JP2011107547A - Method of manufacturing electrifying member - Google Patents

Method of manufacturing electrifying member Download PDF

Info

Publication number
JP2011107547A
JP2011107547A JP2009264455A JP2009264455A JP2011107547A JP 2011107547 A JP2011107547 A JP 2011107547A JP 2009264455 A JP2009264455 A JP 2009264455A JP 2009264455 A JP2009264455 A JP 2009264455A JP 2011107547 A JP2011107547 A JP 2011107547A
Authority
JP
Japan
Prior art keywords
layer
surface layer
acrylic monomer
mixture
elastic layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009264455A
Other languages
Japanese (ja)
Other versions
JP5436163B2 (en
JP2011107547A5 (en
Inventor
Hiroaki Watanabe
宏暁 渡辺
Masaaki Harada
昌明 原田
Keiji Nose
啓二 野瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2009264455A priority Critical patent/JP5436163B2/en
Publication of JP2011107547A publication Critical patent/JP2011107547A/en
Publication of JP2011107547A5 publication Critical patent/JP2011107547A5/ja
Application granted granted Critical
Publication of JP5436163B2 publication Critical patent/JP5436163B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Rolls And Other Rotary Bodies (AREA)
  • Electrostatic Charge, Transfer And Separation In Electrography (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing, at a low cost, an electrifying member for certainly suppressing adhesion of toner or an external additive to a surface of the electrifying member. <P>SOLUTION: The method of manufacturing the electrifying member having a conductive elastic layer on the outer periphery of a support body and having a surface layer on the outer periphery of the conductive elastic layer, includes processes of: (1) preparing a mixture containing curable acrylic monomer and base polymer of three or more functions; (2) forming the layer of the mixture on the outer peripheral surface of the support body; (3) bleeding of the curable acrylic monomer and moving it to the surface of the layer of the mixture; and (4) forming the surface layer by curing the curable acrylic monomer moved to the surface of the layer of the mixture and forming the conductive elastic layer by bridging the base polymer. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は帯電部材の製造方法に関する。   The present invention relates to a method for manufacturing a charging member.

特許文献1には、弾性層表面に紫外線や電子線等のエネルギー線を照射して表面改質層を設けてなる帯電部材の製造方法が開示されている。   Patent Document 1 discloses a method for producing a charging member in which an elastic layer surface is irradiated with energy rays such as ultraviolet rays and electron beams to provide a surface modification layer.

特開平11−149201号公報JP-A-11-149201

しかし本発明者らの検討によれば、特許文献1に記載の方法により形成される帯電部材の表面改質層の粘着性の低減効果は必ずしも充分でなく、トナーや外添剤の表面への付着による画像への影響を十分には抑制できないことがあった。そこで、本発明の目的は、トナーや外添剤の帯電部材表面への付着をより確実に抑制できる帯電部材を低コストで製造する方法を提供することにある。   However, according to the study by the present inventors, the effect of reducing the adhesiveness of the surface modification layer of the charging member formed by the method described in Patent Document 1 is not always sufficient, and the surface of the toner or external additive is not sufficient. In some cases, the influence on the image due to adhesion cannot be sufficiently suppressed. Accordingly, an object of the present invention is to provide a method for producing a charging member that can more reliably suppress the adhesion of toner and external additives to the charging member surface at a low cost.

本発明にかかる帯電部材の製造方法は、支持体の外周に導電性弾性層を有し、該導電性弾性層の外周に表面層を有する帯電部材の製造方法であって、
(1)3官能以上の硬化性アクリルモノマーとベースポリマーとを含む混合物を調製する工程と、
(2)該混合物の層を該支持体の周面に形成する工程と、
(3)該硬化性アクリルモノマーをブリードさせて、該混合物の層の表面に移行させる工程と、
(4)該混合物の層の表面に移行した該硬化性アクリルモノマーを硬化させて該表面層を形成すると共に、該ベースポリマーを架橋させて導電性弾性層を形成する工程とを有することを特徴とする帯電部材の製造方法である。
A method for producing a charging member according to the present invention is a method for producing a charging member having a conductive elastic layer on the outer periphery of a support and a surface layer on the outer periphery of the conductive elastic layer,
(1) preparing a mixture containing a trifunctional or higher curable acrylic monomer and a base polymer;
(2) forming a layer of the mixture on the peripheral surface of the support;
(3) bleed the curable acrylic monomer and transfer to the surface of the layer of the mixture;
(4) curing the curable acrylic monomer transferred to the surface of the layer of the mixture to form the surface layer, and crosslinking the base polymer to form a conductive elastic layer. This is a method for manufacturing a charging member.

本発明によればトナーや外添剤の表面への付着が抑えられた帯電部材を低コストで製造することができる。   According to the present invention, a charging member in which adhesion of toner and external additives to the surface can be suppressed can be manufactured at low cost.

帯電ローラの構成例を説明するための模式的断面図である。FIG. 3 is a schematic cross-sectional view for explaining a configuration example of a charging roller. 電子写真装置の構成例を説明するための模式的断面図である。It is a typical sectional view for explaining the example of composition of an electrophotographic device. ベント式押出機の構成例を説明するための模式的断面図である。It is typical sectional drawing for demonstrating the structural example of a vent type extruder. 連続加硫装置の構成例を説明するための模式図である。It is a schematic diagram for demonstrating the structural example of a continuous vulcanizer. 電子線照射装置の構成例を説明するための模式図である。It is a schematic diagram for demonstrating the structural example of an electron beam irradiation apparatus.

本発明にかかる、導電性支持体の外周に導電性弾性層を有し、該導電性弾性層の外周に表面層を有する帯電部材の製造方法は、下記(1)〜(4)の工程を有する。
(1)放射線あるいは熱により硬化する3官能以上のアクリルモノマーとベースポリマーとを混合し、導電性弾性層用組成物を得る工程;、
(2)該導電性弾性層用組成物を成形し、導電性弾性層を形成する工程;、
(3)3官能以上のアクリルモノマーをブリードさせ、成形した該導電性弾性層の表面に偏在させる工程;及び、
(4)該導電性弾性層の表面に偏在させた3官能以上のアクリルモノマーを反応させ、表面層を形成する工程。
The manufacturing method of the charging member which has a conductive elastic layer on the outer periphery of a conductive support and has a surface layer on the outer periphery of the conductive elastic layer according to the present invention includes the following steps (1) to (4). Have.
(1) A step of mixing a trifunctional or higher functional acrylic monomer that is cured by radiation or heat with a base polymer to obtain a conductive elastic layer composition;
(2) forming the conductive elastic layer composition to form a conductive elastic layer;
(3) a step of bleeding a trifunctional or higher functional acrylic monomer and unevenly distributing it on the surface of the formed conductive elastic layer; and
(4) A step of forming a surface layer by reacting a trifunctional or higher functional acrylic monomer unevenly distributed on the surface of the conductive elastic layer.

以下に、本発明に係る帯電部材の一例として帯電ローラを挙げて本発明を詳細に説明する。
図1は本発明に係る帯電ローラの軸に直交する方向の断面図であり、導電性支持体11と、その周面を被覆している導電性の弾性層12と、導電性弾性層12の周面を被覆している表面層13とを有している。そして、係る帯電部材は下記(1)〜(4)の工程を経て形成される。
Hereinafter, the present invention will be described in detail by taking a charging roller as an example of the charging member according to the present invention.
FIG. 1 is a sectional view in a direction perpendicular to the axis of the charging roller according to the present invention. The conductive support 11, the conductive elastic layer 12 covering the peripheral surface, and the conductive elastic layer 12 are shown in FIG. And a surface layer 13 covering the peripheral surface. The charging member is formed through the following steps (1) to (4).

<工程(1)>
工程(1)は、ベースポリマーと、3官能以上の硬化性アクリルモノマーと、導電剤とを含む組成物を調製する工程である。これらの材料の混合方法としては、特に限定されるものではなく、バンバリーミキサーや加圧式ニーダーといった密閉型混合機を使用した混合方法や、オープンロールのような開放型の混合機を使用した混合方法などを例示することができる。該アクリルモノマーの添加量としては、該ベースポリマー100質量部に対して1〜30質量部、特には1〜10質量部配合することがより好ましい。添加量を上記範囲内とすることで、後述する弾性層の表面への移行工程において十分なアクリルモノマーを移行させることができ、より均一な表面層を形成できる。
<Step (1)>
Step (1) is a step of preparing a composition containing a base polymer, a trifunctional or higher functional curable acrylic monomer, and a conductive agent. The mixing method of these materials is not particularly limited, and is a mixing method using a closed mixer such as a Banbury mixer or a pressure kneader, or a mixing method using an open mixer such as an open roll. Etc. can be illustrated. The added amount of the acrylic monomer is more preferably 1 to 30 parts by mass, and particularly 1 to 10 parts by mass with respect to 100 parts by mass of the base polymer. By setting the addition amount within the above range, sufficient acrylic monomer can be transferred in the step of transferring to the surface of the elastic layer, which will be described later, and a more uniform surface layer can be formed.

