JP2011105535A - セメント製造設備におけるco2ガスの回収方法および回収設備 - Google Patents

セメント製造設備におけるco2ガスの回収方法および回収設備 Download PDF

Info

Publication number
JP2011105535A
JP2011105535A JP2009261121A JP2009261121A JP2011105535A JP 2011105535 A JP2011105535 A JP 2011105535A JP 2009261121 A JP2009261121 A JP 2009261121A JP 2009261121 A JP2009261121 A JP 2009261121A JP 2011105535 A JP2011105535 A JP 2011105535A
Authority
JP
Japan
Prior art keywords
cement
raw material
gas
heat storage
calcination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009261121A
Other languages
English (en)
Other versions
JP4747285B2 (ja
Inventor
Hirokazu Shima
裕和 島
Naohiro Higuchi
直寛 樋口
Yoshinori Takayama
佳典 高山
Takuya Komatsu
卓哉 小松
Junzhu Wang
俊柱 王
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2009261121A priority Critical patent/JP4747285B2/ja
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to CA2956496A priority patent/CA2956496C/en
Priority to PCT/JP2010/006047 priority patent/WO2011048770A1/ja
Priority to CN201080047321.7A priority patent/CN102574741B/zh
Priority to EP14159130.5A priority patent/EP2743241B1/en
Priority to KR1020127007214A priority patent/KR101729352B1/ko
Priority to EP10824624.0A priority patent/EP2492253B1/en
Priority to CN201310634608.5A priority patent/CN103693644A/zh
Priority to US13/389,739 priority patent/US9028249B2/en
Priority to CA2777891A priority patent/CA2777891C/en
Priority to AU2010309334A priority patent/AU2010309334B2/en
Publication of JP2011105535A publication Critical patent/JP2011105535A/ja
Application granted granted Critical
Publication of JP4747285B2 publication Critical patent/JP4747285B2/ja
Priority to US14/659,686 priority patent/US20150183685A1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/10Production of cement, e.g. improving or optimising the production methods; Cement grinding
    • Y02P40/18Carbon capture and storage [CCS]

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Furnace Details (AREA)

Abstract

【課題】セメント製造設備における熱源を有効活用することにより、当該セメント設備において発生するCO2ガスを高い濃度で分離して回収することが可能となるセメント製造設備におけるCO2ガスの回収方法および回収設備を提供する。
【解決手段】セメント原料kを、第1のプレヒータ3で予熱した後に、内部が高温雰囲気に保持されたセメントキルン1に供給して焼成するセメント製造設備において発生するCO2ガスnを回収するための方法であって、か焼温度以上に加熱し蓄熱した蓄熱か焼炉12に、第1のプレヒータ3から抜き出したか焼前のセメント原料kを供給してか焼し、か焼されたセメント原料kをセメントキルン1に供給するとともに、蓄熱か焼炉12内においてセメント原料kのか焼により発生したCO2ガスnを回収することを特徴とする。
【選択図】図1

Description

本発明は、セメント製造設備において、主としてセメント原料のか焼時に発生するCO2ガスを高濃度で回収するためのセメント製造設備におけるCO2ガスの回収方法および回収設備に関するものである。
近年、世界的かつ全産業にわたって、地球温暖化の主因たる二酸化炭素(CO2)ガスを削減する試みが推進されている。
ちなみに、セメント産業は、電力や鉄鋼等と共にCO2ガスの排出量が多い産業の一つであり、当該セメント産業におけるCO2ガスの排出削減は、日本全体におけるCO2ガスの排出削減に大きな貢献を果たすことになる。
図10は、上記セメント産業における一般的なセメントの製造設備を示すもので、図中符号1がセメント原料を焼成するためのロータリーキルン(セメントキルン)である。
そして、このロータリーキルン1の図中左方の窯尻部分2には、セメント原料を予熱するための2組のプレヒータ3が並列的に設けられるとともに、図中右方の窯前に、内部を加熱するための主バーナ5が設けられている。なお、図中符号6は、焼成後のセメントクリンカを冷却するためのクリンカクーラである。
ここで、各々のプレヒータ3は、上下方向に直列的に配置された複数段のサイクロンによって構成されており、供給ライン4から最上段のサイクロンに供給されたセメント原料は、順次下方のサイクロンへと落下するにしたがって、下方から上昇するロータリーキルン1からの高温の排ガスによって予熱され、さらに下から2段目のサイクロンから抜き出されて仮焼炉7に送られ、当該仮焼炉7においてバーナ7aにより加熱されてか焼された後に、最下段のサイクロンから移送管3aを介してロータリーキルン1の窯尻部分2に導入されるようになっている。
他方、窯尻部分2には、ロータリーキルン1から排出された燃焼排ガスを最下段のサイクロンへと供給する排ガス管3bが設けられており、上記サイクロンに送られた排ガスは、順次上方のサイクロンへと送られて、上記セメント原料を予熱するとともに、最終的に最上段のサイクロンの上部から、排気ファン9によって排気ライン8を介して排気されて行くようになっている。
このような構成からなるセメント製造設備においては、先ずセメント原料の主原料として含まれる石灰石(CaCO3)をプレヒータ3で予熱し、次いで仮焼炉7およびプレヒータ3の最下段のサイクロンにおいてか焼した後に、ロータリーキルン1内において約1450℃の高温雰囲気下で焼成することでセメントクリンカを製造している。
そして、このか焼において、CaCO3→CaO+CO2↑で示される化学反応が生じて、CO2ガスが発生する(原料起源によるCO2ガスの発生)。この原料起源によるCO2ガスの濃度は、原理的には100%である。また、上記ロータリーキルン1を上記高温雰囲気下に保持するために、主バーナ5において化石燃料が燃焼される結果、当該化石燃料の燃焼によってもCO2ガスが発生する(燃料起源によるCO2ガスの発生)。ここで、主バーナ5からの排ガス中には、燃焼用空気中のN2ガスが多く含まれているために、当該排ガス中に含まれる燃料起源によるCO2ガスの濃度は、約15%と低い。
この結果、上記セメントキルンから排出される排ガス中には、上述した濃度の高い原料起源によるCO2ガスと、濃度の低い燃料起源によるCO2が混在するために、当該CO2の排出量が多いにもかかわらず、そのCO2濃度は30〜35%程度であり、回収が難しいという問題点があった。
これに対して、現在開発されつつあるCO2ガスの回収方法としては、液体回収方式、膜分離方式、固体吸着方式等があるものの、未だ回収コストが極めて高いという課題があった。
また、上記セメント製造設備から排出されたCO2による地球温暖化を防止する方法として、当該排出源から低濃度で排出されたCO2を分離・回収して略100%にまで濃度を高め、液化した後に地中に貯留する方法等も提案されているものの、分離・回収のためのコストが高く、同様に実現には至っていない。
一方、下記特許文献1には、石灰石の焼成過程において発生するCO2ガスを、利用価値の高い高純度のCO2ガスとして回収する装置として、石灰石が供給される分解反応塔と、熱媒体として生石灰(CaO)が供給されるとともに当該生石灰を燃焼ガスによって石灰石のか焼温度以上に加熱する再熱塔と、これら分解反応塔と再熱塔とを連結する連結管とを備えたCO2ガスの生成回収装置が提案されている。
そして、上記従来の回収装置においては、再熱塔で加熱された生石灰を連結管を通じて分解反応塔に供給し、流動層を形成させて石灰石を焼成することにより当該分解反応塔内にCO2ガスを生成させるとともに、これによって生じた生石灰の一部を排出し、他部を再び連結管を通じて再熱塔に送って再加熱するようになっている。
このように、上記CO2ガスの生成回収装置によれば、石灰石の分解反応を行う場所である分解反応塔と、分解反応に必要な熱量の発生を行う場所である再熱塔とを分離することによって、石灰石の分解反応によって発生するCO2ガスと熱媒体の加熱のために発生する燃焼排ガスとが混合することを防止することができるために、分解反応塔から高い濃度のCO2ガスを回収することができる、とされている。
特開昭57−67013号公報
上記特許文献1において開示されているCO2ガスの生成回収装置によって生成したCaOを用いてセメント製造しようとすると、上記生成回収装置によって石灰石を焼成した後に、さらに粘土等のSiO2、Al23、Fe23等の他のセメント原料を加えてセメントキルンにおいて焼成する必要がある。このため、原料の製粉を2系統に独立して行う必要があり、設備が大掛かりになるという問題が生じる。
また、一般に石灰石のか焼反応が起こる温度は、図11に示すように、雰囲気中のCO2ガス濃度が高くなるにしたがって急激に上昇し、100%(大気圧(1atm)の下での分圧1atmに相当)近くになると、860℃を超える温度となる。このため、CO2ガスの回収率を高めるためには、石灰石を過度の高温に加熱する必要があり、燃料コストの高騰化を招くという問題も生じる。
加えて、上記CO2ガスの生成回収装置においては、熱媒体として生石灰を用い、この生石灰によって石灰石を加熱してか焼しているために、再熱塔において上記生石灰を石灰石のか焼温度以上、具体的には1000℃以上に加熱しておく必要がある。この結果、分解反応塔や再熱塔内で流動する生石灰等の粉体が固化しやすくなり、連結管等において付着や閉塞が生じて運転不能になるという問題点もある。
本発明は、かかる事情に鑑みてなされたもので、セメント製造設備における熱源を有効活用することにより、当該セメント設備において発生するCO2ガスを高い濃度で分離して回収することが可能となるセメント製造設備におけるCO2ガスの回収方法および回収設備を提供することを課題とするものである。
上記課題を解決するために、請求項1に記載の発明は、セメント原料を、第1のプレヒータで予熱した後に、内部が高温雰囲気に保持されたセメントキルンに供給して焼成するセメント製造設備において発生するCO2ガスを回収するための方法であって、か焼温度以上に加熱し蓄熱した蓄熱か焼炉に、上記第1のプレヒータから抜き出したか焼前の上記セメント原料を供給してか焼し、か焼された上記セメント原料を上記セメントキルンに供給するとともに、上記蓄熱か焼炉内において上記セメント原料のか焼により発生したCO2ガスを回収することを特徴とするものである。
なお、上記か焼温度とは、石灰石、即ちCaCO3(炭酸カルシウム)が、CaO(酸化カルシウム)とCO2に分解する反応が起こる温度をいう。
また、請求項2に記載の発明は、請求項1に記載の発明において、上記蓄熱か焼炉を複数設け、そのうちの少なくとも1つの蓄熱か焼炉が上記セメント原料のか焼を行っている際に、他の蓄熱か焼炉の少なくとも1つをか焼温度以上に加熱して蓄熱を行い、これを複数の上記蓄熱か焼炉によって交互に繰り返し行うことにより、上記セメント原料のか焼により発生したCO2ガスを回収することを特徴とするものである。
そして、請求項3に記載の発明は、請求項1または2に記載の発明において、上記蓄熱か焼炉には、上記セメント原料よりも粒子径の大きい熱媒体を充填させることを特徴とするものである。
さらに、請求項4に記載の発明は、請求項3に記載の発明において、上記熱媒体は、上記セメントキルンにおいて焼成することによって得られたセメントクリンカ、珪石、生石灰のいずれかであることを特徴とするものである。
また、請求項5に記載の発明は、請求項1〜4のいずれかに記載の発明において、上記第1のプレヒータから抜き出されたか焼前の上記セメント原料と、上記第1のプレヒータから独立した第2のプレヒータで予熱されたか焼前の他のセメント原料とを、上記蓄熱か焼炉に供給するとともに、上記蓄熱か焼炉内において発生したCO2ガスを上記第2のプレヒータの熱源として利用した後に回収することを特徴とするものである。
そして、請求項6に記載の発明は、請求項1〜5のいずれかに記載の発明において、上記セメント原料を上記蓄熱か焼炉に供給してか焼する際に発生したCO2ガスによって上記セメント原料を流動化させることにより、か焼された上記セメント原料を上記蓄熱か焼炉からオーバーフローさせて上記セメントキルンに供給することを特徴とするものである。
さらに、請求項7に記載の発明は、請求項1〜5のいずれかに記載の発明において、上記セメント原料を上記蓄熱か焼炉に供給してか焼する際に発生したCO2ガスに上記セメント原料を同伴させ、粒子分離手段により上記セメント原料とCO2ガスとを分離させて、か焼された上記セメント原料を上記セメントキルンに供給することを特徴とするものである。
また、請求項8に記載の発明は、請求項1〜7のいずれかに記載の発明において、上記蓄熱か焼炉内においてか焼された上記セメント原料の一部を、上記第1のプレヒータに戻すことを特徴とするものである。
そして、請求項9に記載の発明は、請求項8に記載の発明において、上記セメント原料の一部を、空気と熱交換させて、降温した当該セメント原料を上記第1のプレヒータに戻すとともに、加熱された上記空気を上記蓄熱か焼炉における燃焼用空気として供給することを特徴とするものである。
さらに、請求項10に記載の発明は、セメント原料を予熱する第1のプレヒータと、この第1のプレヒータによって予熱された上記セメント原料を焼成するセメントキルンとを備えた製造設備において発生するCO2ガスを回収するための設備であって、上記第1のプレヒータからか焼前の上記セメント原料を抜き出す抜出ラインと、この抜出ラインから抜き出された上記セメント原料が導入されるとともに、上記セメント原料のか焼温度以上に加熱し蓄熱する蓄熱か焼炉と、上記蓄熱か焼炉においてか焼された上記セメント原料の一部を上記第1のプレヒータまたは上記セメントキルンに戻す戻りラインと、上記蓄熱か焼炉内で発生したCO2ガスを回収するCO2ガス排気管とを備えてなることを特徴とするものである。
また、請求項11に記載の発明は、請求項10に記載の発明において、上記第1のプレヒータから独立して設けられて他のセメント原料を予熱する第2のプレヒータと、この第2のプレヒータで予熱されたか焼前の上記他のセメント原料を上記蓄熱か焼炉に供給する移送管とを備え、かつ上記蓄熱か焼炉からの上記CO2ガスが、上記第2のプレヒータの熱源として導入されていることを特徴とするものである。
そして、請求項12に記載の発明は、請求項10または11に記載の発明において、上記蓄熱か焼炉は、複数備えられていることを特徴とするものである。
請求項1〜9に記載の回収方法および請求項10〜12に記載の回収設備においては、充填された熱媒体をか焼温度以上に加熱し蓄熱した蓄熱か焼炉に、第1のプレヒータから抜き出したか焼前のセメント原料を供給する。これにより、上記蓄熱か焼炉において、か焼前の上記セメント原料が上記熱媒体によってか焼される。
この結果、上記蓄熱か焼炉内は、セメント原料のか焼によって発生したCO2ガスで満たされ、当該CO2ガス濃度が略100%になる。このように、上記回収方法または回収設備によれば、上記蓄熱か焼炉から略100%の濃度のCO2ガスをCO2ガス排気管から回収することができる。
さらに、請求項2に記載の発明においては、上記蓄熱か焼炉を複数用いて、第1のプレヒータから抜き出したか焼前のセメント原料をか焼するために、か焼炉と媒体加熱炉とを一つにすることができる。このため、高温の熱媒体を媒体加熱炉から取り出す必要がなくなる。この結果、バケットエレベータなどの設備を設ける必要がなく、設備にかかるコストを抑えることができるとともに、熱媒体の移動がないため高温物のハンドリングの問題や熱ロスを極力抑えることができる。さらに、上記蓄熱か焼炉を複数用いるために、媒体加熱時間やか焼時間を短縮することができ、効率良くCO2ガスを回収することができる。
また、特に請求項5または請求項11に記載の発明においては、上記蓄熱か焼炉内で発生した高温のCO2ガスを、第1のプレヒータから独立した第2のプレヒータにおくってセメント原料の予熱に利用した後に、そのまま排ガス管から回収することができる。
なお、上記蓄熱か焼炉内は、100%近い高濃度のCO2ガス雰囲気下になるために、セメント原料のか焼温度は高くなるが、セメント原料中には、石灰石(CaCO3)とともに粘土、珪石および酸化鉄原料、すなわちSiO2、Al23およびFe23が含まれている。
そして、上記セメント原料は、800〜900℃適度の雰囲気下において、
2CaCO3+SiO2→2CaO・SiO2+2CO2↑ (1)
2CaCO3+Fe23→2CaO・Fe23+2CO2↑ (2)
CaCO3+Al23→CaO・Al23+CO2↑ (3)
で示される反応が生じ、最終的にセメントクリンカを構成する珪酸カルシウム化合物であるエーライト(3CaO・SiO2)およびビーライト(2CaO・SiO2)並びに間隙相であるアルミネート相(3CaO・Al23)およびフェライト相(4CaO・Al23・Fe23)が生成されることになる。
この際に、図6に示す上記(1)式の反応温度のグラフ、図7に示す上記(2)式の反応温度のグラフおよび図8に示す上記(3)式の反応温度のグラフに見られるように、縦軸に示したCO2ガスの分圧が高くなった場合においても、より低い温度で上記反応を生じさせることができる。
さらに、上記セメント原料においては、上記(1)〜(3)式で示す反応が生じることに加えて、珪石、粘土等の石灰石以外の原料から持ち込まれるSiO2、Al23、Fe23やその他の微量成分が鉱化剤となり、炭酸カルシウムの熱分解が促進されるために、図9に見られるように、炭酸カルシウム単独の場合と比較して、熱分解の開始温度および終了温度共に低下する。なお、図9は、上記セメント原料(feed)のサンプルおよび石灰石(CaCO3)単独のサンプルを、それぞれ一般的なセメント製造設備における加熱速度に近い10K/secの速度で加熱した際の重量の変化から、上記熱分解の推移を確認したものである。
ここで、上記鉱化剤の存在によって、炭酸カルシウム単独の場合と比較して、熱分解の開始温度および終了温度共に低下する理由の一つとして、以下のことが考えられる。
すなわち、aをアクティビティ、Kを反応式CaCO3→CaO+CO2の平衡定数としたときに、
CO2=(aCaCO3/aCaO)・K
において、一般に固体のアクティビティaは、純物質であれば種類によらず1であるものの、酸化カルシウム(CaO)については、炭酸カルシウム(CaCO3)の熱分解後、他の原料物質(すなわち上記鉱化剤)が固溶することにより、aCaOの値が1より小さくなる。この結果、上式のPCO2が高くなり、PCO2=1atmとなる温度が低下して、よりか焼が促進されるためであると考えられる。なお、aCaCO3は、石灰石の品種、産地に固有な値であり、他の原料成分の影響を受けることがない。
以上のことから、本発明によれば、蓄熱か焼炉における運転温度を低下させても、所望のCO2ガスの回収量を確保することができる。しかも、上記蓄熱か焼炉において、セメント原料と異なり粒径が大きく、よって極端に比表面積が小さい熱媒体によってセメント原料を加熱してか焼させているために、当該蓄熱か焼炉において上記熱媒体をか焼温度以上の1000℃以上に加熱しても、熱媒体同士あるいは熱媒体と炉壁の固着や融着を抑えて、コーチングトラブル等の発生を抑止することが可能になる。
また、上記蓄熱か焼炉に導入されるか焼前のセメント原料は、通常のセメント製造プロセスと同様にしてセメント製造設備における第1のプレヒータにより予熱されているとともに、請求項5または11に記載の発明における他のセメント原料は、第2のプレヒータにおいて上記蓄熱か焼炉から排出される高温のCO2ガスにより予熱されている。
そして、請求項3に記載の発明のように、上記蓄熱か焼炉において、上記セメント原料よりも粒子径の大きい熱媒体を充填させているために、上記蓄熱か焼炉において大きな熱量を確保することができるとともに、既存のセメント製造設備に対して新たな熱エネルギーを加えることなく、か焼時に発生する原料起源のCO2を、選択的に高濃度で回収することができる。
加えて、蓄熱か焼炉において十分にか焼された高温のセメント原料をセメントキルンに戻しているために、セメントキルンにおいて焼成に要する燃料を削減することができる。この結果、セメントキルンとして、従来よりも長さ寸法の短いロータリーキルンや、流動化を図ることも可能になる。
また、請求項5または11に記載の発明によれば、発生したCO2ガスが有する熱量を、上記他のセメント原料の予熱に利用することにより、システム全体としての熱効率を一段と高めることができる。
ここで、上記熱媒体としては、請求項4に記載の発明のように、上記蓄熱か焼炉における加熱温度に対する耐熱性と、セメント原料と混合された場合の耐摩耗性を有する生石灰(CaO)、珪石(SiO2)または、アルミナ(Al23)等のセラミックス材料、耐熱合金等の金属材料の他、セメントクリンカを用いることができる。ちなみに、生石灰は、融点が2500℃程度と高く、融着し難いという利点がある。また、熱媒体として上記蓄熱か焼炉内で上記セメント原料のか焼を繰り返し行う間に、徐々に摩耗して発生した微粉が原料に混合しても、セメント原料成分の一つであるために、弊害を生じることがない。さらに、生石灰に代えて石灰石を上記蓄熱か焼炉に充填した場合においても、その後脱炭酸して生石灰になるために、上述した生石灰の場合と同様の作用効果が得られる。
また、珪石も、融点が1700℃程度と高く、融着し難いとともに、非常に硬度が高いために摩耗し難く、熱媒体として補充する量が少なくて済むという利点がある。さらに、か焼の過程において徐々に摩耗して生じた微粉が原料に混合しても、セメント原料成分の一つであるために、不都合を生じることがない。
そして、請求項4に記載の発明のように、上記セメントキルンにおいて焼成することによって得られた硬質かつ粒子径がセメント原料よりも遙かに大きなセメントクリンカを用いれば、経済的であるとともに、仮にセメント原料と接触して摩耗した場合にも、当該摩耗粉は既に成分調整されているために、セメント原料と同質の摩耗粉が再びセメントキルンに送られることになり、よって運転や製品としてのセメントキルンの品質に悪影響を与えるおそれがない。
さらに、蓄熱か焼炉において熱媒体とセメント原料を混合させて熱交換する際に、セメント原料が、これよりも粒子径の大きい熱媒体の表面に付着する。そこで、請求項6に記載の発明のように、上記セメント原料を上記蓄熱か焼炉に供給してか焼する際に発生したCO2ガスによって、上記セメント原料を流動化させることにより、か焼された上記セメント原料を上記蓄熱か焼炉からオーバーフローさせて上記セメントキルンに供給することができる。この結果、簡便にか焼された上記セメント原料を蓄熱か焼炉から取り出すことができる。
また、請求項7に記載の発明の発明のように、上記セメント原料を上記蓄熱か焼炉に供給してか焼する際に発生したCO2ガスに、上記セメント原料を同伴させ粒子分離手段により、上記セメント原料とCO2ガスとを分離させて、か焼された上記セメント原料を上記セメントキルンに供給することができる。これにより、簡便にか焼された上記セメント原料を蓄熱か焼炉から取り出すことができる。
ところで、セメントキルンから第1のプレヒータに送られてセメント原料を予熱する燃焼ガス中には、N2ガスとともに、化石燃料が燃焼される結果生じたCO2ガス(燃料起源によるCO2ガスの発生)が含まれている。
そこで、請求項8に記載の発明のように、上記蓄熱か焼炉内においてか焼されることにより、CaOを多く含むセメント原料の一部を第1のプレヒータに戻せば、上記CaOが燃料排ガスと接触して、CaO+CO2→CaCO3、で示される化学反応が生じ、上記排ガス中の燃料起源によるCO2ガスを吸収することができる。
そして、生成したCaCO3は、セメント原料とともに、再び蓄熱か焼炉へと送られてか焼される。
このために、セメント原料がか焼される際に発生する原料起源のCO2ガスに加えて、燃料起源のCO2ガスも回収することが可能になる。
ここで、上記蓄熱か焼炉から排出されたか焼後のセメント原料は、高温であり、かつ上述したCaO+CO2→CaCO3の反応は、発熱反応である。このため、請求項9に記載の発明のように、蓄熱か焼炉から排出された上記セメント原料の一部を、一旦空気と熱交換させて降温した後に、上記第1のプレヒータに戻し、他方加熱された上記空気を上記蓄熱か焼炉における燃焼用空気として供給するようにすれば、システム内の熱エネルギーの一層の有効活用を図ることができるために好適である。
さらに、請求項12に記載の発明のように、上記蓄熱か焼炉を複数備えているために、少なくとも一つの蓄熱か焼炉において、か焼前の上記セメント原料をか焼している際に、他の蓄熱か焼炉の少なくとも一つにおいて、上記熱媒体をか焼温度以上に加熱し蓄熱することができ、これを交互にまたはローテーションを決めて繰り返し行うことにより、か焼前の上記セメント原料を連続的にか焼することができる。
本発明に係るCO2ガスの回収設備の第1の実施形態を示す概略構成図である。 本発明に係るCO2ガスの回収設備の第1の実施形態の蓄熱か焼炉を説明する説明図である。 本発明に係るCO2ガスの回収設備の第1の実施形態の図2の蓄熱か焼炉の変形例を説明する説明図である。 本発明に係るCO2ガスの回収設備の第1の実施形態の蓄熱か焼炉の他の変形例を説明する説明図である。 本発明に係るCO2ガスの回収設備の第2の実施形態を示す概略構成図である。 雰囲気中CO2濃度と(1)式で示した反応温度との関係を示すグラフである。 雰囲気中CO2濃度と(2)式で示した反応温度との関係を示すグラフである。 雰囲気中CO2濃度と(3)式で示した反応温度との関係を示すグラフである。 CO2雰囲気下におけるセメント原料と石灰石単独とのか焼開始温度および終了温度の相違を示すグラフである。 一般的なセメント製造設備を示す概略構成図である。 雰囲気中のCO2濃度と石灰石のか焼温度との関係を示すグラフである。
(実施の形態1)
図1は、本発明に係るセメント製造設備におけるCO2ガスnの回収設備の第1の実施形態を示すもので、セメント製造設備の構成については、図10に示したものと同一であるために、同一符号を付したその説明を簡略化する。
図1において、符号10は、セメント製造装置のプレヒータ(第1のプレヒータ)3とは独立して設けられた第2のプレヒータ10である。
この第2のプレヒータ10は、上記プレヒータ3と同様に、上下方向に直列的に配置された複数段のサイクロンによって構成されており、最上段のサイクロンに供給ライン11からか焼前のセメント原料(か焼前セメント原料)kが供給されるようになっている。そして、第2のプレヒータ10の最下段のサイクロンの底部には、移送管10aの上端が接続されるとともに、この移送管10aの下端部が蓄熱か焼炉12に導入されている。この蓄熱か焼炉12は、第1の蓄熱か焼炉12aと第2の蓄熱か焼炉12bにより構成され、各々に移送管10aの下端部が導入されている。
他方、上記セメント製造設備のプレヒータ3においては、最下段のサイクロンからか焼前セメント原料kを抜き出す抜出ライン13が設けられ、この抜出ライン13の先端部が第2のプレヒータ10からの移送管10aに接続されている。これにより、第2のプレヒータ10からのか焼前セメント原料kと、プレヒータ3からのか焼前セメント原料kとが、蓄熱か焼炉12内に導入されるようになっている。
さらに、このCO2ガスnの回収装置においては、第1の蓄熱か焼炉12aと第2の蓄熱か焼炉12bとが並列的に設けられている。この第1の蓄熱か焼炉12aと第2の蓄熱か焼炉12bは、図2に示すように、横型の蓄熱か焼炉12の内部に粒子径がか焼前セメント原料kより大きい熱媒体tが充填されている。この熱媒体tは、クリンカクーラ6から排出されたセメントクリンカや、珪石、生石灰のいずれかが充填され、底部には内部を加熱するバーナ14が各々に設けられているとともに、クリンカクーラ6からの抽気を燃焼用空気として導入するための導入管15が設けられている。さらに、側面の一方側にか焼前セメント原料kを導入するための移送管10aが設けられているとともに、他方側にCO2ガスnが分離したか焼されたセメント原料(か焼済みセメント原料)k’をロータリーキルン1の窯尻部分2に戻す戻りライン18が設けられている。そして、この第1の蓄熱か焼炉12aと第2の蓄熱か焼炉12bの天井部には、内部の燃焼排ガスまたはCO2ガスnを排気するための排ガス管16が設けられている。
そして、各々の排ガス管16は、ロータリーキルン1からの排ガス管3bおよび第1のプレヒータ3と、第2のプレヒータ10とに接続されていて、蓄熱か焼炉12から排出される燃焼排ガスとCO2ガスnを切り替えて導入するための切替弁17が各々に設けられている。この切替弁17は、例えば、蓄熱か焼炉12を蓄熱している時には、排出される燃焼排ガスを第1のプレヒータ3に送るように、蓄熱か焼炉12でか焼している時には、排出されるCO2ガスnを第2のプレヒータ10に送るように、排ガス管16の経路が切り替わるように設けられている。
さらに、図2に示す横型の蓄熱か焼炉12の変形例である図3の蓄熱か焼炉12は、第1の蓄熱か焼炉12aと第2の蓄熱か焼炉12bの下部側面の一方側に、内部を加熱するバーナ14が各々に設けられているとともに、クリンカクーラ6からの抽気を燃焼用空気として導入するための導入管15が設けられている。また、下部側面の他方側には、蓄熱か焼炉12を加熱し蓄熱する際に発生する燃焼排ガスを排出するための排出管16aが設けられている。この排出管16aは、蓄熱か焼炉12が蓄熱時に、燃焼排ガスが排出される。
そして、図4に示す蓄熱か焼炉12の変形例では、縦型の蓄熱か焼炉12の内部に粒子径がか焼前セメント原料kより大きい熱媒体tが充填されている。そして、下部側面に内部を加熱するバーナ14が各々に設けられているとともに、底部にはクリンカクーラ6からの抽気を燃焼用空気として導入するための導入管15が設けられている。さらに、側面の一方側にか焼前セメント原料kを導入するための移送管10aが設けられている。また、この第1の蓄熱か焼炉12aと第2の蓄熱か焼炉12bの天井部には、内部の燃焼排ガスまたはCO2ガスnを排出するための排出管16bが設けられ、この排出管16bの出口側にサイクロン26が設けられている。そして、このサイクロン26の天井部には、燃焼排ガスまたはCO2ガスnを排気するための排ガス管16が設けられ、底部にはか焼時に発生したCO2ガスnを分離したか焼済みセメント原料k’をロータリーキルン1の窯尻部分2に戻す戻りライン18が設けられている。
また、各々の排ガス管16は、ロータリーキルン1からの排ガス管3bおよび第1のプレヒータ3と、第2のプレヒータ10とに接続されていて、蓄熱か焼炉12から排出される燃焼排ガスとCO2ガスnを切り替えて導入するための切替弁17が各々に設けられている。この切替弁17は、例えば、蓄熱か焼炉12を蓄熱している時には、排出される燃焼排ガスを第1のプレヒータ3に送るように、蓄熱か焼炉12でか焼している時には、排出されるCO2ガスnを第2のプレヒータ10に送るように、排ガス管16の経路が切り替わるように設けられている。
なお、図中符号19は、CO2ガスnの排気ラインであり、符号20は、CO2ガスnの排気ファンである。
次に、上記第1の実施形態に示したCO2ガスnの回収設備を用いた本発明に係るCO2ガスnの回収方法の一実施形態について説明する。
先ずか焼前セメント原料kを、供給ライン4、11から各々プレヒータ3、第2のプレヒータ10の最上段のサイクロンに供給する。
すると、プレヒータ3においては、順次下方のサイクロンへと送られる過程で、従来と同様にロータリーキルン1から排ガス管3bを介して供給される排ガス、および第1の蓄熱か焼炉12aからの燃焼排ガスによってか焼前セメント原料kが予熱される。そして、か焼温度に達する前(例えば、810℃)まで予熱されたか焼前セメント原料kが、抜出ライン13から移送管10aを介して第2の蓄熱か焼炉12bへと供給されてゆく。
また、第2のプレヒータ10に供給されたか焼前セメント原料kは、蓄熱か焼炉12b内のか焼により発生したCO2ガスnによって予熱され、最終的にか焼温度に達する前(例えば、760℃)まで予熱されて移送管10aから第2の蓄熱か焼炉12bへと供給されてゆく。
一方、第2の蓄熱か焼炉12bにおいては、図2および図3に示すように、移送管10aより供給されたか焼前セメント原料kが、内部に充填され予め加熱し蓄熱したセメントクリンカ(熱媒体)tと混合されてか焼温度以上(例えば、900℃)に加熱されか焼されるとともに、この際にCO2ガスnが発生する。
そして、第2の蓄熱か焼炉12b内に発生したCO2ガスnは、排ガス管16から第2のプレヒータ10における加熱媒体として導入される。この際に、排ガス管16に設けられた切替弁17は、第2のプレヒータ10に通じる経路を開き、第1のプレヒータ3に通じる経路を遮断して、CO2ガスnを第2のプレヒータ10へ導く。また、か焼済みセメント原料k’は、か焼の際に発生したCO2ガスnにより流動化され、オーバーフローにより戻りライン18からセメントキルン1の窯尻部分2へと戻され、最終的にロータリーキルン1内で焼成される。
また、図4に示す変形例では、第2の蓄熱か焼炉12bにおいて、移送管10aよりか焼前セメント原料kが、内部に充填され予め加熱し蓄熱されたセメントクリンカ(熱媒体)tと混合されてか焼温度以上(例えば、900℃)に加熱されか焼されるとともに、この際にCO2ガスnが発生する。
そして、第2の蓄熱か焼炉12b内に発生したCO2ガスnは、か焼済みセメント原料k’を同伴して、排出管16bからサイクロン26に導入される。そして、サイクロン26内で、CO2ガスnとか焼済みセメント原料k’とに分離される。分離されたか焼済みセメント原料k’は、底部に設けられた戻りライン18からセメントキルン1の窯尻部分2に導入される。また、分離されたCO2ガスnは、天井部の排ガス管16から第2のプレヒータ10における加熱媒体として導入される。この際に、排ガス管16に設けられた切替弁17は、第2のプレヒータ10に通じる経路を開き、第1のプレヒータ3に通じる経路を遮断して、CO2ガスnを第2のプレヒータ10へ導く。
他方、第1の蓄熱か焼炉12aにおいては、第2の蓄熱か焼炉12bがか焼を行っているのと平行して、第1の蓄熱か焼炉12a内部に充填されたセメントクリンカ(熱媒体)tが、バーナ14と導入管15により導入されたクリンカクーラ6からの抽気によって、か焼前セメント原料kのか焼温度以上(例えば、1200℃)に加熱され蓄熱される。その際に排出された燃焼排ガスは、排ガス管16からプレヒータ3における加熱媒体として導入される。このときに、排ガス管16に設けられた切替弁17は、第1のプレヒータ3に通じる経路を開き、第2のプレヒータ10へ通じる経路を遮断して、燃焼排ガスを第1のプレヒータ3へ導く。この際に、図2に示す蓄熱か焼炉12の変形例である図3に示す蓄熱か焼炉12においては、燃焼排ガスが排出管16aより排出される。これにより、燃焼排ガスによりセメントクリンカ(熱媒体)tを効率よく加熱することができる。またこの場合には、天井部に設けられた排ガス管16は閉じられる。
なお、セメントクリンカ(熱媒体)tは、1200℃程度の高温に加熱して蓄熱する必要があるのに対して、ロータリーキルン1からの排ガスは、1100〜1200℃の温度であるために、当該ロータリーキルン1からの排ガスの全量または一定量を、蓄熱か焼炉12aに導入して、再び排ガス管16からプレヒータ3へと送るようにすれば、上記排ガスを有効利用することができる。
さらに、図4に示すように、他の変形例の蓄熱か焼炉12においては、燃焼排ガスが天井部に設けられた排出管16bからサイクロン26に導入され、排ガス管16からプレヒータ3における加熱媒体として導入される。
また、第2の蓄熱か焼炉12b内で、セメント原料kがか焼された後は、再びバーナ14と導入管15より導入されたクリンカクーラ6からの抽気とにより、内部に充填されたセメントクリンカ(熱媒体)tを加熱し蓄熱する。このときに、排ガス管16に設けられた切替弁17は、第1のプレヒータ3に通じる経路を開き、第2のプレヒータ10へ通じる経路を遮断して、燃焼排ガスを第1のプレヒータ3へ導く。
一方、蓄熱されている第1の蓄熱か焼炉12aにおいては、バーナ14を停止した後に、移送管10aより供給されたか焼前セメント原料kが、セメントクリンカ(熱媒体)tと混合してか焼温度以上(例えば、900℃)に加熱してか焼されるとともに、この際にCO2ガスnが発生する。
そして、第1の蓄熱か焼炉12a内に発生したCO2ガスnは、排ガス管16から第2のプレヒータ10における加熱媒体として導入される。この際に、排ガス管16に設けられた切替弁17は、第2のプレヒータ10に通じる経路を開き、第1のプレヒータ3に通じる経路を遮断して、CO2ガスnを第2のプレヒータ10へ導く。また、か焼済みセメント原料k’は、か焼の際に発生したCO2ガスnにより流動化され、オーバーフローにより戻りライン18からセメントキルン1の窯尻部分2へと戻され、最終的にロータリーキルン1内で焼成される。
このように、上記セメント製造整備におけるCO2ガスの回収方法および回収設備によれば、第1の蓄熱か焼炉12aと第2の蓄熱か焼炉12bとを用いて、か焼と加熱および蓄熱を繰り返し行うことにより、連続的にCO2ガスの回収をおこなうことができるとともに、設備の簡素化を図ることができる。また、セメント設備における熱源を有効活用して、当該セメント設備において発生するCO2ガスnのうちの半分以上を占める原料起源によるCO2ガスnを、100%に近い高い濃度で回収することができる。
この際に、蓄熱か焼炉12において、か焼前セメント原料kと異なる粒径が大きく、よって極端に比表面積が小さいセメントクリンカを熱媒体tとして、か焼前セメント原料kを加熱してか焼させているために、蓄熱か焼炉12においてセメントクリンカtをか焼温度以上の1000℃以上に加熱しても、熱媒体同士あるいは熱媒体と炉壁の固着や融着を抑えて、コーチングトラブル等の発生を抑止することが可能になる。
加えて、蓄熱か焼炉12において十分にか焼された高温のか焼済みセメント原料k’を、戻りライン18からロータリーキルン1に戻しているために、ロータリーキルン1において焼成に要する燃料を削減することができ、よって従来よりも長さ寸法の短いロータリーキルン1を用いることができる。
(実施の形態2)
図5には、本発明に係るCO2ガスnの回収設備の第2の実施形態を示すもので、図1に示したものと同一構成部分については、同様に同一付してその説明を簡略化する。
この回収設備においては、蓄熱か焼炉12からロータリーキルン1の窯尻部分2へと戻されるか焼済みセメント原料k’の戻りライン18に、か焼済みセメント原料k’の一部を分岐する分岐管21が設けられている。そして、この分岐管21は、熱交換器22に導入される。
この熱交換器22は、空気の供給管24から送られてくる空気を、分岐管21から送られてくる高温(例えば、900℃)のか焼済みセメント原料k’によって加熱するためのものであり、分岐管21の出口側には、降温(例えば、300℃)したか焼済みセメント原料k’を第1のプレヒータ3に戻す移送ライン23が接続されている。他方、熱交換器22で加熱された空気の出口側は、当該空気を蓄熱か焼炉12の燃焼用空気として供給する供給管25が接続されている。
以上の構成からなる第2の実施形態に係るCO2ガスnの回収設備においては、蓄熱か焼炉12内においてか焼されることによりCaOを多く含むセメント原料の一部を、分岐管21、熱交換器22および移送ライン23を介して第1のプレヒータ3に戻しているため、か焼済みセメント原料k’が第1のプレヒータ3におけるか焼前セメント原料kの加熱用の燃焼排ガスと接触して、CaO+CO2→CaCO3で示すように、当該燃焼排ガス中の燃料起源によるCO2ガスnを吸収する。
そして、生成したCaCO3は、か焼前セメント原料kとともに、再び蓄熱か焼炉に送られてか焼される。
この結果、蓄熱か焼炉内12においてか焼前セメント原料kが、か焼される際に発生する原料起源のCO2ガスnに加えて、ロータリーキルン1の主バーナ5や蓄熱か焼炉12のバーナ14における燃焼によって発生する燃料起源のCO2ガスnも回収することができる。
加えて、蓄熱か焼炉12から排出された約900℃と高温のか焼済みセメント原料k’の一部を、熱交換器22において空気と熱交換させて約300℃程度まで降温した後に、移送ライン23から第1のプレヒータ3に戻すとともに、熱交換器22において加熱された上記空気を、供給管25から蓄熱か焼炉12に燃焼用空気として供給しているために、システム内の熱エネルギーの一層の有効活用を図ることができる。
この際に、第1のプレヒータ3の下段においては、約800℃の温度雰囲気になっているのに対して、これよりも低温の約300℃のか焼前セメント原料kが供給されることになるが、上述したCaO+CO2→CaCO3で示す反応は発熱反応であるために、第1のプレヒータ3における熱バランスを崩すおそれもない。
1 ロータリーキルン(セメントキルン)
3 プレヒータ(第1のプレヒータ)
10 第2のプレヒータ
10a 移送管
12 蓄熱か焼炉
13 抜出ライン
16 排ガス管
18 戻りライン
22 熱交換器
25 燃焼用空気の供給管
k か焼前セメント原料(か焼前のセメント原料)
k’か焼済みセメント原料(か焼されたセメント原料)

Claims (12)

  1. セメント原料を、第1のプレヒータで予熱した後に、内部が高温雰囲気に保持されたセメントキルンに供給して焼成するセメント製造設備において発生するCO2ガスを回収するための方法であって、
    か焼温度以上に加熱し蓄熱した蓄熱か焼炉に、上記第1のプレヒータから抜き出したか焼前の上記セメント原料を供給してか焼し、か焼された上記セメント原料を上記セメントキルンに供給するとともに、上記蓄熱か焼炉内において上記セメント原料のか焼により発生したCO2ガスを回収することを特徴とするセメント製造設備におけるCO2ガスの回収方法。
  2. 上記蓄熱か焼炉を複数設け、そのうちの少なくとも1つの蓄熱か焼炉が上記セメント原料のか焼を行っている際に、他の蓄熱か焼炉の少なくとも1つをか焼温度以上に加熱して蓄熱を行い、これを複数の上記蓄熱か焼炉によって交互に繰り返し行うことにより、上記セメント原料のか焼により発生したCO2ガスを回収することを特徴とする請求項1に記載のセメント製造設備におけるCO2ガスの回収方法。
  3. 上記蓄熱か焼炉には、上記セメント原料よりも粒子径の大きい熱媒体を充填させることを特徴とする請求項1または2に記載のセメント製造設備におけるCO2ガスの回収方法。
  4. 上記熱媒体は、上記セメントキルンにおいて焼成することによって得られたセメントクリンカ、珪石、生石灰のいずれかであることを特徴とする請求項3に記載のセメント製造設備におけるCO2ガスの回収方法。
  5. 上記第1のプレヒータから抜き出されたか焼前の上記セメント原料と、上記第1のプレヒータから独立した第2のプレヒータで予熱されたか焼前の他のセメント原料とを、上記蓄熱か焼炉に供給するとともに、上記蓄熱か焼炉内において発生したCO2ガスを上記第2のプレヒータの熱源として利用した後に回収することを特徴とする請求項1〜4のいずれかに記載のセメント製造設備におけるCO2ガスの回収方法。
  6. 上記セメント原料を上記蓄熱か焼炉に供給してか焼する際に発生したCO2ガスによって上記セメント原料を流動化させることにより、か焼された上記セメント原料を上記蓄熱か焼炉からオーバーフローさせて上記セメントキルンに供給することを特徴とする請求項1〜5のいずれかに記載のセメント製造設備におけるCO2ガスの回収方法。
  7. 上記セメント原料を上記蓄熱か焼炉に供給してか焼する際に発生したCO2ガスに上記セメント原料を同伴させ、粒子分離手段により上記セメント原料とCO2ガスとを分離させて、か焼された上記セメント原料を上記セメントキルンに供給することを特徴とする請求項1〜5のいずれかに記載のセメント製造設備におけるCO2ガスの回収方法。
  8. 上記蓄熱か焼炉内においてか焼された上記セメント原料の一部を、上記第1のプレヒータに戻すことを特徴する請求項1〜7のいずれかに記載のセメント製造設備におけるCO2ガスの回収方法。
  9. 上記セメント原料の一部を、空気と熱交換させて、降温した当該セメント原料を上記第1のプレヒータに戻すとともに、加熱された上記空気を上記蓄熱か焼炉における燃焼用空気として供給することを特徴とする請求項8に記載のセメント製造設備におけるCO2ガスの回収方法。
  10. セメント原料を予熱する第1のプレヒータと、この第1のプレヒータによって予熱された上記セメント原料を焼成するセメントキルンとを備えた製造設備において発生するCO2ガスを回収するための設備であって、
    上記第1のプレヒータからか焼前の上記セメント原料を抜き出す抜出ラインと、この抜出ラインから抜き出された上記セメント原料が導入されるとともに、上記セメント原料のか焼温度以上に加熱し蓄熱する蓄熱か焼炉と、上記蓄熱か焼炉においてか焼された上記セメント原料の一部を上記第1のプレヒータまたは上記セメントキルンに戻す戻りラインと、上記蓄熱か焼炉内で発生したCO2ガスを回収するCO2ガス排気管とを備えてなることを特徴とするセメント製造設備におけるCO2ガス回収設備。
  11. 上記第1のプレヒータから独立して設けられて他のセメント原料を予熱する第2のプレヒータと、この第2のプレヒータで予熱されたか焼前の上記他のセメント原料を上記蓄熱か焼炉に供給する移送管とを備え、かつ上記蓄熱か焼炉からの上記CO2ガスが、上記第2のプレヒータの熱源として導入されていることを特徴とする請求項10に記載のセメント製造設備におけるCO2ガスの回収設備。
  12. 上記蓄熱か焼炉は、複数備えられていることを特徴とする請求項10または11に記載のセメント製造設備におけるCO2ガスの回収設備。
JP2009261121A 2009-10-20 2009-11-16 セメント製造設備におけるco2ガスの回収方法および回収設備 Expired - Fee Related JP4747285B2 (ja)

Priority Applications (12)

Application Number Priority Date Filing Date Title
JP2009261121A JP4747285B2 (ja) 2009-11-16 2009-11-16 セメント製造設備におけるco2ガスの回収方法および回収設備
US13/389,739 US9028249B2 (en) 2009-10-20 2010-10-12 Methods and systems for recovery of CO2 gas in cement-manufacturing facilities, and processes for manufacturing cement
CN201080047321.7A CN102574741B (zh) 2009-10-20 2010-10-12 水泥制造设备中的二氧化碳气体的回收方法和回收设备以及水泥的制造方法
EP14159130.5A EP2743241B1 (en) 2009-10-20 2010-10-12 Method and system for recovery of CO2 gas in cement-manufacturing facilities
KR1020127007214A KR101729352B1 (ko) 2009-10-20 2010-10-12 시멘트 제조 설비에 있어서의 co₂가스의 회수 방법 및 회수 설비 및 시멘트의 제조 방법
EP10824624.0A EP2492253B1 (en) 2009-10-20 2010-10-12 Methods and systems for recovery of co2 gas in cement-manufacturing facilities
CA2956496A CA2956496C (en) 2009-10-20 2010-10-12 Methods and systems for recovery of co2 gas in cement-manufacturing facilities, and processes for manufacturing cement
PCT/JP2010/006047 WO2011048770A1 (ja) 2009-10-20 2010-10-12 セメント製造設備におけるco2ガスの回収方法および回収設備並びにセメントの製造方法
CA2777891A CA2777891C (en) 2009-10-20 2010-10-12 Methods and systems for recovery of co2 gas in cement-manufacturing facilities, and processes for manufacturing cement
AU2010309334A AU2010309334B2 (en) 2009-10-20 2010-10-12 Methods and systems for recovery of CO2 gas in cement-manufacturing facilities, and processes for manufacturing cement
CN201310634608.5A CN103693644A (zh) 2009-10-20 2010-10-12 水泥制造设备中的二氧化碳气体的回收方法和回收设备以及水泥的制造方法
US14/659,686 US20150183685A1 (en) 2009-10-20 2015-03-17 Methods and systems for recovery of co2 gas in cement-manufacturing facilities, and processes for manufacturing cement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009261121A JP4747285B2 (ja) 2009-11-16 2009-11-16 セメント製造設備におけるco2ガスの回収方法および回収設備

Publications (2)

Publication Number Publication Date
JP2011105535A true JP2011105535A (ja) 2011-06-02
JP4747285B2 JP4747285B2 (ja) 2011-08-17

Family

ID=44229482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009261121A Expired - Fee Related JP4747285B2 (ja) 2009-10-20 2009-11-16 セメント製造設備におけるco2ガスの回収方法および回収設備

Country Status (1)

Country Link
JP (1) JP4747285B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114812177A (zh) * 2022-03-30 2022-07-29 高邮市环创资源再生科技有限公司 一种用于再生合金生产的烟气余热回收装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114812177A (zh) * 2022-03-30 2022-07-29 高邮市环创资源再生科技有限公司 一种用于再生合金生产的烟气余热回收装置
CN114812177B (zh) * 2022-03-30 2023-07-25 高邮市环创资源再生科技有限公司 一种用于再生合金生产的烟气余热回收装置

Also Published As

Publication number Publication date
JP4747285B2 (ja) 2011-08-17

Similar Documents

Publication Publication Date Title
WO2011048770A1 (ja) セメント製造設備におけるco2ガスの回収方法および回収設備並びにセメントの製造方法
CA2723126C (en) Method and facility for recovering co2 gas in cement manufacturing facility
CA2966539C (en) Process and apparatus for manufacture of calcined compounds for the production of calcined products
WO2011058693A1 (ja) 混合か焼炉
JP4730394B2 (ja) セメント製造設備におけるco2ガスの回収方法および回収設備
JP5120475B2 (ja) 生石灰の製造設備並びに消石灰の製造設備および製造方法
JP4678449B1 (ja) セメント製造設備におけるco2ガスの回収方法および回収設備並びにセメントの製造方法
JP4747285B2 (ja) セメント製造設備におけるco2ガスの回収方法および回収設備
JP4730393B2 (ja) セメント製造設備におけるco2ガスの回収方法および回収設備
JP4730455B2 (ja) セメント製造設備におけるco2ガスの回収方法および回収設備
JP4858651B2 (ja) 混合か焼炉
JP4747317B2 (ja) 混合か焼炉
JP4747316B2 (ja) 混合か焼炉

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110302

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110418

R150 Certificate of patent or registration of utility model

Ref document number: 4747285

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140527

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees