JP2011105962A - Vacuum vapor-deposition apparatus, vacuum vapor-deposition method, and method for manufacturing organic el display device - Google Patents

Vacuum vapor-deposition apparatus, vacuum vapor-deposition method, and method for manufacturing organic el display device Download PDF

Info

Publication number
JP2011105962A
JP2011105962A JP2009258963A JP2009258963A JP2011105962A JP 2011105962 A JP2011105962 A JP 2011105962A JP 2009258963 A JP2009258963 A JP 2009258963A JP 2009258963 A JP2009258963 A JP 2009258963A JP 2011105962 A JP2011105962 A JP 2011105962A
Authority
JP
Japan
Prior art keywords
evaporation
vacuum
substrate
head
vapor deposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009258963A
Other languages
Japanese (ja)
Other versions
JP5452178B2 (en
Inventor
Tatsuya Miyake
竜也 三宅
Takeshi Tamakoshi
武司 玉腰
Shingo Ishihara
慎吾 石原
Hiroyasu Matsuura
宏育 松浦
Hideaki Minekawa
英明 峰川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Hitachi High Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp, Hitachi High Tech Corp filed Critical Hitachi High Technologies Corp
Priority to JP2009258963A priority Critical patent/JP5452178B2/en
Priority to TW099134202A priority patent/TW201127973A/en
Priority to KR1020100108936A priority patent/KR101217312B1/en
Priority to CN2010105396115A priority patent/CN102061445B/en
Publication of JP2011105962A publication Critical patent/JP2011105962A/en
Application granted granted Critical
Publication of JP5452178B2 publication Critical patent/JP5452178B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/228Gas flow assisted PVD deposition
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/12Organic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vacuum vapor-deposition apparatus and a film-forming apparatus which can rapidly form a thin film having a uniform film thickness and containing few impurities on a large substrate and can be continuously operated for long hours. <P>SOLUTION: The substrate 1 on which an organic EL layer is formed is vertically set in a vapor-deposition chamber 5, and a fine metal mask 4 for selectively vapor-depositing the organic EL layer is arranged on the substrate 1. An evaporation source 8 which becomes a material of the organic EL layer is arranged outside the vapor-deposition chamber. An evaporation head 3 in which nozzles are lineally arranged and the evaporation source 8 are connected by a soft tube 7. The organic EL layer is vapor-deposited on the substrate 1 by moving the evaporation head 3 in a direction orthogonal to the nozzle-arranged direction. By connecting the evaporation head 3 and the evaporation source 9 with the soft tube 7, it becomes possible to move only the evaporation head 3, to simplify a mechanism of the apparatus, and to prevent the contamination of the organic EL layer due to impurities produced in the movable mechanism. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、真空蒸着膜を形成する方法及びその装置に係り、特に大型の基板上に有機EL表示装置を形成するために有効な真空蒸着方法およびその装置に関する。   The present invention relates to a method and apparatus for forming a vacuum deposition film, and more particularly to a vacuum deposition method and apparatus effective for forming an organic EL display device on a large substrate.

有機EL表示装置や照明装置に用いられる有機EL素子は、有機材料からなる有機層を上下から陽極と陰極の一対の電極で挟み込んだ構造で、電極に電圧を印加することにより陽極側から正孔が陰極側から電子がそれぞれ有機層に注入され、それらが再結合することにより発光する仕組みになっている。   An organic EL element used in an organic EL display device or a lighting device has a structure in which an organic layer made of an organic material is sandwiched between a pair of electrodes of an anode and a cathode from above and below, and holes are applied from the anode side by applying a voltage to the electrodes. However, electrons are injected into the organic layer from the cathode side, and they recombine to emit light.

この有機層は、正孔注入層、正孔輸送層、発光層、電子輸送層、電子注入層を含む多層膜が積層された構造になっている。この有機層を形成する材料として高分子材料と低分子材料を用いたものがある。このうち低分子材料を用いる場合には、真空蒸着装置を用いて有機薄膜を形成する。   This organic layer has a structure in which a multilayer film including a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection layer is laminated. There are materials using a high molecular material and a low molecular material as a material for forming the organic layer. Among these, when using a low molecular weight material, an organic thin film is formed using a vacuum evaporation apparatus.

有機ELデバイスの特性は有機層の膜厚の影響を大きく受ける。一方、有機薄膜を形成する基板は年々大形化してきている。したがって、真空蒸着装置を用いる場合、大型の基板上に形成される有機薄膜の膜厚を高精度に制御する必要がある。   The characteristics of the organic EL device are greatly affected by the film thickness of the organic layer. On the other hand, the substrate on which the organic thin film is formed has become larger year by year. Therefore, when using a vacuum vapor deposition apparatus, it is necessary to control the film thickness of the organic thin film formed on a large sized substrate with high precision.

真空蒸着で大型の基板に薄膜を形成する構成として、特許文献1(特開2003−293140号公報)には気相有機物を蒸着させるため、真空ベローの伸縮を利用して移動できる蒸発源を備えた真空蒸着装置が開示されている。特許文献2(特開2005−36296号公報)には大形基板を水平に保持し、蒸着装置外に設置された坩堝を備えた蒸発源を用いて、基板上に薄膜を形成する真空蒸着装置が開示されている。また、特許文献3(特開2003−347047号公報)には、大形基板を鉛直に保持し、複数の坩堝を備えた蒸発源を用いて基板上に薄膜を形成する真空蒸着装置が開示されている。   As a configuration in which a thin film is formed on a large substrate by vacuum deposition, Patent Document 1 (Japanese Patent Laid-Open No. 2003-293140) includes an evaporation source that can be moved using the expansion and contraction of a vacuum bellows in order to deposit a vapor phase organic substance. A vacuum deposition apparatus is disclosed. Patent Document 2 (Japanese Patent Application Laid-Open No. 2005-36296) discloses a vacuum evaporation apparatus for holding a large substrate horizontally and forming a thin film on the substrate using an evaporation source having a crucible installed outside the evaporation apparatus. Is disclosed. Patent Document 3 (Japanese Patent Application Laid-Open No. 2003-347047) discloses a vacuum deposition apparatus that holds a large substrate vertically and forms a thin film on the substrate using an evaporation source having a plurality of crucibles. ing.

特開2003−293140号公報JP 2003-293140 A 特開2005−36296号公報JP-A-2005-36296 特開2003−347047号公報JP 2003-347047 A

特許文献1には有機材料を気化する部分(蒸発源)と有機材料を基板に吹き付ける蒸発ヘッド(リニアソース)を分離して、蒸発ヘッドを真空ベロー(蛇腹)の伸縮を利用して移動できるようにして、大型の基板に対応している。蒸発ヘッドは、ライン状に並ぶ複数のノズルを設けた構造で、ノズルが並ぶ方向と直角な方向に移動させて、大型のガラス基板上に有機薄膜を形成する構成である。   Japanese Patent Laid-Open No. 2004-133867 separates a portion (evaporation source) that vaporizes an organic material and an evaporation head (linear source) that sprays the organic material onto the substrate, and allows the evaporation head to be moved using expansion and contraction of a vacuum bellows (bellows). Thus, it is compatible with large substrates. The evaporation head has a structure in which a plurality of nozzles arranged in a line are provided, and is configured to form an organic thin film on a large glass substrate by moving in a direction perpendicular to the direction in which the nozzles are arranged.

しかし、真空ベローの伸縮方向の一方向だけの動きを利用するため、ガラス基板の一方向の端から端までの移動距離が大きくなり、有機材料を気化する蒸発源を同時に移動させる必要があり、装置が大型化してしまう。また、真空内での移動に伴うゴミの発生に関してはなんら考慮されていない。   However, since the movement of the vacuum bellows in only one direction of expansion and contraction is used, the movement distance from one end to the other in one direction of the glass substrate increases, and it is necessary to simultaneously move the evaporation source that vaporizes the organic material. The device becomes large. Moreover, no consideration is given to the generation of dust accompanying movement in a vacuum.

特許文献2には有機材料を気化する蒸発源と有機材料を基板に被着させる蒸発ヘッドを分離して、その間にバルブを設けて、蒸着不要時にはバルブを閉じて、有機材料の利用効率を向上させている。しかし、大型化した基板への手段については開示されていない。   In Patent Document 2, an evaporation source for vaporizing an organic material and an evaporation head for depositing the organic material on a substrate are separated, and a valve is provided between them, and the valve is closed when vapor deposition is unnecessary, thereby improving the use efficiency of the organic material. I am letting. However, there is no disclosure of means for increasing the size of the substrate.

特許文献3には複数の蒸発源を膜形成チャンバーに固定して設置し、基板をスライド移動させることにより、基板全面に成膜されることが記載されている。しかし、材料の切り替えや連続運転、基板移動機構のゴミ発生防止の手段については開示されていない。   Patent Document 3 describes that a plurality of evaporation sources are fixedly installed in a film forming chamber, and the substrate is slid and moved to form a film on the entire surface of the substrate. However, there is no disclosure of means for switching materials, continuous operation, and means for preventing dust generation in the substrate moving mechanism.