<<硬化性アクリルモノマー>>
硬化性アクリルモノマーとはラジカル重合系あるいはカチオン重合系の材料である。特に3官能以上のアクリルモノマーは分子設計が容易で、低粘度であるため、ベースポリマーとの混合物からのブリード速度をコントロールし易く、硬化速度も早い。3官能以上のアクリルモノマーとしては、分子内に3つ以上の(メタ)アクリル酸エステル基を有するモノマー分子を挙げられる。これらのアクリルモノマーは分子中の官能基数が3個以上5個以下であることがより好ましい。具体的な3官能以上の硬化性アクリルモノマーとしては以下のものが挙げられる。エトキシ化イソシアヌル酸トリアクリレート、エトキシ化トリメチロールプロパントリアクリレート、トリメチロールプロパントリアクリレート、プロポキシ化トリメチロールプロパントリアクリレート、ペンタエリスリトールトリアクリレート、エトキシ化ペンタエリスリトールテトラアクリレート、ジトリメチロールプロパンテトラアクリレート、ジペンタエリスリトールペンタアクリレート等。
<< Curable acrylic monomer >>
The curable acrylic monomer is a radical polymerization type or cationic polymerization type material. In particular, a trifunctional or higher functional acrylic monomer is easy to design a molecule and has a low viscosity. Therefore, it is easy to control the bleed speed from the mixture with the base polymer, and the curing speed is also fast. Examples of the trifunctional or higher functional acrylic monomer include monomer molecules having three or more (meth) acrylic acid ester groups in the molecule. These acrylic monomers preferably have 3 or more and 5 or less functional groups in the molecule. Specific examples of the trifunctional or higher curable acrylic monomer include the following. Ethoxylated isocyanuric acid triacrylate, ethoxylated trimethylolpropane triacrylate, trimethylolpropane triacrylate, propoxylated trimethylolpropane triacrylate, pentaerythritol triacrylate, ethoxylated pentaerythritol tetraacrylate, ditrimethylolpropane tetraacrylate, dipentaerythritol Pentaacrylate and the like.

<<ベースポリマー>>
弾性層はベースポリマーと導電剤等の添加剤とを含有している。ベースポリマーは帯電部材の実使用温度範囲でゴム弾性を示す材料であれば特に限定されるものではない。具体的なゴム材料としては、以下のものが使用される。天然ゴム(NR)、イソプレンゴム(IR)、ブタジエンゴム(BR)、スチレン−ブタジエン(SBR)、ブチルゴム(IIR)、エチレン−プロピレン−ジエン3元共重合体ゴム(EPDM)、エピクロルヒドリンホモポリマー(CHC)、エピクロルヒドリン−エチレンオキサイド共重合体(CHR)、エピクロルヒドリン−エチレンオキサイド−アリルグリシジルエーテル3元共重合体(CHR−AGE)、アクリロニトリル−ブタジエン共重合体(NBR)、アクリロニトリル−ブタジエン共重合体の水添物(H−NBR)、クロロプレンゴム(CR)、アクリルゴム(ACM、ANM)等の原料ゴムに架橋剤を配合した熱硬化性のゴム材料や、ポリオレフィン系熱可塑性エラストマー、ポリスチレン系熱可塑性エラストマー、ポリエステル系熱可塑性エラストマー、ポリウレタン系熱可塑性エラストマー、ポリアミド系熱可塑性エラストマー、塩ビ系熱可塑性エラストマー等の熱可塑性エラストマーなど。
<< Base polymer >>
The elastic layer contains a base polymer and additives such as a conductive agent. The base polymer is not particularly limited as long as it is a material exhibiting rubber elasticity in the actual use temperature range of the charging member. Specific rubber materials are as follows. Natural rubber (NR), isoprene rubber (IR), butadiene rubber (BR), styrene-butadiene (SBR), butyl rubber (IIR), ethylene-propylene-diene terpolymer rubber (EPDM), epichlorohydrin homopolymer (CHC) ), Epichlorohydrin-ethylene oxide copolymer (CHR), epichlorohydrin-ethylene oxide-allyl glycidyl ether terpolymer (CHR-AGE), acrylonitrile-butadiene copolymer (NBR), water of acrylonitrile-butadiene copolymer Thermosetting rubber materials, raw materials such as additives (H-NBR), chloroprene rubber (CR), acrylic rubbers (ACM, ANM), etc., cross-linking agents, polyolefin-based thermoplastic elastomers, polystyrene-based thermoplastic elastomers The Ester thermoplastic elastomers, polyurethane thermoplastic elastomers, polyamide thermoplastic elastomers, and thermoplastic elastomers such as vinyl chloride type thermoplastic elastomer.

<<導電剤>>
ベースポリマーには、導電性弾性層の電気抵抗を調整する目的で導電剤を添加することが好ましい。導電剤としては、以下のものが挙げられる。カーボンブラック、グラファイト等の炭素材料;酸化チタン、酸化錫等の酸化物;Cu、Ag等の金属;酸化物や金属を粒子表面に被覆して導電化した導電粒子等の電子導電剤や、過塩素酸リチウム、過塩素酸ナトリウム、過塩素酸カルシウム等の無機イオン物質;ラウリルトリメチルアンモニウムクロライド、ステアリルトリメチルアンモニウムクロライド、オクタデシルトリメチルアンモニウムクロライド、ドデシルトリメチルアンモニウムクロライド、ヘキサデシルトリメチルアンモニウムクロライド、トリオクチルプロピルアンモニウムブロミド、変性脂肪族ジメチルエチルアンモニウムエトサルフェート等の陽イオン性界面活性剤;ラウリルベタイン、ステアリルべタイン、ジメチルアルキルラウリルベタイン等の両性イオン界面活性剤;過塩素酸テトラエチルアンモニウム、過塩素酸テトラブチルアンモニウム、過塩素酸トリメチルオクタデシルアンモニウム等の第四級アンモニウム塩;トリフルオロメタンスルホン酸リチウム等の有機酸リチウム塩等のイオン導電剤など。さらに、ベースポリマーには、必要に応じてゴムの配合剤として一般に用いられている充填剤、加工助剤、架橋助剤、架橋促進剤、架橋促進助剤、架橋遅延剤、分散剤等を添加することができる。
<< Conductive agent >>
It is preferable to add a conductive agent to the base polymer for the purpose of adjusting the electric resistance of the conductive elastic layer. Examples of the conductive agent include the following. Carbon materials such as carbon black and graphite; oxides such as titanium oxide and tin oxide; metals such as Cu and Ag; electronic conductive agents such as conductive particles obtained by coating the surface of the particles with oxide or metal; Inorganic ionic substances such as lithium chlorate, sodium perchlorate, calcium perchlorate; lauryltrimethylammonium chloride, stearyltrimethylammonium chloride, octadecyltrimethylammonium chloride, dodecyltrimethylammonium chloride, hexadecyltrimethylammonium chloride, trioctylpropylammonium bromide , Cationic surfactants such as modified aliphatic dimethylethylammonium etosulphate; zwitterionic interfaces such as lauryl betaine, stearyl betaine, dimethylalkyl lauryl betaine Sex agents; such as ion conductive agent such as an organic lithium salt such as trifluoroacetic lithium methanesulfonate; tetraethylammonium perchlorate, tetrabutylammonium perchlorate, quaternary ammonium salts such as perchlorate trimethyloctadecylammonium. In addition, fillers, processing aids, crosslinking aids, crosslinking accelerators, crosslinking accelerators, crosslinking retarders, dispersants, etc. that are commonly used as rubber compounding agents are added to the base polymer as necessary. can do.

<工程(2)>
工程(2)は工程(1)で調製した混合物を支持体の周面に塗布して該混合物の層を形成する工程である。混合物の層の形成方法としては、例えば以下(i)から(iii)の方法が挙げられる。(i)該混合物を押出機によりチューブ状に押出成形し、これに支持体を圧入後、表面を研磨して所望の外径とする方法。(ii)混合物を、クロスヘッドを装着した押出機により、導電性支持体を中心に円筒形に共押し出しして、所望の外径の成形体を得る方法。(iii)混合物を射出成形機を使用して、所望の外径の金型内部に注入して成形体を得る方法。
<Step (2)>
In step (2), the mixture prepared in step (1) is applied to the peripheral surface of the support to form a layer of the mixture. Examples of the method for forming the mixture layer include the following methods (i) to (iii). (I) A method in which the mixture is extruded into a tube shape by an extruder, a support is press-fitted into the tube, and the surface is polished to obtain a desired outer diameter. (Ii) A method of obtaining a molded body having a desired outer diameter by co-extruding the mixture into a cylindrical shape around the conductive support by an extruder equipped with a crosshead. (Iii) A method of obtaining a molded body by injecting the mixture into a mold having a desired outer diameter using an injection molding machine.

これらの方法の中でも、クロスヘッド押出機を使用した押出成形法は連続生産が容易で、工程数が少なく、低コストでの製造に適している為、最も好ましい。図3にベント式押出機を使用した押出成形の概要を模式的に示す。押出機3は、シリンダー31内に、スクリューダム部37を有する押出スクリュー32を回転自在に内挿している。押出スクリュー32の先端側のシリンダー31端部にはクロスヘッド33が取り付けられている。また、シリンダー31にはベント口35が設けられており、ベント口35は不図示の真空ポンプへ接続されており、該真空ポンプによりシリンダー31内が真空引きされる。材料投入口34より投入されたゴム混合物は、押出スクリュー32の回転によりクロスヘッド33側へと搬送される。ゴム混合物はシリンダー内を通過する際に、ベント口に接続された真空ポンプにより揮発分が除去される。これにより、この後の工程で、成形体を加熱処理した場合に、混合物の層中の揮発分が加硫時の熱で気化することにより弾性層への気泡(ボイド)の発生を抑制できる。   Among these methods, the extrusion method using a crosshead extruder is most preferable because continuous production is easy, the number of steps is small, and it is suitable for production at low cost. FIG. 3 schematically shows an outline of extrusion molding using a vent type extruder. In the extruder 3, an extrusion screw 32 having a screw dam portion 37 is rotatably inserted in a cylinder 31. A cross head 33 is attached to the end of the cylinder 31 on the distal end side of the extrusion screw 32. The cylinder 31 is provided with a vent port 35. The vent port 35 is connected to a vacuum pump (not shown), and the inside of the cylinder 31 is evacuated by the vacuum pump. The rubber mixture charged from the material charging port 34 is conveyed to the crosshead 33 side by the rotation of the extrusion screw 32. As the rubber mixture passes through the cylinder, volatile components are removed by a vacuum pump connected to the vent port. Thereby, when a molded object is heat-processed in the subsequent process, generation | occurrence | production of the bubble (void) to an elastic layer can be suppressed because the volatile matter in the layer of a mixture vaporizes with the heat | fever at the time of vulcanization.

クロスヘッドへと搬送されたゴム混合物は不図示の芯金供給装置より供給された支持体11と共にクロスヘッド先端のダイス36を通り、支持体11と共押し出しされる。この時、芯金供給装置から供給される導電性支持体の送り速度を連続的に変化させることにより、クラウン形状のローラを成形できる。すなわち、芯金先端部がダイス出口を通過し、芯金中央部かダイス出口を通過するまでの間は送り速度を遅く、また、芯金中央部がダイス出口を通過し、芯金後端部か通過するまでの間に送り速度を早く変化させる。この芯金送り速度の調速により、ローラ中央直径が、ローラ両端直径より円弧状に大きいクラウン形状を有するゴム混合物の層が形成される。   The rubber mixture conveyed to the crosshead passes through the die 36 at the tip of the crosshead together with the support 11 supplied from a core metal supply device (not shown) and is coextruded with the support 11. At this time, a crown-shaped roller can be formed by continuously changing the feed rate of the conductive support supplied from the cored bar supply device. That is, the feed speed is slow until the core metal tip passes through the die outlet and passes through the metal core central part or the die outlet, and the metal core central part passes through the die outlet and the metal core rear end part. The feed speed is changed quickly until it passes. By controlling the core feed speed, a rubber mixture layer having a crown shape in which the roller center diameter is larger in an arc shape than the roller both end diameters is formed.

<<工程(3)>>
工程(3)では、ゴム混合物の層中の硬化性アクリルモノマーを当該ゴム混合物の層の表面にブリード(移行)させる。硬化性アクリルモノマーの移行速度はベースポリマーと硬化性アクリルモノマーとの溶解度定数(Solubility Parameter:SP値)の差に依存する。すなわち、両者のSP値の差が大きいほど移行速度は速くなる。アクリルモノマーとベースポリマーとの溶解度パラメーターの差(絶対値差)は0.5〜3.0(MPa)1/2が好ましく1.5〜2.5(MPa)1/2の範囲がより好ましい。SP値の差が1.5以上でモノマーの導電性弾性層表面への移行量が確保され、均一な表面層が形成される。また、2.5以下でモノマーの移行量が過剰になることによる表面層の膜厚の増大や、硬化処理後にも未硬化のモノマーが部材表面に染み出しすることを抑制できる。なお、高分子材料であるベースポリマーのSP値については分子構造から分子を構成する原子団のモル吸引力より算出するSmallの計算法(P.A.Small,J.Appl.Chem.,vol.3,71(1953))を用いて求められる。また、モノマーのSP値については、Hildebrand-Scatchardの溶液理論( J.H.Hildebrand,R.L.Scott,「 The Solubility of Nonelectrolytes」3rd Ed.,Reinhold Publishing cop.,New York (1949))に基づき、分子構造から導かれる蒸発エネルギーと分子容とから計算して求められる。本発明にて使用した原子団固有の上記定数については、D.W.Van.Kreven「Prorerties of Polymer」3rd Ed.,Elsevier(1990)に記載されている、25℃での値を使用する。アクリルモノマーの層表面へのブリードはベースポリマーの分子運動を大きくすることによって促進される為、工程(3)では加熱することが好ましい。加熱処理の温度域は、硬化性モノマーの弾性層表面への移行が充分に進行するまでは少なくとも硬化性モノマーの硬化温度より低い温度、例えば、100℃以上160℃以下に設定することができる。工程(3)での加熱処理は連続加熱炉で行うことがより一層好ましい。連続加熱炉を使用することで、工程(2)での成形から工程(3)の加熱処理まで、連続一環生産が可能となる。図4には、押出機3から押出されたローラの連続加熱装置の概要を模式的に示した。押出機3により、支持体11の外周に未加硫ゴムが積層された成形体は、不図示の搬送コンベアーによって、連続加熱炉4へ連続的に搬送される。連続加熱炉4は予め所定の温度に保たれており、搬送されるスピードと連続加熱炉4の長さにより、所定の時間加熱処理される。本発明において使用される連続加熱炉は2つの領域からなる構成とし、成形体入口側領域41と成形体出口側領域42は、それぞれ異なる温度に設定可能である。また、これらの温度設定を同一温度とすることも可能である。導電性弾性層を熱硬化性のポリマーで構成する場合には上記のブリード工程(3)において、ベースポリマーの架橋反応を同時に行うことが出来る。この場合、架橋反応によってベースポリマーの分子運動性が低下し、モノマーの移行速度が低下する傾向が見られる。よって、モノマーの弾性体層表面の移行とベースポリマーの架橋反応を効率的に行う為、成形体入口側41を低温、成形体出口側42を高温とすることが好ましい。低温側はモノマーの硬化温度未満でベースポリマーの架橋が充分に完了しない温度・時間設定とすることで、モノマーの移行を完了させる。高温側はベースポリマーの架橋が充分に完了する温度・時間設定とする。以上により、モノマーの移行とベースポリマーの架橋反応を連続的に行うことが出来る。
<< Step (3) >>
In step (3), the curable acrylic monomer in the rubber mixture layer is bleed (transferred) to the surface of the rubber mixture layer. The migration rate of the curable acrylic monomer depends on the difference in solubility constant (SP value) between the base polymer and the curable acrylic monomer. That is, the transition speed increases as the difference between the SP values increases. The solubility parameter difference (absolute value difference) between the acrylic monomer and the base polymer is preferably 0.5 to 3.0 (MPa) 1/2 and more preferably 1.5 to 2.5 (MPa) 1/2. . When the difference in SP value is 1.5 or more, the transfer amount of the monomer to the surface of the conductive elastic layer is ensured, and a uniform surface layer is formed. In addition, it is possible to suppress an increase in the thickness of the surface layer due to an excessive amount of transfer of the monomer at 2.5 or less, and to prevent the uncured monomer from exuding on the member surface even after the curing treatment. In addition, about SP value of the base polymer which is a high molecular material, it calculates from the molecular structure based on the molar attractive force of the atomic group which comprises a molecule | numerator (PASmall, J.Appl.Chem., Vol.3,71 ( 1953)). The monomer SP value is based on Hildebrand-Scatchard's solution theory (JHHildebrand, RLScott, “The Solubility of Nonelectrolytes” 3rd Ed., Reinhold Publishing cop., New York (1949)). Calculated from energy and molecular volume. For the above-mentioned constants specific to the atomic group used in the present invention, the values at 25 ° C. described in DW Van. Kreven “Prorerties of Polymer” 3rd Ed., Elsevier (1990) are used. Since bleeding of the acrylic monomer to the surface of the layer is promoted by increasing the molecular motion of the base polymer, it is preferable to heat in the step (3). The temperature range of the heat treatment can be set at least at a temperature lower than the curing temperature of the curable monomer, for example, 100 ° C. or more and 160 ° C. or less until the curable monomer is sufficiently transferred to the elastic layer surface. The heat treatment in the step (3) is more preferably performed in a continuous heating furnace. By using a continuous heating furnace, continuous part production is possible from the molding in step (2) to the heat treatment in step (3). In FIG. 4, the outline | summary of the continuous heating apparatus of the roller extruded from the extruder 3 was shown typically. The molded body in which the unvulcanized rubber is laminated on the outer periphery of the support 11 is continuously conveyed to the continuous heating furnace 4 by an extruder 3 (not shown). The continuous heating furnace 4 is kept at a predetermined temperature in advance, and is subjected to heat treatment for a predetermined time depending on the speed of conveyance and the length of the continuous heating furnace 4. The continuous heating furnace used in the present invention is configured to have two regions, and the molded product inlet side region 41 and the molded product outlet side region 42 can be set to different temperatures. It is also possible to set these temperature settings to the same temperature. When the conductive elastic layer is composed of a thermosetting polymer, the base polymer can be simultaneously crosslinked in the bleed process (3). In this case, the molecular mobility of the base polymer decreases due to the crosslinking reaction, and the tendency of the monomer migration rate to decrease is observed. Therefore, in order to efficiently transfer the surface of the elastic layer of the monomer and the crosslinking reaction of the base polymer, it is preferable to set the molded body inlet side 41 to a low temperature and the molded body outlet side 42 to a high temperature. On the low temperature side, the transition of the monomer is completed by setting the temperature and time so that the crosslinking of the base polymer is not sufficiently completed below the curing temperature of the monomer. On the high temperature side, the temperature and time are set to complete the crosslinking of the base polymer. As described above, the transfer of the monomer and the crosslinking reaction of the base polymer can be continuously performed.

<<工程(4)>>
工程(4)はゴム混合物の層の表面に移行させたアクリルモノマーを硬化させ、表面層を形成する工程である。硬化処理は加熱処理、あるいは電子線照射によって行われる。硬化を加熱処理にて行う場合、前述した工程(3)のベースポリマーの架橋と、アクリルモノマーの硬化とを同時に行うことも可能である。加熱処理はアクリルモノマーの硬化温度以上で行うことができる。硬化処理は、形成される表面層の架橋密度を高くすることが可能な電子線照射により行うことが好ましい。表面層の架橋密度を高くすることによって、導電性弾性層からの低分子成分の染み出しによる感光体汚染を防止するとともに、帯電部材の表面の摩擦係数が低下し、トナーや外添剤が帯電部材表面に付着しにくくなる。特に、電子線照射は架橋効率が高く、硬化時間を短縮することが可能であり、重合開始剤の添加も不要である。また、放射線の透過深さが紫外線と比較して深く、処理膜厚を厚く出来ることから、より一層好ましい。図5に電子線照射装置の概略図を示す。本発明に用いた電子線照射装置はローラを回転させながらローラ表面に電子線を照射するものであり、図5に示すように、電子線発生部51と照射室52と照射口53とを備えるものである。電子線発生部51は、電子線を発生するターミナル54と、ターミナル54で発生した電子線を真空空間(加速空間)で加速する加速管55とを有するものである。また電子線発生部の内部は、電子が気体分子と衝突してエネルギーを失うことを防ぐため、不図示の真空ポンプ等により10-6〜10-7 Torrの真空に保たれている。不図示の電源によりフィラメント56に電流を通じて加熱するとフィラメント56は熱電子を放出し、この熱電子のうち、ターミナル54を通過したものだけが電子線として有効に取り出される。そして、電子線の加速電圧により加速管55内の加速空間で加速された後、照射口箔57を突き抜け、照射口53の下方の照射室52内を搬送されるローラ58に照射される。本実施例のように、ローラ58に電子線を照射する場合には、照射室52の内部は窒素雰囲気としている。また、ローラ58はローラ回転用部材59で回転させて照射室内を搬送手段により、図5において左側から右側に移動する。尚、電子線発生部51及び照射室52の周囲は電子線照射時に二次的に発生するX線が外部へ漏出しないように、不図示の鉛遮蔽が施されている。照射口箔57は金属箔からなり、電子線発生部内の真空雰囲気と照射室内の空気雰囲気とを仕切るものであり、また照射口箔57を介して照射室内に電子線を取り出すものである。ローラの照射に電子線を応用する場合には、ローラが電子線を照射される照射室52の内部は窒素雰囲気である。よって、電子線発生部51と照射室52との境界に設ける照射口箔57は、ピンホールがなく、電子線発生部内の真空雰囲気を十分維持できる機械的強度があり、電子線が透過しやすいことが望ましい。その為、照射口箔57は比重が小さく、肉厚の薄い金属が望ましい。電子線の線量は下記で定義される。
<< Step (4) >>
Step (4) is a step of curing the acrylic monomer transferred to the surface of the rubber mixture layer to form a surface layer. The curing process is performed by heat treatment or electron beam irradiation. When the curing is performed by heat treatment, it is possible to simultaneously perform the crosslinking of the base polymer and the curing of the acrylic monomer in the step (3) described above. The heat treatment can be performed at a temperature higher than the curing temperature of the acrylic monomer. The curing treatment is preferably performed by electron beam irradiation that can increase the crosslinking density of the surface layer to be formed. By increasing the cross-linking density of the surface layer, it is possible to prevent contamination of the photoreceptor due to the leakage of low molecular components from the conductive elastic layer, and to reduce the friction coefficient of the surface of the charging member, so that the toner and external additives are charged. It becomes difficult to adhere to the member surface. In particular, electron beam irradiation has a high crosslinking efficiency, can shorten the curing time, and does not require the addition of a polymerization initiator. Moreover, since the penetration depth of radiation is deeper than that of ultraviolet rays and the treatment film thickness can be increased, it is even more preferable. FIG. 5 shows a schematic diagram of an electron beam irradiation apparatus. The electron beam irradiation apparatus used in the present invention irradiates the surface of a roller with an electron beam while rotating the roller, and includes an electron beam generator 51, an irradiation chamber 52, and an irradiation port 53 as shown in FIG. Is. The electron beam generator 51 includes a terminal 54 that generates an electron beam, and an acceleration tube 55 that accelerates the electron beam generated at the terminal 54 in a vacuum space (acceleration space). The inside of the electron beam generator is kept at a vacuum of 10 −6 to 10 −7 Torr by a vacuum pump (not shown) in order to prevent electrons from losing energy due to collision with gas molecules. When the filament 56 is heated by current from a power source (not shown), the filament 56 emits thermoelectrons, and only those thermoelectrons that have passed through the terminal 54 are effectively taken out as electron beams. Then, after being accelerated in the acceleration space in the accelerating tube 55 by the acceleration voltage of the electron beam, it penetrates the irradiation port foil 57 and is irradiated to the roller 58 conveyed in the irradiation chamber 52 below the irradiation port 53. As in this embodiment, when the roller 58 is irradiated with an electron beam, the inside of the irradiation chamber 52 is a nitrogen atmosphere. Further, the roller 58 is rotated by a roller rotating member 59 and is moved from the left side to the right side in FIG. The surroundings of the electron beam generator 51 and the irradiation chamber 52 are shielded from lead (not shown) so that X-rays that are secondarily generated during electron beam irradiation do not leak to the outside. The irradiation port foil 57 is made of a metal foil, and separates the vacuum atmosphere in the electron beam generator and the air atmosphere in the irradiation chamber, and takes out the electron beam into the irradiation chamber through the irradiation port foil 57. When an electron beam is applied to the irradiation of the roller, the inside of the irradiation chamber 52 where the roller is irradiated with the electron beam is a nitrogen atmosphere. Therefore, the irradiation port foil 57 provided at the boundary between the electron beam generating unit 51 and the irradiation chamber 52 has no pinhole, has a mechanical strength that can sufficiently maintain the vacuum atmosphere in the electron beam generating unit, and easily transmits the electron beam. It is desirable. For this reason, the irradiation mouth foil 57 is preferably made of a metal having a small specific gravity and a small thickness. The electron beam dose is defined below.

線量(kGy)=[装置定数K×電子電流(mA)]/処理スピード(m/min)
ここで、装置定数Kは、装置個々の効率を表す定数であって、装置の性能の指標となる。例えば本来、電子線照射装置では、K=18以上とする必要がある。したがって、一定の電子電流と処理スピードに対して、加速電圧を変えて線量を測定し、これから得られる装置定数Kが所定の値以上になるような加速電圧を求めることより、加速電圧についての制限が得られる。電子線の線量については、表面処理の効果に応じて適宜選択すれば良い。その調節は、電子電流、処理スピードのいずれでも行う事が可能であり、所望の線量が得られるように決めればよい。今回、あらかじめ線量フィルムを用いてある電子電流・処理スピードでの線量を測定し装置定数Kを算出して、それを基に電子線の線量を算出した。
Dose (kGy) = [equipment constant K × electron current (mA)] / processing speed (m / min)
Here, the device constant K is a constant representing the efficiency of each device, and serves as an index of device performance. For example, in an electron beam irradiation apparatus, it is originally necessary to set K = 18 or more. Therefore, for a certain electron current and processing speed, the acceleration voltage is changed, the dose is measured, and the acceleration voltage is determined by obtaining the acceleration voltage so that the device constant K obtained from this is a predetermined value or more. Is obtained. What is necessary is just to select suitably about the dose of an electron beam according to the effect of surface treatment. The adjustment can be performed using either an electronic current or a processing speed, and it is sufficient to determine that a desired dose can be obtained. This time, the dose at an electron current and processing speed using a dose film was measured in advance, and the device constant K was calculated. Based on this, the dose of the electron beam was calculated.

本発明において、表面層はベースポリマーとアクリルモノマーの混合物の層から表面に移行させた該アクリルモノマーを硬化させることにより形成される。表面層の形成を確認する方法としては、形態観察から確認する方法や表面分析装置を用いて確認する方法があり、特に限定されるものではない。形態観察としては光学顕微鏡、走査型電子顕微鏡、透過型電子顕微鏡などの観察から表面層の形成を確認する方法がある。表面分析としては、フーリエ変換赤外分光硬度計のATR法、複合表面分析装置(ESCA)、飛行時間型二次イオン質量分析装置(TOF−SIMS)等の表面分析装置により、部材表面と内部組成を比較することで、表面層の形成を確認することが出来る。以上により、表面層を形成する材料を予めゴム材料に混練しておき、成形工程で表面層構成材料を導電性弾性層表面に移行させることにより、表面層を形成するための従来の塗工工程を不要とすることができる。なお、本発明における帯電部材には、必要に応じて、弾性層や表面層以外に、接着層、拡散防止層、下地層、プライマー層等の機能層を設けることもできる。   In the present invention, the surface layer is formed by curing the acrylic monomer transferred from the layer of the mixture of the base polymer and the acrylic monomer to the surface. As a method for confirming the formation of the surface layer, there are a method for confirming from morphological observation and a method for confirming using a surface analyzer, and there is no particular limitation. As morphological observation, there is a method of confirming the formation of the surface layer from observation with an optical microscope, a scanning electron microscope, a transmission electron microscope or the like. For surface analysis, the surface of the member and the internal composition are measured by a surface analyzer such as ATR method of Fourier transform infrared spectrophotometer, composite surface analyzer (ESCA), time-of-flight secondary ion mass spectrometer (TOF-SIMS). The formation of the surface layer can be confirmed by comparing. As described above, the conventional coating process for forming the surface layer by previously kneading the material for forming the surface layer into the rubber material and transferring the surface layer constituent material to the surface of the conductive elastic layer in the molding process. Can be made unnecessary. The charging member in the present invention can be provided with functional layers such as an adhesive layer, a diffusion prevention layer, a base layer, and a primer layer in addition to the elastic layer and the surface layer as necessary.

<電子写真装置>
図2は本発明に係る帯電部材を有する電子写真装置の断面図である。被帯電体としての電子写真感光体21は、アルミニウムなどの導電性支持体21bと、その上に形成した感光層21aとを有するドラム形状のものである。軸21cを中心に時計方向に所定の周速度をもって回転駆動される。帯電ローラ1は電子写真感光体21に接触配置されて電子写真感光体を所定の極性・電位に帯電(一次帯電)する。帯電ローラ1は導電性支持体11と、その外周に形成した導電性弾性層12と、導電性弾性層12の表面に形成した表面層13からなる。そして、導電性支持体11の両端部を不図示の押圧手段で電子写真感光体21の回転駆動に伴い従動回転する。電源23で摺擦電源23aにより、導電性支持体11の所定の直流(DC)バイアスが印加されることで電子写真感光体21が所定の極性・電位に接触帯電される。帯電ローラ1で周面が帯電された電子写真感光体21は、次いで露光手段24により目的画像情報の露光(レーザービーム走査露光、原稿画像のスリット露光など)を受けることで、その周面に目的の画像情報に対した静電潜像が形成される。その静電潜像は、次いで、現像部材25によりトナー画像として現像されていく。このトナー画像は電子写真感光体21と転写ローラ26との間の転写部へ搬送された転写材27に順次転写される。転写材27の裏からトナーと逆極性の帯電を行うことで電子写真感光体21側のトナー画像が転写材27に転写される。表面にトナー画像の転写を受けた転写材27は、電子写真感光体21から分離されて不図示の定着手段へ搬送されて像定着を受け、画像形成物として出力される。あるいは、裏面にも像形成するものでは、転写部への再搬送手段へ搬送される。像転写後の電子写真感光体21の周面は、前露光手段28による前露光を受けて電子写真感光体ドラム上の残留電荷が除去(除電)される。除電された電子写真感光体21の周面は、クリーニング部材29で転写残りトナーなどの付着汚染物の除去を受けて洗浄面化されて、繰り返して画像形成に供される。帯電ローラ1は面移動駆動される電子写真感光体21に従動駆動させてもよいし、非回転にしてもよいし、電子写真感光体21の面移動方向に順方向または逆方向に所定の周速度をもって積極的に回転駆動させるようにしてもよい。また、露光は、電子写真装置を複写機として使用する場合には、原稿からの反射光や透過光、あるいは、原稿を読み取り信号化し、この信号に基づいてレーザービームを走査したり、LEDアレイを駆動したりすることなどにより行われる。本発明に係る電子写真装置としては、複写機、レーザービームプリンター、LEDプリンター、あるいは、電子写真製版システムなどの電子写真応用装置などが挙げられる。
<Electrophotographic device>
FIG. 2 is a sectional view of an electrophotographic apparatus having a charging member according to the present invention. The electrophotographic photosensitive member 21 as a member to be charged has a drum shape having a conductive support 21b such as aluminum and a photosensitive layer 21a formed thereon. It is rotationally driven around the shaft 21c in the clockwise direction with a predetermined peripheral speed. The charging roller 1 is disposed in contact with the electrophotographic photosensitive member 21 to charge (primary charging) the electrophotographic photosensitive member to a predetermined polarity and potential. The charging roller 1 includes a conductive support 11, a conductive elastic layer 12 formed on the outer periphery thereof, and a surface layer 13 formed on the surface of the conductive elastic layer 12. Then, both ends of the conductive support 11 are driven to rotate by the rotation of the electrophotographic photosensitive member 21 by pressing means (not shown). The electrophotographic photosensitive member 21 is contact-charged to a predetermined polarity and potential by applying a predetermined direct current (DC) bias of the conductive support 11 by the rubbing power source 23a. The electrophotographic photosensitive member 21 whose peripheral surface is charged by the charging roller 1 is then subjected to exposure of target image information (laser beam scanning exposure, slit exposure of a document image, etc.) by the exposure means 24, so that the peripheral surface has a target. An electrostatic latent image corresponding to the image information is formed. The electrostatic latent image is then developed as a toner image by the developing member 25. The toner images are sequentially transferred onto a transfer material 27 conveyed to a transfer portion between the electrophotographic photosensitive member 21 and the transfer roller 26. The toner image on the electrophotographic photosensitive member 21 side is transferred to the transfer material 27 by charging from the back of the transfer material 27 with a polarity opposite to that of the toner. The transfer material 27 having received the transfer of the toner image on the surface is separated from the electrophotographic photosensitive member 21 and conveyed to a fixing means (not shown) to receive image fixing and output as an image formed product. Alternatively, in the case of forming an image on the back side, it is conveyed to a re-conveying means to the transfer unit. The peripheral surface of the electrophotographic photosensitive member 21 after the image transfer is subjected to pre-exposure by the pre-exposure means 28, and residual charges on the electrophotographic photosensitive drum are removed (static elimination). The peripheral surface of the electrophotographic photosensitive member 21 from which the charge has been removed is cleaned by the cleaning member 29 after removal of adhering contaminants such as toner remaining after transfer, and is repeatedly used for image formation. The charging roller 1 may be driven and driven by the electrophotographic photosensitive member 21 driven to move the surface, may not be rotated, or has a predetermined circumference in the forward or reverse direction in the surface moving direction of the electrophotographic photosensitive member 21. You may make it actively rotate at a speed. In addition, when the electrophotographic apparatus is used as a copying machine, exposure is performed by reflecting or transmitting light from a document, or by reading a document as a read signal, scanning a laser beam based on this signal, or using an LED array. This is done by driving. Examples of the electrophotographic apparatus according to the present invention include an electrophotographic application apparatus such as a copying machine, a laser beam printer, an LED printer, or an electrophotographic plate making system.

以下に実施例によって本発明を更に詳細に説明するが、これらは、本発明を何ら限定するものではない。なお、以下、特に明記しない限り、「部」は「質量部」を意味しており、試薬等は特に指定のないものは市販の高純度品を用いた。   The present invention will be described in more detail with reference to the following examples, but these examples do not limit the present invention. Hereinafter, unless otherwise specified, “parts” means “parts by mass”, and commercially available high-purity products were used unless otherwise specified.

<実施例1>
(弾性層用ゴム材料の調製)
下記表1−1の材料を6リットル加圧ニーダー(製品名:TD6−15MDX、トーシン社製)を用いて、充填率70vol%、ブレード回転数35rpmで16分間混合してA練りゴム組成物を得た。
<Example 1>
(Preparation of rubber material for elastic layer)
Using the 6 liter pressure kneader (product name: TD6-15MDX, manufactured by Toshin Co., Ltd.), the materials shown in Table 1-1 below were mixed for 16 minutes at a filling rate of 70 vol% and a blade rotation number of 35 rpm to obtain an A kneaded rubber composition. Obtained.

Figure 2011107547
Figure 2011107547

Figure 2011107547
Figure 2011107547

次いで下記表1−2の材料を、ロール径12インチのオープンロールで、前ロール回転数8rpm、後ロール回転数10rpm、ロール間隙2mmで、左右の切り返しを合計20回実施した。その後、ロール間隙を0.5mmとして薄通し10回を行って弾性層形成用の未加硫ゴム組成物を得た。 Next, the materials shown in Table 1-2 below were subjected to a total of 20 turnings on the left and right sides with an open roll having a roll diameter of 12 inches, a front roll rotation speed of 8 rpm, a rear roll rotation speed of 10 rpm, and a roll gap of 2 mm. Thereafter, the roll gap was set to 0.5 mm, and thinning was performed 10 times to obtain an unvulcanized rubber composition for forming an elastic layer.

Figure 2011107547
Figure 2011107547

(表面層形成材料1の硬化温度測定)
示差熱天秤(TG−DTA)を用いて表面層形成材料1の硬化温度の測定を実施した。分析装置として理学電機株式会社製の差動型示差熱天秤TG8120を使用し、昇温速度5℃/minで測定して発熱量のピーク温度を硬化温度とした。その結果、表面層形成材料1の硬化温度は182℃であった。
(弾性層の成形)
直径6mm、長さ252mmの円柱形の導電性支持体(鋼製、表面はニッケルメッキ)の円柱面の軸方向中央部228mmの範囲に導電性加硫接着剤(メタロックU−20;東洋化学研究所製)を塗布し、80℃で30分間乾燥した。次に、未加硫ゴム組成物をクロスヘッドに接続した押出機を用いて導電性支持体の周面に円筒形に押し出して、導電性支持体の外周に未加硫ゴム組成物の層が形成された未加硫ゴムローラを作製した。押出機はシリンダー径45mm(Φ45)、L/D=20の押出機を使用し、押出時の温調はヘッド90℃、シリンダー90℃、スクリュー90℃とした。押出時に芯金送り速度の調整を実施し、端部直径8.4mm、中央部直径8.5mmのクラウン形状の弾性層を有する未加硫ゴムローラを成形した。
(ブリード工程)
未加硫ゴムローラの両端を切断して弾性層部分の幅を228mmとした後、連続加熱炉に投入して表面層形成材料1を弾性層の表面に移行させ、かつ弾性層を加硫させて加硫ゴムローラを得た。連続加熱炉は2つの温度領域を有する加熱炉を使用し、初めに120℃、30分、続いて160℃、30分の熱処理を行った。
(表面層の硬化処理)
加硫ゴムローラの表面に電子線を照射して表面層を形成して帯電ローラを得た。電子線の照射には最大加速電圧150kV・最大電子電流40mAの電子線照射装置(岩崎電気株式会社製)を用い、照射時には窒素ガスパージを行った。処理条件は加速電圧:150KV、電子電流:5mA、処理速度:1m/min、酸素濃度:100ppmであった。
(表面層の確認)
帯電ローラの表面層の有無を以下の方法で確認した。分析装置として顕微IR(AIM−8000R)を接続した島津製作所製のFTIR−8300を使用し、ゲルマニウムプリズムを使用して全反射測定法(ATR法)により測定を行った。測定は帯電ローラ表面と、帯電ローラ表面から深さ方向に0.5mm切り取った弾性体層内部について行い、表面と内部の赤外吸収スペクトルの分析を行い、表面層形成材料由来のピーク強度を比較した。その結果、帯電ローラ表面の測定において弾性体層内部の測定と比較して、表面層形成材料1に由来の強い赤外吸収のピークが見られ、表面層が形成されていることを確認した。
(耐久画像評価)
帯電ローラと電子写真感光体とを、これらを一体に支持するプロセスカートリッジに組み込み、このプロセスカートリッジをA4紙縦出力用の電子写真装置(ColorLaserJet3500;ヒューレットパッカード製)に組み込んで画像評価した。画像評価は、15℃/10%RH環境下で行い、1%の印字濃度で3000枚プリント後(耐久後)において出力したハーフトーン画像(電子写真感光体の回転方向と垂直方向に幅1ドットの線を間隔2ドットで描く画像)の均一性を目視することによって行った。評価基準は以下のとおりである。
A:帯電ローラへのトナー、外添剤の付着に起因する画像不良が全く出ていない。
B:上記の画像不良が極めてわずかに発生した。
C:上記の画像不良がわずかに発生した。
D:上記の画像不良がはっきりと発生した。
(セット画像評価)
上記とは別の帯電ローラを組み込んだカートリッジを準備し、帯電ローラと感光体が当接するようにした状態で、このカートリッジを40℃/95%R.H.の環境下で30日間放置した。放置後、もう一度、電子写真装置に組込み、過酷環境放置後の画像評価を行った。画像出力は、25℃/50%RH環境下でハーフトーン画像の出力を20枚行い、更に、画像出力した環境下で24時間放置した後に、再度、画像出力を行った。評価基準は以下のとおりである。
A:画像不良が全く出ていないもの。
B:最初の出力で極わずかに画像不良が発生。但し、20枚出力後に画像不良が完全に消失。
C:最初の出力でわずかに画像不良が発生し、20枚出力後にも画像不良が完全には消失しない。
D:最初の出力で画像不良が発生し、24時間放置後にも画像不良が完全には消失しない。
E:最初の出力で画像不良が発生し、24時間放置後にも画像不良が改善しない。
(Cセット量の測定)
帯電ローラの導電性支持体を軸として、ローラの半径を測定し、当接部でもっとも変形している部分と当接していない部分の半径の差をもって、Cセット量とする。測定は、東京光電子工業(株)の全自動ローラ測定装置を用い、帯電部材を1°ずつ回転させ360°測定を行う。本測定をローラ長手中央部と中央部から90mmの位置の3点で測定し、最も大きな変形量を、帯電ローラのCセット量とした。
(Measurement of curing temperature of surface layer forming material 1)
The curing temperature of the surface layer forming material 1 was measured using a differential thermal balance (TG-DTA). A differential type differential thermobalance TG8120 manufactured by Rigaku Corporation was used as the analyzer, and the peak temperature of the calorific value was determined as the curing temperature by measuring at a temperature rising rate of 5 ° C./min. As a result, the curing temperature of the surface layer forming material 1 was 182 ° C.
(Molding of elastic layer)
Conductive vulcanizing adhesive (Metaloc U-20; Toyo Chemical Research Co., Ltd.) in the range of 228 mm in the axial center of the cylindrical surface of a cylindrical conductive support (steel, surface is nickel-plated) 6 mm in diameter and 252 mm in length Applied) and dried at 80 ° C. for 30 minutes. Next, the unvulcanized rubber composition is extruded into a cylindrical shape on the peripheral surface of the conductive support using an extruder connected to a crosshead, and a layer of the unvulcanized rubber composition is formed on the outer periphery of the conductive support. A formed unvulcanized rubber roller was produced. The extruder used was an extruder with a cylinder diameter of 45 mm (Φ45) and L / D = 20. The temperature during extrusion was 90 ° C., 90 ° C. cylinder, and 90 ° C. screw. The core metal feed speed was adjusted during extrusion to form an unvulcanized rubber roller having a crown-shaped elastic layer having an end diameter of 8.4 mm and a center diameter of 8.5 mm.
(Bleed process)
After cutting both ends of the unvulcanized rubber roller so that the width of the elastic layer portion is 228 mm, it is put into a continuous heating furnace to transfer the surface layer forming material 1 to the surface of the elastic layer, and the elastic layer is vulcanized. A vulcanized rubber roller was obtained. As the continuous heating furnace, a heating furnace having two temperature regions was used. First, heat treatment was performed at 120 ° C. for 30 minutes, and subsequently at 160 ° C. for 30 minutes.
(Surface treatment)
The surface of the vulcanized rubber roller was irradiated with an electron beam to form a surface layer to obtain a charging roller. An electron beam irradiation apparatus (manufactured by Iwasaki Electric Co., Ltd.) having a maximum acceleration voltage of 150 kV and a maximum electron current of 40 mA was used for electron beam irradiation, and nitrogen gas purge was performed during irradiation. The treatment conditions were acceleration voltage: 150 KV, electron current: 5 mA, treatment speed: 1 m / min, oxygen concentration: 100 ppm.
(Confirmation of surface layer)
The presence or absence of the surface layer of the charging roller was confirmed by the following method. FTIR-8300 manufactured by Shimadzu Corporation connected with a microscopic IR (AIM-8000R) was used as an analyzer, and measurement was performed by a total reflection measurement method (ATR method) using a germanium prism. The measurement is performed on the surface of the charging roller and the inside of the elastic layer cut 0.5 mm in the depth direction from the surface of the charging roller. did. As a result, in the measurement of the charging roller surface, as compared with the measurement inside the elastic body layer, a strong infrared absorption peak derived from the surface layer forming material 1 was observed, and it was confirmed that the surface layer was formed.
(Durable image evaluation)
The charging roller and the electrophotographic photosensitive member were incorporated into a process cartridge that integrally supports them, and this process cartridge was incorporated into an A4 paper longitudinal output electrophotographic apparatus (Color Laser Jet 3500; manufactured by Hewlett Packard) for image evaluation. Image evaluation was performed in a 15 ° C./10% RH environment, and a halftone image output after printing 3000 sheets at 1% printing density (after endurance) (width 1 dot in the direction perpendicular to the rotation direction of the electrophotographic photosensitive member) The image was drawn by visually observing the uniformity of the image drawn with 2 dots. The evaluation criteria are as follows.
A: No image defect due to adhesion of toner and external additives to the charging roller.
B: The image defect described above occurred very slightly.
C: The image defect described above occurred slightly.
D: The above image defect was clearly generated.
(Set image evaluation)
A cartridge incorporating a charging roller different from the above was prepared, and the cartridge was placed at 40 ° C./95% R.D. H. For 30 days. After being left, it was once again incorporated into an electrophotographic apparatus, and image evaluation was performed after leaving it in a harsh environment. For image output, 20 halftone images were output in an environment of 25 ° C./50% RH, and the image was output again after being left for 24 hours in the image output environment. The evaluation criteria are as follows.
A: An image with no defective image.
B: Image defect occurred slightly at the first output. However, the image defect disappears completely after 20 sheets are output.
C: A slight image defect occurs at the first output, and the image defect does not disappear completely even after 20 sheets are output.
D: An image defect occurs at the first output, and the image defect does not disappear completely even after being left for 24 hours.
E: An image defect occurs at the first output, and the image defect does not improve even after being left for 24 hours.
(Measurement of C set amount)
Using the conductive support of the charging roller as an axis, the radius of the roller is measured, and the difference in radius between the most deformed portion and the non-contact portion of the contact portion is defined as the C set amount. The measurement is carried out using a fully automatic roller measuring device manufactured by Tokyo Koden Kogyo Co., Ltd., and 360 ° measurement is performed by rotating the charging member by 1 °. This measurement was performed at three points, the central portion of the roller and 90 mm from the central portion, and the largest deformation amount was defined as the C set amount of the charging roller.

<実施例2〜3>
実施例1において、表面層形成材料1の量を表2−1に記載したように変えた以外は実施例1と同様にして帯電ローラを作成した。これらの帯電ローラについて実施例1と同様にして表面層が形成されていることが確認した。これらの帯電ローラについて実施例1と同様に評価した。
<Examples 2-3>
In Example 1, a charging roller was prepared in the same manner as in Example 1 except that the amount of the surface layer forming material 1 was changed as described in Table 2-1. It was confirmed that a surface layer was formed on these charging rollers in the same manner as in Example 1. These charging rollers were evaluated in the same manner as in Example 1.

<実施例4>
実施例1において下記の組成からなる表面層形成材料1を下記化学式(2)で示されるジトリメチロールプロパンテトラアクリレート(商品名:NKエステル AD−TMP、新中村化学工業社製、SP値22.2(MPa)1/2)(以降「表面層形成材料2」)に変えた。それ以外は実施例1と同様にして帯電ローラを得た。表面層形成材料2の硬化温度は178℃であった。この帯電ローラについて実施例1と同様に表面層が形成されていることを確認した。また、この帯電ローラを実施例1と同様に評価した。
<Example 4>
In Example 1, the surface layer forming material 1 having the following composition was converted to ditrimethylolpropane tetraacrylate represented by the following chemical formula (2) (trade name: NK ester AD-TMP, manufactured by Shin-Nakamura Chemical Co., Ltd., SP value 22.2 (MPa) 1/2 ) (hereinafter “surface layer forming material 2”). Otherwise, a charging roller was obtained in the same manner as in Example 1. The curing temperature of the surface layer forming material 2 was 178 ° C. It was confirmed that a surface layer was formed on this charging roller as in Example 1. Further, this charging roller was evaluated in the same manner as in Example 1.

Figure 2011107547
Figure 2011107547

<実施例5>
連続炉での加熱処理を、初めに120℃、30分、続いて185℃、30分実施し、後半の熱処理で弾性体層の加硫と表面層の硬化を同時に行い、電子線照射を実施しなかった以外は実施例1と同様にして、帯電ローラを得た。上記の帯電ローラを使用し、実施例1と同様に表面層の確認を行った。その結果、表面層が形成されていることが確認出来た。また、上記の帯電ローラを使用し、実施例1と同様に耐久画像評価とセット画像評価を実施した。
<Example 5>
First, heat treatment in a continuous furnace was carried out at 120 ° C for 30 minutes, followed by 185 ° C for 30 minutes, and the latter half of the heat treatment simultaneously vulcanized the elastic layer and cured the surface layer, and then performed electron beam irradiation. A charging roller was obtained in the same manner as in Example 1 except that this was not done. Using the above charging roller, the surface layer was confirmed in the same manner as in Example 1. As a result, it was confirmed that a surface layer was formed. In addition, the above-described charging roller was used, and durability image evaluation and set image evaluation were performed in the same manner as in Example 1.

<実施例6>
実施例1における表面層形成材料1を下記化学式(3)で示されるトリメチロールプロパントリアクリレート(商品名:NKエステルA−TMPT、新中村化学工業社製、SP値19.8(MPa)1/2)(以降、表面層形成材料3)に変え、添加量を10質量部とした。それら以外は実施例1と同様にして帯電ローラを得た。表面層形成材料3の硬化温度は174℃であった。この帯電ローラについて実施例1と同様にして表面層が形成されていることを確認した。また、この帯電ローラを実施例1と同様に評価した。
<Example 6>
The surface layer-forming material 1 in Example 1 is trimethylolpropane triacrylate represented by the following chemical formula (3) (trade name: NK ester A-TMPT, manufactured by Shin-Nakamura Chemical Co., Ltd., SP value 19.8 (MPa) 1 / 2 ) The amount of addition was changed to 10 parts by mass instead of (hereinafter referred to as surface layer forming material 3). Otherwise, a charging roller was obtained in the same manner as in Example 1. The curing temperature of the surface layer forming material 3 was 174 ° C. It was confirmed that a surface layer was formed on this charging roller in the same manner as in Example 1. Further, this charging roller was evaluated in the same manner as in Example 1.

Figure 2011107547
Figure 2011107547

<実施例7>
実施例1においてNBRをブタジエンゴム(商品名:NipolBR1220L、日本ゼオン製、SP値17.6(MPa)1/2)に変えた以外は実施例1と同様にして帯電ローラを得た。この帯電ローラを実施例1と同様に評価した。
<Example 7>
A charging roller was obtained in the same manner as in Example 1 except that NBR was changed to butadiene rubber (trade name: Nipol BR1220L, manufactured by Nippon Zeon Co., Ltd., SP value 17.6 (MPa) 1/2 ) in Example 1. This charging roller was evaluated in the same manner as in Example 1.

<比較例1>
実施例1における表面層形成材料1を下記一般式(4)で表されるラウリルアクリレート(商品名:NKエステルLA、新中村化学工業社製、SP値17.6(MPa)1/2)(以降、表面層形成材料4)に変えた。それ以外は実施例1と同様にして帯電ローラを得た。表面層形成材料4の硬化温度は177℃であった。比較例1の帯電ローラについて実施例1と同様にして表面層が形成されていることを確認した。また、この帯電ローラを実施例1と同様に評価した。
<Comparative Example 1>
The surface layer forming material 1 in Example 1 is represented by the following general formula (4): lauryl acrylate (trade name: NK ester LA, manufactured by Shin-Nakamura Chemical Co., Ltd., SP value 17.6 (MPa) 1/2 ) ( Thereafter, the surface layer forming material 4) was changed. Otherwise, a charging roller was obtained in the same manner as in Example 1. The curing temperature of the surface layer forming material 4 was 177 ° C. It was confirmed that the surface layer was formed in the same manner as in Example 1 for the charging roller of Comparative Example 1. Further, this charging roller was evaluated in the same manner as in Example 1.

Figure 2011107547
Figure 2011107547

<比較例2>
実施例1における表面層形成材料1を下記一般式(5)で表されるフェノキシエチルアクリレート(商品名:NKエステルAMP−10G、新中村化学工業社製、SP値20.3(MPa)1/2)(以降、表面層形成材料5)とし、添加量を5質量部とした。それら以外は実施例1と同様にして帯電ローラを得た。
<Comparative example 2>
The surface layer forming material 1 in Example 1 is represented by the following general formula (5): phenoxyethyl acrylate (trade name: NK ester AMP-10G, manufactured by Shin-Nakamura Chemical Co., Ltd., SP value 20.3 (MPa) 1 / 2 ) (hereinafter referred to as surface layer forming material 5), and the addition amount was 5 parts by mass. Otherwise, a charging roller was obtained in the same manner as in Example 1.

Figure 2011107547
Figure 2011107547

表面層形成材料5の硬化温度は176℃であった。この帯電ローラについて実施例1と同様にして表面層が形成されていることを確認した。また、この帯電ローラについて実施例1と同様に評価した。   The curing temperature of the surface layer forming material 5 was 176 ° C. It was confirmed that a surface layer was formed on this charging roller in the same manner as in Example 1. The charging roller was evaluated in the same manner as in Example 1.

<比較例3>
実施例1における表面層形成材料1を下記一般式(6)で表されるネオペンチルグリコールジアクリレート(商品名:NKエステルA−NPG、新中村化学工業社製、SP値18.8(MPa)1/2)(以降、表面層形成材料6)に変えた。それ以外は実施例1と同様にして帯電ローラを得た。表面層形成材料6の硬化温度は174℃であった。この帯電ローラを実施例1と同様に評価した。
<Comparative Example 3>
The surface layer forming material 1 in Example 1 is neopentyl glycol diacrylate represented by the following general formula (6) (trade name: NK ester A-NPG, manufactured by Shin-Nakamura Chemical Co., Ltd., SP value 18.8 (MPa) 1/2 ) (hereinafter referred to as surface layer forming material 6). Otherwise, a charging roller was obtained in the same manner as in Example 1. The curing temperature of the surface layer forming material 6 was 174 ° C. This charging roller was evaluated in the same manner as in Example 1.

Figure 2011107547
Figure 2011107547

<比較例4>
比較例3においてNBRをブタジエンゴム(商品名:NipolBR1220L、日本ゼオン製)に変えた以外は比較例3と同様にして帯電ローラを得た。得られた帯電ローラについて実施例1と同様に評価した。
<Comparative example 4>
A charging roller was obtained in the same manner as in Comparative Example 3 except that NBR was changed to butadiene rubber (trade name: NipolBR1220L, manufactured by Nippon Zeon Co., Ltd.) in Comparative Example 3. The obtained charging roller was evaluated in the same manner as in Example 1.

<比較例5>
実施例1における表面層形成材料1を下記一般式(7)で表される1,6−ヘキサンジオールジアクリレート(商品名:NKエステルA−HD、新中村化学工業社製、SP値19.9(MPa)1/2)(以降、表面層形成材料7)に変えた。それ以外は実施例1と同様にして帯電ローラを得た。表面層形成材料7の硬化温度は177℃であった。この帯電ローラを実施例1と同様に評価した。
<Comparative Example 5>
The surface layer forming material 1 in Example 1 is 1,6-hexanediol diacrylate represented by the following general formula (7) (trade name: NK ester A-HD, manufactured by Shin-Nakamura Chemical Co., Ltd., SP value 19.9 (MPa) 1/2 ) (hereinafter referred to as surface layer forming material 7). Otherwise, a charging roller was obtained in the same manner as in Example 1. The curing temperature of the surface layer forming material 7 was 177 ° C. This charging roller was evaluated in the same manner as in Example 1.

Figure 2011107547
Figure 2011107547

実施例1〜7及び比較例1〜5の評価結果を下記表2−1及び表2−2に示す。


The evaluation results of Examples 1 to 7 and Comparative Examples 1 to 5 are shown in Table 2-1 and Table 2-2 below.


Figure 2011107547
Figure 2011107547

Figure 2011107547
Figure 2011107547

表から明らかなように、比較例1〜5は、得られた帯電ローラのセット画像評価がいずれもCランク以下であり、Cセット変形量が大きいことに起因している。実施例1〜7は本発明の範囲であり、耐久画像評価はAランクであり、セット画像評価もBランク以上で実用上問題ない、良好な画像が得られている。 As is apparent from the table, Comparative Examples 1 to 5 are caused by the fact that the set images of the obtained charging rollers all have a C rank or less and the C set deformation amount is large. Examples 1 to 7 are within the scope of the present invention, and the durability image evaluation is A rank, and the set image evaluation is B rank or more, and good images with no practical problems are obtained.

1 帯電ローラ
11 導電性支持体
12 導電性弾性層
13 表面層
DESCRIPTION OF SYMBOLS 1 Charging roller 11 Conductive support body 12 Conductive elastic layer 13 Surface layer

Claims (2)

支持体の外周に導電性弾性層を有し、該導電性弾性層の外周に表面層を有する帯電部材の製造方法であって、
(1)3官能以上の硬化性アクリルモノマーとベースポリマーとを含む混合物を調製する工程と、
(2)該混合物の層を該支持体の周面に形成する工程と、
(3)該硬化性アクリルモノマーをブリードさせて、該混合物の層の表面に移行させる工程と、
(4)該混合物の層の表面に移行した該硬化性アクリルモノマーを硬化させて該表面層を形成すると共に、該ベースポリマーを架橋させて導電性弾性層を形成する工程とを有することを特徴とする帯電部材の製造方法。
A method for producing a charging member having a conductive elastic layer on the outer periphery of a support and a surface layer on the outer periphery of the conductive elastic layer,
(1) preparing a mixture containing a trifunctional or higher curable acrylic monomer and a base polymer;
(2) forming a layer of the mixture on the peripheral surface of the support;
(3) bleed the curable acrylic monomer and transfer to the surface of the layer of the mixture;
(4) curing the curable acrylic monomer transferred to the surface of the layer of the mixture to form the surface layer, and crosslinking the base polymer to form a conductive elastic layer. A method for producing a charging member.
前記ベースポリマーと前記アクリルモノマーとのSP値(Solubility Parameter)の絶対値差が1.5((MPa)1/2)〜2.5((MPa)1/2)である請求項1に記載の帯電部材の製造方法。 2. The absolute value difference in SP value (Solubility Parameter) between the base polymer and the acrylic monomer is 1.5 ((MPa) 1/2 ) to 2.5 ((MPa) 1/2 ). Manufacturing method of the charging member.
JP2009264455A 2009-11-20 2009-11-20 Method for manufacturing charging member Expired - Fee Related JP5436163B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009264455A JP5436163B2 (en) 2009-11-20 2009-11-20 Method for manufacturing charging member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009264455A JP5436163B2 (en) 2009-11-20 2009-11-20 Method for manufacturing charging member

Publications (3)

Publication Number Publication Date
JP2011107547A true JP2011107547A (en) 2011-06-02
JP2011107547A5 JP2011107547A5 (en) 2013-01-17
JP5436163B2 JP5436163B2 (en) 2014-03-05

Family

ID=44231061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009264455A Expired - Fee Related JP5436163B2 (en) 2009-11-20 2009-11-20 Method for manufacturing charging member

Country Status (1)

Country Link
JP (1) JP5436163B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9377710B1 (en) 2015-02-05 2016-06-28 Fuji Xerox Co., Ltd. Conductive member, process cartridge, and image forming apparatus

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63249627A (en) * 1987-04-06 1988-10-17 Showa Denko Kk Manufacture of releasable material
JP2001034037A (en) * 1999-07-23 2001-02-09 Ricoh Co Ltd Production of electrifying member
JP2005200629A (en) * 2003-09-17 2005-07-28 Techno Polymer Co Ltd Polymer composition for molding product, molded product, hydrophilic molded product, and production method therefor and layered product
JP2008257036A (en) * 2007-04-06 2008-10-23 Canon Inc Conductive rubber composition and roller
JP2008299109A (en) * 2007-05-31 2008-12-11 Canon Inc Conductive roller, its manufacturing method, electrophotographic device and process cartridge
JP2011154192A (en) * 2010-01-27 2011-08-11 Canon Inc Method for manufacturing charging member

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63249627A (en) * 1987-04-06 1988-10-17 Showa Denko Kk Manufacture of releasable material
JP2001034037A (en) * 1999-07-23 2001-02-09 Ricoh Co Ltd Production of electrifying member
JP2005200629A (en) * 2003-09-17 2005-07-28 Techno Polymer Co Ltd Polymer composition for molding product, molded product, hydrophilic molded product, and production method therefor and layered product
JP2008257036A (en) * 2007-04-06 2008-10-23 Canon Inc Conductive rubber composition and roller
JP2008299109A (en) * 2007-05-31 2008-12-11 Canon Inc Conductive roller, its manufacturing method, electrophotographic device and process cartridge
JP2011154192A (en) * 2010-01-27 2011-08-11 Canon Inc Method for manufacturing charging member

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9377710B1 (en) 2015-02-05 2016-06-28 Fuji Xerox Co., Ltd. Conductive member, process cartridge, and image forming apparatus
CN105867090A (en) * 2015-02-05 2016-08-17 富士施乐株式会社 Conductive member, process cartridge, image forming apparatus and method for manufacturing the conductive member
CN105867090B (en) * 2015-02-05 2019-03-29 富士施乐株式会社 Conductive component, handle box, imaging device and the method for preparing conductive component

Also Published As

Publication number Publication date
JP5436163B2 (en) 2014-03-05

Similar Documents

Publication Publication Date Title
JP6053354B2 (en) Charging member, method for manufacturing the same, and electrophotographic apparatus
JP5220230B1 (en) Charging member, method for manufacturing the same, and electrophotographic apparatus
JP5875264B2 (en) Method for manufacturing charging member
US9372429B2 (en) Charging member, manufacturing method for charging member, electrophotographic apparatus, and process cartridge
JP4921607B2 (en) Charging member and manufacturing method thereof
KR101599647B1 (en) Charged member, charged member manufacturing method, and digital photograph device
JP5220231B1 (en) Charging member, electrophotographic apparatus and process cartridge
JP2010256617A (en) Method of manufacturing surface modified rubber roller
JP2011053536A (en) Method of manufacturing elastic member
JP5511408B2 (en) Method for manufacturing charging member
JP6188423B2 (en) Method for manufacturing charging member
JP5436163B2 (en) Method for manufacturing charging member
JP6004824B2 (en) Charging member, electrophotographic apparatus, and method of manufacturing charging member
JP2015184486A (en) Charging roll, charging device, process cartridge, image forming apparatus, and manufacturing method of charging roll
JP2015045763A (en) Charging member, process cartridge, and electrophotographic device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121119

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131210

R151 Written notification of patent or utility model registration

Ref document number: 5436163

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees