40.96ms、Resolution:6000、Mod.Amplitude:2G、Number of Scans:1、測定領域:2.5cm、温度:室温、圧力:大気圧、磁場公正:テスラメーター使用。 The measurement of the ESR spectrum is performed in a state in which the light from a fluorescent lamp having an illuminance of less than 500 lux is irradiated as room light using EMX-Plus (manufactured by BRUKER) after irradiation with visible light for 20 minutes. The measurement conditions of the ESR spectrum are as follows. Temperature: Room temperature, Pressure: Atmospheric pressure, Microwave Frequncy: 9.86GHz, Microwave Power: 3.99mW, Center Field: 3515G, Sweep Width: 100G, Conv. Time: 20.00mSec, Time Const .: 40.96ms, Resolution: 6000, Mod .Amplitude: 2G, Number of Scans: 1, Measurement area: 2.5cm, Temperature: Room temperature, Pressure: Atmospheric pressure, Magnetic field Fair: Using Tesla meter.
 ラジカル数の算出に際して、DMPOのOHラジカル付加体であるDMPO-OHのESRスペクトルとラジカル数が既知の物質のESRスペクトルとを対比して行う。 In calculating the number of radicals, the ESR spectrum of DMPO-OH, which is an OH radical adduct of DMPO, is compared with the ESR spectrum of a substance having a known number of radicals.
 具体的には、以下の(1)~(7)の方法で行う。 Specifically, it is performed by the following methods (1) to (7).
 前記DMPO-OHの数を算出するため、まずESRスペクトルから求められる面積とラジカル種の数の関係式を以下の手順で求める。ラジカル数が既知の物質として、4-hydroxy-TEMPOを用いる。
(1)4-hydroxy-TEMPO(4-Hydroxy-2,2,6,6-tetramethyl-piperidine-1-oxyl)(純度98%)0.17621gを100mLの水に溶解する。得られた液をAとする。
(2)Aを1mL取り、これに水を加えて100mLにする。得られた液をBとする。
(3)Bを1mL取り、これに水を加えて100mLにする。得られた液をCとする。濃度は0.001mMである。
(4)Bを1mL取り、これに水を加えて50mLにする。得られた液をDとする。濃度は0.002mMである。
(5)Bを3mL取り、これに水を加えて100mLにする。得られた液をEとする。濃度は0.003mMである。
(6)C、D、Eの各液をフラットセルに充填し、ESRスペクトルの測定を行う。得られる3本のピーク(面積比1:1:1)の低磁場側の1本の面積を求め、これを3倍したものを4-hydroxy-TEMPOの各濃度における面積とする。尚、ピークの面積は、ESRスペクトル(微分形)を積分形に変換して求める。
(7)4-hydroxy-TEMPOは1分子当たりラジカルを1つ有することから、C~Eに含まれる4-hydroxy-TEMPOのラジカル数を算出し、これと前記ESRスペクトルから求めた面積を用いて1次線形近似式を得ることができる。
In order to calculate the number of DMPO-OH, first, a relational expression between the area obtained from the ESR spectrum and the number of radical species is obtained by the following procedure. 4-hydroxy-TEMPO is used as a substance with a known radical number.
(1) 0.17621 g of 4-hydroxy-TEMPO (4-Hydroxy-2,2,6,6-tetramethyl-piperidine-1-oxyl) (purity 98%) is dissolved in 100 mL of water. The liquid obtained is designated as A.
(2) Take 1 mL of A and add water to make 100 mL. Let the resulting liquid be B.
(3) Take 1 mL of B and add water to make 100 mL. Let C be the resulting liquid. The concentration is 0.001 mM.
(4) Take 1 mL of B and add water to make 50 mL. Let D be the resulting liquid. The concentration is 0.002 mM.
(5) Take 3 mL of B and add water to make 100 mL. The resulting liquid is designated E. The concentration is 0.003 mM.
(6) Each liquid of C, D, and E is filled in a flat cell, and the ESR spectrum is measured. One area on the low magnetic field side of the obtained three peaks (area ratio 1: 1: 1) is obtained, and the result obtained by multiplying this by 3 is defined as the area at each concentration of 4-hydroxy-TEMPO. The peak area is obtained by converting the ESR spectrum (differential form) to the integral form.
(7) Since 4-hydroxy-TEMPO has one radical per molecule, calculate the number of 4-hydroxy-TEMPO radicals contained in CE and use this and the area obtained from the ESR spectrum. A linear linear approximation can be obtained.
 次に、DMPO-OHのESRスペクトルと、既知濃度の4-hydroxy-TEMPOを用いて算出した前記1次線形近似式から、白色発光ダイオード照射後のOHラジカルの数y1を算出する。さらに、光照射前の貴金属担持光触媒体分散液に含まれるOHラジカル数y2も同様に算出し、これらの差(y1-y2)が白色発光ダイオードの照射により生成したOHラジカルの数となる。 Next, the number y1 of OH radicals after irradiation with the white light-emitting diode is calculated from the ESR spectrum of DMPO-OH and the first-order linear approximation calculated using the known concentration of 4-hydroxy-TEMPO. Further, the number of OH radicals y2 contained in the noble metal-supported photocatalyst dispersion before light irradiation is calculated in the same manner, and the difference (y1-y2) is the number of OH radicals generated by irradiation of the white light emitting diode.
 本発明で用いる光触媒体粒子分散液もしくは貴金属担持光触媒体分散液は、本発明の効果を損なわない範囲で公知の各種添加剤を含んでいてもよい。添加剤としては、例えば非晶質シリカ、シリカゾル、水ガラス、アルコキシシラン、オルガノポリシロキサンなどのケイ素化合物、非晶質アルミナ、アルミナゾル、水酸化アルミニウムなどのアルミニウム化合物、ゼオライト、カオリナイトなどのアルミノケイ酸塩、酸化マグネシウム、酸化カルシウム、酸化ストロンチウム、酸化バリウムなどのアルカリ土類金属酸化物、水酸化マグネシウム、水酸化カルシウム、水酸化ストロンチウム、水酸化バリウムなどのアルカリ土類金属水酸化物、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Mn、Tc、Re、Fe、Co、Ni、Ru、Rh、Os、Ir、Ag、Zn、Cd、Ga、In、Tl、Ge、Sn、Pb、Bi、La、Ceなどの金属元素の水酸化物や酸化物、蓚酸ジルコニウム、リン酸カルシウム、モレキュラーシーブ、活性炭、有機ポリシロキサン化合物の重縮合物、リン酸塩、フッ素系ポリマー、シリコン系ポリマー、アクリル樹脂、ポリエステル樹脂、メラミン樹脂、ウレタン樹脂、アルキド樹脂が挙げられる。これらの添加剤を添加して用いる場合、それぞれ単独で、又は2種類以上を組み合わせて用いることができる。 The photocatalyst particle dispersion or the noble metal-supported photocatalyst dispersion used in the present invention may contain various known additives as long as the effects of the present invention are not impaired. Examples of additives include silicon compounds such as amorphous silica, silica sol, water glass, alkoxysilane, and organopolysiloxane, aluminum compounds such as amorphous alumina, alumina sol, and aluminum hydroxide, and aluminosilicates such as zeolite and kaolinite. Alkaline earth metal oxides such as salts, magnesium oxide, calcium oxide, strontium oxide, barium oxide, alkaline earth metal hydroxides such as magnesium hydroxide, calcium hydroxide, strontium hydroxide, barium hydroxide, Ti, Zr , Hf, V, Nb, Ta, Cr, Mo, W, Mn, Tc, Re, Fe, Co, Ni, Ru, Rh, Os, Ir, Ag, Zn, Cd, Ga, In, Tl, Ge, Sn , Pb, Bi, La, Ce and other metal element hydroxides and oxides, zirco oxalate Um, calcium phosphate, molecular sieve, active carbon, a polycondensation product of an organopolysiloxane compound, phosphate, a fluorine-based polymer, silicone-based polymers, acrylic resins, polyester resins, melamine resins, urethane resins, alkyd resins. When these additives are added and used, they can be used alone or in combination of two or more.
 前記添加剤は、光触媒体を用いて基材の表面に光触媒体層を形成する際に、光触媒体粒子をより強固に基材の表面に保持させるためのバインダー等に用いることもできる。 The additive can also be used as a binder for holding the photocatalyst particles more firmly on the surface of the substrate when the photocatalyst layer is formed on the surface of the substrate using the photocatalyst.
(バインダー)
 光触媒体層用バインダー成分としては、例えば、蟻酸ジルコニウム、グリコール酸ジルコニウム、シュウ酸ジルコニウム、水酸化ジルコニウム、酸化ジルコニウム等のジルコニウム化合物;水酸化錫、酸化錫等の錫化合物;水酸化二オブ、酸化二オブ等の二オブ化合物;テトラエトキシシラン(ケイ酸エチル)、テトラメトキシシラン(ケイ酸メチル)、メチルトリエトキシシラン、メチルトリエトキシシラン等のシリコンアルコキシド;コロイダルシリカ、酸化ケイ素等のシリコン化合物などが挙げられ、これらをそれぞれ単独で、又は2種類以上を組み合わせて用いることができる。
(binder)
Examples of the binder component for the photocatalyst layer include zirconium compounds such as zirconium formate, zirconium glycolate, zirconium oxalate, zirconium hydroxide and zirconium oxide; tin compounds such as tin hydroxide and tin oxide; niobium hydroxide and oxide Niobium compounds such as niobium; silicon alkoxides such as tetraethoxysilane (ethyl silicate), tetramethoxysilane (methyl silicate), methyltriethoxysilane, and methyltriethoxysilane; silicon compounds such as colloidal silica and silicon oxide These can be used alone or in combination of two or more.
 さらに、例えば、特開平8-67835号公報、特開平9-25437号公報、特開平10―183061号公報、特開平10―183062号公報、特開平10―168349号公報、特開平10―225658号公報、特開平11―1620号公報、特開平11―1661号公報、特開2002-80829号公報、特開2004―059686号公報、特開2004―107381号公報、特開2004―256590号公報、特開2004―359902号公報、特開2005―113028号公報、特開2005―230661号公報、特開2007―161824号公報、国際公開第96/029375号、国際公開第97/000134号、国際公開第98/003607号など記載されている公知の光触媒体層用バインダーを用いてもよい。 Further, for example, JP-A-8-67835, JP-A-9-25437, JP-A-10-183061, JP-A-10-183062, JP-A-10-168349, JP-A-10-225658. JP-A-11-1620, JP-A-11-1661, JP-A-2002-80829, JP-A-2004-059686, JP-A-2004-107381, JP-A-2004-256590, JP-A-2004-359902, JP-A-2005-113028, JP-A-2005-230661, JP-A-2007-161824, International Publication No. 96/029375, International Publication No. 97/000134, International Publication Known binder for photocatalyst layer described in No. 98/003607 It may be used.
 光触媒体層に含まれるバインダー成分の量としては、光触媒体層100質量部に対して、酸化物換算で3~40質量部、好ましくは4~20質量部である。バインダーの量が3質量部未満の場合、光触媒体層内で光触媒体粒子を保持する力が弱くなり、容易に光触媒体粒子が脱落するなどの不具合が生じる。一方、バインダーの量が40質量部を越えると、光触媒体粒子の表面を覆うバインダー成分の量が多くなり、十分な抗ウイルス性能が得られない。 The amount of the binder component contained in the photocatalyst layer is 3 to 40 parts by mass, preferably 4 to 20 parts by mass in terms of oxide with respect to 100 parts by mass of the photocatalyst layer. When the amount of the binder is less than 3 parts by mass, the force for holding the photocatalyst particles in the photocatalyst layer becomes weak, and problems such as the photocatalyst particles falling off easily occur. On the other hand, when the amount of the binder exceeds 40 parts by mass, the amount of the binder component that covers the surface of the photocatalyst particles increases, and sufficient antiviral performance cannot be obtained.
(光触媒構造体)
 本発明で用いる光触媒構造体は、表面に光触媒体層を備えるものであって、通常、基材表面に光触媒体層を備えるものである。ここで、光触媒体層は、前記貴金属担持光触媒体粒子分散液とバインダーを混合し、これを基材(製品)の表面に塗布した後に、分散媒を揮発させるなど、従来公知の成膜方法によって形成することができる。光触媒体層の膜厚は、特に制限されるものではなく、通常、その用途等に応じて、数十nm~数mmの範囲で適宜設定すればよい。光触媒体層は、基材(製品)の内表面または外表面であれば、どの部分に形成されていてもよいが、例えば、光(可視光線)が照射される面であって、かつウイルスが存在する箇所と連続または断続して空間的につながる面に形成されていることが好ましい。なお、基材の材質は、形成される光触媒体層を実用に耐えうる強度で保持できる限り、特に制限されるものではなく、例えば、プラスチック、金属、セラミックス、木材、コンクリート、紙など、あらゆる材料からなる製品を対象にすることができる。
(Photocatalyst structure)
The photocatalyst structure used in the present invention comprises a photocatalyst layer on the surface, and usually comprises a photocatalyst layer on the substrate surface. Here, the photocatalyst layer is prepared by a conventionally known film-forming method such as mixing the noble metal-supported photocatalyst particle dispersion and a binder, applying this to the surface of the substrate (product), and volatilizing the dispersion medium. Can be formed. The film thickness of the photocatalyst body layer is not particularly limited, and may usually be appropriately set in the range of several tens of nanometers to several millimeters according to the application. The photocatalyst layer may be formed on any part as long as it is an inner surface or an outer surface of the base material (product). For example, the photocatalyst layer is a surface irradiated with light (visible light) and a virus It is preferably formed on a surface that is continuously or intermittently connected to an existing location. The material of the base material is not particularly limited as long as the formed photocatalyst layer can be held with sufficient strength to be practically used. For example, any material such as plastic, metal, ceramics, wood, concrete, paper, etc. It can target products consisting of
 本発明では、屋外においては勿論のこと、蛍光灯やナトリウムランプや発光ダイオードのような可視光源からの光しか受けない屋内環境においても、光照射によって高い耐性のウイルスを不活性化することができる。したがって、抗ウイルス剤を、例えば、天井材、タイル、ガラス、壁紙、壁材、フィルム、床等の建築資材、自動車内装材(自動車用インストルメントパネル、自動車用シート、自動車用天井材、自動車用ガラス)、冷蔵庫、エアコン、パソコン、プリンター、コピー機、ファックス、電話、ストーブ等の家電製品、机、椅子、テーブル、箪笥、収納棚等の家具、衣類やカーテン等の繊維製品、手摺り、電車のつり革、エレベーターのボタン等、不特定多数の人が接触する基材に用いることにより、大きさが15~30nmでエンベロープを有さないウイルスである、パルボウイルス科のパルボウイルスB19、猫パルボウイルス、犬パルボウイルス、ガチョウパルボウイルス、豚パルボウイルス、ピコルナウイルス科のポリオウイルス、エンテロウイルス、ヒトバーエコーウイルス、ヒトライノウイルスA~B、A型肝炎ウイルス、脳心筋炎ウイルス、馬鼻炎Bウイルス、豚テッショウウイルス、アイチウイルス、アストロウイルス科のヒトアストロウイルス、ウシアストロウイルス、七面鳥アストロウイルス、アヒルアストロウイルス、サーコウイルス科の豚サーコウイルス、鶏貧血ウイルス、トルクテノウイルス(TTウイルス)を不活性化することができる。 In the present invention, it is possible to inactivate highly resistant viruses by light irradiation not only outdoors, but also in an indoor environment that receives only light from a visible light source such as a fluorescent lamp, a sodium lamp, and a light emitting diode. . Therefore, antiviral agents can be used for building materials such as ceiling materials, tiles, glass, wallpaper, wall materials, films, floors, etc., automotive interior materials (automobile instrument panels, automotive seats, automotive ceiling materials, automotive products). Glass), refrigerators, air conditioners, personal computers, printers, photocopiers, fax machines, telephones, stoves, and other home appliances, desks, chairs, tables, bags, furniture such as storage racks, textiles such as clothes and curtains, handrails, trains Parvovirus B19 of the family Parvoviridae, cat parvo, which is a virus with a size of 15 to 30 nm and no envelope when used as a base material that can be contacted by an unspecified number of people, such as straps, elevator buttons, etc. Viruses, canine parvovirus, goose parvovirus, swine parvovirus, picornaviridae poliovirus, Telovirus, human bar echovirus, human rhinovirus AB, hepatitis A virus, encephalomyocarditis virus, equine rhinitis virus B, swine teshovirus, aichivirus, Astroviridae human astrovirus, ubiastrovirus, It can inactivate turkey astrovirus, duck astrovirus, porcine circovirus of the circoviridae, chicken anemia virus, torque tenovirus (TT virus).
 以下、実施例によって本発明をより詳細に説明するが、本発明はかかる実施例によって限定されるものではない。
 なお、各実施例における測定法は、以下の通りである。
EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited by this Example.
In addition, the measuring method in each Example is as follows.
1.BET比表面積
 光触媒体粒子のBET比表面積は、比表面積測定装置(湯浅アイオニクス社製「モノソーブ」)を用い、窒素吸着法により測定した。
1. BET specific surface area The BET specific surface area of the photocatalyst particles was measured by a nitrogen adsorption method using a specific surface area measuring device (“Monosorb” manufactured by Yuasa Ionics).
2.平均分散粒子径(nm)
 サブミクロン粒度分布測定装置(コールター社製「N4Plus」)を用いて粒度分布を測定し、この装置に付属のソフトで自動的に単分散モード解析して得られた結果を平均分散粒子径とした。
2. Average dispersed particle size (nm)
The particle size distribution was measured using a submicron particle size distribution measuring device (“N4Plus” manufactured by Coulter, Inc.), and the result obtained by automatically performing the monodisperse mode analysis with the software attached to this device was used as the average dispersed particle size. .
3.結晶型
 X線回折装置(リガク社製「RINT2000/PC」)を用いてX線回折スペクトルを測定し、そのスペクトルから結晶型を決定した。
3. Crystalline X-ray diffraction spectrum was measured using an X-ray diffractometer (“RINT2000 / PC” manufactured by Rigaku Corporation), and the crystal form was determined from the spectrum.
4.溶存酸素
 原料分散液の溶存酸素は、溶存酸素計(堀場製作所製「OM-51」)を用いて測定した。
4). Dissolved oxygen The dissolved oxygen in the raw material dispersion was measured using a dissolved oxygen meter ("OM-51" manufactured by Horiba, Ltd.).
5.OHラジカルの生成量の測定
 サンプル管(容量:13.5mL,内径:2cm,高さ:6.5cm(内溶液充填可能部高さ:5.5cm))に、攪拌子と、水で濃度0.1質量%に調整した貴金属担持光触媒体分散液2mL(貴金属担持光触媒体粒子2mg含有)と、を入れ、さらに濃度が100mMとなるようにDMPO(純度97%)23μLを入れた。その後、スターラーで攪拌後、上澄みをフラットセルに注入してESR測定を行った。これを光照射0分の試料とした。次に、前記サンプル管の上部から白色発光ダイオード(東芝ライテック製,LEDベッド灯、LEDA-21002W-LS1(白色相当、メイン波長:約450nm))で光照射を20分間行った。サンプル管内の液面での照度は20000ルクス(ミノルタ社製照度計「T-10」で測定)であった。その後、上澄みをフラットセルに取り、生成されたDMPO-OH付加体のESR測定を行った。光照射0分と20分のDMPO-OH付加体の数から可視光照射で生成されたOHラジカルの数を算出し、これと貴金属担持光触媒体粒子の重量(2mg)から、貴金属担持光触媒体粒子1g当たりのOHラジカルの生成量を求めた。
5. Measurement of OH radical production amount A sample tube (capacity: 13.5 mL, inner diameter: 2 cm, height: 6.5 cm (inner solution filling portion height: 5.5 cm)) was mixed with a stirrer and water with a concentration of 0. 2 mL of a noble metal-supported photocatalyst dispersion liquid (containing 2 mg of noble metal-supported photocatalyst particles) adjusted to 1% by mass was added, and 23 μL of DMPO (purity 97%) was further added to a concentration of 100 mM. Then, after stirring with a stirrer, the supernatant was poured into a flat cell to perform ESR measurement. This was used as a sample with 0 minutes of light irradiation. Next, light was irradiated from the upper part of the sample tube with a white light emitting diode (manufactured by Toshiba Lighting & Technology, LED bed lamp, LEDA-21002W-LS1 (white equivalent, main wavelength: about 450 nm)) for 20 minutes. The illuminance at the liquid level in the sample tube was 20000 lux (measured with a luminometer “T-10” manufactured by Minolta). Thereafter, the supernatant was taken up in a flat cell, and ESR measurement of the produced DMPO-OH adduct was performed. Calculate the number of OH radicals generated by visible light irradiation from the number of DMPO-OH adducts at 0 and 20 minutes of light irradiation, and from this and the weight (2 mg) of the noble metal-supported photocatalyst particles, noble metal-supported photocatalyst particles The amount of OH radicals produced per gram was determined.
6.抗ウイルス性の測定
 抗ウイルス性は、蛍光灯の可視光の照射によるガチョウパルボウイルスのウイルス力価を測定することにより評価した。すなわち、ガラス板(5cm×5cm×2mm)に、得られた光触媒体コーティング液を、単位面積あたりの固形分換算の塗布量が1g/mとなるように、スピンコーター(ミカサ製「1H-D7」)によりガラス板片面に均一に形成した。次いで、このガラス板を130℃の乾燥機内で大気中で10分間保持することにより乾燥させて、ガラス板の片面に光触媒体層を形成した。この光触媒体層に紫外線強度が2mW/cm(トプコン社製紫外線強度計「UVR-2」に同社製受光部「UD-36」を取り付けて測定)となるようにブラックライトからの紫外線を16時間照射して、これに抗ウイルス性活性測定用試料とした。
6). Measurement of antiviral properties Antiviral properties were evaluated by measuring the virus titer of goose parvovirus by irradiation with visible light from a fluorescent lamp. That is, spin coater (“1H-Mikasa” manufactured by Mikasa Co., Ltd.) was applied to a glass plate (5 cm × 5 cm × 2 mm) so that the obtained photocatalyst coating liquid was 1 g / m 2 in terms of solid content conversion per unit area. D7 ") and uniformly formed on one side of the glass plate. Next, this glass plate was dried by holding it in the air at 130 ° C. for 10 minutes in the air, thereby forming a photocatalyst layer on one side of the glass plate. The photocatalyst layer has an ultraviolet intensity of 2 mW / cm 2 (measured by attaching a UV receiver “UD-36” to Topcon's UV intensity meter “UVR-2”). This was irradiated for a period of time and used as a sample for measuring antiviral activity.
 次に、この抗ウイルス性活性測定用試料を用いて、日本工業規格JIS R1702:2006「ファインセラミックス―光照射下での光触媒抗菌加工製品の抗菌試験方法・抗菌効果」の「10 フィルム密着法」に基づく方法で評価を行った。 Next, using this sample for measuring antiviral activity, “10 Film adhesion method” in Japanese Industrial Standards JIS R1702: 2006 “Fine ceramics-Antibacterial test method and antibacterial effect of photocatalytic antibacterial processed products under light irradiation” Evaluation was performed by a method based on
 ガチョウパルボウイルスにはGPV-IHC (DE15DEF25 2011/2/23)を用いた。すなわち、光触媒体層にウイルスを含む試験液を接種し、被覆フィルムをのせて密着させ、これを室温(25±5℃)、可視光照射下または遮光下で6時間保存し、試料検体1個当たりのウイルス力価を、マスコビーダック胚線維芽細胞(Muscovy duck embryo fibroblast: MDEF)を用いた、50%組織培養感染量の対数値(LogTCID50/ml)で求めた。ウイルスを含む試験液やMDEFは、下記に示す維持培地(MM)、あるいは増殖培地(GM)で調製した。 GPV-IHC (DE15DEF25 2011/2/23) was used for the goose parvovirus. That is, inoculate the photocatalyst layer with a test solution containing a virus, put a coating film on the photocatalyst layer, and make a close contact, and store it at room temperature (25 ± 5 ° C.) under visible light irradiation or shading for 6 hours. The virus titer was determined as the logarithmic value (Log TCID 50 / ml) of 50% tissue culture infectious amount using Muscovy duck embryo fibroblast (MDEF). A test solution containing virus and MDEF were prepared in the following maintenance medium (MM) or growth medium (GM).
 ウイルスの調製あるいは細胞培養用の培地は、Eagle's minimum essential medium(日水製薬株式会社、東京都)培地9.4g、Tryptose Phosphate Broth(TPB:Difco laboratories, Detroit, MI, USA)3.0gを蒸留水1,000mlに溶解し、高圧蒸気滅菌後、7%NaHCO、200mM L-glutamin、ペニシリンおよびストレプトマイシンを、最終濃度がそれぞれ3%、1%、100units/ml、100μg/mlとなるように加え、維持培地(以下MM)とし、MMにウシ胎児血清(Fetal Bovine Serum:以下FBS)を5%加え増殖培地(以下GM)とした。MDEF(1.0×10cells/ml)を75cm組織培養用フラスコに15mlずつ、あるいは96穴組織培養プレートに200μl/穴ずつ播種し、37℃、炭酸ガスふ卵器で培養した。 9.4g of Eagle's minimum essential medium (Nissui Pharmaceutical Co., Ltd., Tokyo) and 3.0g of Tryptose Phosphate Broth (TPB: Difco laboratories, Detroit, MI, USA) were used for virus preparation or cell culture. Dissolve in 1,000 ml of water, and after autoclaving, add 7% NaHCO 3 , 200 mM L-glutamin, penicillin and streptomycin to a final concentration of 3%, 1%, 100 units / ml and 100 μg / ml, respectively. A maintenance medium (hereinafter referred to as MM) was used, and 5% fetal bovine serum (hereinafter referred to as FBS) was added to MM to obtain a growth medium (hereinafter referred to as GM). MDEF (1.0 × 10 6 cells / ml) was seeded at 15 ml in a 75 cm 2 tissue culture flask or 200 μl / well in a 96-well tissue culture plate, and cultured at 37 ° C. in a carbon dioxide incubator.
 75cm組織培養用フラスコにシート形成したMDEFからGMを除去し、ウイルスを接種し、1時間吸着させた後、MMを15ml加え、細胞変性効果(CPE)が著しく表れた7日後に感染培養液を回収した。回収した感染培養液を2500rpmで15分間4℃で遠心し、得られた上清を試験ウイルスとして用いた。このウイルスをPBSで100倍希釈し、光触媒加工製品に100μl滴下し、フィルム密着法により、抗ウイルス活性を測定した。一定時間経過後、ガラスプレートとフィルムとをビニール袋に入れ、MMを1ml加えて、ウイルスを回収した。マイクロチューブに回収ウイルス液を移し、遠心分離機にて15000rpmで3分間処理し、その上澄みについて、残存ウイルスの力価を測定した。
 ウイルス力価の測定は、MMで10倍階段希釈したウイルス液を各希釈について4ウェルずつ96穴組織培養プレートに接種した。なお、接種前に、MDEFからGMを除去し、そこに希釈ウイルス液を100μl接種した。接種7日後のCPEを観察し、各希釈での陽性穴数から、ベーレンス・ケルベル法でウイルス力価(1mlあたりの50%組織培養感染量:TCID50/ml)を算出し、対数値(log10)で表した。
Remove GM from MDEF sheeted in 75 cm 2 tissue culture flask, inoculate with virus, adsorb for 1 hour, add 15 ml of MM, and infectious culture solution 7 days after cytopathic effect (CPE) is marked Was recovered. The collected infection culture solution was centrifuged at 2500 rpm for 15 minutes at 4 ° C., and the resulting supernatant was used as a test virus. This virus was diluted 100 times with PBS, and 100 μl was dropped onto the photocatalyst processed product, and antiviral activity was measured by a film adhesion method. After a certain period of time, the glass plate and film were placed in a plastic bag, and 1 ml of MM was added to recover the virus. The recovered virus solution was transferred to a microtube, treated with a centrifuge at 15000 rpm for 3 minutes, and the titer of the remaining virus was measured on the supernatant.
The virus titer was measured by inoculating a 96-well tissue culture plate with 4 wells of each diluted dilution of the virus solution 10 times with MM. Before inoculation, GM was removed from MDEF, and 100 μl of diluted virus solution was inoculated therein. The CPE at 7 days after the inoculation was observed, and the virus titer (50% tissue culture infectious dose per ml: TCID 50 / ml) was calculated from the number of positive holes at each dilution by the Behrens Kerber method. )
 抗ウイルス性の評価は、3つの抗ウイルス性活性測定用試料を用いて同時に行い、これら3つのウイルス力価の対数値の平均値で評価を行った。可視光の照射は、市販の白色蛍光灯(20W,2本)を光源とし、アクリル樹脂板(日東樹脂工業製「N113」)を通して、被覆フィルムを載せた光触媒体層の上から蛍光灯に含まれる可視光が照射されるようにして行った。このとき、塗膜近傍での照射が1000ルクス(ミノルタ社「T-10」で測定)となるようにした。可視光照射2時間または6時間後のガチョウパルボウイルスのウイルス力価が小さいものほど、ガチョウパルボウイルスの抗ウイルス性、すなわち光触媒活性が高いと言える。なお、ウイルス力価の対数値の測定限界は1.5であった。 Evaluation of antiviral property was performed simultaneously using three samples for measuring antiviral activity, and the evaluation was performed using the average value of logarithmic values of these three virus titers. Irradiation with visible light uses a commercially available white fluorescent lamp (20 W, 2) as a light source, and is included in the fluorescent lamp from above the photocatalyst layer on which the coating film is placed through an acrylic resin plate (“N113” manufactured by Nitto Resin Kogyo). The visible light was irradiated. At this time, irradiation in the vicinity of the coating film was set to 1000 lux (measured by Minolta “T-10”). It can be said that the smaller the virus titer of goose parvovirus 2 hours or 6 hours after irradiation with visible light, the higher the antiviral property, ie, photocatalytic activity of the goose parvovirus. The measurement limit of the logarithmic value of the virus titer was 1.5.
(実施例1)
 分散媒としてイオン交換水4kgに、酸化タングステン粒子(日本無機化学製)1kgを加えて混合して混合物を得た。この混合物を湿式媒体撹拌ミルを用いて分散処理して酸化タングステン粒子分散液を得た。
Example 1
1 kg of tungsten oxide particles (manufactured by Nippon Inorganic Chemical Co., Ltd.) was added to 4 kg of ion exchange water as a dispersion medium and mixed to obtain a mixture. This mixture was dispersed using a wet medium stirring mill to obtain a tungsten oxide particle dispersion.
 得られた酸化タングステン粒子分散液における酸化タングステン粒子の平均分散粒子径は118nmであった。また、この分散液の一部を真空乾燥させて固形分を得たところ、得られた固形分のBET比表面積40m/gであった。なお、分散処理前の混合物についても同様に真空乾燥させて固形分を得、分散処理前の混合物の固形分と分散処理後の固形分について、X線回折スペクトルをそれぞれ測定して比較したところ、同じピーク形状であり、分散処理による結晶型の変化は見られなかった。この時点で、得られた分散液を20℃で24時間保持したところ、保管中に固液分離は見られなかった。 The average dispersed particle diameter of the tungsten oxide particles in the obtained tungsten oxide particle dispersion was 118 nm. Moreover, when a part of this dispersion was vacuum-dried to obtain a solid content, the BET specific surface area of the obtained solid content was 40 m 2 / g. The mixture before dispersion treatment was similarly vacuum dried to obtain a solid content, and the solid content of the mixture before dispersion treatment and the solid content after dispersion treatment were measured and compared with each other, The peak shape was the same, and no change in crystal form due to dispersion treatment was observed. At this time, when the obtained dispersion was kept at 20 ° C. for 24 hours, no solid-liquid separation was observed during storage.
 この酸化タングステン粒子分散液にヘキサクロロ白金酸(HPtCl)の水溶液をヘキサクロロ白金酸が白金原子換算で酸化タングステン粒子の使用量100質量部に対して0.12質量部になるように加え、原料分散液としてヘキサクロロ白金酸含有酸化タングステン粒子分散液を得た。この分散液100質量部中に含まれる固形分(酸化タングステン粒子の量)は、17.6質量部(固形分濃度17.6質量%)であった。 To this tungsten oxide particle dispersion, an aqueous solution of hexachloroplatinic acid (H 2 PtCl 6 ) is added so that hexachloroplatinic acid is 0.12 parts by mass with respect to 100 parts by mass of tungsten oxide particles in terms of platinum atoms, A hexachloroplatinic acid-containing tungsten oxide particle dispersion was obtained as a raw material dispersion. The solid content (amount of tungsten oxide particles) contained in 100 parts by mass of this dispersion was 17.6 parts by mass (solid content concentration 17.6% by mass).
 次いで、pH電極と、このpH電極に接続され、0.1質量%のアンモニア水を供給してpHを一定に調節する制御機構を有するpHコントローラ(pH=3に設定)と、窒素吹込み菅を備え、水中殺菌灯(三共電気製、GLD15MQ)を設置したガラス管(内径37mm,高さ360mm)からなる光照射装置で、原料分散液1200gを、毎分1Lの速度で流通させながら、この分散液のpHを3.0にした。窒素の吹き込み量は毎分2Lの速度で行った。原料分散液中の溶存酸素量が0.5mg/Lになった後、引き続き窒素を吹き込み、原料分散液を流通させながら光照射(紫外線照射)を2時間行った。更にメタノールをその濃度が全溶媒の1質量%となるように加えて、窒素を吹き込み、原料分散液を流通させながら光照射を3時間行って白金担持酸化タングステン粒子分散液を得た。光照射前および光照射中に消費した0.1重量%アンモニア水の合計量は103gであった。光照射中、pHは3.0で一定であった。その後、この分散液100質量部中に含まれる固形分(白金担持酸化タングステン粒子の量)、5質量部(固形分濃度5質量%)となるように水を添加した。 Next, a pH electrode, a pH controller (set to pH = 3) connected to the pH electrode and having a control mechanism for adjusting the pH to a constant level by supplying 0.1% by mass of ammonia water, This is a light irradiation device consisting of a glass tube (inner diameter: 37 mm, height: 360 mm) with an underwater sterilization lamp (manufactured by Sankyo Electric Co., Ltd., GLD15MQ), and while distributing 1200 g of the raw material dispersion at a rate of 1 liter per minute, The pH of the dispersion was adjusted to 3.0. Nitrogen was blown at a rate of 2 L / min. After the amount of dissolved oxygen in the raw material dispersion reached 0.5 mg / L, nitrogen was continuously blown, and light irradiation (ultraviolet irradiation) was performed for 2 hours while circulating the raw material dispersion. Further, methanol was added so that its concentration was 1% by mass of the total solvent, nitrogen was blown, and light irradiation was performed for 3 hours while circulating the raw material dispersion to obtain a platinum-supported tungsten oxide particle dispersion. The total amount of 0.1 wt% ammonia water consumed before and during light irradiation was 103 g. During light irradiation, the pH was 3.0 and constant. Then, water was added so that it might become solid content (amount of platinum carrying | support tungsten oxide particle) contained in 100 mass parts of this dispersion liquid, and 5 mass parts (solid content concentration of 5 mass%).
 得られた白金担持酸化タングステン粒子分散液を20℃で24時間保管したところ、保管後に固液分離は見られなかった。またこの分散液の白色発光ダイオード照射下でのOHラジカル生成量を測定すると、白金担持酸化タングステン粒子1g当たり8.5×1017個であった。 When the obtained platinum-supported tungsten oxide particle dispersion was stored at 20 ° C. for 24 hours, no solid-liquid separation was observed after storage. Further, when the amount of OH radicals produced under irradiation of the white light emitting diode of this dispersion was measured, it was 8.5 × 10 17 per 1 g of platinum-supported tungsten oxide particles.
 また、水30.2gにエタノール86.52gを混合した溶液に、高純度正ケイ酸エチル(多摩化学製)83.28gを添加し混合撹拌を行い光触媒体層用バインダーを得た。 Further, 83.28 g of high purity ethyl silicate (manufactured by Tama Chemical) was added to a solution obtained by mixing 86.52 g of ethanol with 30.2 g of water, and mixed and stirred to obtain a binder for a photocatalyst layer.
 上記で得られた白金担持酸化タングステン粒子分散液570gに、得られた光触媒体層用バインダー12.5gを添加し、さらにアセチレングリコール系界面活性剤(商品名:オルフィンEXP.4200、日信化学製)を白金担持酸化タングステン粒子分散液と光触媒体層用バインダーの合計量に対して、0.1質量%となるように添加して、光触媒体コーティング液を得た。次に、この光触媒体コーティング液を用いて形成した光触媒体層の抗ウイルス性の評価を行った。 12.5 g of the obtained binder for a photocatalyst layer is added to 570 g of the platinum-supported tungsten oxide particle dispersion obtained above, and further an acetylene glycol surfactant (trade name: Olphine EXP.4200, manufactured by Nisshin Chemical Co., Ltd.) ) Was added at 0.1% by mass with respect to the total amount of the platinum-supported tungsten oxide particle dispersion and the photocatalyst layer binder, to obtain a photocatalyst coating liquid. Next, antiviral properties of the photocatalyst layer formed using this photocatalyst coating liquid were evaluated.
 この光触媒体コーティング液から得られた光触媒体層に含まれるバインダー成分の量は、酸化物換算で光触媒体層100質量部に対して5質量部であった。 The amount of the binder component contained in the photocatalyst layer obtained from this photocatalyst coating liquid was 5 parts by mass with respect to 100 parts by mass of the photocatalyst layer in terms of oxide.
 本発明の光触媒体層では、光照射時間が0時間のときに4.2(Log10TCID50/ml)であったガチョウパルボウイルスに対するウイルス力価が、光照射6時間で1.5(Log10TCID50/ml)未満(検出限界未満)となった。ウイルス力価は2.7を超えて低下した。 In the photocatalyst layer of the present invention, the virus titer against goose parvovirus that was 4.2 (Log 10 TCID 50 / ml) when the light irradiation time was 0 hour was 1.5 (Log 10 TCID 50 / ml) (below detection limit). Viral titer decreased over 2.7.
(比較例1)
 光触媒体層を形成していない未加工のガラスを用いた以外は、実施例1と同様にして抗ウイルス性の評価を行うと、光照射時間が0時間のときに4.2であったガチョウパルボウイルスに対するウイルス力価が、光照射6時間で3.9となった。ウイルス力価の低下は、0.3であった。
(Comparative Example 1)
When antiviral properties were evaluated in the same manner as in Example 1 except that raw glass without a photocatalyst layer was used, the goose was 4.2 when the light irradiation time was 0 hour. The virus titer against parvovirus was 3.9 after 6 hours of light irradiation. The decrease in virus titer was 0.3.
(参考例1)
 実施例1で得た抗ウイルス剤を天井を構成する天井材に用いることにより、屋内照明による光照射により屋内空間における、パルボウイルスB19、猫パルボウイルス、犬パルボウイルス、ガチョウパルボウイルス、豚パルボウイルス、ポリオウイルス、エンテロウイルス、ヒトバーエコーウイルス、ヒトライノウイルスA~B、A型肝炎ウイルス、脳心筋炎ウイルス、馬鼻炎Bウイルス、豚テッショウウイルス、アイチウイルス、ヒトアストロウイルス、ウシアストロウイルス、七面鳥アストロウイルス、アヒルアストロウイルス、豚サーコウイルス、鶏貧血ウイルスを不活性化することができる。
(Reference Example 1)
By using the antiviral agent obtained in Example 1 as a ceiling material constituting the ceiling, parvovirus B19, cat parvovirus, dog parvovirus, goose parvovirus, swine parvovirus in indoor space by light irradiation with indoor lighting. , Poliovirus, enterovirus, human bar echovirus, human rhinovirus AB, hepatitis A virus, encephalomyocarditis virus, equine rhinitis virus B, swine teshovirus, aichi virus, human astrovirus, siastrovirus, turkey Astroviruses, duck astroviruses, porcine circoviruses, and chicken anemia viruses can be inactivated.
(参考例2)
 実施例1で得た抗ウイルス剤を屋内の壁面に用いることにより、屋内照明による光照射により屋内空間における、パルボウイルスB19、猫パルボウイルス、犬パルボウイルス、ガチョウパルボウイルス、豚パルボウイルス、ポリオウイルス、エンテロウイルス、ヒトバーエコーウイルス、ヒトライノウイルスA~B、A型肝炎ウイルス、脳心筋炎ウイルス、馬鼻炎Bウイルス、豚テッショウウイルス、アイチウイルス、ヒトアストロウイルス、ウシアストロウイルス、七面鳥アストロウイルス、アヒルアストロウイルス、豚サーコウイルス、鶏貧血ウイルスを不活性化することができる。
(Reference Example 2)
By using the antiviral agent obtained in Example 1 on an indoor wall surface, parvovirus B19, cat parvovirus, dog parvovirus, goose parvovirus, swine parvovirus, poliovirus in indoor space by light irradiation with indoor lighting. Enterovirus, human bar echo virus, human rhinovirus AB, hepatitis A virus, encephalomyocarditis virus, equine rhinitis virus B, swine teshovirus, aichi virus, human astrovirus, ubiastrovirus, turkey astrovirus, It can inactivate duck astrovirus, porcine circovirus and chicken anemia virus.
(参考例3)
 実施例1で得た抗ウイルス剤を窓ガラスの屋内側表面に貼付することにより、ガラス表面に光触媒体層を形成することができ、これによって、屋内照明による光照射により屋内空間における、パルボウイルスB19、猫パルボウイルス、犬パルボウイルス、ガチョウパルボウイルス、豚パルボウイルス、ポリオウイルス、エンテロウイルス、ヒトバーエコーウイルス、ヒトライノウイルスA~B、A型肝炎ウイルス、脳心筋炎ウイルス、馬鼻炎Bウイルス、豚テッショウウイルス、アイチウイルス、ヒトアストロウイルス、ウシアストロウイルス、七面鳥アストロウイルス、アヒルアストロウイルス、豚サーコウイルス、鶏貧血ウイルスを不活性化することができる。
(Reference Example 3)
By sticking the antiviral agent obtained in Example 1 to the indoor side surface of the window glass, a photocatalyst layer can be formed on the glass surface, and thereby, parvovirus in indoor space by light irradiation by indoor lighting. B19, cat parvovirus, dog parvovirus, goose parvovirus, swine parvovirus, poliovirus, enterovirus, human bar echovirus, human rhinovirus AB, hepatitis A virus, encephalomyocarditis virus, equine rhinitis B virus, It can inactivate swine tesovirus, aichi virus, human astrovirus, usciatrovirus, turkey astrovirus, duck astrovirus, porcine circovirus and chicken anemia virus.
(参考例4)
 実施例1で得た抗ウイルス剤を、壁紙として用いるか、もしくは壁紙に貼付することにより、壁紙の表面に光触媒体層を形成することができ、さらにこの壁紙を屋内の壁面に施工することによって、屋内照明による光照射により屋内空間における、パルボウイルスB19、猫パルボウイルス、犬パルボウイルス、ガチョウパルボウイルス、豚パルボウイルス、ポリオウイルス、エンテロウイルス、ヒトバーエコーウイルス、ヒトライノウイルスA~B、A型肝炎ウイルス、脳心筋炎ウイルス、馬鼻炎Bウイルス、豚テッショウウイルス、アイチウイルス、ヒトアストロウイルス、ウシアストロウイルス、七面鳥アストロウイルス、アヒルアストロウイルス、豚サーコウイルス、鶏貧血ウイルスを不活性化することができる。
(Reference Example 4)
By using the antiviral agent obtained in Example 1 as wallpaper or by pasting it on the wallpaper, a photocatalyst layer can be formed on the surface of the wallpaper. Parvovirus B19, cat parvovirus, dog parvovirus, goose parvovirus, swine parvovirus, poliovirus, enterovirus, human bar echo virus, human rhinovirus A to B, A type in indoor space by light irradiation by indoor lighting Inactivate hepatitis virus, encephalomyocarditis virus, equine rhinitis virus B, swine teshovirus, eye virus, human astrovirus, siastrovirus, turkey astrovirus, duck astrovirus, porcine circovirus, chicken anemia virus Can do.
(参考例5)
 実施例1で得た抗ウイルス剤を、屋内の床面に用いるか、もしくは床面に貼付することにより、床面に光触媒体層を形成することができ、これによって、屋内照明による光照射により屋内空間における、パルボウイルスB19、猫パルボウイルス、犬パルボウイルス、ガチョウパルボウイルス、豚パルボウイルス、ポリオウイルス、エンテロウイルス、ヒトバーエコーウイルス、ヒトライノウイルスA~B、A型肝炎ウイルス、脳心筋炎ウイルス、馬鼻炎Bウイルス、豚テッショウウイルス、アイチウイルス、ヒトアストロウイルス、ウシアストロウイルス、七面鳥アストロウイルス、アヒルアストロウイルス、豚サーコウイルス、鶏貧血ウイルスを不活性化することができる。
(Reference Example 5)
The antiviral agent obtained in Example 1 can be used on an indoor floor surface or applied to the floor surface to form a photocatalyst layer on the floor surface. Parvovirus B19, cat parvovirus, canine parvovirus, goose parvovirus, swine parvovirus, poliovirus, enterovirus, human bar echovirus, human rhinovirus AB, hepatitis A virus, encephalomyocarditis virus in indoor space , Equine rhinitis B virus, swine teshovirus, ichi virus, human astrovirus, ussia trovirus, turkey astrovirus, duck astrovirus, porcine circovirus, chicken anemia virus can be inactivated.
(参考例6)
 実施例1で得た抗ウイルス剤を、自動車用インストルメントパネル、自動車用シート、自動車の天井材、自動車用ガラスの車内側などの自動車内装材の表面に貼付することにより、これら自動車内装材の表面に光触媒体層を形成することができ、これによって、車内照明による光照射により車内空間における、パルボウイルスB19、猫パルボウイルス、犬パルボウイルス、ガチョウパルボウイルス、豚パルボウイルス、ポリオウイルス、エンテロウイルス、ヒトバーエコーウイルス、ヒトライノウイルスA~B、A型肝炎ウイルス、脳心筋炎ウイルス、馬鼻炎Bウイルス、豚テッショウウイルス、アイチウイルス、ヒトアストロウイルス、ウシアストロウイルス、七面鳥アストロウイルス、アヒルアストロウイルス、豚サーコウイルス、鶏貧血ウイルスを不活性化することができる。
(Reference Example 6)
By applying the antiviral agent obtained in Example 1 to the surface of an automotive interior material such as an automotive instrument panel, an automotive seat, an automotive ceiling material, or the interior of an automotive glass, It is possible to form a photocatalyst layer on the surface, and thereby, in the interior space by light irradiation by interior illumination, parvovirus B19, cat parvovirus, dog parvovirus, goose parvovirus, swine parvovirus, poliovirus, enterovirus, Human bar echo virus, human rhinovirus AB, hepatitis A virus, encephalomyocarditis virus, equine rhinitis virus B, swine teshovirus, eye virus, human astrovirus, siastrovirus, turkey astrovirus, duck astrovirus , Porcine circovirus, chicken Capable of inactivating the blood virus.
(参考例7)
 実施例1で得た抗ウイルス剤を、エアコンの表面に用いるか、もしくはエアコンの表面に貼付することにより、エアコンの表面に光触媒体層を形成することができ、これによって、屋内照明による光照射により屋内空間における、パルボウイルスB19、猫パルボウイルス、犬パルボウイルス、ガチョウパルボウイルス、豚パルボウイルス、ポリオウイルス、エンテロウイルス、ヒトバーエコーウイルス、ヒトライノウイルスA~B、A型肝炎ウイルス、脳心筋炎ウイルス、馬鼻炎Bウイルス、豚テッショウウイルス、アイチウイルス、ヒトアストロウイルス、ウシアストロウイルス、七面鳥アストロウイルス、アヒルアストロウイルス、豚サーコウイルス、鶏貧血ウイルスを不活性化することができる。
(Reference Example 7)
By using the antiviral agent obtained in Example 1 on the surface of the air conditioner or sticking it on the surface of the air conditioner, a photocatalyst layer can be formed on the surface of the air conditioner. Parvovirus B19, cat parvovirus, canine parvovirus, goose parvovirus, swine parvovirus, poliovirus, enterovirus, human bar echovirus, human rhinovirus AB, hepatitis A virus, encephalomyocarditis Virus, equine rhinitis B virus, swine teshovirus, eye virus, human astrovirus, ussia trovirus, turkey astrovirus, duck astrovirus, porcine circovirus, chicken anemia virus can be inactivated.
(参考例8)
 実施例1で得た抗ウイルス剤を、冷蔵庫の庫内に貼付することにより、冷蔵庫内に光触媒体層を形成することができ、これによって、屋内照明や冷蔵庫内の光源による光照射により冷蔵庫内における、パルボウイルスB19、猫パルボウイルス、犬パルボウイルス、ガチョウパルボウイルス、豚パルボウイルス、ポリオウイルス、エンテロウイルス、ヒトバーエコーウイルス、ヒトライノウイルスA~B、A型肝炎ウイルス、脳心筋炎ウイルス、馬鼻炎Bウイルス、豚テッショウウイルス、アイチウイルス、ヒトアストロウイルス、ウシアストロウイルス、七面鳥アストロウイルス、アヒルアストロウイルス、豚サーコウイルス、鶏貧血ウイルスを不活性化することができる。
(Reference Example 8)
By sticking the antiviral agent obtained in Example 1 in the refrigerator cabinet, a photocatalyst layer can be formed in the refrigerator, and thereby the interior of the refrigerator can be illuminated by light from the interior lighting or the light source in the refrigerator. Parvovirus B19, cat parvovirus, dog parvovirus, goose parvovirus, swine parvovirus, poliovirus, enterovirus, human bar echovirus, human rhinovirus AB, hepatitis A virus, encephalomyocarditis virus, horse It can inactivate rhinitis B virus, swine tesovirus, ichi virus, human astrovirus, ussia trovirus, turkey astrovirus, duck astrovirus, porcine circovirus and chicken anemia virus.
(参考例9)
 実施例1で得た抗ウイルス剤を、電車のつり革、エレベーターのボタン等、不特定多数の人が接触する基材表面に貼付することにより、前記基材表面に光触媒体層を形成することができ、これによって、屋内照明による光照射により前記基材表面における、パルボウイルスB19、猫パルボウイルス、犬パルボウイルス、ガチョウパルボウイルス、豚パルボウイルス、ポリオウイルス、エンテロウイルス、ヒトバーエコーウイルス、ヒトライノウイルスA~B、A型肝炎ウイルス、脳心筋炎ウイルス、馬鼻炎Bウイルス、豚テッショウウイルス、アイチウイルス、ヒトアストロウイルス、ウシアストロウイルス、七面鳥アストロウイルス、アヒルアストロウイルス、豚サーコウイルス、鶏貧血ウイルスを不活性化することができる。
(Reference Example 9)
Forming the photocatalyst layer on the surface of the base material by applying the antiviral agent obtained in Example 1 to the surface of the base material that is contacted by an unspecified number of people, such as train straps and elevator buttons. Thus, parvovirus B19, cat parvovirus, dog parvovirus, goose parvovirus, swine parvovirus, poliovirus, enterovirus, human bar echovirus, human rhinovirus on the surface of the base material by light irradiation with indoor lighting. Virus A to B, Hepatitis A virus, Encephalomyocarditis virus, Equine rhinitis virus B, Swine teshovirus, Aichi virus, Human astrovirus, Ussia trovirus, Turkey astrovirus, Duck astrovirus, Porcine circovirus, Chicken anemia Viruses can be inactivated.
(参考例10)
 実施例1で得た抗ウイルス剤を、テーブル、箪笥、収納棚、机等の家具の表面に形成もしくは貼付することにより、前記基材表面に光触媒体層を形成することができ、これによって、屋内照明による光照射により前記基材表面における、パルボウイルスB19、猫パルボウイルス、犬パルボウイルス、ガチョウパルボウイルス、豚パルボウイルス、ポリオウイルス、エンテロウイルス、ヒトバーエコーウイルス、ヒトライノウイルスA~B、A型肝炎ウイルス、脳心筋炎ウイルス、馬鼻炎Bウイルス、豚テッショウウイルス、アイチウイルス、ヒトアストロウイルス、ウシアストロウイルス、七面鳥アストロウイルス、アヒルアストロウイルス、豚サーコウイルス、鶏貧血ウイルスを不活性化することができる。
(Reference Example 10)
By forming or pasting the antiviral agent obtained in Example 1 on the surface of furniture such as a table, bag, storage shelf, desk, etc., a photocatalyst layer can be formed on the substrate surface, Parvovirus B19, cat parvovirus, canine parvovirus, goose parvovirus, swine parvovirus, poliovirus, enterovirus, human bar echovirus, human rhinovirus A to B, A on the surface of the substrate by light irradiation with indoor lighting Inactivate hepatitis B virus, encephalomyocarditis virus, equine rhinitis B virus, swine teshovirus, aichi virus, human astrovirus, ussia trovirus, turkey astrovirus, duck astrovirus, porcine circovirus, chicken anemia virus be able to.
(参考例11)
 実施例1で得た抗ウイルス剤を、パソコン、プリンター、スキャナー、コピー機、ファックス、電話機、テレビ、ステレオ、洗濯機、ストーブ、ドライヤー、電子レンジ等、家電製品の表面に具備もしくは貼付することにより、前記基材表面に光触媒体層を形成することができ、これによって、屋内照明による光照射により前記基材表面における、パルボウイルスB19、猫パルボウイルス、犬パルボウイルス、ガチョウパルボウイルス、豚パルボウイルス、ポリオウイルス、エンテロウイルス、ヒトバーエコーウイルス、ヒトライノウイルスA~B、A型肝炎ウイルス、脳心筋炎ウイルス、馬鼻炎Bウイルス、豚テッショウウイルス、アイチウイルス、ヒトアストロウイルス、ウシアストロウイルス、七面鳥アストロウイルス、アヒルアストロウイルス、豚サーコウイルス、鶏貧血ウイルスを不活性化することができる。
(Reference Example 11)
By providing or affixing the antiviral agent obtained in Example 1 on the surface of home appliances such as personal computers, printers, scanners, copiers, fax machines, telephones, televisions, stereos, washing machines, stoves, dryers, microwave ovens, etc. A photocatalyst layer can be formed on the surface of the base material, whereby parvovirus B19, cat parvovirus, dog parvovirus, goose parvovirus, swine parvovirus on the base material surface by light irradiation with indoor lighting. , Poliovirus, enterovirus, human bar echovirus, human rhinovirus AB, hepatitis A virus, encephalomyocarditis virus, equine rhinitis virus B, swine teshovirus, aichi virus, human astrovirus, siastrovirus, turkey Astrovirus, duck ass B virus, porcine circovirus, a chicken anemia virus may be inactivated.
(参考例12)
 実施例1で得た抗ウイルス剤を、襖、畳、障子等の表面に塗布し乾燥させることにより、前記基材表面に光触媒体層を形成することができ、これによって、屋内照明による光照射により前記基材表面における、パルボウイルスB19、猫パルボウイルス、犬パルボウイルス、ガチョウパルボウイルス、豚パルボウイルス、ポリオウイルス、エンテロウイルス、ヒトバーエコーウイルス、ヒトライノウイルスA~B、A型肝炎ウイルス、脳心筋炎ウイルス、馬鼻炎Bウイルス、豚テッショウウイルス、アイチウイルス、ヒトアストロウイルス、ウシアストロウイルス、七面鳥アストロウイルス、アヒルアストロウイルス、豚サーコウイルス、鶏貧血ウイルスを不活性化することができる。
(Reference Example 12)
By applying and drying the antiviral agent obtained in Example 1 on the surface of cocoons, tatami mats, shoji, etc., a photocatalyst layer can be formed on the surface of the base material. By the parvovirus B19, cat parvovirus, canine parvovirus, goose parvovirus, swine parvovirus, poliovirus, enterovirus, human bar echovirus, human rhinovirus AB, hepatitis A virus, brain It can inactivate myocarditis virus, equine rhinitis B virus, swine teshovirus, ichi virus, human astrovirus, ussia trovirus, turkey astrovirus, duck astrovirus, porcine circovirus and chicken anemia virus.
(参考例13)
 実施例1で得た抗ウイルス剤を、フィルムの表面に形成若しくは貼付することにより、フィルムの表面に光触媒体層を形成することができ、さらにこのフィルムを建材、家具、壁、床、天井、タッチパネル、機器のボタン、ドア、ドアノブ、階段の手すり、航空機や列車の客室の内壁等に施工することによって、屋内照明による光照射により前記フィルム表面における、パルボウイルスB19、猫パルボウイルス、犬パルボウイルス、ガチョウパルボウイルス、豚パルボウイルス、ポリオウイルス、エンテロウイルス、ヒトバーエコーウイルス、ヒトライノウイルスA~B、A型肝炎ウイルス、脳心筋炎ウイルス、馬鼻炎Bウイルス、豚テッショウウイルス、アイチウイルス、ヒトアストロウイルス、ウシアストロウイルス、七面鳥アストロウイルス、アヒルアストロウイルス、豚サーコウイルス、鶏貧血ウイルスを不活性化することができる。
(Reference Example 13)
By forming or sticking the antiviral agent obtained in Example 1 on the surface of the film, a photocatalyst layer can be formed on the surface of the film, and this film can be used as a building material, furniture, wall, floor, ceiling, Parvovirus B19, cat parvovirus, dog parvovirus on the surface of the film by irradiating light with indoor lighting by constructing it on the touch panel, equipment buttons, doors, door knobs, handrails of stairs, interior walls of aircraft and train cabins, etc. , Goose parvovirus, swine parvovirus, poliovirus, enterovirus, human bar echovirus, human rhinovirus AB, hepatitis A virus, encephalomyocarditis virus, equine rhinitis virus B, swine teshovirus, aichi virus, human Astrovirus, Usciatrovirus, Turkey Astro Virus, duck Astro virus, porcine circovirus, a chicken anemia virus can be inactivated.

Claims (9)

  1.  貴金属粒子が担持された光触媒体粒子とバインダーとを含んでなる光触媒体層を表面に備える光触媒構造体を含有する抗ウイルス剤であって、
     前記光触媒体粒子100質量部に対して前記貴金属粒子が0.01質量部~1質量部担持されており、
     15~30nmの大きさを有しかつエンベロープを有さないウイルスを不活性化させる抗ウイルス剤。
    An antiviral agent comprising a photocatalyst structure having a photocatalyst layer comprising a photocatalyst particle carrying a noble metal particle and a binder on its surface,
    0.01 to 1 part by mass of the precious metal particles are supported on 100 parts by mass of the photocatalyst particles,
    An antiviral agent that inactivates a virus having a size of 15 to 30 nm and having no envelope.
  2.  前記光触媒体粒子が酸化タングステン粒子である請求項1記載の抗ウイルス剤。 The antiviral agent according to claim 1, wherein the photocatalyst particles are tungsten oxide particles.
  3.  前記貴金属がCu、Pt、Au、Pd、Ag、Ru、Ir及びRhからなる群より選ばれる少なくとも1種の貴金属である請求項1又は2に記載の抗ウイルス剤。 The antiviral agent according to claim 1 or 2, wherein the noble metal is at least one noble metal selected from the group consisting of Cu, Pt, Au, Pd, Ag, Ru, Ir, and Rh.
  4.  前記バインダーがシリコンアルコキシドまたは酸化ジルコニウムからなる請求項1~3のいずれか1項に記載の抗ウイルス剤。 The antiviral agent according to any one of claims 1 to 3, wherein the binder comprises silicon alkoxide or zirconium oxide.
  5.  貴金属粒子が担持された光触媒体粒子とバインダーとを含んでなる光触媒体層を表面に備える光触媒構造体を含有する抗ウイルス剤であって、前記光触媒体粒子100質量部に対して前記貴金属粒子が0.01質量部~1質量部担持されている、抗ウイルス剤を準備する工程と、
     前記抗ウイルス剤を、15~30nmの大きさを有しかつエンベロープをもたないウイルスに接触させる工程と、
     前記抗ウイルス剤に、光触媒体粒子を光励起させる光を照射する工程と、を備える、ウイルスを不活性化する方法。
    An antiviral agent comprising a photocatalyst structure provided with a photocatalyst layer comprising a photocatalyst particle carrying a noble metal particle and a binder on the surface, wherein the noble metal particle is contained in 100 parts by mass of the photocatalyst particle. Preparing an antiviral agent carried by 0.01 to 1 part by mass;
    Contacting the antiviral agent with a virus having a size of 15 to 30 nm and having no envelope;
    Irradiating the antiviral agent with light for photoexciting the photocatalyst particles, a method for inactivating a virus.
  6.  前記光触媒体粒子が酸化タングステン粒子である、請求項5記載のウイルスを不活性化する方法。 The method for inactivating a virus according to claim 5, wherein the photocatalyst particles are tungsten oxide particles.
  7.  前記貴金属がCu、Pt、Au、Pd、Ag、Ru、Ir及びRhからなる群より選ばれる少なくとも1種の貴金属である請求項5又は6に記載のウイルスを不活性化する方法。 The method for inactivating a virus according to claim 5 or 6, wherein the noble metal is at least one noble metal selected from the group consisting of Cu, Pt, Au, Pd, Ag, Ru, Ir and Rh.
  8.  前記バインダーがシリコンアルコキシドからなる請求項5~7のいずれか1項に記載のウイルスを不活性化する方法。 The method for inactivating a virus according to any one of claims 5 to 7, wherein the binder comprises silicon alkoxide.
  9.  天井材、タイル、ガラス、壁紙、壁材、フィルム、床、襖、畳、障子からなる群より選択された建築資材、または、自動車用インストルメントパネル、自動車用シート、自動車用天井材、自動車用ガラスからなる群より選択された自動車内装材、または、冷蔵庫、エアコン、パソコン、プリンター、スキャナー、コピー機、ファックス、電話機、テレビ、ステレオ、洗濯機、ストーブ、ドライヤー、電子レンジからなる群より選択された家電製品、または、机、椅子、テーブル、箪笥、収納棚からなる群より選択された家具、または、衣類、カーテンからなる群より選択された繊維製品、または、手摺り、電車のつり革、エレベーターのボタンからなる群より選択された不特定多数の人が接触する基材への、請求項1~4のいずれか1項に記載の抗ウイルス剤の使用。 Building materials selected from the group consisting of ceiling materials, tiles, glass, wallpaper, wall materials, films, floors, fences, tatami mats, shoji, or automotive instrument panels, automotive seats, automotive ceiling materials, automotive Automotive interior materials selected from the group consisting of glass, or selected from the group consisting of refrigerators, air conditioners, personal computers, printers, scanners, copiers, fax machines, telephones, TVs, stereos, washing machines, stoves, dryers, microwave ovens Household appliances, furniture selected from the group consisting of desks, chairs, tables, bags, storage shelves, textiles selected from the group consisting of clothes, curtains, handrails, train straps, 5. The substrate according to any one of claims 1 to 4, to a base material in contact with an unspecified number of people selected from the group consisting of elevator buttons. Use of the placement of anti-viral agents.
PCT/JP2012/067559 2011-07-11 2012-07-10 Anti-viral agent capable of inactivating virus, and method for inactivating virus WO2013008807A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011153006A JP2013018736A (en) 2011-07-11 2011-07-11 Anti-viral agent capable of inactivating virus, and method for inactivating virus
JP2011-153006 2011-07-11

Publications (1)

Publication Number Publication Date
WO2013008807A1 true WO2013008807A1 (en) 2013-01-17

Family

ID=47506090

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/067559 WO2013008807A1 (en) 2011-07-11 2012-07-10 Anti-viral agent capable of inactivating virus, and method for inactivating virus

Country Status (2)

Country Link
JP (1) JP2013018736A (en)
WO (1) WO2013008807A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105008049A (en) * 2013-03-15 2015-10-28 昭和电工株式会社 Antibacterial, antiviral photocatalytic titanium oxide, and antibacterial, antiviral photocatalytic titanium oxide slurry dispersed in a neutral area, as well as method for manufacturing same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013067577A (en) * 2011-09-21 2013-04-18 Nbc Meshtec Inc Antiviral agent and member using the same
JP2015059089A (en) * 2013-09-17 2015-03-30 昭和電工株式会社 Antiviral composition, method for preparing the same, and method for inactivating virus
JP5673782B1 (en) 2013-11-11 2015-02-18 凸版印刷株式会社 Liquid crystal display

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000070673A (en) * 1998-09-03 2000-03-07 Daido Steel Co Ltd Antibacterial deodorizing photocatalyst type filter and its production
WO2011018899A1 (en) * 2009-08-12 2011-02-17 株式会社 東芝 Antiviral material and film, fiber, and product using same
JP2011050802A (en) * 2009-01-27 2011-03-17 Sumitomo Chemical Co Ltd Method for producing dispersion liquid of noble metal-deposited photocatalyst particle
JP2011083747A (en) * 2009-10-19 2011-04-28 Sumitomo Chemical Co Ltd Noble-metal-carrying photocatalyst-particle-dispersion and photocatalyst functional product
WO2011068094A1 (en) * 2009-12-01 2011-06-09 住友化学株式会社 Antiviral agent, and antiviral agent functional product using same
WO2011078203A1 (en) * 2009-12-24 2011-06-30 国立大学法人 東京大学 Virus inactivator

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000070673A (en) * 1998-09-03 2000-03-07 Daido Steel Co Ltd Antibacterial deodorizing photocatalyst type filter and its production
JP2011050802A (en) * 2009-01-27 2011-03-17 Sumitomo Chemical Co Ltd Method for producing dispersion liquid of noble metal-deposited photocatalyst particle
WO2011018899A1 (en) * 2009-08-12 2011-02-17 株式会社 東芝 Antiviral material and film, fiber, and product using same
JP2011083747A (en) * 2009-10-19 2011-04-28 Sumitomo Chemical Co Ltd Noble-metal-carrying photocatalyst-particle-dispersion and photocatalyst functional product
WO2011068094A1 (en) * 2009-12-01 2011-06-09 住友化学株式会社 Antiviral agent, and antiviral agent functional product using same
WO2011078203A1 (en) * 2009-12-24 2011-06-30 国立大学法人 東京大学 Virus inactivator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105008049A (en) * 2013-03-15 2015-10-28 昭和电工株式会社 Antibacterial, antiviral photocatalytic titanium oxide, and antibacterial, antiviral photocatalytic titanium oxide slurry dispersed in a neutral area, as well as method for manufacturing same

Also Published As

Publication number Publication date
JP2013018736A (en) 2013-01-31

Similar Documents

Publication Publication Date Title
WO2011068094A1 (en) Antiviral agent, and antiviral agent functional product using same
CN103228358B (en) Be supported with titania photocatalyst and its manufacture method of copper compound
JP6113781B2 (en) Antiviral fiber
JP5959675B2 (en) Antibacterial material
JP6092435B2 (en) Aqueous dispersion, paint using the same, and method for producing photocatalytic film
WO2011068095A1 (en) Method for producing liquid dispersion of noble metal-supporting photocatalyst particles, liquid dispersion of noble metal-supporting photocatalyst particles, hydrophilizing agent, and photocatalytic functional product
WO2013008807A1 (en) Anti-viral agent capable of inactivating virus, and method for inactivating virus
JP2012110831A (en) Photocatalyst for decomposing volatile aromatic compound, and product having photocatalytic function
JP2010115635A (en) Photocatalyst dispersion, its method of manufacturing the same and application thereof
JP2011078930A (en) Photocatalyst dispersion and photocatalyst functional product using the same
JP2013216596A (en) Antimicrobial agent, antimicrobial agent dispersion, and antimicrobial-treated product using the same
JP2013166122A (en) Photocatalyst structure, and photocatalyst functional product using the same, and antiviral functional product
JP2010214309A (en) Photocatalytic body-dispersed liquid and application thereof
JP5512223B2 (en) Noble metal-supported photocatalyst particle dispersion and photocatalyst functional product
JP2012017238A (en) Method for producing oxide particle dispersion liquid, oxide particle dispersion liquid, and photocatalyst functional product
WO2012011367A1 (en) Photocatalyst coating liquid and product having photocatalytic function
JP2011050802A (en) Method for producing dispersion liquid of noble metal-deposited photocatalyst particle
JP6681639B1 (en) Method for producing photocatalyst having tungsten oxide particles as core
WO2020188860A1 (en) Photocatalytic body having tungsten oxide particles as core and photocatalyst member using same
JP2010110672A (en) Photocatalytic body-dispersion liquid
JP2012131650A (en) Method for manufacturing tungsten oxide particle dispersion liquid, method for manufacturing noble metal-carrying tungsten oxide particle dispersion liquid, and photocatalyst functional product
JP2012016690A (en) Method of producing oxide particle dispersion liquid, oxide particle dispersion liquid, and photocatalyst functional product
JP2013240731A (en) Photocatalyst structure and photocatalyst functional product using the same
JP2011092847A (en) Dispersion of noble-metal supporting photocatalyst particles, and functional product of photocatalyst
JP2012071253A (en) Method for producing dispersion liquid of noble metal-supporting photocatalyst particle, dispersion liquid of noble metal-supporting photocatalyst particle, and product having photocatalytic function

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12811661

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12811661

Country of ref document: EP

Kind code of ref document: A1