本発明の目的は、上記した従来技術の課題を解決して、ライン状に並ぶ複数のノズルを設けた蒸発源を用いて大型化した基板に有機薄膜を高速成膜し、汚染防止を考慮したうえで、連続成膜することが可能な真空蒸着方法及びその装置を提供することである。   The object of the present invention is to solve the above-described problems of the prior art and to form an organic thin film on a large-sized substrate at high speed using an evaporation source provided with a plurality of nozzles arranged in a line, and to prevent contamination. Furthermore, the present invention is to provide a vacuum deposition method and apparatus capable of continuous film formation.

本発明は、有機材料を気化する蒸発源と有機材料を基板に被着させる蒸発ヘッドを分離して、蒸発源と蒸発ヘッドの配管を柔らかい構成、つまり、真空ベローの伸縮および曲がりの効果を利用して、蒸着室内で移動可能な蒸発ヘッドを実現し、汚染防機構を設置したことを最も主要な特徴とする。   The present invention separates the evaporation source that vaporizes the organic material and the evaporation head that deposits the organic material onto the substrate, and uses the soft construction of the piping of the evaporation source and the evaporation head, that is, the effect of expansion and contraction and bending of the vacuum bellows. The most important feature is that an evaporation head movable in the vapor deposition chamber is realized and a contamination prevention mechanism is installed.

本発明によれば、有機材料の大型基板への蒸着を高速で、かつ、歩留まり良く行うことが出来る。本発明は、真空内での駆動を真空ベローを介して、大気側で駆動機構により実現するので、真空内での汚染物発生が、真空ベローの伸縮および湾曲時に発生する金属汚染物が主であるため、従来の蒸着方法に比べて汚染物が少ない。   According to the present invention, it is possible to deposit an organic material on a large substrate at a high speed and with a high yield. In the present invention, the driving in the vacuum is realized by the driving mechanism on the atmosphere side through the vacuum bellows, so that the contaminant generation in the vacuum is mainly the metal contamination generated when the vacuum bellows expands and contracts. Therefore, there are few contaminants compared with the conventional vapor deposition method.

また、本発明によれば、真空蒸発室において、蒸発ヘッドのみ移動させれば良い。従来の方法では、蒸発源と蒸発ヘッドを同時に移動させることが必要であったので、移動させる構造体が500kg〜1000kgにもなり、移動機構が大掛かりなものになっていた。本発明によれば、蒸発ヘッドのみ移動させればよいので、移動機構が簡易になり、蒸着装置の製造コスト、維持費用を大幅に低減することが出来る。   Further, according to the present invention, only the evaporation head may be moved in the vacuum evaporation chamber. In the conventional method, it is necessary to move the evaporation source and the evaporation head at the same time. Therefore, the structure to be moved becomes 500 kg to 1000 kg, and the moving mechanism becomes large. According to the present invention, since only the evaporation head has to be moved, the moving mechanism is simplified, and the manufacturing cost and maintenance cost of the vapor deposition apparatus can be greatly reduced.

また、本発明の1態様によれば、鉄合金系の金属汚染物はマグネットで除去可能で、有機薄膜の汚染が防止できる。したがって、本発明装置を用いることにより、汚染物質の少ない、長寿命のデバイスを提供できる利点がある。   Moreover, according to one aspect of the present invention, iron alloy-based metal contaminants can be removed with a magnet, and contamination of the organic thin film can be prevented. Therefore, by using the apparatus of the present invention, there is an advantage that a long-life device with less contaminants can be provided.

本発明のさらに他の態様によれば、蒸発源および蒸発ヘッドを複数化することにより高速成膜を実現できる。複数化した蒸発源を用い、その蒸発源間にバルブを設置し、切り替えることにより、連続成膜できる。   According to still another aspect of the present invention, high-speed film formation can be realized by using a plurality of evaporation sources and evaporation heads. By using a plurality of evaporation sources and installing and switching valves between the evaporation sources, continuous film formation can be performed.

本発明の第1の実施例における蒸着室と蒸発ヘッド、蒸発源、基板の構成の模式図と動作を説明する図である。It is a figure explaining the operation | movement with the schematic diagram of a structure of the vapor deposition chamber, the evaporation head, the evaporation source, and the board | substrate in the 1st Example of this invention. 本発明の第2の実施例における蒸着室と蒸発ヘッド、蒸発源、基板の構成の模式図と動作を説明する断面模式図である。It is the cross-sectional schematic diagram explaining the schematic diagram and operation | movement of a vapor deposition chamber, the evaporation head, an evaporation source, and a board | substrate structure in the 2nd Example of this invention. 本発明の第3の実施例における蒸着室と蒸発ヘッド、蒸発源、基板の構成の模式図と動作を説明する断面模式図である。It is the cross-sectional schematic diagram explaining the schematic diagram and operation | movement of a structure of the vapor deposition chamber, the evaporation head, the evaporation source, and the board | substrate in the 3rd Example of this invention. 本発明の第4の実施例における蒸着室と蒸発ヘッド、蒸発源、基板の構成の模式図と動作を説明する断面模式図である。It is the cross-sectional schematic diagram explaining the schematic diagram and operation | movement of the structure of the vapor deposition chamber, the evaporation head, the evaporation source, and the board | substrate in the 4th Example of this invention. 蒸着工程のスループットを向上させる構成を示す斜視図である。本発明の第4の実施例における蒸着室と蒸発ヘッド、蒸発源、基板の構成の模式図と動作を説明する斜視図である。It is a perspective view which shows the structure which improves the throughput of a vapor deposition process. It is the perspective view explaining the schematic diagram and operation | movement of a structure of the vapor deposition chamber, the evaporation head, the evaporation source, and the board | substrate in the 4th Example of this invention. 本発明の第5の実施例における蒸着室と蒸発ヘッド、蒸発源、基板の構成の模式図と動作を説明する断面模式図である。It is the cross-sectional schematic diagram explaining the schematic diagram and operation | movement of a vapor deposition chamber, the evaporation head, an evaporation source, and a board | substrate structure in the 5th Example of this invention. 本発明の第5の実施例の他の態様における蒸着室と蒸発ヘッド、蒸発源、基板の構成の模式図と動作を説明する断面模式図である。It is the cross-sectional schematic diagram explaining the schematic diagram and operation | movement of the structure of the vapor deposition chamber, the evaporation head, the evaporation source, and the board | substrate in the other aspect of the 5th Example of this invention. 本発明の第6の実施例における蒸着室と蒸発ヘッド、蒸発源、基板の構成の模式図と動作を説明する断面模式図である。It is the cross-sectional schematic diagram explaining the schematic diagram and operation | movement of the structure of the vapor deposition chamber, the evaporation head, the evaporation source, and the board | substrate in the 6th Example of this invention. 本発明の第7の実施例における蒸着室と蒸発ヘッド、蒸発源、基板の構成の模式図と動作を説明する断面模式図である。It is the cross-sectional schematic diagram explaining the schematic diagram and operation | movement of a structure of the vapor deposition chamber and the evaporation head in the 7th Example of this invention, an evaporation source, and a board | substrate. 本発明の第7の実施例他の態様における蒸着室と蒸発ヘッド、蒸発源、基板の構成の模式図と動作を説明する断面模式図である。It is the cross-sectional schematic diagram explaining the schematic diagram and operation | movement of a vapor deposition chamber, an evaporation head, an evaporation source, and a board | substrate in other aspects of the 7th Example of this invention. 本発明の第8の実施例における有機ELディスプレイ生産工程の一例を示した工程図である。It is process drawing which showed an example of the organic electroluminescent display production process in the 8th Example of this invention.

本発明にかかる真空蒸着装置の一例として、有機ELデバイスの製造に適用した例を説明する。有機ELデバイスの製造装置は、陽極の上に正孔注入層や正孔輸送層、発光層(有機膜層)、陰極の上に電子注入層や電子輸送層をなど様々な材料の薄膜層を真空蒸着により多層積層して形成する装置である。   As an example of the vacuum deposition apparatus according to the present invention, an example applied to the manufacture of an organic EL device will be described. Organic EL device manufacturing equipment has a hole injection layer, a hole transport layer, a light emitting layer (organic film layer) on the anode, and a thin film layer of various materials such as an electron injection layer and an electron transport layer on the cathode. It is an apparatus that forms multiple layers by vacuum deposition.

本発明にかかる有機ELデバイス製造装置は、真空蒸着部に線状に配置した複数のノズルを介して材料を蒸発させる蒸発ヘッド(リニアソース)と、有機材料を気化させるための蒸発源および気化した材料を蒸発ヘッドへ輸送するための柔らかい配管を備えたことを特徴とする。以下に、実施例および図を用いて本発明の内容を詳細に説明する。   An organic EL device manufacturing apparatus according to the present invention includes an evaporation head (linear source) for evaporating a material through a plurality of nozzles arranged linearly in a vacuum deposition unit, an evaporation source for evaporating an organic material, and an evaporation source It is characterized by a soft pipe for transporting the material to the evaporation head. Hereinafter, the contents of the present invention will be described in detail with reference to examples and drawings.

図1は、本発明による気相有機物の蒸着装置の縦断面図である。この実施例の気相有機物の蒸着装置は、有機物を母材に蒸着せしめるの蒸着室5と、有機物を加熱して気相に状態を変換せしめる蒸発源8と、気相有機物を噴射する噴射部であるノズルが複数個、線状に配置した蒸発ヘッド3と、蒸発源8と蒸発ヘッド3の間の柔らかい配管7と、蒸発ヘッド3の動作を駆動する上下移動機構16と、基板1と基板を保持するための基板保持部15とからなる。なお、蒸着室内は柔らかい配管7となっているが、蒸着室外においては、通常の配管を使用することが出来る。但し、この場合も配管の加熱は可能である必要がある。   FIG. 1 is a longitudinal sectional view of a vapor phase organic material vapor deposition apparatus according to the present invention. The vapor phase organic material vapor deposition apparatus of this embodiment includes a vapor deposition chamber 5 for depositing an organic material on a base material, an evaporation source 8 for heating the organic material to convert the state into a gas phase, and an injection unit for injecting the vapor phase organic material. A plurality of nozzles that are linearly arranged, a soft pipe 7 between the evaporation source 8 and the evaporation head 3, a vertical movement mechanism 16 that drives the operation of the evaporation head 3, the substrate 1 and the substrate And a substrate holder 15 for holding the substrate. In addition, although the inside of the vapor deposition chamber is a soft pipe 7, outside the vapor deposition chamber, a normal pipe can be used. However, also in this case, it is necessary that the piping can be heated.

蒸発源8において、容器81内の有機材料8が加熱用ヒーター17によって加熱され気化している。容器81は、SUS、Ti、Mo等によって形成されている。蒸発源の内部は、加熱用ヒーター17によって200℃〜400℃に加熱され、有機材料9が気化する。   In the evaporation source 8, the organic material 8 in the container 81 is heated and vaporized by the heater 17. The container 81 is made of SUS, Ti, Mo, or the like. The inside of the evaporation source is heated to 200 ° C. to 400 ° C. by the heater 17 and the organic material 9 is vaporized.

実施例1の蒸発ヘッドは、ノズル部分を加熱するヒーターとヒーターの熱を基板側へ熱輻射させないための水冷ジャケット10と、熱遮蔽板1301、1302、1303と、ノズルからの噴出物が熱遮蔽板等の周辺部品へ付着することを防止するための防壁板14で構成される。蒸着室5は、外部と隔離される内部空間を備えており、前記内部空間の床面に気相有機物を蒸着させる基板1を固定することのできる基板保持部15を備える。   The evaporation head according to the first embodiment includes a heater for heating the nozzle portion, a water cooling jacket 10 for preventing the heat of the heater from being radiated to the substrate side, heat shielding plates 1301, 1302, and 1303, and ejected matter from the nozzle is thermally shielded. It consists of a barrier plate 14 for preventing adhesion to peripheral parts such as a plate. The vapor deposition chamber 5 includes an internal space that is isolated from the outside, and includes a substrate holding unit 15 that can fix the substrate 1 on which a vapor-phase organic substance is vapor-deposited on the floor surface of the internal space.

さらに、蒸着室5内では、図1の左上吹き出し図中に表記しているように、蒸発ヘッド3は、ライン状に並ぶ複数のノズルを設けた構造で、ノズルが並ぶ方向と直角な方向に移動させて、基板1の上に気化した有機材料50を噴射させて有機薄膜2を形成する構成である。蒸発ヘッド3の動作を駆動する上下移動機構16は真空用ベロー702により、真空遮断されているので、上下移動機構16は大気中で動作可能なもので可能である。   Further, in the vapor deposition chamber 5, as shown in the upper left balloon diagram of FIG. 1, the evaporation head 3 has a structure in which a plurality of nozzles arranged in a line are provided, and in a direction perpendicular to the direction in which the nozzles are arranged. The organic thin film 2 is formed by ejecting the vaporized organic material 50 onto the substrate 1 by moving the substrate. Since the vertical movement mechanism 16 that drives the operation of the evaporation head 3 is blocked by the vacuum bellows 702, the vertical movement mechanism 16 can be operated in the atmosphere.

蒸発源8と蒸発ヘッド3の間の柔らかい配管7は、真空用ベロー701と気化された材料を輸送する柔らかい配管12(フレキシブルチューブなど)と、その配管12の外部に配管内で輸送中に気化有機物材料が配管内壁に吸着しないように配管内壁を加熱する為のヒーター11と、そのヒーターから出てくる熱を周辺部に遮断するための水冷ジャケット10から構成される。   A soft pipe 7 between the evaporation source 8 and the evaporation head 3 is vaporized during transportation in the pipe outside the pipe 12 and a soft pipe 12 (such as a flexible tube) for transporting the vacuum bellows 701 and the vaporized material. It comprises a heater 11 for heating the inner wall of the pipe so that the organic material is not adsorbed on the inner wall of the pipe, and a water cooling jacket 10 for blocking the heat coming out of the heater to the periphery.

柔らかい配管12、ヒーター11、水冷ジャケット10は、真空用ベロー701により蒸着室5内の真空雰囲気とは分離されているので、一般の大気中で用いる部材で対応可能である。蒸発源8は、有機材料9を気化させるために加熱用ヒーター17が周辺に設置されている。   Since the soft piping 12, the heater 11, and the water cooling jacket 10 are separated from the vacuum atmosphere in the vapor deposition chamber 5 by the vacuum bellows 701, they can be handled by members used in general air. In the evaporation source 8, a heater 17 is installed in the vicinity in order to vaporize the organic material 9.

蒸発ヘッド3、柔らかい配管12、蒸発源8の加熱温度は、所望の有機材料の蒸気圧に合わせて決定される。蒸発ヘッド3の加熱温度≧柔らかい配管12の加熱温度≧蒸発源8の加熱温度になるように温度設定すれば、ノズルから噴射されるまでの配管内で気化された材料が固化することを防御できる。   The heating temperature of the evaporation head 3, the soft pipe 12, and the evaporation source 8 is determined according to the vapor pressure of a desired organic material. If the temperature is set so that the heating temperature of the evaporation head 3 ≧ the heating temperature of the soft pipe 12 ≧ the heating temperature of the evaporation source 8, it is possible to prevent the vaporized material from solidifying in the pipe until it is ejected from the nozzle. .

真空用ベロー701と702は、機械的寿命があるため、定期的に交換できるように分離できる構造となっている。また、真空用ベロー701と702にも、ステンレス400系等の金属を使用することが出来る。   Since the vacuum bellows 701 and 702 have a mechanical life, the vacuum bellows 701 and 702 can be separated so that they can be periodically replaced. Also, the vacuum bellows 701 and 702 can be made of metal such as stainless steel 400 series.

蒸着室5において、基板1の必要な部分に発光材料を蒸着させるメタルファインマスク4を備えている。そして、真空蒸着を実施する時には、図示していない真空排気ポンプにより蒸着室5の真空装置内部は10−3〜10−4Pa程度の高真空状態に維持される。図1の蒸着室と連結した、図示しないチャンバーに基板受け渡し部が設置され、このチャンバーにおいて、基板が受け渡しされるので、図1の蒸着室は常に真空状態を維持することが出来る。 In the vapor deposition chamber 5, a metal fine mask 4 for vapor-depositing a light emitting material on a necessary portion of the substrate 1 is provided. And when vacuum deposition is implemented, the inside of the vacuum apparatus of the deposition chamber 5 is maintained in a high vacuum state of about 10 −3 to 10 −4 Pa by a vacuum exhaust pump (not shown). A substrate transfer unit is installed in a chamber (not shown) connected to the vapor deposition chamber of FIG. 1, and the substrate is transferred in this chamber. Therefore, the vapor deposition chamber of FIG. 1 can always maintain a vacuum state.

実施例1においては、蒸着室5内で蒸発源8と蒸発ヘッド3の間の柔らかい配管7の真空保持は真空用ベロー701を用い、蒸発ヘッド3を駆動する上下移動機構16は真空用ベロー702を用いて、真空遮断した。   In the first embodiment, the vacuum piping 701 is used for vacuum holding of the soft pipe 7 between the evaporation source 8 and the evaporation head 3 in the vapor deposition chamber 5, and the vertical movement mechanism 16 that drives the evaporation head 3 is the vacuum bellow 702. Was used to shut off the vacuum.

本実施例では、図2に示すように、真空用ベロー701および真空用ベロー702を用いず、真空内で対応できる、上下移動機構1601と柔らかい配管1201、ヒーター1101、水冷ジャケット1001を用いることにより、蒸発ヘッド3を真空装置内部で移動させることができる。真空用ベローを用いないため、蒸着室5内部の構造を簡略化できる。しかし、真空内で対応できる部品を多用するため、それらの部品の機械的寿命、コストを考慮する必要がある。   In this embodiment, as shown in FIG. 2, by using a vertical movement mechanism 1601, a soft pipe 1201, a heater 1101, and a water cooling jacket 1001, which can be handled in a vacuum without using the vacuum bellows 701 and the vacuum bellows 702. The evaporation head 3 can be moved inside the vacuum apparatus. Since the vacuum bellows is not used, the structure inside the vapor deposition chamber 5 can be simplified. However, since many parts that can be handled in a vacuum are used, it is necessary to consider the mechanical life and cost of those parts.

実施例1においては、不純物発生時の除去方法については考慮されいない。本実施例では真空内で発生する不純物は主に加熱機構および移動機構部分によることがわかっているので、真空用ベローを用いて、加熱機構および移動機構部分を蒸着室5の外の大気側で設置している。そのため、真空内で発生する主な不純物は真空用ベローから出る金属粉である。   In the first embodiment, no consideration is given to a removal method when impurities are generated. In this embodiment, since it is known that impurities generated in the vacuum are mainly caused by the heating mechanism and the moving mechanism part, the heating mechanism and the moving mechanism part are arranged on the atmosphere side outside the deposition chamber 5 by using the vacuum bellows. It is installed. Therefore, the main impurities generated in the vacuum are metal powders that come out from the vacuum bellows.

この真空用ベローの材質をステンレス400系、ハステロイ、スミクリーンMなどの磁石に吸着される部材を使うことにより、発生した金属粉を磁石により吸着して除去できる。
本実施例では、上記不純物除去方法を図3により説明する。
By using a member that is attracted to a magnet such as stainless steel 400 series, Hastelloy, or SUMICLEAN M as the material of the vacuum bellows, the generated metal powder can be adsorbed and removed by the magnet.
In this embodiment, the impurity removal method will be described with reference to FIG.

本実施例では図3に示すように、基板1と蒸発ヘッド3の間に、蒸発ヘッド3および真空用ベロー701、702から発生する金属粉を主とする不純物が基板1側へ飛散することを防ぐための、仕切り23及び金属粉吸着用磁石21、22を配置している。   In this embodiment, as shown in FIG. 3, impurities mainly composed of metal powder generated from the evaporation head 3 and the vacuum bellows 701 and 702 are scattered between the substrate 1 and the evaporation head 3 to the substrate 1 side. In order to prevent this, a partition 23 and metal powder adsorption magnets 21 and 22 are arranged.

真空中で金属粉は発生するため、蒸発ヘッド3および真空用ベロー701、702から発生する金属粉は大気中で起こる気流による舞い上がり等は考慮する必要がなく、発生時に、基板1側へ直接飛んでくる粉を防ぐように仕切り23及び金属粉吸着用磁石21、22を配置していることが特徴である。本実施例を用いることにより、有機薄膜2の不純物濃度を下げることができ、前記有機薄膜2を用いることにより有機ELデバイスの寿命を向上させることができた。   Since metal powder is generated in a vacuum, the metal powder generated from the evaporation head 3 and the vacuum bellows 701 and 702 does not need to be taken into consideration by the air current that occurs in the atmosphere, and directly jumps to the substrate 1 side when generated. It is characterized in that the partition 23 and the metal powder adsorption magnets 21 and 22 are arranged so as to prevent the powder coming from. By using this example, the impurity concentration of the organic thin film 2 could be lowered, and by using the organic thin film 2, the lifetime of the organic EL device could be improved.

図4は、本発明に従う気相有機物の蒸着装置構成の縦断面模式図である。本実施例は、図1の実施例1で説明した構成に、蒸発源8と蒸発ヘッド3の間の配管にバルブ18と圧力計19を配置し、蒸発ヘッド3のノズルから噴出される気化有機材料50の量を計測できる膜厚計25と、それらのバルブ、圧力計、膜厚計、蒸発源温度を統合的に制御する装置20を配置したことを特徴とする。   FIG. 4 is a schematic vertical cross-sectional view of a vapor-phase organic matter vapor deposition apparatus configuration according to the present invention. In the present embodiment, a valve 18 and a pressure gauge 19 are arranged in a pipe between the evaporation source 8 and the evaporation head 3 in the configuration described in Embodiment 1 of FIG. A film thickness meter 25 capable of measuring the amount of the material 50, and a valve, a pressure gauge, a film thickness meter, and an apparatus 20 for controlling the evaporation source temperature in an integrated manner are arranged.

実施例4では、膜厚計25と圧力計19の信号を制御装置20にフィードバックし、バルブ18による気化材料の流量調整、蒸発源温度の制御をすることにより、高成膜速度で、均一な薄膜を形成できる。   In Example 4, the signals of the film thickness meter 25 and the pressure gauge 19 are fed back to the control device 20, the flow rate of the vaporized material is adjusted by the valve 18, and the evaporation source temperature is controlled, so that the film formation rate is uniform at a high film formation rate. A thin film can be formed.

また、基板1の交換時は、有機材料の噴射は不要であるので、圧力計19の値が一定に保たれるように、制御装置20によりバルブ18の開閉程度の調整および遮断動作と蒸発源温度を制御することにより、基板1に形成する薄膜の膜厚均一性を向上できた。また、圧力計19による蒸発源の温度制御により、蒸発源内部の有機材料に対して過度の熱負荷をかけることなく安定に蒸発できるので、有機材料9の劣化を抑えることができた。さらに、基板搬送や基板交換時に材料の消費を軽減できるため、材料利用効率を向上させることが出来た。   Further, when the substrate 1 is replaced, it is not necessary to inject organic material. Therefore, the control device 20 adjusts the opening / closing degree of the valve 18 and shuts off the valve 18 so that the value of the pressure gauge 19 is kept constant. By controlling the temperature, the film thickness uniformity of the thin film formed on the substrate 1 could be improved. Further, by controlling the temperature of the evaporation source with the pressure gauge 19, it is possible to stably evaporate without applying an excessive heat load on the organic material inside the evaporation source, so that the deterioration of the organic material 9 can be suppressed. Furthermore, material consumption efficiency can be improved because material consumption can be reduced during substrate transport and substrate replacement.

図5では、さらに材料の利用効率を向上させるため、基板A 30、および、基板B 31を蒸着室内に設置し、基板Aを蒸着している期間は、基板B側では、基板の搬送・交換、マスクとの位置調整を実施し、逆に基板A側で基板の搬送・交換、マスクとの位置調整を行なう場合は、蒸発ヘッド3がノズルが並んでいる横方向に移動し基板B側の蒸着工程を実施する方式で、基板の搬送・交換、マスクとの位置調整時間で、蒸着が停止する時間を極力減らし、蒸発源の制御を簡単に行うことができた。   In FIG. 5, in order to further improve the material utilization efficiency, the substrate A 30 and the substrate B 31 are installed in the vapor deposition chamber, and during the period during which the substrate A is vapor-deposited, the substrate B is transported and exchanged. When the position adjustment with respect to the mask is carried out and the substrate is transferred / replaced on the substrate A side and the position adjustment with respect to the mask is performed on the contrary, the evaporation head 3 moves in the lateral direction where the nozzles are aligned and moves toward the substrate B side. In the method of carrying out the vapor deposition process, it was possible to easily control the evaporation source by reducing the time during which the vapor deposition was stopped as much as possible by transferring and exchanging the substrate and adjusting the position of the mask.

本実施例を用いることによって、基板に対して蒸着をしていない時間は、基板が横移動している時だけになる。例えば、基板1枚当たりの蒸着のタクト時間は88秒であり、この場合の基板を横移動させる時間は15秒〜16秒程度とすることが出来る。したがって、タクト時間の大部分を実際の蒸着工程に割くことが出来、生産効率を大幅に上げることが出来る。なお、基板保持機構は2個であるとして説明したが、基板保持機構が3個以上あれば、さらにスループットを向上させることが出来る。   By using this embodiment, the time during which no vapor deposition is performed on the substrate is only when the substrate is moving laterally. For example, the tact time of vapor deposition per substrate is 88 seconds, and the time for laterally moving the substrate in this case can be about 15 seconds to 16 seconds. Therefore, most of the tact time can be allocated to the actual vapor deposition process, and the production efficiency can be greatly increased. Although it has been described that there are two substrate holding mechanisms, if there are three or more substrate holding mechanisms, the throughput can be further improved.

図6は、本発明に従う気相有機物の蒸着装置構成の縦断面模式図である。本実施例は、図4の実施例4で説明した構成に、蒸発源801、802を2つに増設し、気化された有機材料の濃度を倍増させた一例である。制御方法は実施例4で説明した通りで、この蒸発源を2つにすることにより、蒸着レートを倍増できて、短時間で薄膜が形成できるので、タクト時間の短縮を実現できた。本実施例では2つの蒸発源で説明したが、3つ以上の複数の蒸発源を用いても高蒸着レートが実現できる。   FIG. 6 is a schematic vertical cross-sectional view of a vapor-phase organic matter vapor deposition apparatus configuration according to the present invention. This embodiment is an example in which two evaporation sources 801 and 802 are added to the configuration described in Embodiment 4 in FIG. 4 to double the concentration of the vaporized organic material. The control method is the same as that described in Example 4. By using two evaporation sources, the deposition rate can be doubled and a thin film can be formed in a short time, so that the tact time can be shortened. Although this embodiment has been described with two evaporation sources, a high vapor deposition rate can be realized even when three or more evaporation sources are used.

また、上記実施例では、蒸発源を複数化した例であるが、図7で示すように、蒸発ヘッド、配管、蒸発源のシステムを2つにして、同時に蒸着することにより、高蒸着レートが実現できる。   In the above embodiment, the evaporation source is pluralized. However, as shown in FIG. 7, the evaporation head, the piping, and the evaporation source system are two, and the evaporation is performed at the same time. realizable.

以上のように、本実施例では、同じ材料を使う場合は蒸着レート向上させることが出来る。本実施例では、さらに、複合材料を蒸着する場合にも大きな利点がある。有機ELの各層は、ホストの材料に微量なドーパントを添加して形成することが多い。このような場合、図6あるいは図7に示す蒸着源に別の材料を入れることにより、それぞれの蒸発レートで所望の混合比の薄膜材料を正確に形成することが可能である。図7の本実施例では2つの蒸発ヘッド、配管、蒸発源のシステムで説明したが、3つ以上の複数のシステムを用いて複数の材料混合も可能である。   As described above, in this embodiment, when the same material is used, the deposition rate can be improved. In this embodiment, there is also a great advantage when a composite material is deposited. Each layer of the organic EL is often formed by adding a small amount of dopant to the host material. In such a case, it is possible to accurately form a thin film material having a desired mixing ratio at each evaporation rate by putting another material in the vapor deposition source shown in FIG. 6 or FIG. In the present embodiment of FIG. 7, the system of two evaporation heads, piping, and evaporation source has been described. However, a plurality of materials can be mixed using a plurality of three or more systems.

図8は、本発明に従う気相有機物の蒸着装置構成の縦断面模式図である。本実施例は、図6の実施例5で説明した構成に、図8で示すように、各蒸発源間、蒸発源出口にバルブ1801〜1805を、真空ポンプ40を配置した構成である。   FIG. 8 is a schematic vertical cross-sectional view of a vapor-phase organic matter vapor deposition apparatus configuration according to the present invention. In the present embodiment, as shown in FIG. 8, the valves 1801 to 1805 and the vacuum pump 40 are arranged between the respective evaporation sources and at the outlet of the evaporation source as shown in FIG.

本実施例では、蒸発源801、802の中の有機材料9が無くなった場合に、蒸着室を大気状態に戻すことなく材料交換ができるようにした一例である。図8において、蒸発源801と802は直列に接続されているが、並列に配置しても同じ効果が得られた。   In this embodiment, when the organic material 9 in the evaporation sources 801 and 802 is exhausted, the material can be exchanged without returning the vapor deposition chamber to the atmospheric state. In FIG. 8, the evaporation sources 801 and 802 are connected in series, but the same effect can be obtained even if they are arranged in parallel.

図9および図10は、本発明に従う気相有機物の蒸着装置構成の縦断面模式図である。本実施例は、図1の実施例1で説明した構成において、蒸発ヘッド3はノズルから横向きに有機材料を噴出する構成である。しかし、基板搬送方法のやり方では、基板を水平にして蒸着を行なう場合がある。基板の蒸着面を上向き、あるいは、下向きにして蒸着した方がタクトの短縮になる場合があるからである。被処理基板の蒸着面を上向きにした場合が図9であり、被処理基板の蒸着面を下向きにした場合が図10である。   FIG. 9 and FIG. 10 are schematic vertical sectional views of the vapor-phase organic matter vapor deposition apparatus configuration according to the present invention. In the present embodiment, the structure described in the first embodiment shown in FIG. 1 is configured such that the evaporation head 3 ejects an organic material from a nozzle in a lateral direction. However, in the method of transporting the substrate, the deposition may be performed with the substrate horizontal. This is because if the deposition is performed with the deposition surface of the substrate facing upward or downward, the tact time may be shortened. FIG. 9 shows the case where the deposition surface of the substrate to be processed is directed upward, and FIG. 10 shows the case where the deposition surface of the substrate to be processed is directed downward.

気化した有機材料を蒸発ヘッド3のノズルから噴出するので、蒸発ヘッド3の向きはどの方向でも問題ないが、蒸発源8内部の有機材料9は横向きにした場合に材料の漏れなど無いような構造とする必要があるので注意が必要である。なお、図9あるいは図9においては、蒸発ヘッド3は左右に移動可能である。   Since the vaporized organic material is ejected from the nozzle of the evaporation head 3, the direction of the evaporation head 3 can be in any direction, but the organic material 9 inside the evaporation source 8 has a structure that does not leak when it is turned sideways. It is necessary to be careful. In FIG. 9 or FIG. 9, the evaporation head 3 is movable to the left and right.

図11は、有機ELディスプレイ生産工程の一例を示した工程図である。実施例1〜7では、この生産工程の有機蒸着の工程のみを説明した。図11において、有機層と有機層に流れる電流を制御する薄膜トランジスタ(TFT)が形成されたTFT基板と、有機層を外部の湿気から保護する封止基板は別々に形成され、封止工程において組み合わされる。   FIG. 11 is a process diagram showing an example of an organic EL display production process. In Examples 1 to 7, only the organic vapor deposition process of this production process has been described. In FIG. 11, a TFT substrate on which an organic layer and a thin film transistor (TFT) for controlling a current flowing in the organic layer are formed and a sealing substrate for protecting the organic layer from external moisture are separately formed and combined in a sealing process. It is.

図11のTFT基板の製造工程において、ウェット洗浄された基板に対してドライ洗浄を行う。ドライ洗浄は紫外線照射による洗浄を含む場合もある。ドライ洗浄されたTFT基板に先ず、TFTが形成される。TFTの上にパッシベーション膜および平坦化膜が形成され、その上に有機EL層の下部電極が形成される。下部電極はTFTのドレイン電極と接続している。下部電極をアノードとする場合は、例えば、ITO(Indium Tin Oxide)膜が使用される。   In the TFT substrate manufacturing process of FIG. 11, dry cleaning is performed on the wet-cleaned substrate. Dry cleaning may include cleaning by ultraviolet irradiation. First, a TFT is formed on the dry-cleaned TFT substrate. A passivation film and a planarizing film are formed on the TFT, and a lower electrode of the organic EL layer is formed thereon. The lower electrode is connected to the drain electrode of the TFT. When the lower electrode is an anode, for example, an ITO (Indium Tin Oxide) film is used.

下部電極の上に有機EL層が形成される。有機EL層は複数の層から構成される。下部電極がアノードの場合は、下から、例えば、ホール注入層、ホール輸送層、発光層、電子輸送層、電子注入層である。このような有機EL層は蒸着によって形成され、実施例1〜実施例7で述べたような蒸着装置あるいは蒸着方法によって形成する。   An organic EL layer is formed on the lower electrode. The organic EL layer is composed of a plurality of layers. When the lower electrode is an anode, from the bottom, for example, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection layer. Such an organic EL layer is formed by vapor deposition, and is formed by a vapor deposition apparatus or a vapor deposition method as described in the first to seventh embodiments.

有機EL層の上には、各画素共通に、ベタ膜で上部電極が形成される。有機EL表示装置がトップエミッションの場合は、上部電極にはIZO等の透明電極が使用され、有機EL表示装置がボトムエミッションの場合は、Al等の金属膜が使用される。   On the organic EL layer, an upper electrode is formed of a solid film in common for each pixel. When the organic EL display device is top emission, a transparent electrode such as IZO is used as the upper electrode, and when the organic EL display device is bottom emission, a metal film such as Al is used.

図11の封止基板工程において、ウェット洗浄およびドライ洗浄を行った封止基板に対してデシカント(乾燥剤)が配置される。有機EL層は水分があると劣化をするので、内部の水分を除去するためにデシカントが使用される。デシカントには種々な材料を用いることが出来るが、有機EL表示装置がトップエミッションかボトムエミッションかによってデシカントの配置方法が異なり、トップエミッションの場合は使用しない例もある。   In the sealing substrate process of FIG. 11, a desiccant (drying agent) is disposed on the sealing substrate that has been subjected to wet cleaning and dry cleaning. Since the organic EL layer deteriorates when moisture is present, a desiccant is used to remove the moisture inside. Although various materials can be used for the desiccant, the method of arranging the desiccant differs depending on whether the organic EL display device is a top emission or a bottom emission. In some cases, the desiccant is not used.

このように、別々に製造されたTFT基板と封止基板は封止工程において、組み合わされる。TFT基板と封止基板を封止するためのシール材は、封止基板に形成される。封止基板とTFT基板を組み合わせた後、シール部に紫外線を照射して、シール部を硬化させ、封止を完了させる。また、上記のガラス基板封止工程の他、封止工程にはメタル缶封止や充填材を用いる固体封止、フレキシブルな封止膜を用いる膜封止等がある。   In this way, the TFT substrate and the sealing substrate manufactured separately are combined in the sealing step. A sealing material for sealing the TFT substrate and the sealing substrate is formed on the sealing substrate. After combining the sealing substrate and the TFT substrate, the sealing portion is irradiated with ultraviolet rays to cure the sealing portion and complete the sealing. In addition to the glass substrate sealing step, the sealing step includes metal can sealing, solid sealing using a filler, film sealing using a flexible sealing film, and the like.

このようにして形成された有機EL表示装置に対して点灯検査を行う。点灯検査において、黒点、白点等の欠陥が生じている場合でも欠陥修正可能なものは修正を行い、有機EL表示装置が完成する。   A lighting test is performed on the organic EL display device thus formed. In the lighting inspection, even if defects such as black spots and white spots have occurred, those that can be corrected can be corrected to complete the organic EL display device.

本発明により、複数の層によって形成される有機EL層を異物による汚染を抑え、かつ、短いタクト時間で形成することができるので、有機EL表示装置の製造コストを低下させ、と歩留まりを向上させることが出来る。さらに、有機EL層の各層の成分を正確に制御することが出来るので、特性的の再現性が高く、かつ、信頼性の高い有機EL表示装置を製造することが出来る。   According to the present invention, an organic EL layer formed of a plurality of layers can be formed in a short tact time while suppressing contamination by foreign substances, so that the manufacturing cost of the organic EL display device is reduced and the yield is improved. I can do it. Furthermore, since the components of each layer of the organic EL layer can be accurately controlled, an organic EL display device with high characteristic reproducibility and high reliability can be manufactured.

1・・・基板、 2・・・有機薄膜、 3・・・蒸発ヘッド、 4・・・ファインメタルマスク、 5・・・蒸着室、 6・・・蒸着室外、 7・・・真空用ベロー、 701・・・真空用ベロー、 702・・・真空用ベロー、 8・・・蒸発源、 801・・・蒸発源、 802・・・蒸発源、 9・・・有機材料、 10・・・水冷ジャケット、 11・・・加熱機構、 12・・・真空用ベロー(フレキシブルチューブ)、 13・・・熱遮蔽板、 1301・・・熱遮蔽板、 1302・・・熱遮蔽板、 1303・・・熱遮蔽板、 14・・・防壁板、 15・・・基板支持部気化有機材料防壁板、 16・・・大気側上下移動機構、 1601・・・上下移動機構、 17・・・加熱用ヒーター、 18・・・バルブ、 1801・・・バルブ、 1802・・・バルブ、 1803・・・バルブ、 1804・・・バルブ、 1805・・・バルブ、 19・・・圧力計、 1901・・・圧力計、 1902・・・圧力計、 20・・・制御装置、21・・・磁石、 22・・・磁石、 23・・・仕切り、 40・・・ポンプ、 50・・・気化有機材料。   DESCRIPTION OF SYMBOLS 1 ... Board | substrate, 2 ... Organic thin film, 3 ... Evaporation head, 4 ... Fine metal mask, 5 ... Deposition chamber, 6 ... Outside deposition chamber, 7 ... Vacuum bellows, 701 ... Velocity bellows, 702 ... Vacuum bellows, 8 ... Evaporation source, 801 ... Evaporation source, 802 ... Evaporation source, 9 ... Organic material, 10 ... Water cooling jacket 11 ... Heating mechanism, 12 ... Vacuum bellows (flexible tube), 13 ... Heat shielding plate, 1301 ... Heat shielding plate, 1302 ... Heat shielding plate, 1303 ... Heat shielding Plate 14 .. barrier plate 15 .. substrate support portion vaporization organic material barrier plate 16 .. atmosphere side vertical movement mechanism 1601 .. vertical movement mechanism 17 .. heating heater 18.・Valve, 1801 ... Valve, 1802 ... Valve, 1803 ... Valve, 1804 ... Valve, 1805 ... Valve, 19 ... Pressure gauge, 1901 ... Pressure gauge, 1902 ... Pressure gauge, 20 ... control device, 21 ... magnet, 22 ... magnet, 23 ... partition, 40 ... pump, 50 ... vaporized organic material.

Claims (13)

内部を排気して真空状態に維持した蒸着室内で表面をマスクで覆った被処理基板の表面に蒸着により薄膜を形成する真空蒸着部を備え、真空に維持された雰囲気中で前記被処理基板を他の真空室間で受け渡しする被処理基板受渡部を有する真空蒸着装置であって、
前記真空蒸着部は、線状に配置した複数のノズルを介して蒸発させた材料を前記処理室内に放出させる蒸発ヘッドと、前記蒸着室外に設置して蒸発材料を気化させる蒸発源と、前記被処理基板を前記マスクで覆った状態で保持する基板保持部とを有し、
前記蒸発ヘッドと前記蒸発源は蒸着室内配管と蒸着室外配管とを有する配管で接続され、前記蒸着室内配管は柔らかい配管となっており、
前記蒸発ヘッドを前記洗浄に配置した複数のノズルの配列方向に対して直角な方向に走査させる蒸発ヘッド移動機構を有することを特徴とする真空蒸着装置。
A vacuum vapor deposition section is provided for forming a thin film by vapor deposition on the surface of the substrate to be processed, the surface of which is covered with a mask in a vapor deposition chamber that is evacuated and maintained in a vacuum state. A vacuum deposition apparatus having a substrate transfer section to be processed that is transferred between other vacuum chambers,
The vacuum deposition unit includes an evaporation head that discharges the material evaporated through a plurality of nozzles arranged in a line into the processing chamber, an evaporation source that is installed outside the deposition chamber and vaporizes the evaporation material, and the target A substrate holding unit for holding the processing substrate in a state covered with the mask,
The evaporation head and the evaporation source are connected by a pipe having a vapor deposition chamber pipe and a vapor deposition chamber pipe, and the vapor deposition chamber pipe is a soft pipe,
A vacuum deposition apparatus, comprising: an evaporation head moving mechanism that scans the evaporation head in a direction perpendicular to an arrangement direction of a plurality of nozzles arranged in the cleaning.
請求項1の真空蒸着装置において、
前記蒸発ヘッド移動機構を真空用ベローを用いて真空遮断し、
前記配管の加熱および冷却機構と移動機構を大気側で駆動できることを特徴とする真空蒸着装置。
In the vacuum evaporation system of Claim 1,
The evaporation head moving mechanism is vacuum-blocked using a vacuum bellows,
A vacuum evaporation apparatus characterized in that the heating and cooling mechanism and the moving mechanism of the pipe can be driven on the atmosphere side.
請求項1または2の真空蒸着装置において、
前記被処理基板と前記蒸発ヘッドの間に、蒸発ヘッドおよび真空用ベローから発生する不純物が前記被処理基板側へ飛散することを防ぐための、仕切り及び金属粉吸着用磁石を配置していることを特徴とする真空蒸着装置。
The vacuum evaporation apparatus according to claim 1 or 2,
A partition and a magnet for adsorbing metal powder are disposed between the substrate to be processed and the evaporation head to prevent impurities generated from the evaporation head and the vacuum bellow from being scattered to the substrate to be processed. A vacuum deposition apparatus characterized by the above.
請求項1乃至3のいずれか1項に記載の真空蒸着装置において、
前記蒸発源と前記蒸発ヘッドを接続する配管にバルブと圧力計と、前記蒸発ヘッドのノズルから噴出される有機材料の量を計測できる膜厚計とを有し、前記圧力計と前記膜厚計のデータを使用して、前記バルブの開閉および前記蒸発源の温度を制御する手段を有する真空蒸着装置。
In the vacuum evaporation system according to any one of claims 1 to 3,
A pipe connecting the evaporation source and the evaporation head has a valve and a pressure gauge, and a film thickness meter capable of measuring the amount of organic material ejected from the nozzle of the evaporation head, the pressure gauge and the film thickness gauge A vacuum deposition apparatus having means for controlling the opening and closing of the valve and the temperature of the evaporation source using the above data.
請求項1乃至4のいずれか1項に記載の真空蒸着装置において、
前記蒸着室内において表面をマスクで覆った被処理基板の表面に蒸着により薄膜を形成する基板保持部を2つ以上備え、前記蒸発ヘッドを上下おおび左右に駆動する手段を有することを特徴とする真空蒸着装置。
In the vacuum evaporation system according to any one of claims 1 to 4,
It comprises two or more substrate holding portions for forming a thin film by vapor deposition on the surface of the substrate to be processed whose surface is covered with a mask in the vapor deposition chamber, and has means for driving the evaporation head vertically and horizontally. Vacuum deposition equipment.
請求項1乃至3のいずれか1項に記載の真空蒸着装置において、
前記蒸発源は2個以上存在し、前記2個以上の蒸発源は、前記蒸発ヘッドと前記配管によって接続されていることを特徴とする真空蒸着装置。
In the vacuum evaporation system according to any one of claims 1 to 3,
There are two or more evaporation sources, and the two or more evaporation sources are connected to the evaporation head by the pipe.
請求項1乃至6のいずれか1項に記載の真空蒸着装置において、
前記配管には真空排気ポンプが接続されていることを特徴とする真空蒸着装置。
In the vacuum evaporation system according to any one of claims 1 to 6,
A vacuum deposition apparatus, wherein a vacuum exhaust pump is connected to the pipe.
請求項1乃至7のいずれか1項に記載の真空蒸着装置において、
前記蒸発ヘッド、前記蒸発源、および、前記蒸発ヘッドと前記蒸発源を接続する前記配管のセットは複数存在し、前記蒸発ヘッド、前記蒸発源、および、前記蒸発ヘッドと前記蒸発源を接続する前記配管の各セットは個別に駆動できることを特徴とする真空蒸着装置。
In the vacuum evaporation system according to any one of claims 1 to 7,
There are a plurality of sets of piping that connect the evaporation head, the evaporation source, and the evaporation head and the evaporation source, and the evaporation head, the evaporation source, and the evaporation head and the evaporation source that connect the evaporation source. A vacuum deposition apparatus characterized in that each set of piping can be driven individually.
請求項1乃至8のいずれか1項に記載の真空蒸着装置において、
前記被処理基板は前記基板保持部によって垂直に保持されていることを特徴とする真空蒸着装置。
In the vacuum evaporation system according to any one of claims 1 to 8,
The vacuum deposition apparatus, wherein the substrate to be processed is held vertically by the substrate holder.
請求項1乃至8のいずれか1項に記載の真空蒸着装置において、
前記被処理基板は前記基板保持部によって水平に保持されていることを特徴とする真空蒸着装置。
In the vacuum evaporation system according to any one of claims 1 to 8,
The vacuum deposition apparatus, wherein the substrate to be processed is held horizontally by the substrate holder.
被処理基板に蒸着材料を蒸着室において真空中で蒸着する真空蒸着方法であって、
前記蒸着材料を前記蒸着室外に設置された蒸発源室に配置し、
前記蒸発源室を加熱することによって、前記蒸着材料を蒸発させ、
前記蒸発室内には、線状に配列した複数のノズルを有する蒸発ヘッドを配置し、
前記蒸発ヘッドと前記蒸発源室とを柔らかい配管で接続し、
前記前記蒸発ヘッドを前記複数のノズルの配列方向と直角方向に移動させることによって、前記被処理基板に前記蒸着材料を蒸着することを特徴とする真空蒸着方法。
A vacuum deposition method for depositing a deposition material on a substrate to be processed in a deposition chamber in a vacuum,
Arranging the vapor deposition material in an evaporation source chamber installed outside the vapor deposition chamber;
Evaporating the vapor deposition material by heating the evaporation source chamber;
In the evaporation chamber, an evaporation head having a plurality of nozzles arranged in a line is arranged,
Connect the evaporation head and the evaporation source chamber with a soft pipe,
A vacuum deposition method, wherein the deposition material is deposited on the substrate to be processed by moving the evaporation head in a direction perpendicular to an arrangement direction of the plurality of nozzles.
請求項11に記載の真空蒸着方法において、
前記軟らかい配管は、ステンレス400系、または、ハステロイ、または、スミクリーンMによって形成されたベロー構造を含むことを特徴とする真空蒸着方法。
In the vacuum evaporation method of Claim 11,
The vacuum deposition method, wherein the soft pipe includes a bellows structure formed of stainless steel 400, hastelloy, or Sumiclean M.
薄膜トランジスタおよび有機EL層が形成されたTFT基板を封止基板によって封止した有機EL表示装置の製造方法であって、
薄膜トランジスタが形成されたTFT基板上を蒸着室に配置し
前記有機EL層を形成するための蒸着材料を前記蒸着室外に設置された蒸発源室に配置し、
前記蒸発源室を加熱することによって、前記蒸着材料を蒸発させ、
前記蒸発室内には、線状に配列した複数のノズルを有する蒸発ヘッドを配置し、
前記蒸発ヘッドと前記蒸発源室とを柔らかい配管で接続し、
前記前記蒸発ヘッドを前記複数のノズルの配列方向と直角方向に移動させることによって、前記被処理基板に前記蒸着材料を蒸着することによって、前記有機EL層を形成することを特徴とする真空蒸着方法。
A method of manufacturing an organic EL display device in which a TFT substrate on which a thin film transistor and an organic EL layer are formed is sealed with a sealing substrate,
A TFT substrate on which a thin film transistor is formed is disposed in a vapor deposition chamber, a vapor deposition material for forming the organic EL layer is disposed in an evaporation source chamber disposed outside the vapor deposition chamber,
Evaporating the vapor deposition material by heating the evaporation source chamber;
In the evaporation chamber, an evaporation head having a plurality of nozzles arranged in a line is arranged,
Connect the evaporation head and the evaporation source chamber with a soft pipe,
The organic EL layer is formed by depositing the deposition material on the substrate to be processed by moving the evaporation head in a direction perpendicular to the arrangement direction of the plurality of nozzles. .
JP2009258963A 2009-11-12 2009-11-12 Vacuum deposition apparatus, vacuum deposition method, and organic EL display device manufacturing method Expired - Fee Related JP5452178B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2009258963A JP5452178B2 (en) 2009-11-12 2009-11-12 Vacuum deposition apparatus, vacuum deposition method, and organic EL display device manufacturing method
TW099134202A TW201127973A (en) 2009-11-12 2010-10-07 Vacuum evaporation apparatus, method of vacuum evaporation, and process of manufacturing organic electronic luminescence display device
KR1020100108936A KR101217312B1 (en) 2009-11-12 2010-11-04 Vacuum evaporation apparatus, method of vacuum evaporation, and process of manufacture of organic electronic luminescence display device
CN2010105396115A CN102061445B (en) 2009-11-12 2010-11-09 Vacuum evaporation device, vacuum evaporation method and organic EL display device manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009258963A JP5452178B2 (en) 2009-11-12 2009-11-12 Vacuum deposition apparatus, vacuum deposition method, and organic EL display device manufacturing method

Publications (2)

Publication Number Publication Date
JP2011105962A true JP2011105962A (en) 2011-06-02
JP5452178B2 JP5452178B2 (en) 2014-03-26

Family

ID=43996949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009258963A Expired - Fee Related JP5452178B2 (en) 2009-11-12 2009-11-12 Vacuum deposition apparatus, vacuum deposition method, and organic EL display device manufacturing method

Country Status (4)

Country Link
JP (1) JP5452178B2 (en)
KR (1) KR101217312B1 (en)
CN (1) CN102061445B (en)
TW (1) TW201127973A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012090753A1 (en) * 2010-12-28 2012-07-05 トッキ株式会社 Film-forming apparatus
JP2013204073A (en) * 2012-03-28 2013-10-07 Hitachi Zosen Corp Vacuum deposition device and crucible replacement method therein
WO2014017307A1 (en) * 2012-07-25 2014-01-30 キヤノントッキ株式会社 Vapor-deposition device
KR101432079B1 (en) 2012-12-27 2014-08-21 주식회사 선익시스템 An Organic Matter Feeding Apparatus
DE102013206598A1 (en) * 2013-04-12 2014-10-16 Von Ardenne Anlagentechnik Gmbh Vacuum coating system and coating device therefor
JP2015063724A (en) * 2013-09-25 2015-04-09 日立造船株式会社 Vacuum deposition apparatus
WO2018166621A1 (en) * 2017-03-17 2018-09-20 Applied Materials, Inc. Deposition apparatus, vacuum system, and method of operating a deposition apparatus

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101879805B1 (en) * 2012-01-20 2018-08-17 삼성디스플레이 주식회사 Apparatus and method for depositing thin film
KR101370326B1 (en) * 2012-08-07 2014-03-05 한국표준과학연구원 Evaporation Deposition Apparatus
CN104131251A (en) * 2013-05-02 2014-11-05 上海和辉光电有限公司 Electromagnetic vapor-plating device
JP2016084517A (en) * 2014-10-28 2016-05-19 東京エレクトロン株式会社 Raw material gas supply device and film deposition device
WO2016204022A1 (en) * 2015-06-16 2016-12-22 株式会社アルバック Film forming method and film forming device
CN106978590B (en) * 2017-04-26 2019-06-25 武汉华星光电技术有限公司 Evaporation coating device
KR102407350B1 (en) * 2017-07-27 2022-06-10 (주)선익시스템 Furnace of Deposition Chamber
CN107400861B (en) * 2017-09-21 2020-05-08 深圳市华格纳米科技有限公司 Automatic change continuous type resistance evaporation coating device
CN109536894B (en) * 2017-09-22 2020-08-11 清华大学 Preparation device of organic light emitting diode
CN109546008B (en) * 2017-09-22 2020-11-06 清华大学 Preparation method of organic light emitting diode
CN108570645B (en) * 2017-11-30 2023-09-29 上海微电子装备(集团)股份有限公司 Vacuum evaporation device, evaporation head thereof and vacuum evaporation method
CN108728801B (en) * 2018-05-28 2019-11-12 深圳市华星光电技术有限公司 Evaporation coating device and evaporation coating method
CN109576648A (en) * 2018-12-29 2019-04-05 福建华佳彩有限公司 One kind preventing plate
KR102199746B1 (en) * 2019-02-08 2021-01-07 트인로드 주식회사 Apparatus for dlc coating with direct injection and method for manufacturing of dlc coating with direct injection thereof
CN112111707A (en) * 2019-06-21 2020-12-22 合肥欣奕华智能机器有限公司 Evaporation source and roll-to-roll evaporation device
KR102265193B1 (en) * 2019-12-16 2021-06-15 주식회사 포스코 Expansible connector and continuous coating apparatus using thereof
CN111519143B (en) * 2020-04-26 2021-09-28 昆明理工大学 Method and device for vacuum evaporation galvanizing on surface of high-temperature-resistant particles
CN112853308A (en) * 2021-02-26 2021-05-28 赖南昌 Organic film evaporator and evaporation process
KR102648127B1 (en) * 2021-08-30 2024-03-15 주식회사 야스 Vertical Evaporation Point Nozzle Source

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0765371A (en) * 1993-08-27 1995-03-10 Kao Corp Device for producing magnetic recording medium
JPH07136490A (en) * 1993-11-17 1995-05-30 Ebara Corp Contamination preventing structure of vacuum container
JPH08255785A (en) * 1995-03-17 1996-10-01 Nec Corp Plasma treating apparatus
JPH09202967A (en) * 1996-01-26 1997-08-05 Mitsubishi Chem Corp Production of thin film
JP2002184571A (en) * 2000-12-15 2002-06-28 Denso Corp Manufacturing method of organic el element
JP2003293140A (en) * 2002-04-01 2003-10-15 Ans Inc Vapor deposition method for vapor-phase organic matter, and vapor deposition system for vapor-phase organic matter utilizing the same
JP2004146369A (en) * 2002-09-20 2004-05-20 Semiconductor Energy Lab Co Ltd Manufacturing method of manufacturing device and light emitting device
JP2004220852A (en) * 2003-01-10 2004-08-05 Sony Corp Film forming device and manufacturing device of organic el element
JP2005036296A (en) * 2003-07-17 2005-02-10 Fuji Electric Holdings Co Ltd Production method and production device for organic thin film
JP2005281808A (en) * 2004-03-30 2005-10-13 Tohoku Pioneer Corp Film deposition source, film deposition apparatus, film deposition method, organic el panel manufacturing method, and organic el panel
JP2006063447A (en) * 2004-08-25 2006-03-09 Samsung Sdi Co Ltd Organic matter vapor deposition system
JP2006219687A (en) * 2005-02-08 2006-08-24 Canon Inc Film deposition system and film deposition method
JP2008088489A (en) * 2006-09-29 2008-04-17 Tokyo Electron Ltd Vapor deposition apparatus

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1210435C (en) * 2003-06-04 2005-07-13 深圳市创欧科技有限公司 Evaporating and coating apparatus for making organic electroluminescent display
JP2006032010A (en) * 2004-07-13 2006-02-02 Hitachi Displays Ltd Organic el display device
KR100579406B1 (en) * 2004-08-25 2006-05-12 삼성에스디아이 주식회사 Vertical Moving Type Apparatus for Depositing Organic Material
KR100748451B1 (en) 2006-05-25 2007-08-10 에이엔 에스 주식회사 Depositing apparatus of organic light emitting diodes

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0765371A (en) * 1993-08-27 1995-03-10 Kao Corp Device for producing magnetic recording medium
JPH07136490A (en) * 1993-11-17 1995-05-30 Ebara Corp Contamination preventing structure of vacuum container
JPH08255785A (en) * 1995-03-17 1996-10-01 Nec Corp Plasma treating apparatus
JPH09202967A (en) * 1996-01-26 1997-08-05 Mitsubishi Chem Corp Production of thin film
JP2002184571A (en) * 2000-12-15 2002-06-28 Denso Corp Manufacturing method of organic el element
JP2003293140A (en) * 2002-04-01 2003-10-15 Ans Inc Vapor deposition method for vapor-phase organic matter, and vapor deposition system for vapor-phase organic matter utilizing the same
JP2004146369A (en) * 2002-09-20 2004-05-20 Semiconductor Energy Lab Co Ltd Manufacturing method of manufacturing device and light emitting device
JP2004220852A (en) * 2003-01-10 2004-08-05 Sony Corp Film forming device and manufacturing device of organic el element
JP2005036296A (en) * 2003-07-17 2005-02-10 Fuji Electric Holdings Co Ltd Production method and production device for organic thin film
JP2005281808A (en) * 2004-03-30 2005-10-13 Tohoku Pioneer Corp Film deposition source, film deposition apparatus, film deposition method, organic el panel manufacturing method, and organic el panel
JP2006063447A (en) * 2004-08-25 2006-03-09 Samsung Sdi Co Ltd Organic matter vapor deposition system
JP2006219687A (en) * 2005-02-08 2006-08-24 Canon Inc Film deposition system and film deposition method
JP2008088489A (en) * 2006-09-29 2008-04-17 Tokyo Electron Ltd Vapor deposition apparatus

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012090753A1 (en) * 2010-12-28 2012-07-05 トッキ株式会社 Film-forming apparatus
JP2013204073A (en) * 2012-03-28 2013-10-07 Hitachi Zosen Corp Vacuum deposition device and crucible replacement method therein
WO2014017307A1 (en) * 2012-07-25 2014-01-30 キヤノントッキ株式会社 Vapor-deposition device
KR101432079B1 (en) 2012-12-27 2014-08-21 주식회사 선익시스템 An Organic Matter Feeding Apparatus
DE102013206598A1 (en) * 2013-04-12 2014-10-16 Von Ardenne Anlagentechnik Gmbh Vacuum coating system and coating device therefor
DE102013206598B4 (en) 2013-04-12 2019-06-27 VON ARDENNE Asset GmbH & Co. KG Vacuum coating system
JP2015063724A (en) * 2013-09-25 2015-04-09 日立造船株式会社 Vacuum deposition apparatus
WO2018166621A1 (en) * 2017-03-17 2018-09-20 Applied Materials, Inc. Deposition apparatus, vacuum system, and method of operating a deposition apparatus

Also Published As

Publication number Publication date
KR20110052469A (en) 2011-05-18
CN102061445B (en) 2013-09-25
JP5452178B2 (en) 2014-03-26
CN102061445A (en) 2011-05-18
KR101217312B1 (en) 2012-12-31
TW201127973A (en) 2011-08-16

Similar Documents

Publication Publication Date Title
JP5452178B2 (en) Vacuum deposition apparatus, vacuum deposition method, and organic EL display device manufacturing method
JP5373221B2 (en) Vapor deposition particle injection apparatus, vapor deposition apparatus, and vapor deposition method
TWI659785B (en) Evaporation source, deposition apparatus having an evaporation source, system having a deposition apparatus with an evaporation source, and method for operating an evaporation source
US9249493B2 (en) Organic layer deposition apparatus and method of manufacturing organic light-emitting display apparatus by using the same
KR101223723B1 (en) Apparatus for thin layer deposition, method for manufacturing of organic light emitting display apparatus using the same, and organic light emitting display apparatus manufactured by the method
US8158012B2 (en) Film forming apparatus and method for manufacturing light emitting element
JP5710734B2 (en) Vapor deposition particle injection apparatus and vapor deposition apparatus
JP5324010B2 (en) Vapor deposition particle injection apparatus, vapor deposition apparatus, and vapor deposition method
JP6429491B2 (en) Vapor deposition apparatus mask, vapor deposition apparatus, vapor deposition method, and organic electroluminescence element manufacturing method
KR20130004830A (en) Apparatus for thin layer deposition and method for manufacturing of organic light emitting display apparatus using the same
TWI651425B (en) A deposition source assembly for evaporating source material, a deposition apparatus for depositing evaporated source material on a substrate and a method of depositing evaporated source material on two or more substrates
KR20180100563A (en) Apparatus and method for continuous evaporation with side by side substrates
JP5512881B2 (en) Vapor deposition processing system and vapor deposition processing method
JP2014015637A (en) Vapor deposition apparatus
JP2012214834A (en) Vacuum deposition apparatus, and method for manufacturing organic el display device
KR100685808B1 (en) Vapor deposition apparatus for organic material
JP5557700B2 (en) Vapor deposition apparatus and organic EL device manufacturing method
WO2019037874A1 (en) Apparatus for evaporating material in a vacuum chamber and method for evaporating material in a vacuum chamber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130702

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131001

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131227

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees