JP2011104628A - Resistance welding method, resistance welding material, resistance welding device and control device for the same, control method and program for resistance welding device, and evaluation method and program for resistance welding - Google Patents

Resistance welding method, resistance welding material, resistance welding device and control device for the same, control method and program for resistance welding device, and evaluation method and program for resistance welding Download PDF

Info

Publication number
JP2011104628A
JP2011104628A JP2009262730A JP2009262730A JP2011104628A JP 2011104628 A JP2011104628 A JP 2011104628A JP 2009262730 A JP2009262730 A JP 2009262730A JP 2009262730 A JP2009262730 A JP 2009262730A JP 2011104628 A JP2011104628 A JP 2011104628A
Authority
JP
Japan
Prior art keywords
melting
power amount
resistance welding
welded
welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009262730A
Other languages
Japanese (ja)
Other versions
JP5052586B2 (en
Inventor
Goro Watanabe
吾朗 渡辺
Yasuhiro Ishii
靖弘 石井
Yasumoto Sato
康元 佐藤
Tsunaji Kitayama
綱次 北山
Hisafumi Takao
尚史 高尾
Takahiro Onda
高弘 恩田
Hideki Tejima
秀樹 手嶋
Yoshiaki Uchida
圭亮 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Toyota Motor Corp
Priority to JP2009262730A priority Critical patent/JP5052586B2/en
Priority to EP10805302A priority patent/EP2501514A2/en
Priority to PCT/IB2010/003119 priority patent/WO2011061623A2/en
Priority to CN2010800524257A priority patent/CN102665995A/en
Priority to US13/510,447 priority patent/US20120248086A1/en
Publication of JP2011104628A publication Critical patent/JP2011104628A/en
Application granted granted Critical
Publication of JP5052586B2 publication Critical patent/JP5052586B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/10Spot welding; Stitch welding
    • B23K11/11Spot welding
    • B23K11/115Spot welding by means of two electrodes placed opposite one another on both sides of the welded parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/24Electric supply or control circuits therefor
    • B23K11/25Monitoring devices
    • B23K11/252Monitoring devices using digital means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/24Electric supply or control circuits therefor
    • B23K11/25Monitoring devices
    • B23K11/252Monitoring devices using digital means
    • B23K11/257Monitoring devices using digital means the measured parameter being an electrical current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/24Electric supply or control circuits therefor
    • B23K11/25Monitoring devices
    • B23K11/252Monitoring devices using digital means
    • B23K11/258Monitoring devices using digital means the measured parameter being a voltage

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Resistance Welding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a resistance welding method capable of efficiently stabilizing the welding quality even in the case of the presence of various disturbances. <P>SOLUTION: The resistance welding method includes: a melt starting time detection step of detecting a melt starting time which is when at least one part of the welding portions of an object to be welded starts melting by Joule heating using electric power applied from a pressure-welded electrode; a first electric power amount calculation step of calculating the amount of the first electric power which has been applied to the object to be welded from the start of melting; and a first determination step of determining whether or not the amount of the first electric power has reached a first predetermined amount. The resistance welding method is characterized in that Joule heating is continued until the amount of the first electric power reaches the first predetermined amount. A high correlation exists between the amount of electric power which has been applied since the object to be welded started melting and a nugget to be formed. Therefore, suppressing the amount of electric power after the start of melting can efficiently stabilize the welding quality even in the case of the presence of various disturbances. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、スポット溶接などの抵抗溶接に関する方法、装置、プログラム並びに抵抗溶接された部材に関する。   The present invention relates to a method, apparatus, program, and resistance-welded member related to resistance welding such as spot welding.

複数の素材を接合する場合、低コストで強度の確保が容易な溶接が用いられることが多い。特に自動車のボディまたは車体など、重ね合わせた鋼板(被溶接物を複数)を複数の点(スポット)で効率的に溶接する場合、抵抗溶接の一つであるスポット溶接が多用されている。このスポット溶接は一般的に、被溶接物の両外側を挟持した電極から、被溶接物へ大電流を短時間流し、被溶接物の内側にある接合部分(溶接部)を溶融凝固させて被溶接物を接合する溶接方法である。   When joining a plurality of materials, welding that is easy to ensure strength at low cost is often used. In particular, spot welding, which is one type of resistance welding, is frequently used for efficiently welding stacked steel plates (a plurality of objects to be welded) at a plurality of points (spots) such as an automobile body or a car body. In this spot welding, generally, a large current is allowed to flow from the electrodes sandwiching the outer sides of the work piece to the work piece for a short time to melt and solidify the joining portion (welded part) inside the work piece. This is a welding method for joining weldments.

ところでスポット溶接はアーク溶接などと異なり、溶接部が被溶接物の内側に位置するため、溶接箇所を直接に観察することは困難である。また、量産過程において、作業者が治具などによりスポット溶接の状況を逐一検査することも現実的ではない。
そこで、スポット溶接を行いつつ、形成されるナゲット(被溶接物の溶融凝固部)の大きさを均一化させ、溶接品質を安定化させる方法が種々提案されている。例えば、それに関連した開示が下記の特許文献1にある。
By the way, unlike arc welding or the like, spot welding is difficult to observe the welded portion directly because the welded portion is located inside the workpiece. In addition, it is not realistic for a mass production process that an operator inspects the spot welding state with a jig or the like.
Thus, various methods have been proposed for stabilizing the welding quality by making the size of the nugget (melted and solidified portion of the workpiece) uniform while performing spot welding. For example, the following patent document 1 has a related disclosure.

特開昭62−64483号公報JP-A-62-264483

(1)特許文献1には、実際に供給する実際値エネルギーが目標値全エネルギーと一致するまで溶接電流を流して抵抗溶接を行う旨の開示がある。
しかし、実際の溶接現場では、想定とは異なる様々な状況(外乱)の下で溶接がなされる。例えば、被溶接物である2枚の鋼板を抵抗溶接する場合を考えると、溶接により接合される鋼板間に隙間が存在したり、鋼板が傾斜したり、鋼板に圧接される電極の先端部が摩耗したりし得る。このような外乱が存在すると、鋼板間の接触状況(特に接触面積)が変化する。このため、溶接部に生じるジュール熱量や放熱量も外乱により変化し、溶接に有効活用される熱量もばらつく。このため上記の特許文献1のように、外乱を考慮せず単に、通電開始から被溶接物へ投入される全エネルギー(全電力量)に着目していても、溶接品質の安定化を図ることは現実には困難であった。
(1) Patent Document 1 discloses that resistance welding is performed by flowing a welding current until the actual energy actually supplied matches the total energy of the target value.
However, in an actual welding site, welding is performed under various situations (disturbances) different from the assumptions. For example, when resistance welding is performed on two steel plates that are to be welded, there is a gap between the steel plates joined by welding, the steel plate is inclined, or the tip of the electrode pressed against the steel plate is It can wear out. When such a disturbance exists, the contact state (particularly the contact area) between the steel plates changes. For this reason, the amount of Joule heat and heat radiation generated in the welded portion also change due to disturbance, and the amount of heat effectively used for welding varies. For this reason, as in the above-mentioned Patent Document 1, it is possible to stabilize the welding quality even if attention is paid to the total energy (total electric energy) input from the start of energization to the workpiece without considering disturbance. Was difficult in reality.

(2)本発明は、このような事情に鑑みて為されたものであり、被溶接物を現実に溶接する際に、溶接部(被溶接物の継手間)の状況や被溶接物と電極の接触状況などに乱れがある場合でも、抵抗溶接の品質安定化を図れる抵抗溶接方法およびそれにより得られる抵抗溶接部材を提供することを目的とする。また、そのようなスポット溶接方法の実施に適したスポット溶接機、その制御方法、その制御装置およびその制御プログラムを提供することを目的とする。さらにスポット溶接の評価方法およびその評価プログラムを提供することを目的とする。 (2) The present invention has been made in view of such circumstances, and when actually welding the workpiece, the situation of the welded portion (between the joints of the workpiece) and the workpiece and the electrode. It is an object of the present invention to provide a resistance welding method capable of stabilizing the quality of resistance welding and a resistance welding member obtained thereby, even when there is a disturbance in the contact state or the like. It is another object of the present invention to provide a spot welder suitable for carrying out such a spot welding method, a control method thereof, a control device thereof, and a control program thereof. Furthermore, it aims at providing the evaluation method of spot welding, and its evaluation program.

本発明者はこの課題を解決すべく鋭意研究し試行錯誤を重ねた結果、溶接現場で様々な外乱が存在する場合でも、ジュール加熱された被溶接物が溶融を開始した時以降は、その外乱の影響が殆どなく、投入エネルギー(投入電力量)に応じて抵抗溶接が進行し、その投入エネルギー(投入電力量)を調整することで所望のナゲットを形成することが可能であることを新たに見出した。この成果を発展させることにより以降に述べるような抵抗溶接に関する様々な発明を完成させるに至った。   As a result of extensive research and trial and error, the present inventor has conducted various trials and errors, and even when various disturbances exist at the welding site, the disturbances will be prevented after the Joule-heated workpiece starts melting. It is new that resistance welding proceeds according to the input energy (input power amount) and a desired nugget can be formed by adjusting the input energy (input power amount). I found it. By developing this result, various inventions related to resistance welding as described below have been completed.

《抵抗溶接方法》
(1)本発明の抵抗溶接方法は、圧接された電極から投入される電力により被溶接物の溶接部の少なくとも一部がジュール加熱されて溶融を開始する時である溶融開始時を検出する溶融開始時検出工程と、前記溶融開始時から前記電極を介して前記被溶接物へ投入された電力の積算値である第1電力量を算出する第1電力量算出工程と、前記第1電力量または該第1電力量に対応した前記溶接部の溶接状況を指標する溶接指標値が少なくとも第1設定値に到達したか否かを判定する第1判定工程と、前記溶融開始時から前記第1電力量または前記溶接指標値が少なくとも前記第1設定値に到達するまで前記ジュール加熱を行う加熱工程とを備え、前記溶接部が溶融凝固したナゲットの形成を安定化させ得ることを特徴とする。
《Resistance welding method》
(1) The resistance welding method of the present invention is a method for detecting a melting start time, which is a time when at least a part of the welded portion of the work piece is Joule-heated by the electric power input from the pressure-welded electrode and starts melting. A start time detection step, a first power amount calculation step of calculating a first power amount that is an integrated value of the power input to the workpiece through the electrodes from the start of melting, and the first power amount Alternatively, a first determination step of determining whether or not a welding index value indicating a welding state of the weld corresponding to the first power amount has reached at least a first set value, and the first time from the start of melting. A heating step of performing the Joule heating until the electric power amount or the welding index value reaches at least the first set value, and the formation of a nugget in which the welded portion is melted and solidified can be stabilized.

(2)本発明によれば、被溶接物の抵抗溶接を開始した後、つまりは被溶接物のジュール加熱のために電極へ通電した後、先ず、被溶接物の溶接部の少なくとも一部がジュール加熱されて溶融を開始する時(溶融開始時)を検出する。この溶融開始時を起点として、被溶接物へ投入したエネルギー(投入電力量)を算出する。
この溶融開始時以降の投入電力量である第1電力量に着目すれば、理由やメカニズムは必ずしも定かではないが、様々な外乱の存在する状況下でも、被溶接物の溶接部に形成されるナゲットの大きさを適切に制御できる。具体的には、溶融開始時以降の投入電力量を積算して得られた第1電力量またはその第1電力量をナゲットの大きさ(ナゲット径)などに換算した溶接指標値が、所定の設定値(第1設定値)に少なくとも到達するまでジュール加熱を行うことで、様々な外乱の存在する溶接現場でも、溶接品質の安定化を図れる。
(2) According to the present invention, after the resistance welding of the workpiece is started, that is, after the electrode is energized for Joule heating of the workpiece, first, at least a part of the welded portion of the workpiece is welded. The time when melting starts after Joule heating (at the start of melting) is detected. Starting from this melting start time, the energy (input power amount) input to the workpiece is calculated.
If attention is paid to the first power amount that is the input power amount after the start of melting, the reason and mechanism are not necessarily clear, but even in the presence of various disturbances, it is formed in the welded portion of the work piece. The size of the nugget can be controlled appropriately. Specifically, a first power amount obtained by integrating the input power amount after the start of melting or a welding index value obtained by converting the first power amount into a nugget size (nugget diameter) is a predetermined value. By performing Joule heating until at least the set value (first set value) is reached, welding quality can be stabilized even at welding sites where various disturbances exist.

なお、本明細書で「少なくとも設定値に到達する」という場合、対象値が特定の範囲に収まる場合も含む。そしてその設定値は上限値(最終目標値)でも最低限の到達値(下限値)でもよい。本発明の場合でいえば、算出された第1電力量またはその溶接指標値が、第1設定値に到達した時点で加熱工程が止められてもよいし、第1設定値を超えてある範囲内で加熱工程が継続されてもよい。
また「溶接指標値」は、抵抗溶接の状況が的確に指標されるものであればよく、代表例としてナゲット径がある。
さらに本明細書でいう「電力量」はその算出方法を問わない。本明細書でいう各電力量は、具体的な数値自体が重要なわけではなく、被溶接物の溶融開始時や形成されるナゲット径の大きさなどと相関する明確な指標となるものであれば足る。
In this specification, “at least reach the set value” includes the case where the target value falls within a specific range. The set value may be an upper limit value (final target value) or a minimum reached value (lower limit value). In the case of the present invention, the heating process may be stopped when the calculated first power amount or its welding index value reaches the first set value, or the range exceeding the first set value. The heating process may be continued within.
The “welding index value” may be any value that accurately indicates the state of resistance welding, and a representative example is a nugget diameter.
Furthermore, the calculation method of “electric energy” in this specification is not limited. As for the amount of electric power referred to in this specification, the specific numerical value itself is not important, and it should be a clear index correlated with the start of melting of the work piece or the size of the nugget diameter to be formed. It's enough.

(3)本発明の抵抗溶接方法では、溶融開始時から算出した第1電力量に基づいて被溶接物の溶接品質の安定化を図るため、溶融開始時の検出または特定(推定)も重要となる。
そもそも溶融開始時は、被溶接物の溶接部が固相から液相へ変化する時であるから、溶融部の温度や体積変化など、被溶接物の物性値変化に着目して溶融開始時を検出することが考えられる。
もっとも、本発明者は、被溶接物と電極の近傍で種々の外乱が存在する場合でも、その外乱の種類に拘わらず、溶融開始時を高精度に、かつ簡易に検出できる方法を新たに見出した。すなわち、本発明者は、前記溶接部のジュール加熱のために前記電極への通電が開始された時である通電開始時からの経過時間に応じて、被溶接物へ投入された電力の積算値である第2電力量を算出する第2電力量算出工程と、前記通電開始時からの経過時間に対応して予め定められ前記溶接部の少なくとも一部が現実に溶融を開始するまでに投入された電力量である溶融開始電力量または該溶融開始電力量に基づき設定された第2設定値に、前記第2電力量が少なくとも到達した時を前記溶融開始時と判定する第2判定工程とにより、溶融開始時の検出(つまり前述した溶融開始時検出工程の構成)が可能であることを見出した。この理由は次の通りである。
(3) In the resistance welding method of the present invention, detection or identification (estimation) at the start of melting is also important in order to stabilize the welding quality of the work piece based on the first electric energy calculated from the start of melting. Become.
In the first place, the start of melting is when the welded part of the work piece changes from the solid phase to the liquid phase, so pay attention to changes in the physical properties of the work piece such as the temperature and volume of the melted part. It is conceivable to detect.
However, the present inventor has newly found a method that can detect the start of melting with high accuracy and simpleness regardless of the type of disturbance even when various disturbances exist in the vicinity of the workpiece and the electrode. It was. That is, the present inventor determined that the integrated value of the electric power supplied to the work piece according to the elapsed time from the start of energization, which is the time when energization of the electrode is started for Joule heating of the welded portion. A second power amount calculating step for calculating the second power amount, and a predetermined time corresponding to an elapsed time from the start of energization, and at least a part of the welded portion is put in before actually starting melting. A second determination step for determining that the melting start time is when the second power amount reaches at least a melting start power amount that is a predetermined power amount or a second set value set based on the melting start power amount. The present inventors have found that detection at the start of melting (that is, the configuration of the detection process at the start of melting described above) is possible. The reason is as follows.

溶接する被溶接物の配置状況や被溶接物と電極の接触状況などが、想定した本来の状態(標準状態)からずれる「外乱」が存在すると、実際に溶融開始時がばらつく。このことは、電極への通電開始から積算した投入電力量と形成されたナゲット径を調べた試験結果からも裏付けられている(図2参照)。このため一見すると、不特定な外乱が存在する状況下では、溶融開始時を高精度に検出することが困難なように思われる。
しかし、種々の外乱の下で被溶接物の溶融開始時を調べたところ、溶融開始時に至るまでの通電時間と溶融開始時に至るまでに投入された電力量(溶融開始電力量)との間には相関関係があることが明らかとなった。つまり、被溶接物の溶融開始に必要な累積した電力量(溶融開始電力量)は、通電開始後の経過時間(初期通電時間)の関数で表現されることが明らかとなった。
より具体的には、通電後の短時間で被溶接物が溶融を開始する場合は投入電力量が少なく、通電後の長時間で被溶接物が溶融を開始する場合は投入電力量が多くなる。つまり、溶融開始電力量は初期通電時間に関して単調増加な関係にあることがわかった。
従って、外乱の種類を特定されなくても、通電開始後の経過時間(初期通電時間)に応じて算出される電力量(第2電力量)が、同じく通電開始後の経過時間(初期通電時間)に応じて定まる溶融開始電力量に少なくとも到達したときを検出すれば、その時に被溶接物の溶融が開始され、その時が溶融開始時と判断することができる。
If there is a “disturbance” in which the arrangement state of the workpieces to be welded or the contact state between the workpieces and the electrodes deviates from the assumed original state (standard state), the actual melting start time varies. This is supported by test results obtained by examining the amount of input power accumulated from the start of energization of the electrodes and the formed nugget diameter (see FIG. 2). For this reason, at first glance, it seems that it is difficult to detect the melting start time with high accuracy in a situation where an unspecified disturbance exists.
However, when the melting start time of the workpiece was examined under various disturbances, it was found that there was a difference between the energization time until the melting start time and the amount of power input until the melting start time (melting start power amount). Were found to be correlated. That is, it became clear that the accumulated electric energy (melting start electric energy) necessary for the start of melting of the workpiece is expressed as a function of the elapsed time after the start of energization (initial energization time).
More specifically, when the workpiece starts melting in a short time after energization, the input power amount is small, and when the workpiece starts melting in a long time after energization, the input power amount increases. . That is, it was found that the melting start electric energy has a monotonically increasing relationship with respect to the initial energization time.
Therefore, even if the type of disturbance is not specified, the amount of electric power (second electric energy) calculated according to the elapsed time after the start of energization (initial energization time) is the same as the elapsed time after the start of energization (initial energization time). If at least the time of reaching the melting start power amount determined according to (1) is detected, melting of the workpiece is started at that time, and it can be determined that the time of melting starts.

ちなみに、初期通電時間と溶融開始電力量が上述のような関係になるのは、簡単にいえば次のようである。外乱が存在すると、溶接部の接触抵抗や電流密度が変化し、それに応じて溶接部における単位時間の発熱量(発熱速度)も変化する。このため例えば、接触抵抗や電流密度が大きく溶接部の発熱速度も大きい場合、溶接部の昇温・溶融が短時間になされる。逆に接触抵抗や電流密度が小さく発熱速度も小さい場合、溶接部の昇温、溶融に長時間を要することになる。   Incidentally, the reason why the initial energization time and the melting start electric energy have the above-described relationship is as follows. When there is a disturbance, the contact resistance and current density of the welded portion change, and the heat generation amount (heat generation rate) per unit time in the welded portion also changes accordingly. For this reason, for example, when the contact resistance and current density are large and the heat generation rate of the welded portion is also large, the temperature of the welded portion is increased and melted in a short time. On the other hand, when the contact resistance and current density are small and the heat generation rate is small, it takes a long time to raise the temperature and melt the weld.

(4)本発明では、抵抗溶接を行うために被溶接物に接する電極へ通電する際の電流値や電圧値は、必ずしも一定である必要はない。第1電力量が、所望のナゲット径などに対応して設定した第1設定値へ到達する途中、さらには溶接スポット毎に、被溶接物へ印加する電流値や電圧値を適宜変更してもよい。そこで、本発明に係る加熱工程は、前記第1判定工程の判定結果に基づいて被溶接物の加熱条件を変更する加熱変更工程を含むものでもよい。
同様のことは、被溶接物の溶融開始時の検出に関してもいえる。溶融開始時の検出は、被溶接物が溶融を開始するまでの通電時間と、その通電時間に対応して算出される第2電力量と、通電時間に対応して求まる溶融開始電力量との対比が重要である。従って、第2電力量を算出する途中、さらには溶接スポット毎に、被溶接物へ印加する電流値や電圧値は適宜変更されてもよい。
(4) In the present invention, the current value and the voltage value when energizing the electrode in contact with the workpiece to be resistance welded are not necessarily constant. While the first power amount reaches the first set value set corresponding to the desired nugget diameter or the like, or even for each welding spot, the current value or the voltage value applied to the work piece may be changed as appropriate. Good. Therefore, the heating step according to the present invention may include a heating change step of changing the heating condition of the workpiece to be welded based on the determination result of the first determination step.
The same can be said for detection at the start of melting of the workpiece. The detection at the start of melting is performed by calculating the energization time until the workpiece starts to melt, the second power amount calculated corresponding to the energization time, and the melting start power amount determined corresponding to the energization time. Contrast is important. Therefore, the current value and the voltage value applied to the workpiece may be appropriately changed during the calculation of the second electric energy, and for each welding spot.

なお、ここで説明した内容は、以降で説明する抵抗溶接機やその制御装置、抵抗溶接機の制御方法やその制御プログラムおよび抵抗溶接の評価方法や評価プログラムなどに関しても適宜適用される。その場合、前述した発明構成中の「工程」を「ステップ」や「部」として適宜読み替えればよい。   The contents described here are also applied as appropriate to the resistance welding machine and its control device, the resistance welding machine control method and its control program, and the resistance welding evaluation method and evaluation program, which will be described later. In that case, the “process” in the above-described invention configuration may be appropriately read as “step” or “part”.

《抵抗溶接部材》
上記の抵抗溶接方法を用いると、溶接不良の抑止や溶接品質の安定化が図られた製品を得ることができる。従って本発明は、単に抵抗溶接方法としてのみならず、従来になく各ナゲット形状などの安定した抵抗溶接部材としても把握され得る。
《Resistance welding member》
When the above resistance welding method is used, it is possible to obtain a product in which defective welding is suppressed and welding quality is stabilized. Therefore, the present invention can be grasped not only as a resistance welding method but also as a stable resistance welding member having each nugget shape and the like.

《抵抗溶接機およびその制御装置》
また本発明は、上記の抵抗溶接方法を実現する抵抗溶接機およびその制御装置としても把握できる。
(1)すなわち本発明は、被溶接物に外接する電極と該被溶接物の溶接部をジュール加熱する加熱用電流を該電極へ供給する電源装置とを備える抵抗溶接機の制御装置であって、
前記電極から前記被溶接物へ投入される電力により前記溶接部の少なくとも一部がジュール加熱されて溶融を開始する時である溶融開始時を検出する溶融開始時検出部と、前記溶融開始時から前記電極を介して前記被溶接物へ投入された電力の積算値である第1電力量を算出する第1電力量算出部と、前記第1電力量または該第1電力量に対応した前記溶接部の溶接状況を指標する溶接指標値が少なくとも第1設定値に到達したか否かを判定する第1判定部と、前記溶融開始時から前記第1電力量または前記溶接指標値が少なくとも該第1設定値に到達するまで前記ジュール加熱を行う加熱部と、を有することを特徴とする抵抗溶接機の制御装置でもよい。
<Resistance welding machine and its control device>
Moreover, this invention can be grasped | ascertained also as a resistance welding machine and its control apparatus which implement | achieve said resistance welding method.
(1) That is, the present invention is a resistance welding machine control device comprising an electrode circumscribing an object to be welded and a power supply device for supplying a heating current for Joule heating the welded portion of the object to be welded to the electrode. ,
A melting start detection unit for detecting a melting start time, which is a time when at least a part of the welded portion is Joule-heated by the electric power supplied from the electrode to the workpiece and starts melting; A first power amount calculation unit that calculates a first power amount that is an integrated value of the power input to the workpiece through the electrodes, and the welding corresponding to the first power amount or the first power amount. A first determination unit that determines whether or not a welding index value that indicates a welding state of the part has reached at least a first set value; and at least the first power amount or the welding index value from the start of melting. A resistance welding machine control device comprising: a heating unit that performs the Joule heating until reaching one set value.

(2)また本発明は、被溶接物に圧接される電極と、該被溶接物の溶接部をジュール加熱する加熱用電流を該電極へ供給する電源装置と、前記電源装置から前記被溶接物へ投入される電力量を制御する上述の制御装置と、を備えることを特徴とする抵抗溶接機でもよい。 (2) Further, the present invention provides an electrode that is pressed against the workpiece, a power supply that supplies a heating current for Joule heating the welded portion of the workpiece, and the workpiece from the power supply. And a resistance welding machine including the above-described control device that controls the amount of electric power input to the power source.

《抵抗溶接機の制御方法およびその制御プログラム》
さらに本発明は、上記の抵抗溶接機の制御方法またはその制御プログラムとしても把握できる。
(1)すなわち本発明は、被溶接物に外接する電極と該被溶接物の溶接部をジュール加熱する加熱用電流を該電極へ供給する電源装置とを備える抵抗溶接機の制御方法であって、
前記電極から前記被溶接物へ投入される電力により前記溶接部の少なくとも一部がジュール加熱されて溶融を開始する時である溶融開始時を検出する溶融開始時検出ステップと、前記溶融開始時から前記電極を介して前記被溶接物へ投入された電力の積算値である第1電力量を算出する第1電力量算出ステップと、前記第1電力量または該第1電力量に対応した前記溶接部の溶接状況を指標する溶接指標値が少なくとも第1設定値に到達したか否かを判定する第1判定ステップと、前記溶融開始時から前記第1電力量または前記溶接指標値が少なくとも該第1設定値に到達するまで前記ジュール加熱を行う加熱ステップと、を備えることを特徴とする抵抗溶接機の制御方法でもよい。
<< Control method and control program for resistance welding machine >>
Furthermore, this invention can be grasped | ascertained also as a control method of said resistance welding machine, or its control program.
(1) That is, the present invention is a control method for a resistance welding machine including an electrode circumscribing a workpiece and a power supply device that supplies a heating current for joule heating the welded portion of the workpiece to the electrode. ,
A melting start detection step for detecting a melting start time which is a time when at least a part of the welded portion is Joule-heated by the electric power supplied from the electrode to the workpiece and starts melting; A first power amount calculating step of calculating a first power amount that is an integrated value of power input to the workpiece through the electrodes; and the welding corresponding to the first power amount or the first power amount. A first determination step for determining whether or not a welding index value indicating a welding state of the part has reached at least a first set value; and at least the first power amount or the welding index value from the start of melting. And a heating step of performing the Joule heating until reaching one set value.

(2)そして本発明は、その抵抗溶接機の制御方法を、コンピュータを機能させて実行することを特徴とする抵抗溶接機の制御プログラムでもよい。 (2) The present invention may also be a resistance welding machine control program characterized in that the resistance welding machine control method is executed by causing a computer to function.

《抵抗溶接の評価方法》
加えて本発明は、抵抗溶接の評価方法およびその評価プログラムとしても把握できる。
(1)すなわち本発明は、圧接された電極から投入される電力により被溶接物の溶接部の少なくとも一部がジュール加熱されて溶融を開始する時である溶融開始時を検出する溶融開始時検出ステップと、前記溶融開始時から前記電極を介して前記被溶接物へ投入された電力の積算値である第1電力量を算出する第1電力量算出ステップと、前記第1電力量に基づき前記溶接部の溶接状況を推定する推定ステップと、を備えることを特徴とする抵抗溶接の評価方法でもよい。
<Evaluation method for resistance welding>
In addition, the present invention can be grasped as a resistance welding evaluation method and its evaluation program.
(1) That is, according to the present invention, detection at the start of melting is detected when at least a part of the welded portion of the work piece is Joule-heated by the electric power input from the pressure-contacted electrode to start melting. A first power amount calculating step of calculating a first power amount that is an integrated value of power input to the workpiece through the electrodes from the start of melting, and the first power amount based on the first power amount. An estimation step of estimating a welding state of a welded portion, and a resistance welding evaluation method characterized by comprising:

(2)また本発明は、上記の抵抗溶接の評価方法とは別に、圧接された電極から投入される電力により被溶接物の溶接部をジュール加熱するために前記電極への通電が開始された時である通電開始時からの経過時間に応じて該被溶接物へ投入された電力の積算値である第2電力量を算出する第2電力量算出ステップと、前記通電開始時からの経過時間に対応して予め定められ前記溶接部の少なくとも一部が現実に溶融を開始するまでに投入された電力量である溶融開始電力量または該溶融開始電力量に基づき設定された第2設定値に、前記第2電力量が少なくとも到達した時を前記溶融開始時と判定する第2判定ステップとを備え、抵抗溶接される被溶接物の少なくとも一部が溶融を開始する溶融開始時を検出し得ることを特徴とする抵抗溶接の評価方法でもよい。
もっとも、前者の抵抗溶接の評価方法の「溶融開始時検出ステップ」へ後者の抵抗溶接の評価方法を組み入れてもよい。
(2) Further, in the present invention, in addition to the above-described resistance welding evaluation method, energization of the electrode is started in order to Joule-heat the welded portion of the workpiece to be welded by the electric power supplied from the pressure-welded electrode. A second power amount calculating step for calculating a second power amount that is an integrated value of the electric power input to the workpiece according to an elapsed time from the start of energization, and an elapsed time from the start of energization Corresponding to the melting start power amount that is an amount of power that is input until at least a part of the welded portion actually starts melting, or a second set value that is set based on the melting start power amount. A second determination step of determining at the time when the second electric energy reaches at least as the time of melting start, and detecting at the time of melting start when at least a part of the workpiece to be resistance-welded starts melting Resistance solution It may be of evaluation methods.
However, the latter resistance welding evaluation method may be incorporated into the “melting start detection step” of the former resistance welding evaluation method.

(3)さらに本発明は、それらの抵抗溶接の評価方法をコンピュータを機能させて実行することを特徴とする抵抗溶接の評価プログラムでもよい。 (3) Further, the present invention may be a resistance welding evaluation program characterized in that the resistance welding evaluation method is executed by causing a computer to function.

(4)なお、前記推定ステップは、前記算出された第1電力量または該第1電力量から求まる該溶接部の溶接状況を指標する溶接指標値が所定範囲内か否かにより前記溶接状況の良否を評価する評価ステップでもよい。そしてその推定ステップは、前記第1電力量に基づいて前記溶接部が溶融凝固して形成されたナゲットの大きさを推定するナゲット推定ステップであるとより好適である。 (4) In the estimation step, the welding state is determined based on whether the calculated first power amount or a welding index value indicating the welding state of the weld determined from the first power amount is within a predetermined range. It may be an evaluation step for evaluating pass / fail. The estimation step is more preferably a nugget estimation step for estimating the size of a nugget formed by melting and solidifying the welded portion based on the first electric energy.

抵抗溶接の際に生じ得る種々の外乱を説明する説明図である。It is explanatory drawing explaining the various disturbance which may arise in the case of resistance welding. 種々の外乱の存在下における被溶接物への通電開始時からの投入電力量と形成されるナゲット径との相関を示すグラフである。It is a graph which shows the correlation with the amount of input electric power from the time of the energization start to the to-be-welded object in presence of various disturbances, and the nugget diameter formed. 種々の外乱の存在下における被溶接物への通電時間と投入電力量との相関を示すグラフである。It is a graph which shows the correlation with the energization time to a to-be-welded object in presence of various disturbances, and input electric energy. 被溶接物の溶融開始時以降における被溶接物への投入電力量と形成されるナゲット径との相関を示すグラフである。It is a graph which shows the correlation with the amount of input electric power to a to-be-welded object after the time of the melting start of to-be-welded object, and the nugget diameter formed. スポット溶接機の概要図である。It is a schematic diagram of a spot welder. 被溶接物の溶接部付近の概要図である。It is a schematic diagram near the welding part of a work to be welded. 本発明の実施例に係るスポット溶接方法のフローチャートである。It is a flowchart of the spot welding method which concerns on the Example of this invention.

11 電極
20 溶接ロボット
30 制御装置
40 電源装置
100 スポット溶接機
W ワーク(被溶接物)
R1 第1電気抵抗値
R2 第2電気抵抗値
X 電力量
DESCRIPTION OF SYMBOLS 11 Electrode 20 Welding robot 30 Control apparatus 40 Power supply apparatus 100 Spot welding machine W Workpiece (to-be-welded object)
R1 first electric resistance value R2 second electric resistance value X electric energy

発明の実施形態を挙げて本発明をより詳しく説明する。以下では主に本発明の抵抗溶接方法を取り上げて説明するが、その内容は抵抗溶接方法のみならず、抵抗溶接部材、抵抗溶接機、抵抗溶接機の制御装置、抵抗溶接機の制御方法、抵抗溶接機の制御プログラム、抵抗溶接の評価方法および抵抗溶接の評価プログラムのいずれにも適宜適用される。そして以降に列挙する構成中から任意に選択した一つまたは二つ以上の構成が上述した構成に付加されたものも本発明となり得る。付加する構成の選択は、カテゴリーを越えて重畳的または任意的に選択可能である。なお、いずれの実施形態が最良であるか否かは、対象、要求性能等によって異なる。   The present invention will be described in more detail with reference to embodiments of the invention. In the following, the resistance welding method of the present invention will be mainly described and described. However, the contents include not only resistance welding methods, but also resistance welding members, resistance welding machines, resistance welding machine control devices, resistance welding machine control methods, resistances. The present invention is appropriately applied to any of a welding machine control program, a resistance welding evaluation method, and a resistance welding evaluation program. And what added one or two or more structures arbitrarily selected from the structure enumerated below to the structure mentioned above can also be this invention. The configuration to be added can be selected in a superimposed manner or arbitrarily across categories. Note that which embodiment is the best depends on the target, required performance, and the like.

《抵抗溶接と外乱》
本発明を理解する際に重要な前提となる抵抗溶接および外乱について、先ず説明しておく。
(1)抵抗溶接は、被溶接物に圧接された電極へ通電した際に、その溶接部に存在する種々の抵抗により生じる抵抗発熱量(ジュール発熱量)から、その一部が被溶接物自体や電極などへ放熱する放熱量を差し引いた熱量差によって、被溶接物の溶接部が温度上昇し、溶融した後に、冷却されて凝固することによりなされる接合である。
一例として、複数枚からなる一組の金属製板材を抵抗溶接する場合を考える。被溶接物である一組の板材は、先ず、電極などで加圧されて密接状態にされる。そして電極へ通電がなされ、隣接する板材の接触面間(継手間)に大きなジュール発熱が生じて、その接触面近傍が優先的に溶融する。そして通電終了後の冷却により、その溶融部分が凝固してナゲットが形成され、その抵抗溶接が終了する。
《Resistance welding and disturbance》
First, resistance welding and disturbance, which are important preconditions in understanding the present invention, will be described.
(1) In resistance welding, when an electrode pressed against a workpiece is energized, a part of the workpiece itself is generated from resistance heating (joule heating) generated by various resistances existing in the welded portion. This is a joining made by cooling and solidifying after the temperature of the welded part of the work to be welded rises and melts due to the difference in heat quantity subtracting the amount of heat dissipated to the electrode and the electrode.
As an example, let us consider a case where a set of a plurality of metal plates are resistance-welded. A set of plate materials to be welded is first pressed with an electrode or the like to be brought into close contact. Then, the electrodes are energized, large Joule heat is generated between the contact surfaces of adjacent plate members (between the joints), and the vicinity of the contact surfaces is preferentially melted. And by the cooling after completion | finish of electricity supply, the fusion | melting part will solidify and a nugget will be formed and the resistance welding will be complete | finished.

ところで、この抵抗溶接の際に、接合する2以上の被溶接物の接触面近傍で溶融が優先的に生じるのは、その領域の接触抵抗が他の部分の抵抗よりも大きいためである。しかし、その接触抵抗は被溶接物間の接触状況に大きく左右され、しかも、実際の溶接現場では当初想定した接触状態(標準状態)からのズレ(外乱)を生じることが多い。このため、通電する電流値や時間などの条件を同じにしても、形成される溶接部の形態が変化し得る。
もちろん、外乱が存在する場合でも、放熱量などを正確に算出して、接触部分へ溶接に必要十分な熱量を臨機に投入できれば安定した溶接を行い得るが、そのような通電加熱は現実には困難である。このため従来の抵抗溶接では、溶接部の形態にバラツキを生じたり、電力量が過剰に投入されたりして、安定した溶接を効率的に行うことは困難であった。
By the way, in this resistance welding, the melting preferentially occurs in the vicinity of the contact surfaces of two or more workpieces to be joined because the contact resistance in that region is larger than the resistance of other portions. However, the contact resistance greatly depends on the contact state between the workpieces, and moreover, deviation (disturbance) from the contact state (standard state) initially assumed at the actual welding site often occurs. For this reason, even if conditions, such as the electric current value and time to supply with electricity, are the same, the form of the welding part formed may change.
Of course, even in the presence of disturbance, stable welding can be performed if the amount of heat released accurately can be calculated and the necessary amount of heat necessary for welding can be input to the contact part. Have difficulty. For this reason, in conventional resistance welding, it has been difficult to perform stable welding efficiently because variations occur in the form of the welded portion or an excessive amount of electric power is input.

(2)しかし前述したように、外乱による影響は被溶接物の接触部分が溶融を開始する時までに留まり、理由は定かではないが、溶融開始時以降における外乱の影響は小さいか、殆どない。
従って本発明のように、被溶接物の溶融開始時以降に着目すれば、所望する溶接状況(例えばナゲットの大きさ)に応じて被溶接物へ投入する電力量を最適化することが可能となり、溶接品質の安定化を効率的に図れるようになる。
しかし、その前提となる被溶接物の溶融開始時や溶融開始時までに投入される電力量は、外乱の種類によって異なり、単に通電開始時からの被溶接物への投入電力量のみでは、被溶接物の溶融開始時を精度良く判定または特定することが難しい。
(2) However, as described above, the influence of the disturbance remains until the contact portion of the work piece starts melting, and the reason is not clear, but the influence of the disturbance after the start of melting is small or almost none. .
Therefore, as in the present invention, if attention is paid after the start of melting of the workpiece, it is possible to optimize the amount of electric power supplied to the workpiece depending on the desired welding situation (for example, the size of the nugget). This makes it possible to stabilize the welding quality efficiently.
However, the amount of electric power that is input at the start of melting and before the start of melting of the workpiece to be premised depends on the type of disturbance, and simply by the amount of electric power that is input to the workpiece from the start of energization, It is difficult to accurately determine or specify when welding starts.

例えば図1に示すパターンIIIの外乱が存在する場合と、パターンIVの外乱が存在する場合とを比較すると、前者の方が接触部分の接触面積が小さくその接触抵抗が大きくなる。両者で電極を流れる全体の電流値が同じでも、前者の場合、接触部分における抵抗が大きく、その接触部分を流れる電流密度も大きいので、接触部分が急激に発熱して(つまり発熱速度が大きくなって)、その接触部分の温度が急上昇する。さらにこの温度上昇により、温度依存性をもつ固有抵抗値も急上昇する。その結果、前者の方が後者よりも、相当短時間で溶融を開始するに至り、無駄な放熱が少なく、溶融開始までの投入電力量も少なくなる。   For example, comparing the case where the disturbance of the pattern III shown in FIG. 1 is present and the case where the disturbance of the pattern IV is present, the former has a smaller contact area at the contact portion and a larger contact resistance. Even if the overall current value flowing through the electrodes is the same, in the former case, since the resistance at the contact portion is large and the current density flowing through the contact portion is also large, the contact portion generates heat rapidly (that is, the heat generation rate increases). And the temperature of the contact portion rises rapidly. Furthermore, with this temperature rise, the specific resistance value having temperature dependence also rises rapidly. As a result, the former starts to melt in a considerably shorter time than the latter, and wasteful heat radiation is reduced, and the amount of input electric power until the start of melting is also reduced.

《電力量算出工程》
本発明の電力量算出工程は、被溶接物に圧接された電極を流れる電流などに基づいて算出される。電力量は電流と電圧と時間の積分値として求まるが、その変形式から求めてもよい。電極への通電は直流でも交流でもよく、交流の場合なら実効値に基づいて電力量が算出されてもよい。
<< Electricity calculation process >>
The electric energy calculation process of this invention is calculated based on the electric current etc. which flow through the electrode press-contacted to the to-be-welded object. The amount of electric power is obtained as an integral value of current, voltage and time, but may be obtained from a modified expression thereof. The energization of the electrodes may be direct current or alternating current, and in the case of alternating current, the amount of power may be calculated based on the effective value.

《判定工程》
本発明の判定工程は、電力量算出工程で算出された電力量またはその電力量に対応する指標値と、設定値との対比によりなされる。比較対象が電力量であるか指標値であるかに応じて、適切な設定値が選択される。代表的な指標値は、被溶接物の溶接部が溶融凝固して形成されたナゲットの大きさ(ナゲット径)である。
もっとも、被溶接物の溶融開始前にはナゲットが形成されないので、通電時間に応じて随時算出される投入電力量と、その通電時間に応じて定まる溶融開始電力量またはそれに基づく設定値とを端的に対比する方が好ましい。
<< Judgment process >>
The determination step of the present invention is performed by comparing the power amount calculated in the power amount calculation step or an index value corresponding to the power amount with a set value. An appropriate set value is selected depending on whether the comparison target is an electric energy or an index value. A typical index value is the size (nugget diameter) of the nugget formed by melting and solidifying the welded portion of the workpiece.
However, since no nugget is formed before the start of melting of the work piece, the input power amount calculated as needed according to the energization time and the melting start power amount determined according to the energization time or a set value based on it are briefly explained. It is preferable to contrast with.

《被溶接物》
被溶接物の形状、材質などは問わない。代表的な被溶接物は積層した鋼板である。例えば、厚さ0.5〜3mm程度、含有炭素量(C)が0.05〜0.2質量%の軟鋼板が抵抗溶接に用いられる。その他、高強度鋼(ハイテン)、亜鉛メッキ鋼、ステンレス鋼、アルミニウム(Al)、Al合金、銅(Cu)、Cu合金、ニッケル(Ni)、Ni合金などの素材を被溶接物にしてもよい。さらには被溶接物は異種材の組み合わせでもよい。
被溶接物の材質により、所望形態の溶接部を得るために必要な電力量などは変化する。従って、抵抗溶接中に算出された電力量と対比される設定値、溶融開始電力量などは、被溶接物の材質や形態、被溶接物の積層状態、電極による加圧力などによって異なる。
《Workpiece》
There is no limitation on the shape and material of the workpiece. A typical workpiece is a laminated steel plate. For example, a mild steel sheet having a thickness of about 0.5 to 3 mm and a carbon content (C) of 0.05 to 0.2% by mass is used for resistance welding. In addition, materials such as high-strength steel (high tensile), galvanized steel, stainless steel, aluminum (Al), Al alloy, copper (Cu), Cu alloy, nickel (Ni), and Ni alloy may be used as the workpiece. . Furthermore, the workpiece may be a combination of different materials.
Depending on the material of the work piece, the amount of power required to obtain a desired form of weld varies. Therefore, the set value compared with the electric energy calculated during resistance welding, the melting start electric energy, and the like vary depending on the material and form of the workpiece, the lamination state of the workpiece, the pressure applied by the electrodes, and the like.

《電極》
電極の形状、材質などは問わない。電極は通常、円柱状または円筒状の銅製である。円筒状の電極の場合、その内部に冷却水が供給されて電極が強制冷却されていると、電極の損耗が抑制されて好ましい。
被溶接物に外接する電極の端面は、円形または緩やかな円錐形であることが多い。抵抗溶接が良好ならば、溶接部に形成されるナゲット形状も電極端面の形状に倣い、ほぼ円形になることが多い。この場合、ナゲットの大きさはその直径(ナゲット径)で示される。本明細書では、便宜的にナゲットの大きさをナゲット径ともいう。
"electrode"
The shape and material of the electrode are not limited. The electrodes are usually made of columnar or cylindrical copper. In the case of a cylindrical electrode, it is preferable that cooling water is supplied to the inside of the electrode and the electrode is forcibly cooled to prevent wear of the electrode.
The end face of the electrode that circumscribes the workpiece is often circular or a gentle cone. If resistance welding is good, the shape of the nugget formed in the welded part often follows the shape of the electrode end face and is almost circular. In this case, the size of the nugget is indicated by its diameter (nugget diameter). In this specification, the size of the nugget is also referred to as a nugget diameter for convenience.

《電源装置》
電源装置は、交流電源でも直流電源でもよい。交流電源には単相電源または三相電源などがある。また電源装置は、定電流電源でも定電圧電源でもよい。定電流電源であると、被溶接物が加熱されて高温になるほど発生するジュール熱量も多くなり、被溶接物が溶融凝固したナゲットが確実に形成されるので好ましい。なお、電極から被溶接物に供給する好ましい電流値などは、被溶接物の材質、所望するナゲット径、通電時間等によって異なる。
<Power supply unit>
The power supply device may be an AC power supply or a DC power supply. AC power supplies include single-phase power supplies and three-phase power supplies. The power supply device may be a constant current power supply or a constant voltage power supply. A constant current power supply is preferable because the amount of Joule heat generated increases as the work piece is heated and heated, and a nugget in which the work piece is melted and solidified is reliably formed. In addition, the preferable electric current value etc. which are supplied to a to-be-welded object from an electrode differ with the materials of a to-be-welded object, the desired nugget diameter, electricity supply time, etc.

実施例を挙げて本発明をより具体的に説明する。
《投入電力量とナゲットの形成》
本発明者は、重ねた2枚の鋼板からなるワーク(被溶接物)のカットモデルに様々な外乱の下で抵抗溶接(スポット溶接)を行い、その様子を高速度カメラで撮影した。これによりスポット溶接にできるナゲットの形成過程を観察した。
(1)具体的には、図1に示すような代表的な5つのパターンI〜Vを設定してスポット溶接を行った。
図1に示したパターンIの「外乱無し」は、重ねた2枚の鋼板が電極により押圧されて密接しており、電極の中心軸がワークの溶接部を通る法線となっている場合である。パターンIIの「面直崩れ」は、パターン1の標準状態に対してワークを水平方向から3°傾斜させた場合である。パターンIIIの「板隙」は、溶接部の周囲に隙間を形成させた場合である。具体的には重ねた鋼板の溶接中心から両側15mm(φ30mm)の位置に、厚さ1mmのスペーサーを介在させた。パターンIVの「電極摩耗」は、電極の先端面(ワークとの接触面)の円形をde=φ6mmからde=φ7mmに拡張した場合である。ちなみにその電極の先端面は、曲率半径40mmの湾曲面により電極の周側面と接続されている。パターンVの「分流」は、電極から供給された電流が、現在の溶接スポット以外に前工程で溶接を終えた別のスポット(既溶接点)にも流れる場合である
The present invention will be described more specifically with reference to examples.
《Power input and nugget formation》
The inventor performed resistance welding (spot welding) under various disturbances on a cut model of a workpiece (workpiece to be welded) made of two stacked steel plates, and photographed the situation with a high-speed camera. This observed the formation process of nuggets that could be spot welded.
(1) Specifically, spot welding was performed by setting five typical patterns I to V as shown in FIG.
“No disturbance” in the pattern I shown in FIG. 1 is a case where the two stacked steel plates are pressed and in close contact with the electrode, and the central axis of the electrode is a normal line passing through the welded part of the workpiece. is there. Pattern II “straightening” is when the workpiece is inclined 3 ° from the horizontal direction with respect to the standard state of pattern 1. The “plate gap” of pattern III is a case where a gap is formed around the weld. Specifically, a spacer having a thickness of 1 mm was interposed at positions 15 mm (φ30 mm) on both sides from the weld center of the stacked steel plates. The pattern IV “electrode wear” is when the tip end surface (contact surface with the workpiece) of the electrode is expanded from de = φ6 mm to de = φ7 mm. Incidentally, the tip surface of the electrode is connected to the peripheral side surface of the electrode by a curved surface having a curvature radius of 40 mm. “V shunt” of pattern V is when the current supplied from the electrode flows not only to the current welding spot but also to another spot (pre-welded point) where welding has been completed in the previous process.

(2)ワークおよび電極を上述の各パターンに設定してスポット溶接した。この際、ワークへ投入した電力の積算値である投入電力量Qを算出した。また、投入電力量Qに応じてワークに形成されたナゲット径Dも測定した。これらの投入電力量Qとナゲット径Dの相関を図2に示した。
なお、スポット溶接に供したワークは、厚さ2mmの冷延軟鋼板(JIS:SPC270)を2枚重ねたものである。用いた電極は円筒状であり、内部を水冷しつつスポット溶接した。電極の先端部の形状は前述した通りである。また電極はワークの両外側へ圧接しつつスポット溶接を行った。電極によるワークの加圧力は3430Nとした。電源には60サイクルの単相交流を用いた。このときの実効電流値は11kAとした。この加熱用電流の通電時間は、サイクルタイムCt(1/60秒)単位で制御した。
(2) Spot welding was performed with the workpiece and electrode set to the above-described patterns. At this time, the input power amount Q, which is an integrated value of the power input to the workpiece, was calculated. Further, the nugget diameter D formed on the work according to the input power amount Q was also measured. The correlation between the input electric energy Q and the nugget diameter D is shown in FIG.
In addition, the workpiece | work provided to spot welding is what laminated | stacked two sheets of cold rolled mild steel plates (JIS: SPC270) of thickness 2mm. The electrode used was cylindrical, and spot welding was performed while water-cooling the inside. The shape of the tip of the electrode is as described above. The electrode was spot welded while being pressed against both outer sides of the workpiece. The pressure of the workpiece by the electrode was 3430N. A 60-cycle single-phase alternating current was used as the power source. The effective current value at this time was 11 kA. The energization time of this heating current was controlled in units of cycle time Ct (1/60 seconds).

(3)ここで算出した投入電力量Qは、電極へ印加した電流x電極間(ワーク両端間)の電圧x時間の積分値である。従って投入電力量Qは、時間の関数でもある。そこで前述の各パターンについて求めた、通電開始からの経過時間(通電時間)と投入電力量Qとの関係を図3に示した。なお図3では、通電サイクル数(1サイクルタイムCt:1/60秒)により通電時間を示した。
さらに、前述した各パターンのワークが溶融を開始した点(溶融開始点)を図2を参考に見積もり、図3上に重ねて示した。この溶融開始点は、カットモデルの断面上で溶融による流動が確認できたタイミングにより特定した。
(3) The input power amount Q calculated here is an integrated value of the current applied to the electrode x the voltage x time between the electrodes (between both ends of the work). Therefore, the input power amount Q is also a function of time. Therefore, the relationship between the elapsed time from the start of energization (energization time) and the input power amount Q obtained for each of the patterns described above is shown in FIG. In FIG. 3, the energization time is indicated by the number of energization cycles (1 cycle time Ct: 1/60 seconds).
Furthermore, the point (melting start point) at which the workpiece of each pattern described above started to melt was estimated with reference to FIG. 2 and superimposed on FIG. This melting start point was specified by the timing when the flow due to melting could be confirmed on the cross section of the cut model.

各パターン毎に得られた5つの溶融開始点を結ぶことにより溶融開始曲線が得られる(図3の太実線分)。逆にいえば、実際にスポット溶接したときの通電時間と投入電力量との関係を示す曲線(通電時間−投入電力量曲線)とその溶融開始曲線との交点が溶融開始点となる。従って、外乱の有無や外乱パターンの特定をせずに、スポット溶接を実際行ったときに描かれる通電時間−投入電力量曲線と溶融開始曲線との交点として溶融開始点が与えられ、そのときの通電時間が溶融開始時となり、そのときの投入電力量が溶融開始電力量となる。
より現実的には、外乱パターンを気にすることなく、通電時間(通電サイクル数)毎に、算出された投入電力量と、その通電時間に対応して記憶されている溶融開始電力量とを対比する。そして、投入電力量が溶融開始電力量に到達したかまたは溶融開始電力量を超えた時が溶融開始時と判断される。
A melting start curve is obtained by connecting the five melting start points obtained for each pattern (thick solid line in FIG. 3). In other words, the intersection of the curve (energization time-input power amount curve) indicating the relationship between the energization time and the input power amount when spot welding is actually performed becomes the melting start point. Therefore, the melting start point is given as the intersection of the energizing time-input power amount curve and the melting start curve drawn when spot welding is actually performed without specifying the presence or absence of disturbance and the disturbance pattern. The energization time is when melting starts, and the amount of power input at that time is the melting start power amount.
More realistically, the calculated input power amount and the melting start power amount stored corresponding to the energization time are calculated for each energization time (number of energization cycles) without worrying about the disturbance pattern. Contrast. Then, when the input power amount reaches the melting start power amount or exceeds the melting start power amount, it is determined that the melting starts.

(4)各ワークをスポット溶接した際の投入電力量Q(通電開始時より算出した電力量)から溶融開始電力量Qmを引いた第1電力量Q1(=Q−Qm)と、ナゲット径Dとの関係を図4に示した。要するに図4は、図2に示したそれぞれの曲線を溶融開始電力量Qmの相当分だけ平行移動させたものである。
この図4から明らかなように、溶融開始後の第1電力量Q1と形成されるナゲット径Dとの関係は、外乱パターンに拘わらずほぼ一致することがわかる。つまり、ワークの溶融開始後に着目すれば、形成されるナゲット径Dは、外乱の影響を殆ど受けることなく第1電力量Q1によってほぼ決定される。
(4) A first power amount Q1 (= Q-Qm) obtained by subtracting a melting start power amount Qm from an input power amount Q (power amount calculated from the start of energization) when each workpiece is spot welded, and a nugget diameter D The relationship is shown in FIG. In short, FIG. 4 is obtained by translating the respective curves shown in FIG. 2 by an amount corresponding to the melting start electric energy Qm.
As is apparent from FIG. 4, it can be seen that the relationship between the first electric energy Q1 after the start of melting and the nugget diameter D formed is substantially the same regardless of the disturbance pattern. In other words, if attention is paid after the start of melting of the workpiece, the formed nugget diameter D is substantially determined by the first electric energy Q1 with almost no influence of disturbance.

《スポット溶接機》
(1)本発明の抵抗溶接機に係る一実施例であるスポット溶接機100を図5に示す。スポット溶接機100は、多関節型の溶接ロボット20と、この溶接ロボット20を制御する制御装置30と、電源装置40とを備える。
《Spot Welder》
(1) FIG. 5 shows a spot welder 100 which is an embodiment according to the resistance welder of the present invention. The spot welder 100 includes an articulated welding robot 20, a control device 30 that controls the welding robot 20, and a power supply device 40.

溶接ロボット20は、6軸垂直多関節型ロボットであり、鉛直方向の第1軸回りで回転可能に床に固定されているベース21と、このベース21に続く上腕22と、上腕22に続く前腕23と、この前腕23の前端部に回転自在に連結されている手首要素24と、この手首要素24の端部に装着されたスポット溶接ガン10とを有する。上腕22は、水平方向の第2軸回りで回転可能にベース21に連結されている。前腕23は、水平方向の第3軸回りで回転可能に上腕22の上端部に連結されている。手首要素24は、前腕23の軸線に平行な第4軸回りで回転可能に前腕23の先端部に連結されている。スポット溶接ガン10は、手首要素24の先端部に、前腕23の軸線に垂直な第5軸回りに回転可能な別の手首要素(図略)を介し、その第5軸に垂直な第6軸回りで回転可能に装着されている。   The welding robot 20 is a six-axis vertical articulated robot. The base 21 is fixed to the floor so as to be rotatable about a first axis in the vertical direction, the upper arm 22 following the base 21, and the forearm following the upper arm 22. 23, a wrist element 24 rotatably connected to the front end portion of the forearm 23, and a spot welding gun 10 attached to the end portion of the wrist element 24. The upper arm 22 is connected to the base 21 so as to be rotatable about a second axis in the horizontal direction. The forearm 23 is connected to the upper end of the upper arm 22 so as to be rotatable around a third axis in the horizontal direction. The wrist element 24 is connected to the distal end portion of the forearm 23 so as to be rotatable around a fourth axis parallel to the axis of the forearm 23. The spot welding gun 10 has a sixth axis perpendicular to the fifth axis via another wrist element (not shown) that is rotatable around a fifth axis perpendicular to the axis of the forearm 23 at the tip of the wrist element 24. It is mounted so that it can rotate around.

スポット溶接ガン10は、逆Lの字状のガンアーム12と、サーボモータ13とからなる。ガンアーム12には一対の電極11(可動電極11aおよび対向電極11b)が配設される。   The spot welding gun 10 includes an inverted L-shaped gun arm 12 and a servo motor 13. The gun arm 12 is provided with a pair of electrodes 11 (a movable electrode 11a and a counter electrode 11b).

可動電極11aは、サーボモータ13により、被溶接物であるワークWに対して接離自在に駆動され、ワークWの板厚方向の同軸上に配置された対向電極11bと協調して、ワークWを所望の圧力で挟持する。
また可動電極11aおよび対向電極11bは有底円筒状の銅合金製であり、それらの内部は循環する冷却水により強制冷却されている。
The movable electrode 11a is driven by the servo motor 13 so as to be able to contact with and separate from the workpiece W, which is a workpiece, and cooperates with the counter electrode 11b arranged coaxially in the plate thickness direction of the workpiece W. Is held at a desired pressure.
The movable electrode 11a and the counter electrode 11b are made of a bottomed cylindrical copper alloy, and the inside thereof is forcibly cooled by circulating cooling water.

制御装置30は、ロボット駆動回路(図略)を備え、溶接ロボット20およびスポット溶接ガン10の駆動を制御する。また制御装置30は、電力回路(図略)を備え、電極11を介してワークWへ供給する電力(電圧または電流の少なくとも一方)を制御する。これらの回路により、ワークWに加える電流値、通電時間、通電タイミング、ワークWの電極11による挟持力(加圧力)などが制御される。その制御に必要な条件は、操作盤31から入力される。   The control device 30 includes a robot drive circuit (not shown) and controls driving of the welding robot 20 and the spot welding gun 10. The control device 30 includes a power circuit (not shown), and controls power (at least one of voltage or current) supplied to the workpiece W via the electrode 11. By these circuits, the current value applied to the workpiece W, the energization time, the energization timing, the clamping force (pressing force) by the electrode 11 of the workpiece W, and the like are controlled. Conditions necessary for the control are input from the operation panel 31.

電源装置40は、単相電源または三相電源を昇圧して、大きな定電流を安定して供給できる交流定電流装置である。電源装置40は、制御装置30により制御される。   The power supply device 40 is an AC constant current device that can boost a single-phase power supply or a three-phase power supply and stably supply a large constant current. The power supply device 40 is controlled by the control device 30.

(2)スポット溶接機100は次のように操作され、作動する。
スポット溶接したいワークWを保持台(図略)に設置する。ワークWの溶接スポット、ワークWの物性値、電極11によるワークWの挟持力、電極11へ供給する電流値、通電時間、所望のナゲット径に対応した目標値(第1設定値)などの溶接条件を制御装置30へ入力設定する。
(2) The spot welder 100 is operated and operated as follows.
A workpiece W to be spot welded is placed on a holding table (not shown). Welding spot of workpiece W, physical property value of workpiece W, clamping force of workpiece W by electrode 11, current value supplied to electrode 11, energization time, target value (first set value) corresponding to desired nugget diameter, etc. The conditions are input and set to the control device 30.

その後にスポット溶接機100を稼働させると、制御装置30により制御された溶接ロボット20がスポット溶接ガン10をそれぞれの溶接スポットへ順次移動させる。そしてスポット溶接ガン10に備えられた電極11は、制御装置30により制御されたサーボモータ13により駆動され、設定圧力でワークWを挟持する。この状態で電源装置40からワークWへ所定の定電流が供給される。この作業が設定した複数のスポットで繰り返されることにより、スポット溶接されたワークW(溶接部材)が完成する。   When the spot welder 100 is subsequently operated, the welding robot 20 controlled by the control device 30 sequentially moves the spot welding gun 10 to each welding spot. The electrode 11 provided in the spot welding gun 10 is driven by the servo motor 13 controlled by the control device 30 and sandwiches the workpiece W with the set pressure. In this state, a predetermined constant current is supplied from the power supply device 40 to the workpiece W. The work W (welded member) spot-welded is completed by repeating this operation at a plurality of spots set.

(3)スポット溶接された溶接スポットの模式図を図6に示した。スポット溶接が良好であれば、軟鋼板からなるワークW(ワークWaおよびワークWb)が接する内部で、ワークWが溶融凝固したナゲットNが得られる。なお、電極11によって加圧されつつ加熱される部分が溶接部Yであり、通常、ナゲットNは溶接部Yに内包され、そのナゲットNの最大径をナゲット径としている。 (3) A schematic diagram of spot-welded welding spots is shown in FIG. If spot welding is good, a nugget N in which the workpiece W is melted and solidified is obtained inside the workpiece W (work Wa and workpiece Wb) made of a mild steel plate. In addition, the part heated while being pressurized by the electrode 11 is a welded portion Y. Normally, the nugget N is included in the welded portion Y, and the maximum diameter of the nugget N is the nugget diameter.

《スポット溶接機の制御装置および制御方法》
(1)本発明に係る実施例である制御装置30は、さらに、溶接スポットの溶接状況を監視する監視回路(図略)を備える。
この監視回路は、電極11から投入された電力によりワークWの少なくとも一部がジュール加熱されて溶融を開始する時である溶融開始時を検出する溶融開始時検出部と、電極11を介してワークWへ投入された第1電力量Q1を算出する第1電力量算出部と、積算された第1電力量Q1が第1設定値X1に到達したか否か(つまりQ1≧X1か)を判定する第1判定部とを備える。さらに監視回路は、第1電力量Q1が第1設定値X1に到達するまで、前述した電力回路を介してワークWへ電力を供給し、ワークWをジュール加熱する(加熱部)。
<< Control Device and Control Method for Spot Welder >>
(1) The control apparatus 30 which is an Example which concerns on this invention is further provided with the monitoring circuit (not shown) which monitors the welding condition of a welding spot.
This monitoring circuit includes a melting start detection unit that detects a melting start time, which is a time when at least a part of the workpiece W is joule-heated by the electric power input from the electrode 11 and starts melting, and the workpiece via the electrode 11 A first power amount calculation unit that calculates the first power amount Q1 input to W, and whether or not the integrated first power amount Q1 has reached the first set value X1 (that is, whether Q1 ≧ X1) A first determination unit. Further, the monitoring circuit supplies power to the workpiece W through the above-described power circuit and joule-heats the workpiece W (heating unit) until the first power amount Q1 reaches the first set value X1.

監視回路の溶融開始時検出部は、さらに、電極11からワークWへの通電開始時からの通電時間である初期通電時間tに対し電極11を介してワークWへ投入された第2電力量Q2(t)を算出する第2電力量算出部と、ワークWが実際に溶融を開始するときの電力量であって初期通電時間tに対応して定まる溶融開始電力量X2(t)(第2設定値)に第2電力量Q2(t)が到達したか否か(つまりQ2≧X2か)を判定する第2判定部とを備える。   The melting start detection unit of the monitoring circuit further includes a second electric energy Q2 input to the work W via the electrode 11 with respect to an initial energization time t that is an energization time from the start of energization from the electrode 11 to the work W. A second power amount calculation unit that calculates (t), and a melting start power amount X2 (t) (second power amount that is determined when the workpiece W actually starts melting and corresponds to the initial energization time t. A second determination unit that determines whether or not the second power amount Q2 (t) has reached the set value (that is, whether Q2 ≧ X2).

(2)この制御装置30によるスポット溶接機100の具体的な制御方法を図7のフローチャートに示す。なお、この図7に示す制御方法を実行することで、本発明の抵抗溶接方法の各工程が実現され、抵抗溶接されたワークW(溶接部材)が製造されることになる。
先ずステップS11で、種々の溶接条件が入力設定される(設定ステップ)。具体的には、ワークWa、Wbの材質や板厚、溶接スポットの数やそれらの位置、電極11a、11bのチップ形状、電極11によるワークWへの加圧力、スポット溶接する加熱用電流値I1、サイクルタイムCt、所望のナゲット径に対応した第1設定値X1、初期通電時間tの関数である溶融開始電力量X2(t)などがある。ちなみに溶融開始電力量X2(t)は、図3に示した溶融開始曲線から導出されるものであれば足り、実験式の形式でもよいし、初期通電時間tと相関させた溶融開始電力量X2(t)の数値データ(配列データ)でもよい。
(2) A specific control method of the spot welder 100 by the control device 30 is shown in the flowchart of FIG. By executing the control method shown in FIG. 7, each step of the resistance welding method of the present invention is realized, and the resistance-welded workpiece W (welding member) is manufactured.
First, in step S11, various welding conditions are input and set (setting step). Specifically, the material and plate thickness of the workpieces Wa and Wb, the number and positions of welding spots, the tip shape of the electrodes 11a and 11b, the pressure applied to the workpiece W by the electrodes 11, the heating current value I1 for spot welding , Cycle time Ct, first set value X1 corresponding to the desired nugget diameter, and melting start electric energy X2 (t) which is a function of initial energization time t. Incidentally, the melting start power amount X2 (t) is sufficient if it is derived from the melting start curve shown in FIG. 3, and may be in the form of an empirical formula, or the melting start power amount X2 correlated with the initial energization time t. Numerical data (array data) of (t) may be used.

ステップS12で、溶接ロボット20およびスポット溶接ガン10が作動して、電極11a、11bの電極端面部(電極チップ)がワークWの両外側に当接(外接)し、ステップS11の設定に基づいて電極11がワークWを加圧する(加圧ステップ)。
ステップS13で、スポット溶接するための加熱通電がなされる。つまり、加熱用電流値I1が電極へ供給されてスポット溶接が開始される(加熱ステップ、加熱工程)。
In step S12, the welding robot 20 and the spot welding gun 10 are operated, and the electrode end surfaces (electrode tips) of the electrodes 11a and 11b abut (externally contact) both outer sides of the workpiece W. Based on the setting in step S11. The electrode 11 pressurizes the workpiece W (pressurizing step).
In step S13, heating energization for spot welding is performed. That is, the current value I1 for heating is supplied to the electrode, and spot welding is started (heating step, heating process).

ステップS14で、通電開始からの通電時間(初期通電時間)tに応じて、ワークWへ投入した第2電力量Q2(t)が算出される(第2電力量算出ステップ、第2電力量算出工程)。具体的には加熱用電流が交流である場合、加熱通電の各サイクルタイムCt毎に、電極11を通じて供給している実効電流値およびその実効電圧値に基づいて、第2電力量Q2(t)が算出される。なお、1Ctは供給する交流の1周期であり、例えば、60サイクルの交流であれば、1Ct=1/60secである。   In step S14, the second power amount Q2 (t) input to the workpiece W is calculated according to the energization time (initial energization time) t from the start of energization (second power amount calculation step, second power amount calculation). Process). Specifically, when the heating current is alternating current, the second electric energy Q2 (t) is calculated based on the effective current value and the effective voltage value supplied through the electrode 11 for each cycle time Ct of heating energization. Is calculated. Note that 1 Ct is one period of alternating current to be supplied. For example, if the alternating current is 60 cycles, 1 Ct = 1/60 sec.

ステップS15で、第2電力量Q2(t)の算出されたサイクルタイムCtに対応する溶融開始電力量X2(t)とステップS14で算出された第2電力量Q2(t)とを比較する(第2判定ステップ、第2判定工程)。第2電力量Q2(t)が溶融開始電力量X2(t)よりも小さければ、すなわち、第2電力量Q2(t)が溶融開始電力量X2(t)に到達していなければ、ステップS13の加熱通電を継続する。一方、第2電力量Q2(t)が溶融開始電力量X2(t)に到達していれば次のステップS16に進み、溶融開始時t0が特定される(溶融開始時検出ステップ、溶融開始時検出工程)。   In step S15, the melting start power amount X2 (t) corresponding to the calculated cycle time Ct of the second power amount Q2 (t) is compared with the second power amount Q2 (t) calculated in step S14 ( Second determination step, second determination step). If the second power amount Q2 (t) is smaller than the melting start power amount X2 (t), that is, if the second power amount Q2 (t) has not reached the melting start power amount X2 (t), step S13 is performed. Continue heating and energizing. On the other hand, if the second power amount Q2 (t) has reached the melting start power amount X2 (t), the process proceeds to the next step S16, and the melting start time t0 is specified (melting start time detection step, melting start time). Detection step).

ステップS17で、ステップS14の場合と同様に、溶融開始時t0からの通電時間(溶融通電時間:t−t0)に応じて、ワークWへ投入した第1電力量Q1が算出される(第1電力量算出ステップ、第1電力量算出工程)。
ステップS18で、溶融開始時t0以降に算出された第1電力量Q1と所望のナゲット径に対応した第1設定値X1とを比較する(第1判定ステップ、第1判定工程)。
In step S17, as in step S14, the first electric energy Q1 supplied to the workpiece W is calculated according to the energization time from the melting start time t0 (melting energization time: t−t0) (first Power amount calculating step, first power amount calculating step).
In step S18, the first power amount Q1 calculated after the melting start time t0 is compared with the first set value X1 corresponding to the desired nugget diameter (first determination step, first determination step).

第1電力量Q1が第1設定値X1よりも小さければ、ワークWへの加熱通電が継続される。逆に、第1電力量Q1が第1設定値X1に到達していれば、ステップS19に進み、ワークWへの加熱通電を終了した後、電極11をワークWから離間させて、その位置でのスポット溶接を終える(加熱ステップ、加熱工程)。   If the first power amount Q1 is smaller than the first set value X1, heating energization to the workpiece W is continued. Conversely, if the first power amount Q1 has reached the first set value X1, the process proceeds to step S19, and after the heating energization to the work W is completed, the electrode 11 is separated from the work W, and at that position. Finish spot welding (heating step, heating process).

なお、図7のフローチャートには示していないが、ステップS17およびステップS18が所定の回数または時間(サイクルタイム数)以上繰り返されるときは、加熱通電の条件を修正、変更するようにしてもよい(加熱変更ステップ、加熱変更工程)。   Although not shown in the flowchart of FIG. 7, when step S17 and step S18 are repeated a predetermined number of times or time (number of cycle times), the heating energization condition may be corrected or changed ( Heating change step, heating change step).

《スポット溶接の評価方法》
スポット溶接の溶接状況を評価するには、図7に示したステップS14〜18により行うことができる。溶接状況の良否を評価するのみであれば、ステップS18のような第1電力量Q1と第1設定値X1との大小関係から評価可能である(推定ステップ、評価ステップ)。勿論、図4に示すような第1電力量Q1とナゲット径Dとを対応づけたデータベースを予め用意しておけば、実際に積算した第1電力量Q1から、溶接部に形成されるナゲット径Dを推定することができる(ナゲット推定ステップ)。
<Evaluation method of spot welding>
In order to evaluate the welding situation of spot welding, it can carry out by step S14-18 shown in FIG. If only the quality of the welding situation is to be evaluated, it can be evaluated from the magnitude relationship between the first power amount Q1 and the first set value X1 as in step S18 (estimation step, evaluation step). Of course, if a database associating the first electric energy Q1 and the nugget diameter D as shown in FIG. 4 is prepared in advance, the nugget diameter formed in the welded portion from the actually accumulated first electric energy Q1. D can be estimated (nugget estimation step).

また、溶融開始時の検出であれば、図7に示したステップS13〜16により行うことができる。つまり、ステップS15のような第2電力量Q2(t)と溶融開始電力量X2(t)との大小関係を、通電時間毎に比較することで、溶融開始時を判定可能である(推定ステップ、評価ステップ)。   Moreover, if it is the detection at the time of a melting start, it can carry out by step S13-16 shown in FIG. That is, it is possible to determine the melting start time by comparing the magnitude relationship between the second power amount Q2 (t) and the melting start power amount X2 (t) as in step S15 for each energization time (estimation step). , Evaluation step).

Claims (13)

圧接された電極から投入される電力により被溶接物の溶接部の少なくとも一部がジュール加熱されて溶融を開始する時である溶融開始時を検出する溶融開始時検出工程と、
前記溶融開始時から前記電極を介して前記被溶接物へ投入された電力の積算値である第1電力量を算出する第1電力量算出工程と、
前記第1電力量または該第1電力量に対応した前記溶接部の溶接状況を指標する溶接指標値が少なくとも第1設定値に到達したか否かを判定する第1判定工程と、
前記溶融開始時から前記第1電力量または前記溶接指標値が少なくとも前記第1設定値に到達するまで前記ジュール加熱を行う加熱工程とを備え、
前記溶接部が溶融凝固したナゲットの形成を安定化させ得ることを特徴とする抵抗溶接方法。
A melting start detection step for detecting a melting start time, which is a time when at least a part of the welded portion of the work piece is Joule-heated by the electric power input from the pressure-welded electrode and starts melting;
A first power amount calculating step of calculating a first power amount that is an integrated value of power input to the workpiece through the electrodes from the start of melting;
A first determination step of determining whether or not a welding index value indicating a welding state of the weld corresponding to the first power amount or the first power amount has reached at least a first set value;
A heating step of performing the Joule heating until the first power amount or the welding index value reaches at least the first set value from the start of melting,
A resistance welding method, wherein the formation of a nugget in which the weld is melted and solidified can be stabilized.
前記溶融開始時検出工程は、
前記溶接部のジュール加熱のために前記電極への通電が開始された時である通電開始時からの経過時間に応じて該被溶接物へ投入された電力の積算値である第2電力量を算出する第2電力量算出工程と、
前記通電開始時からの経過時間に対応して予め定められ前記溶接部の少なくとも一部が現実に溶融を開始するまでに投入された電力量である溶融開始電力量または該溶融開始電力量に基づき設定された第2設定値に、前記第2電力量が少なくとも到達した時を前記溶融開始時と判定する第2判定工程と、からなる請求項1に記載の抵抗溶接方法。
The melting start detection step includes
A second electric energy that is an integrated value of electric power supplied to the workpiece according to an elapsed time from the start of energization, which is the time when energization of the electrode is started for Joule heating of the welded portion. A second electric energy calculating step for calculating;
Based on the melting start power amount or the melting start power amount that is determined in advance corresponding to the elapsed time from the start of energization and that is the amount of power that is input until at least a part of the weld actually starts melting. 2. The resistance welding method according to claim 1, further comprising: a second determination step of determining when the second electric energy reaches at least the set second set value as the melting start time.
前記加熱工程は、前記第1判定工程の判定結果に基づき前記被溶接物の加熱条件を変更する加熱変更工程を含む請求項1または2に記載の抵抗溶接方法。   The resistance welding method according to claim 1, wherein the heating step includes a heating change step of changing a heating condition of the workpiece to be welded based on a determination result of the first determination step. 請求項1〜3のいずれかに記載の抵抗溶接方法により溶接されたことを特徴とする抵抗溶接部材。   A resistance welding member welded by the resistance welding method according to claim 1. 被溶接物に外接する電極と該被溶接物の溶接部をジュール加熱する加熱用電流を該電極へ供給する電源装置とを備える抵抗溶接機の制御装置であって、
前記電極から前記被溶接物へ投入される電力により前記溶接部の少なくとも一部がジュール加熱されて溶融を開始する時である溶融開始時を検出する溶融開始時検出部と、
前記溶融開始時から前記電極を介して前記被溶接物へ投入された電力の積算値である第1電力量を算出する第1電力量算出部と、
前記第1電力量または該第1電力量に対応した前記溶接部の溶接状況を指標する溶接指標値が少なくとも第1設定値に到達したか否かを判定する第1判定部と、
前記溶融開始時から前記第1電力量または前記溶接指標値が少なくとも該第1設定値に到達するまで前記ジュール加熱を行う加熱部と、
を有することを特徴とする抵抗溶接機の制御装置。
A resistance welding machine control device comprising: an electrode circumscribing an object to be welded; and a power supply device for supplying a heating current for Joule heating the welded portion of the object to be welded to the electrode,
A melting start detection unit for detecting a melting start time, which is a time when at least a part of the welded portion is Joule-heated by the electric power input from the electrode to the workpiece and starts melting;
A first power amount calculation unit that calculates a first power amount that is an integrated value of power input to the workpiece through the electrodes from the start of melting;
A first determination unit for determining whether or not a welding index value indicating a welding state of the weld corresponding to the first power amount or the first power amount has reached at least a first set value;
A heating unit that performs the Joule heating until the first power amount or the welding index value reaches at least the first set value from the start of melting;
A resistance welding machine control device comprising:
被溶接物に圧接される電極と、
該被溶接物の溶接部をジュール加熱する加熱用電流を該電極へ供給する電源装置と、
請求項5に記載の制御装置と、
を備えることを特徴とする抵抗溶接機。
An electrode pressed against the work piece;
A power supply device for supplying a heating current for Joule heating the welded portion of the workpiece to the electrodes;
A control device according to claim 5;
A resistance welding machine comprising:
被溶接物に外接する電極と該被溶接物の溶接部をジュール加熱する加熱用電流を該電極へ供給する電源装置とを備える抵抗溶接機の制御方法であって、
前記電極から前記被溶接物へ投入される電力により前記溶接部の少なくとも一部がジュール加熱されて溶融を開始する時である溶融開始時を検出する溶融開始時検出ステップと、
前記溶融開始時から前記電極を介して前記被溶接物へ投入された電力の積算値である第1電力量を算出する第1電力量算出ステップと、
前記第1電力量または該第1電力量に対応した前記溶接部の溶接状況を指標する溶接指標値が少なくとも第1設定値に到達したか否かを判定する第1判定ステップと、
前記溶融開始時から前記第1電力量または前記溶接指標値が少なくとも該第1設定値に到達するまで前記ジュール加熱を行う加熱ステップと、
を備えることを特徴とする抵抗溶接機の制御方法。
A resistance welding machine control method comprising: an electrode circumscribing an object to be welded; and a power supply device that supplies a heating current for Joule heating the welded portion of the object to be welded to the electrode,
A melting start detection step for detecting a melting start time which is a time when at least a part of the welded portion is Joule-heated by the electric power supplied from the electrode to the workpiece and starts melting;
A first power amount calculating step of calculating a first power amount that is an integrated value of power input to the workpiece through the electrodes from the start of melting;
A first determination step of determining whether or not a welding index value indicating a welding status of the weld corresponding to the first power amount or the first power amount has reached at least a first set value;
A heating step in which the Joule heating is performed until the first power amount or the welding index value reaches at least the first set value from the start of melting;
A control method for a resistance welder, comprising:
請求項7に記載の抵抗溶接機の制御方法を、コンピュータを機能させて実行することを特徴とする抵抗溶接機の制御プログラム。   A control program for a resistance welder according to claim 7, wherein the control method for the resistance welder is executed by causing a computer to function. 圧接された電極から投入される電力により被溶接物の溶接部の少なくとも一部がジュール加熱されて溶融を開始する時である溶融開始時を検出する溶融開始時検出ステップと、
前記溶融開始時から前記電極を介して前記被溶接物へ投入された電力の積算値である第1電力量を算出する第1電力量算出ステップと、
前記第1電力量に基づき前記溶接部の溶接状況を推定する推定ステップと、
を備えることを特徴とする抵抗溶接の評価方法。
A melting start detection step for detecting a melting start time, which is a time when at least a part of the welded portion of the work piece is Joule-heated by the electric power input from the pressure-welded electrode and starts melting;
A first power amount calculating step of calculating a first power amount that is an integrated value of power input to the workpiece through the electrodes from the start of melting;
An estimation step of estimating a welding state of the weld based on the first electric energy;
A resistance welding evaluation method comprising:
前記推定ステップは、前記第1電力量に基づいて前記溶接部が溶融凝固して形成されたナゲットの大きさを推定するナゲット推定ステップである請求項9に記載の抵抗溶接の評価方法。   The resistance welding evaluation method according to claim 9, wherein the estimation step is a nugget estimation step of estimating a size of a nugget formed by melting and solidifying the welded portion based on the first electric energy. 前記溶融開始時検出ステップは、
前記溶接部のジュール加熱のために前記電極への通電が開始された時である通電開始時からの経過時間に応じて該被溶接物へ投入された電力の積算値である第2電力量を算出する第2電力量算出ステップと、
前記通電開始時からの経過時間に対応して予め定められ前記溶接部の少なくとも一部が現実に溶融を開始するまでに投入された電力量である溶融開始電力量または該溶融開始電力量に基づき設定された第2設定値に、前記第2電力量が少なくとも到達した時を前記溶融開始時と判定する第2判定ステップと、
からなる請求項9または10に記載の抵抗溶接の評価方法。
The melting start detection step includes
A second electric energy that is an integrated value of electric power supplied to the workpiece according to an elapsed time from the start of energization, which is the time when energization of the electrode is started for Joule heating of the welded portion. A second power amount calculating step for calculating;
Based on the melting start power amount or the melting start power amount that is determined in advance corresponding to the elapsed time from the start of energization and that is the amount of power that is input until at least a part of the weld actually starts melting. A second determination step of determining when the melting starts at the time when the second electric energy reaches at least the set second setting value;
The method for evaluating resistance welding according to claim 9 or 10.
圧接された電極から投入される電力により被溶接物の溶接部をジュール加熱するために前記電極への通電が開始された時である通電開始時からの経過時間に応じて該被溶接物へ投入された電力の積算値である第2電力量を算出する第2電力量算出ステップと、
前記通電開始時からの経過時間に対応して予め定められ前記溶接部の少なくとも一部が現実に溶融を開始するまでに投入された電力量である溶融開始電力量または該溶融開始電力量に基づき設定された第2設定値に、前記第2電力量が少なくとも到達した時を前記溶融開始時と判定する第2判定ステップとを備え、
抵抗溶接される被溶接物の少なくとも一部が溶融を開始する溶融開始時を検出し得ることを特徴とする抵抗溶接の評価方法。
Input to the work piece according to the elapsed time from the start of energization, which is when the energization of the electrode is started in order to joule-heat the welded part of the work to be welded by the electric power input from the pressure-welded electrode A second power amount calculating step of calculating a second power amount that is an integrated value of the generated power;
Based on the melting start power amount or the melting start power amount that is determined in advance corresponding to the elapsed time from the start of energization and that is the amount of power that is input until at least a part of the weld actually starts melting. A second determination step of determining when the second electric energy reaches at least the set second setting value as the melting start time,
A resistance welding evaluation method characterized in that it can detect a melting start time at which at least a part of a workpiece to be resistance welded starts melting.
請求項9〜12のいずれかに記載の抵抗溶接の評価方法を、コンピュータを機能させて実行することを特徴とする抵抗溶接の評価プログラム。   The resistance welding evaluation program according to claim 9, wherein the resistance welding evaluation method according to claim 9 is executed by causing a computer to function.
JP2009262730A 2009-11-18 2009-11-18 Resistance welding method, resistance welding member, resistance welding machine and control device thereof, resistance welding machine control method and control program thereof, resistance welding evaluation method and evaluation program, and detection method at the start of resistance welding melting Expired - Fee Related JP5052586B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2009262730A JP5052586B2 (en) 2009-11-18 2009-11-18 Resistance welding method, resistance welding member, resistance welding machine and control device thereof, resistance welding machine control method and control program thereof, resistance welding evaluation method and evaluation program, and detection method at the start of resistance welding melting
EP10805302A EP2501514A2 (en) 2009-11-18 2010-11-16 Resistance welding method, resistance-welded member and control apparatus for resistance welder ; resistance welding evaluation method, and resistance welding evaluation program
PCT/IB2010/003119 WO2011061623A2 (en) 2009-11-18 2010-11-16 Resistance welding method, resistance-welded member, resistance welder, control apparatus for resistance welder, control method and control program for resistance welder, resistance welding evaluation method, and resistance welding evaluation program
CN2010800524257A CN102665995A (en) 2009-11-18 2010-11-16 Resistance welding method, resistance-welded member, resistance welder, control apparatus for resistance welder, control method and control program for resistance welder, resistance welding evaluation method, and resistance welding evaluation program
US13/510,447 US20120248086A1 (en) 2009-11-18 2010-11-16 Resistance welding method, resistance-welded member and control apparatus for resistance welder, resistance welding evaluation method, and resistance welding evaluation program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009262730A JP5052586B2 (en) 2009-11-18 2009-11-18 Resistance welding method, resistance welding member, resistance welding machine and control device thereof, resistance welding machine control method and control program thereof, resistance welding evaluation method and evaluation program, and detection method at the start of resistance welding melting

Publications (2)

Publication Number Publication Date
JP2011104628A true JP2011104628A (en) 2011-06-02
JP5052586B2 JP5052586B2 (en) 2012-10-17

Family

ID=43743716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009262730A Expired - Fee Related JP5052586B2 (en) 2009-11-18 2009-11-18 Resistance welding method, resistance welding member, resistance welding machine and control device thereof, resistance welding machine control method and control program thereof, resistance welding evaluation method and evaluation program, and detection method at the start of resistance welding melting

Country Status (5)

Country Link
US (1) US20120248086A1 (en)
EP (1) EP2501514A2 (en)
JP (1) JP5052586B2 (en)
CN (1) CN102665995A (en)
WO (1) WO2011061623A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015190082A1 (en) * 2014-06-12 2015-12-17 Jfeスチール株式会社 Resistive spot-welding device and resistive spot-welding method

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101584495B1 (en) * 2013-03-29 2016-01-13 제이에프이 스틸 가부시키가이샤 Resistance spot welding system
KR102127991B1 (en) * 2013-09-12 2020-06-29 닛폰세이테츠 가부시키가이샤 Resistance spot welding method and welded structure
JP6123904B2 (en) * 2013-09-12 2017-05-10 新日鐵住金株式会社 Resistance spot welding method and manufacturing method of welded structure
US11504796B2 (en) * 2013-10-04 2022-11-22 Jfe Steel Corporation Resistance spot welding method
WO2015125991A1 (en) * 2014-02-24 2015-08-27 주식회사 호원 Hybrid welder
JP6471841B1 (en) * 2017-08-18 2019-02-20 Jfeスチール株式会社 Resistance spot welding method and manufacturing method of welded member
KR102415945B1 (en) * 2018-06-29 2022-06-30 제이에프이 스틸 가부시키가이샤 Resistance spot welding method and manufacturing method of a welded member
CN112262012B (en) * 2018-06-29 2022-03-15 杰富意钢铁株式会社 Resistance spot welding method and method for manufacturing welded member
DE102018217364A1 (en) * 2018-10-11 2020-04-16 Robert Bosch Gmbh Procedure for checking the quality of resistance welding workpieces
WO2021167545A1 (en) * 2020-02-20 2021-08-26 Aisin Otomoti̇v Parçalari San. Ve Ti̇c. A.Ş. A resistance welding robot with an external power supply
GB2594722B (en) * 2020-05-05 2024-07-17 Aherne Mark Weld monitoring apparatus
CN112775528B (en) * 2020-12-22 2022-09-27 上海电力大学 Method for automatically evaluating rigidity of resistance spot welding clamp

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07185835A (en) * 1993-12-27 1995-07-25 Matsushita Electric Ind Co Ltd Device for monitoring weld quality of resistance welding
JPH09192851A (en) * 1996-01-08 1997-07-29 Sekisui Chem Co Ltd Device for judging appropriateness of welding
JPH09206958A (en) * 1996-01-30 1997-08-12 Spotron Kk Nugget formation monitoring device
JP2001018073A (en) * 1999-07-07 2001-01-23 Nadex Co Ltd Resistance welding equipment having a discriminating function for temperature range of weld zone
JP2004160510A (en) * 2002-11-14 2004-06-10 Nissan Motor Co Ltd Welding quality discriminating method and device for the same
JP2006026667A (en) * 2004-07-13 2006-02-02 Seiwa Seisakusho:Kk Resistance welding equipment

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5711784A (en) * 1980-06-23 1982-01-21 Mitsubishi Electric Corp Method and device for inspection of parallel gap welding
JPS5913585A (en) * 1982-07-15 1984-01-24 Sumitomo Electric Ind Ltd Method for discrimination defectiveness and non-defectiveness of resistance welding
US4516008A (en) * 1983-03-14 1985-05-07 Pertron Controls Corporation System for calculating the root mean square (RMS) current in a resistance welding system
US4503311A (en) * 1983-05-25 1985-03-05 General Motors Corporation Method and apparatus for detecting the onset of melting in a resistance spot weld
US4596917A (en) * 1984-01-16 1986-06-24 General Electric Company Resistance spot welder process monitor
CH667410A5 (en) * 1985-09-10 1988-10-14 Elpatronic Ag METHOD AND ARRANGEMENT FOR CONTROLLING THE WELDING PROCESS IN A RESISTANCE WELDING MACHINE.
US4866247A (en) * 1986-12-11 1989-09-12 The Lincoln Electric Company Apparatus and method of short circuiting arc welding
DE4325856C2 (en) * 1992-07-31 1995-08-24 Fraunhofer Ges Forschung Procedure for evaluating welded joints
JP3322448B2 (en) * 1993-07-16 2002-09-09 小原株式会社 Resistance welding control method
JP3132409B2 (en) * 1997-03-19 2001-02-05 松下電器産業株式会社 Consumable electrode type pulse arc welding machine controller
JP3221356B2 (en) * 1997-05-14 2001-10-22 松下電器産業株式会社 Quality evaluation method and apparatus for resistance welds
JPH11291061A (en) * 1998-04-10 1999-10-26 Toyota Auto Body Co Ltd Instrument for detecting spot welding resistance
IT1310466B1 (en) * 1999-09-08 2002-02-18 Ada Applic Digitali E Analogic PROCEDURE FOR THE QUALITY CONTROL OF POINT WELDING IN WELDING MACHINES.
JP3767271B2 (en) * 1999-09-20 2006-04-19 スズキ株式会社 Resistance welding machine control device and resistance welding machine control method
JP2001287047A (en) * 2000-04-06 2001-10-16 Nissan Motor Co Ltd Spot welding equipment
US6335504B1 (en) * 2000-12-15 2002-01-01 Essor International Inc. Apparatus for monitoring spot welding process and method of the same
JP3883499B2 (en) * 2002-06-05 2007-02-21 株式会社電元社製作所 Resistance spot welding method
WO2005099955A1 (en) * 2004-04-06 2005-10-27 Kelvin Shih Energy balanced weld controller with energy target comparison
US8704135B2 (en) * 2006-01-20 2014-04-22 Lincoln Global, Inc. Synergistic welding system
US20060076321A1 (en) * 2004-09-30 2006-04-13 Maev Roman G Ultrasonic in-process monitoring and feedback of resistance spot weld quality
US7244905B2 (en) * 2005-06-09 2007-07-17 Daimlerchrysler Corporation Method for estimating nugget diameter and weld parameters
US7759596B2 (en) * 2005-11-30 2010-07-20 Ford Motor Company Method for controlling weld energy
US20080041827A1 (en) * 2006-05-26 2008-02-21 Wei Li Resistance Spot Welding Monitoring System and Method
DE102007028160B4 (en) * 2007-06-12 2019-07-11 Lorch Schweißtechnik GmbH Method and device for controlling a power source and power source with such a device
CN101323047B (en) * 2008-07-24 2010-12-08 上海交通大学 Resistance spot welding quality control device and method based on electrode displacement

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07185835A (en) * 1993-12-27 1995-07-25 Matsushita Electric Ind Co Ltd Device for monitoring weld quality of resistance welding
JPH09192851A (en) * 1996-01-08 1997-07-29 Sekisui Chem Co Ltd Device for judging appropriateness of welding
JPH09206958A (en) * 1996-01-30 1997-08-12 Spotron Kk Nugget formation monitoring device
JP2001018073A (en) * 1999-07-07 2001-01-23 Nadex Co Ltd Resistance welding equipment having a discriminating function for temperature range of weld zone
JP2004160510A (en) * 2002-11-14 2004-06-10 Nissan Motor Co Ltd Welding quality discriminating method and device for the same
JP2006026667A (en) * 2004-07-13 2006-02-02 Seiwa Seisakusho:Kk Resistance welding equipment

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015190082A1 (en) * 2014-06-12 2015-12-17 Jfeスチール株式会社 Resistive spot-welding device and resistive spot-welding method
JP5907317B1 (en) * 2014-06-12 2016-04-26 Jfeスチール株式会社 Resistance spot welding apparatus and resistance spot welding method
US10081074B2 (en) 2014-06-12 2018-09-25 Jfe Steel Corporation Resistance spot welding device and resistance spot welding method

Also Published As

Publication number Publication date
CN102665995A (en) 2012-09-12
EP2501514A2 (en) 2012-09-26
WO2011061623A3 (en) 2011-11-03
WO2011061623A2 (en) 2011-05-26
JP5052586B2 (en) 2012-10-17
US20120248086A1 (en) 2012-10-04

Similar Documents

Publication Publication Date Title
JP5052586B2 (en) Resistance welding method, resistance welding member, resistance welding machine and control device thereof, resistance welding machine control method and control program thereof, resistance welding evaluation method and evaluation program, and detection method at the start of resistance welding melting
JP5127788B2 (en) Resistance welding method, resistance welding member, resistance welding machine, resistance welding machine control method and control program and control device thereof, resistance welding evaluation method and evaluation program and evaluation device thereof
JP5209749B2 (en) Resistance welding method, resistance welding member, resistance welding machine and its control device, resistance welding machine control method and control program, resistance welding evaluation method and evaluation program
KR101584495B1 (en) Resistance spot welding system
JP7006388B2 (en) Resistance spot welding method and resistance spot welding equipment
JP5907317B1 (en) Resistance spot welding apparatus and resistance spot welding method
JPWO2015099192A1 (en) Resistance spot welding method
US9868175B2 (en) Seam welding method and seam welding device
WO2015033537A1 (en) Indirect spot welding device
JP5582277B1 (en) Resistance spot welding system
JP2002028790A (en) Resistance welding equipment
JP2013063447A (en) Welding device and welding method
JP6913062B2 (en) Resistance spot welding method and welding member manufacturing method
JP5697093B2 (en) Hybrid welding apparatus and hybrid welding method
JP5988015B1 (en) Resistance spot welding method
JP2009028786A (en) Method of and apparatus for determining quality of resistance brazing
JP5787696B2 (en) Welding method and apparatus
JP7568921B2 (en) Method for manufacturing a resistance spot welded joint and resistance spot welding device
JP2013169568A (en) Method for controlling joining quality of press fitting joining
Cohal A Simulation of Spot Welding Process
JP3223065B2 (en) Pre-energization control device for resistance welding and method for determining pre-energization conditions
JP2005334935A (en) Method for evaluating spot weldability of steel sheet
JP2009028787A (en) Method and apparatus for control of resistance brazing
JPS5985386A (en) Welding method by feedback device for spot welding

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120409

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120724

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120724

R150 Certificate of patent or registration of utility model

Ref document number: 5052586

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150803

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees