JP3767271B2 - Resistance welding machine control device and resistance welding machine control method - Google Patents

Resistance welding machine control device and resistance welding machine control method Download PDF

Info

Publication number
JP3767271B2
JP3767271B2 JP26550399A JP26550399A JP3767271B2 JP 3767271 B2 JP3767271 B2 JP 3767271B2 JP 26550399 A JP26550399 A JP 26550399A JP 26550399 A JP26550399 A JP 26550399A JP 3767271 B2 JP3767271 B2 JP 3767271B2
Authority
JP
Japan
Prior art keywords
welding
welding power
rate
voltage
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26550399A
Other languages
Japanese (ja)
Other versions
JP2001087867A (en
Inventor
晃 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzuki Motor Co Ltd
Original Assignee
Suzuki Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzuki Motor Co Ltd filed Critical Suzuki Motor Co Ltd
Priority to JP26550399A priority Critical patent/JP3767271B2/en
Publication of JP2001087867A publication Critical patent/JP2001087867A/en
Application granted granted Critical
Publication of JP3767271B2 publication Critical patent/JP3767271B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Generation Of Surge Voltage And Current (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、抵抗溶接機の制御装置および制御方法に係り、詳しくは、溶接電力の時間変化率に基づいて散り発生の兆候を検出し、散りが発生する前に溶接電力を減少させることで、散りの発生を抑制するようにした抵抗溶接機の制御装置および制御方法に関するものである。
【0002】
【従来の技術】
抵抗溶接では、散りの発生が品質および安全面で問題になっていた。このため、散りの発生を抑制し溶接品質の向上を図るための技術が以下に示すように種々提案されている。
【0003】
特開昭54−58655号公報(特公昭57−37430号公報)には、通電時間中の溶接打点における部材の肉厚変化を検出し、その変化量が基準値以上になったことにより散り発生を検出するものとし、散り発生したときには溶接電流を所定量減少させ、散り発生しないときは溶接電流を所定量増加させることで、溶接電流を散り発生限界電流値に沿って制御するようにした抵抗点溶接制御方法が記載されている。
【0004】
特開平6−344155号公報には、電極間電圧と基準値とを比較して散りの発生を予測し、その予測結果にしたがって対策を講ずることにより、散り発生の抑制および溶接ナゲット径の均一な溶接を行なえるようにしたスポット溶接機用制御装置が記載されている。溶接通電中の所定の期間のみ電流量を低減することで散りの発生を抑制できる。この所定の期間で散りが発生しやすいことが実験的に確認されている。この所定の期間は被溶接材間の電流路の面積が急に拡大しようとしている期間である。この期間の溶接電流を低減することで、溶接電流路の面積が穏やかに拡大されることにより散り発生が抑制される。電極間電圧が基準値を越えているか否かで散り発生の有無を予測するようにしたため、散り発生を効果的に抑制できる。
【0005】
特開平9−216070号公報には、溶接電流と電極間電圧を用いて推算したエネルギー分布から、散り発生危険率と散り発生予測時間を推算し、散り発生予測時間が設定した溶接時間経過の直後になるように溶接電流を変更制御することで、散りを発生させることなく入熱を高めて、最大の強度を持つナゲットを得るようにした抵抗溶接機の制御装置が記載されている。
【0006】
特開平10−94883号公報には、溶接電流とチップ間電圧を検出し、熱伝導計算により溶接部のシミュレーシヨンを行ない、ナゲットの生成状態を推定することにより、良好な溶接を行なうようにした抵抗溶接機の溶接条件制御方法が記載されている。
【0007】
【発明が解決しようとする課題】
特開昭54−58655号公報に記載されたものは、散りの発生を検出した際に溶接電流を制御するものである。このため、散りが発生した際に溶接電流を低減させたり溶接電流の供給を停止させることはできるが、散りの発生を未然に防止することはできない。
【0008】
特開平6−344155号公報に記載されたスポット溶接機用制御装置は、散り発生限界電流よりやや小さい電流で溶接した時に生じた電極間電圧を予め実験により求めた得た基準電極間電圧と実際に検出された電極間電圧とを比較し、実際に検出された電極間電圧が基準電極間電圧を越えたか否かで散り発生の有無を予測するものである。基準電極間電圧は散り発生限界電流よりやや小さい電流で溶接した時に生じた電極間電圧を予め実験により求めて得たものであるため、実際に検出された電極間電圧が基準電極間電圧を極わずかに越えているだけで散り発生には至らないような場合でも散り発生有りと予測されることがある。
【0009】
特開平9−216070号公報に記載された抵抗溶接機の制御装置は、エネルギー分布を推算するために多数の演算処理が必要である。このため、制御装置の構成が複雑となる。特開平10−94883号公報に記載された抵抗溶接機の溶接条件制御方法は、熱伝導シミュレータを用いる構成であるため、制御装置等の構成が複雑となる。
【0010】
【発明の目的】
この発明はこのような課題を解決するためなされたもので、比較的簡易な構成で散りの発生を精度良く予測し、この予測結果に基づいて溶接部の発熱量を制御することで良好な溶接を行なえるようにした抵抗溶接機の制御装置および制御方法を提供することを目的とする。
【0011】
【課題を解決するための手段】
前記課題を解決するため請求項1に係る抵抗溶接機の制御装置は、溶接電流を検出する 電流検出部と、溶接電極間電圧を検出する電圧検出部と、前記溶接電流と前記溶接電極間電圧とに基づいて溶接電力を算出するとともに溶接電力の時間変化率を算出する溶接電力変化率算出手段と、ナゲット成長期間において前記溶接電力の時間変化率が予め設定した前記溶接電力の許容増加率を越えた場合にそれを散り発生の兆候と判断して溶接電力を減少させる溶接電力制御手段とを備えている。そして、前記溶接電力制御手段は、前記溶接電力の時間変化率が前記許容増加率を越えた場合に、前記溶接電力の供給を直ちに停止するとともに、その後の前記溶接電力の供給量を所定期間に亘って低減する。
【0012】
請求項1に係る抵抗溶接機の制御装置は、ナゲット成長期間における溶接電力の時間変化率を監視し、溶接電力の時間変化率が予め設定した許容増加率以下になるよう溶接電力を制御する。溶接電力の時間変化率を監視することで、溶接電力の変化の兆候を速やかに検出することができる。これにより、ナゲット成長期間における溶接電力が過大になって散りが発生する前に溶接電力を低減させることができ、散りの発生を未然に防止できる。また、ナゲット成長期間における溶接電力が過小になって溶接品質が低下するのを未然に防止できる。
【0013】
請求項2に係る抵抗溶接機の制御装置は、溶接電極間電圧を検出する電圧検出部と、前記溶接電極間電圧の時間変化率を算出する電極間電圧変化率算出手段と、ナゲット成長期間において前記溶接電極間電圧の時間変化率が予め設定した前記溶接電極間電圧の許容増加率を越えた場合にそれを散り発生の兆候と判断して溶接電力を減少させる溶接電力制御手段とを備えている。そして、前記溶接電力制御手段は、前記溶接電極間電圧の時間変化率が前記許容増加率を越えた場合に、前記溶接電力の供給を直ちに停止するとともに、その後の前記溶接電力の供給量を所定期間に亘って低減する。
【0014】
請求項2に係る抵抗溶接機の制御装置は、ナゲット成長期間における溶接電極間電圧の時間変化率を監視し、溶接電極間電圧の時間変化率が予め設定した許容増加率を越えた場合にそれを散り発生の兆候と判断して溶接電力を減少させる。よって、散りの発生を未然に防止できる。
【0015】
請求項3に係る抵抗溶接機の制御方法は、溶接電流及び溶接電極間電圧を検出し、検出した前記溶接電流と前記溶接電極間電圧とに基づいて溶接電力を算出するとともに溶接電力の時間変化率を算出し、ナゲット成長期間において前記溶接電力の時間変化率が予め設定した前記溶接電力の許容増加率を越えた場合にそれを散り発生の兆候と判断して溶接電力を減少させる。そして、前記溶接電力の時間変化率が前記許容増加率を越えた場合に、前記溶接電力の供給を直ちに停止するとともに、その後の前記溶接電力の供給量を所定期間に亘って低減する。
【0016】
請求項3に係る抵抗溶接機の制御方法は、ナゲット成長期間における溶接電力の時間変化率を監視し、溶接電力の時間変化率が予め設定した許容増加率を越えた場合にそれを散り発生の兆候と判断して溶接電力を減少させる。よって、散りの発生を未然に防止できる。
【0017】
請求項4に係る抵抗溶接機の制御方法は、溶接電極間電圧を検出し、検出した前記溶接電極間電圧の時間変化率を算出し、ナゲット成長期間において前記溶接電極間電圧の時間変化率が予め設定した前記溶接電極間電圧の許容増加率を越えた場合にそれを散り発生の兆候と判断して溶接電力を減少させる。そして、前記溶接電極間電圧の時間変化率が前記許容増加率を越えた場合に、前記溶接電力の供給を直ちに停止するとともに、その後の前記溶接電力の供給量を所定期間に亘って低減する。
【0018】
請求項4に係る抵抗溶接機の制御方法は、ナゲット成長期間における溶接電極電圧の時間変化率を監視し、溶接電極電圧の時間変化率が予め設定した許容増加率を越えた場合にそれを散り発生の兆候と判断して溶接電力を減少させる。よって、散りの発生を未然に防止できる。
0019
【発明の実施の形態】
以下、この発明の実施の形態を添付図面に基づいて説明する。
0020
図1はこの発明に係る抵抗溶接機の制御装置のブロック構成図である。この発明に係る抵抗溶接機の制御装置1は、3相交流電源2と、3相全波整流部3と、インバータ部4と、降圧トランス5と、整流部6と、一対の溶接電極7a,7bと、電圧検出部8と、電流検出部9と、制御部10とからなる。制御部10は、溶接電力変化率算出手段11と、標準範囲記憶手段12と、溶接電力制御手段13と、インバータ駆動回路14とを備える。符号30は被溶接物、符号31はナゲット(溶解部)である。
0021
3相全波整流部3は、3相交流電源2から供給される3相交流を全波整流して直流電源を生成する。生成された直流電源はインバータ部4へ供給される。インバータ部4は、直流電源を高周波交流へ変換して降圧トランス5の一次巻線を駆動する。このインバータ部4は、H型ブリッジ接続された4個の電力用半導体スイッチング素子(例えばIGBT等)を備える。インバータ部4は、制御部10内のインバータ駆動回路14から供給される複数の駆動信号10aに基づいて各電力用半導体スイッチング素子が所定の順序でスイッチングされることで、高周波交流を発生する。制御部10内の溶接電力制御手段13は、インバータ駆動回路14へ供給するPWM信号13aのデューティを可変することでインバータ4の出力電力を制御し、これによって降圧トランス5,整流部6,溶接電力7a,7bを介して被溶接部30に供給する溶接電力を制御する。降圧トランス5の2次巻線には、低電圧化された高周波交流が誘起される。この低電圧化された高周波交流は整流部6で直流に変換される。整流部6は、2個の整流用ダイオード6a,6bを備える。整流部6で生成された脈流は、各溶接電極7a,7bを介して被溶接部30に供給される。
0022
電圧検出部8は、一対の溶接電極7a,7b間の電圧を検出し、検出した電圧に対応した電気信号(電圧検出信号)8aを出力する。この電圧検出信号8aは制御部10内の溶接電力変化率算出手段11へ供給される。
0023
電流検出部9は、溶接電流を検出し、検出した溶接電流に対応した電気信号(電流検出信号)9aを出力する。この電流検出信号9aは制御部10内の溶接電力変化率算出手段11へ供給される。
0024
溶接電力変化率算出手段11は、電圧検出信号8aと電流検出信号9aとに基づいて溶接電力の瞬時値11aを予め設定した時間間隔で算出するとともに、溶接電力の瞬時値の時間変化率11bを算出する。算出された溶接電力の瞬時値11aならびに溶接電力の瞬時値の時間変化率11bは、溶接電力制御手段13へ供給される。
0025
標準範囲記憶手段12には、溶接電力が最大値となった以降のナゲット成長期間における溶接電力の時間変化率の標準範囲が格納されている。この溶接電力の時間変化率の標準範囲は、ナゲット成長期間の時間経過毎に上限値と下限値とを予め設定したものである。
0026
溶接電力制御手段13は、指令値に基づいてPWM信号13aを生成してインバータ駆動回路14へ供給することで溶接電力の供給を開始させるとともに、溶接電力の瞬時値11aに基づいて各PWM変調周期毎の溶接電力積分値または各PWM変調周期毎の溶接電力の瞬時値11aの最大値を求める。
0027
溶接電力制御手段13は、各PWM変調周期毎の溶接電力積分値または各PWM変調周期毎の溶接電力の瞬時値11aの最大値の変化を監視し、各PWM変調周期毎の溶接電力積分値または各PWM変調周期毎の溶接電力の瞬時値11aの最大値が最大値(極大点)に達したことに基づいて図2に示す温度上昇期間が終了して下降期間(ナゲット成長期間)に入ったことを認識する。下降期間(ナゲット成長期間)とは、溶接の自律作用による加熱抑制期間のことである。
0028
溶接電力制御手段13は、下降期間(ナゲット成長期間)に入ると、先のPWM変調周期での溶接電力積分値または溶接電力の瞬時値11aの最大値と、今回のPWM変調周期での溶接電力積分値または溶接電力の瞬時値11aの最大値との変化率を算出する。そして、算出した各PWM変調周期毎の溶接電力の時間変化率と標準範囲とを比較し、PWM変調周期毎の溶接電力の時間変化率が標準範囲の上限値を越えている場合にはPWM信号13aのデューティを小さくすることで溶接電力を減少させ、また、PWM変調周期毎の溶接電力の時間変化率が標準範囲の下限値を越えている場合にはPWM信号13aのデューティを大きくすることで溶接電力を増加させる。これにより、各PWM変調周期毎の溶接電力の時間変化率が予め設定した標準範囲になるよう制御される。
0029
さらに、溶接電力制御手段13は、溶接電力の瞬時値の時間変化率11bが予め設定した散り発生兆候検出値を越えている場合には、現在出力しているPWM信号13aの出力を直ちに停止するとともに、次のPWM変調周期から数周期の期間に亘ってPWM信号13aのデューティを極めて小さな値に変更する。散り発生の兆候を検出して供給電力を低減させることで、散りの発生を未然に防止することができる。
0030
図2は溶接時の電極間電圧の変化特性、溶接電力変化率、消費電力の変化特性を示すグラフである。図2において、時刻0〜時刻t0までは予備通電期間である。この予備通電期間では、被溶接物が加熱され、接触抵抗が消滅して電極間電圧が降下する。この予備通電期間の長さは統計的に求めることができる。時刻t0〜時刻tpは温度上昇期間である。この温度上昇期間では、被溶接物が加熱され温度が上昇する。溶接電力の極大点に基づいてピーク時刻tpを求めることができる。時刻tp〜時刻teは下降期間である。ピーク時刻tp以降、溶接の自律作用によって電極間電圧が下降する。この下降期間は、ナゲットの成長する期間である。時刻teは通電終了時刻である。この通電終了時刻te以降は終了処理として通電電流を漸次減少させる。図2(b)においてハッチングで示した領域が、溶接電力変化率の標準範囲である。
0031
図3は散り発生の兆候を検出して溶接電力を低減する動作を示す説明図である。図3(a)は溶接電力の変化特性、図3(b)は溶接電力変化率(溶接電力微分値)を、図3(c)はスイッチングパルス(供給電力)を示している。散りは下降期間(ナゲット成長期間)において発生することが知られている。図3(a)に示すように、散り発生時には溶接電力が増大する。この溶接電力の増大は溶接電力変化率の変化として検出される。すなわち、図3(b)に示すように、散り発生に至る前段階で溶接電力変化率が急激に変化する。この溶接電力変化率の急激な変化を散り発生の兆候としてとらえ、図3(c)に示すように供給電力を抑制する。これにより、散りの発生を未然に防止することができる。
0032
図4は交流式抵抗溶接機で溶接電力の供給を制御した際の溶接時の電力波形の一例を示す溶接電力波形図である。図4において、横軸は時間を、縦軸は溶接電力を示している。ここでは、下降期間(ナゲット成長期間)中の2箇所の点(a),(b)で散りが発生した例を示している。図5および図6は図4に示した溶接電力波形の時間軸を拡大した溶接電力波形図である。図7および図8は散り発生時点の前後の電力波形を示す電力波形図である。
0033
図1に示した溶接電力変化率算出手段11は、電極間電圧8aをD/A変換するためのD/A変換器と、溶接電流9aをD/A変換するためのD/A変換器とを備えている。溶接電力変化率算出手段11は、PWM変調周期の例えば1/100以上の短い周期で、上記2つのD/A変換器を用いて電極間電圧8aと溶接電流9aとを同一のタイミングでサンプリングして、それぞれのD/A変換データを得ることを順次繰り返す。そして、電極間電圧データと溶接電流データとに基づいて電極間電圧と溶接電流とを乗算することで溶接電力の瞬時値11aを算出して、算出した溶接電力の瞬時値11aを溶接電力制御手段13へ順次供給する。溶接電力変化率算出手段11は、先のサンプリングに基づいて算出した溶接電力の瞬時値と今回のサンプリングに基づいて算出した溶接電力の瞬時値との変化率を算出し、算出した瞬時変化率11bを溶接電力制御手段13へ順次供給する。
0034
溶接電力制御手段13は、PWM変調周期の例えば1/100以上の短い周期で順次供給される溶接電力の瞬時値11aをPWM変調周期の1周期に亘って積算することで、各PWM変調周期毎の溶接電力を求める。
0035
図2(c)に示したように、温度上昇期間においては溶接電力は増加を続け、溶接電力が最大値(極大値)を越えた時点から下降期間(ナゲット成長期間)となる。溶接電力制御手段13は、各PWM変調周期毎の溶接電力が増加を続けていることに基づいて温度上昇期間にあることを認識する。溶接電力制御手段13は、先のPWM変調周期の溶接電力に対して今回のPWM変調周期の溶接電力が等しいか減少したことに基づいて下降期間(ナゲット成長期間)に入ったことを認識する。
0036
溶接電力制御手段13は、下降期間(ナゲット成長期間)に入ったことを認識すると、先のPWM変調周期の溶接電力と今回のPWM変調周期の溶接電力との変化率を算出することを各PWM変調周期毎に繰り返す。溶接電力制御手段13は、算出した溶接電力の変化率と標準範囲として設定された変化率とを比較する。溶接電力制御手段13は、算出した溶接電力の変化率が標準範囲の上限値を越えている場合には、次のPWM変調周期において生成するPWM信号13aのデューティを予め設定した所定値分だけ低減する。これにより、次のPWM変調周期の溶接電力が低減される。溶接電力制御手段13は、算出した溶接電力の変化率が標準範囲の下限値を越えている場合には、次のPWM変調周期において生成するPWM信号13aのデューティを予め設定した所定値分だけ大きくする。これにより、次のPWM変調周期の溶接電力が増加される。
0037
溶接電力制御手段13は、各PWM変調周期毎の溶接電力を求めずに、各PWM変調周期における溶接電力の瞬時値の最大値を求め、その最大値の変化に基づいて下降期間(ナゲット成長期間)に入ったことを認識するようにしてもよい。溶接電力制御手段13は、各PWM変調周期における溶接電力の瞬時値の最大値の変化率を算出し、算出した変化率を標準範囲とを比較することで、溶接電力の制御を行なうようにしてもよい。
0038
溶接電力制御手段13は、下降期間(ナゲット成長期間)に入ったことを認識すると、先のサンプリングによって算出された溶接電力の瞬時値と今回のサンプリングによって算出された溶接電力の瞬時値との変化率(瞬時変化率)が、予め設定した増加率(許容増加率)を越えている場合には、それを散り発生の兆候としてとらえ、現在出力しているPWM信号13aの出力を直ちに停止させる。溶接電力制御手段13は、PWM信号13aの出力を強制停止させたPWM変調周期の次のPWM変調周期から数周期の期間に亘ってPWM信号13aのデューティを極めて小さな値に変更する。散り発生の兆候を検出した以降の所定期間に亘って供給電力を低減させることで、散りの発生を防止する。
0039
図7および図8に示すように、散りが発生する際には、その兆候として溶接電力の急激な増加が発生する。したがって、溶接電力の急激な増加を監視することで、図7に示す兆候(A)や図8に示す兆候(B)を検出することができ、兆候(A),兆候(B)を検出した時点で溶接電力の供給を直ちに停止することで、兆候(A),兆候(B)の約1〜2ミリ秒後に生ずる散りの発生を未然に防止することができる。
0040
図9は図1に示した抵抗溶接機の制御装置1の動作を示すフローチャートである。ステップS1で、被溶接物の材質,板厚等に対応して溶接条件の設定がなされた後に、ステップS2で通電が開始される。ステップS3では、通電開始時点からの経過時間tが予備通電時間(予備通電終了時刻)t0に達した否かの判断がされる。
0041
予備通電期間が終了すると温度上昇期間となる。この温度上昇期間では、ステップS4で各PWM変調周期毎の溶接電力が演算され、ステップS5で溶接電力が増加しているか否かが判断される。溶接電力が増加している場合はステップS6で通電終了時刻teに達したか否かのチェックがなされる。通電終了時刻teに達しても溶接電力の増加が継続している場合には、ステップS7でナゲット生成不良と判断され、ステップS8で通電の停止ならびに異状が発生している旨を表示する等の異状処理がなされる。
0042
ステップS5で温度上昇期間が終了したことが検出されると、ステップS9以降のナゲット成長期間における処理が開始される。ステップS9では溶接電力の瞬時変化率が許容増加率を越えているか否かの判断がなされる。溶接電力の瞬時変化率が許容増加率を越えている場合は、ステップS10で散り発生防止処理がなされる。この散り発生防止処理では、現在出力しているPWM信号13aの出力を直ちに停止するとともに、次のPWM変調周期から数周期に亘ってPWM信号13aのデューティを極めて小さな値とすることで、溶接電力の瞬時変化率が許容増加率を越えた時点から所定の時間に亘って溶接電力の供給量を大幅に低減させる。これによって、散りの発生を未然に防止する。
0043
溶接電力の瞬時変化率が許容増加率を越えていない場合は、ステップS11で溶接電力の積算を行なう。そして、ステップS12でPWM変調の1周期が終了したことを検出すると、ステップS13で先のPWM変調周期における溶接電力と今回のPWM変調周期における溶接電力との変化率が標準範囲の上限値を越えているか否かが判断され、ステップS14で先のPWM変調周期における溶接電力と今回のPWM変調周期における溶接電力との変化率が標準範囲の下限値を越えているか否かが判断される。
0044
溶接電力との変化率が標準範囲の上限値を越えている場合は、ステップS15で供給電力減少処理がなされる。この供給電力減少処理では、次のPWM変調周期におけるPWM信号13aのデューティを前回のデューティよりも予め設定した所定量だけ小さな値に設定する。これにより、次のPWM変調周期で供給される溶接電力が低減される。
0045
溶接電力との変化率が標準範囲の下限値を越えている場合は、ステップS16で供給電力増加処理がなされる。この供給電力増加処理では、次のPWM変調周期におけるPWM信号13aのデューティを前回のデューティよりも予め設定した所定量だけ大きな値に設定する。これにより、次のPWM変調周期で供給される溶接電力が増加される。
0046
ステップS17で通電終了時刻teに達したか否かのチェックがなされ、通電終了時刻teに達するまでステップS9以降の処理を繰り返す。通電終了時刻teに達すると、ステップS18で溶接電力を漸次減少させながら溶接電力の供給を停止させる正常終了処理がなされ、一連の溶接制御が終了される。
0047
図10はこの発明に係る他の抵抗溶接機の制御装置のブロック構成図である。図10に示す抵抗溶接機の制御装置50は、制御部60の構成が図1に示したものと異なる。図10に示す制御部60は、電極間電圧に係る信号8aと溶接電流に係る信号9aとに基づいて各PWM変調周期毎の溶接電力積算値61aを算出して出力する溶接電力積算手段61と、PWM変調周期の例えば1/100程度のPWM変調周期よりも充分に短い周期で電極間電圧の瞬時変化率を算出して、算出した電極間電圧の瞬時変化率62aを出力する電極間電圧変化率算出手段62と、溶接電力制御手段63と、インバータ駆動回路14とを備える。
0048
溶接電力制御手段63は、各PWM変調周期毎の溶接電力積算値61aの変化を監視することでナゲット成長期間に入ったことを認識すると、電極間電圧の瞬時変化率62aを監視し、電極間電圧の瞬時変化率62aが予め設定した許容増加率を越えている場合には、PWM信号13aの出力を直ちに停止して溶接電力の供給を停止させるとともに、次のPWM変調周期から数周期に亘ってPWM信号13aのデューティを極めて小さな値に設定することで、電極間電圧の瞬時変化率62aが予め設定した許容増加率を越えた時点から所定の時間が経過するまで溶接電力の供給量を大幅に低減させる。
0049
図11は散り発生時の電極間電圧の変化を示す波形図である。図11に示すように、散りが発生する直前に電極間電圧が急激に増加する。この電極間電圧の急増を散り発生の兆候としてとらえ、電極間電圧が急増した時点で溶接電力の供給を直ちに停止することで、散りの発生を未然に防止することができる。
0050
【発明の効果】
以上説明したように請求項1に係る抵抗溶接機の制御装置は、ナゲット成長期間における溶接電力の時間変化率を監視し、溶接電力の時間変化率が予め設定した許容増加率以下になるよう溶接電力を制御する構成としたので、ナゲット成長期間における溶接電力が過大になって散りが発生する前に溶接電力を低減させることができ、散りの発生を未然に防止できる。また、ナゲット成長期間における溶接電力が過小になって溶接品質が低下するのを未然に防止できる。
0051
請求項2に係る抵抗溶接機の制御装置は、ナゲット成長期間における溶接電極電圧の時間変化率を監視し、溶接電極電圧の時間変化率が予め設定した許容増加率を越えた場合にそれを散り発生の兆候と判断して溶接電力を減少させる構成としたので、散りの発生を未然に防止できる。
0052
請求項3に係る抵抗溶接機の制御方法は、ナゲット成長期間における溶接電力の時間変化率を監視し、溶接電力の時間変化率が予め設定した許容増加率を越えた場合にそれを散り発生の兆候と判断して溶接電力を減少させる構成としたので、散りの発生を未然に防止できる。
0053
請求項4に係る抵抗溶接機の制御方法は、ナゲット成長期間における溶接電極電圧の時間変化率を監視し、溶接電極電圧の時間変化率が予め設定した許容増加率を越えた場合にそれを散り発生の兆候と判断して溶接電力を減少させるので、散りの発生を未然に防止できる
【図面の簡単な説明】
【図1】 この発明に係る抵抗溶接機の制御装置のブロック構成図である。
【図2】 溶接時の電極間電圧の変化特性、溶接電力変化率、消費電力の変化特性を示すグラフである。
【図3】 散り発生の兆候を検出して溶接電力を低減する動作を示す説明図である。
【図4】 交流式抵抗溶接機で溶接電力の供給を制御した際の溶接時の電力波形の一例を示す溶接電力波形図である。
【図5】 図4に示した溶接電力波形の時間軸を拡大した溶接電力波形図である。
【図6】 図4に示した溶接電力波形の時間軸を拡大した溶接電力波形図である。
【図7】 散り発生時点の前後の電力波形を示す電力波形図である。
【図8】 散り発生時点の前後の電力波形を示す電力波形図である。
【図9】 図1に示した抵抗溶接機の制御装置の動作を示すフローチャートである。
【図10】 この発明に係る他の抵抗溶接機の制御装置のブロック構成図である。
【図11】 散り発生時の電極間電圧の変化を示す波形図である。
【符号の説明】
1,50 抵抗溶接機の制御装置
4 インバータ部
5 降圧トランス
6 整流部
7a,7b 溶接電極
8 電圧検出部
9 電流検出部
10,60 制御部
11 溶接電力変化率算出手段
12 標準範囲記憶手段
13,63 溶接電力制御手段
14 インバータ駆動回路
30 被溶接物
31 ナゲット(溶解部)
61 溶接電力積算手段
62 電極間電圧変化率算出手段
[0001]
BACKGROUND OF THE INVENTION
  The present invention relates to a control apparatus and a control method for a resistance welding machine, and more specifically, by detecting signs of occurrence of scattering based on a rate of change in welding power over time and reducing welding power before the occurrence of scattering, The present invention relates to a control device and a control method for a resistance welding machine that suppresses the occurrence of scattering.
[0002]
[Prior art]
  In resistance welding, the occurrence of scattering has become a problem in terms of quality and safety. For this reason, various techniques for suppressing the occurrence of scattering and improving the welding quality have been proposed as described below.
[0003]
  In Japanese Patent Laid-Open No. 54-58655 (Japanese Patent Publication No. 57-37430), a change in the thickness of a member at a welding point during energization time is detected, and scattering occurs when the amount of change exceeds a reference value. A resistance that reduces the welding current by a predetermined amount when scattering occurs, and increases the welding current by a predetermined amount when scattering does not occur, so that the welding current is controlled along the scattering occurrence limit current value. A spot welding control method is described.
[0004]
  In JP-A-6-344155, the occurrence of scattering is predicted by comparing the voltage between the electrodes and a reference value, and by taking measures according to the prediction result, suppression of the occurrence of scattering and uniform welding nugget diameter is achieved. A control device for a spot welder that can perform welding is described. The occurrence of scattering can be suppressed by reducing the amount of current only for a predetermined period during welding energization. It has been experimentally confirmed that scattering is likely to occur during this predetermined period. This predetermined period is a period during which the area of the current path between the workpieces is about to suddenly expand. By reducing the welding current during this period, the area of the welding current path is gently expanded, thereby suppressing the occurrence of scattering. Since the presence or absence of scattering is predicted based on whether or not the voltage between the electrodes exceeds the reference value, the occurrence of scattering can be effectively suppressed.
[0005]
  In Japanese Patent Laid-Open No. 9-216070, from the energy distribution estimated using the welding current and the voltage between the electrodes, the risk of occurrence of scattering and the estimated time of occurrence of scattering are estimated, and immediately after the welding time set for the estimated time of occurrence of scattering is set. A control apparatus for a resistance welder is described in which the welding current is changed and controlled so that heat input is increased without causing scattering and a nugget having the maximum strength is obtained.
[0006]
  In Japanese Patent Laid-Open No. 10-94883, welding current and chip-to-chip voltage are detected, the weld is simulated by heat conduction calculation, and the nugget generation state is estimated to perform good welding. A welding condition control method for a resistance welder is described.
[0007]
[Problems to be solved by the invention]
  Japanese Patent Application Laid-Open No. 54-58655 controls the welding current when the occurrence of scattering is detected. For this reason, when scattering occurs, the welding current can be reduced or the supply of the welding current can be stopped, but the occurrence of scattering cannot be prevented in advance.
[0008]
  The control apparatus for a spot welder described in Japanese Patent Laid-Open No. 6-344155 is based on the reference inter-electrode voltage obtained by experiments in advance and the actual inter-electrode voltage generated when welding with a current slightly smaller than the scattering occurrence limit current. Is compared with the inter-electrode voltage detected, and the presence or absence of scattering is predicted depending on whether or not the actually detected inter-electrode voltage exceeds the reference inter-electrode voltage. The voltage between the reference electrodes is determined by experiments in advance.SeekingAs a result, even if the actually detected interelectrode voltage exceeds the reference interelectrode voltage only slightly and no scattering occurs, the occurrence of scattering may be predicted.
[0009]
  The resistance welding machine control device described in Japanese Patent Laid-Open No. 9-216070 requires a large number of arithmetic processes in order to estimate the energy distribution. This complicates the configuration of the control device. Since the welding condition control method for a resistance welder described in Japanese Patent Laid-Open No. 10-94883 is a configuration using a heat conduction simulator, the configuration of the control device and the like is complicated.
[0010]
OBJECT OF THE INVENTION
  The present invention has been made to solve such problems. Precisely predicts the occurrence of scattering with a relatively simple configuration, and controls the amount of heat generated in the welded portion based on the prediction result to achieve good welding. It is an object of the present invention to provide a control device and a control method for a resistance welder that can perform the above.
[0011]
[Means for Solving the Problems]
  In order to solve the above-mentioned problem, a resistance welding machine control device according to claim 1 comprises:Detect welding current A current detection unit, a voltage detection unit that detects a voltage between welding electrodes, and a welding power change rate calculation that calculates welding power based on the welding current and the welding electrode voltage and calculates a time change rate of the welding power And a welding power control means for reducing the welding power by determining that it is a sign of occurrence when the rate of change of the welding power over time exceeds a preset allowable increase rate of the welding power during the nugget growth period. It has. The welding power control means immediately stops the supply of the welding power when the time change rate of the welding power exceeds the allowable increase rate, and sets the supply amount of the welding power thereafter in a predetermined period. Reduce over time.
[0012]
  The resistance welding machine control device according to claim 1 monitors the time change rate of the welding power during the nugget growth period, and the time change rate of the welding power is preset.Below the allowable increase rateThe welding power is controlled so that By monitoring the rate of change in welding power over time, signs of a change in welding power can be quickly detected. As a result, the welding power can be reduced before the welding power becomes excessive during the nugget growth period and scattering occurs, and the occurrence of scattering can be prevented in advance. Further, it is possible to prevent the welding power from becoming too low during the nugget growth period and reducing the welding quality.
[0013]
  A control device for a resistance welder according to claim 2 is:A voltage detector for detecting the voltage between the welding electrodes, an interelectrode voltage change rate calculating means for calculating the time change rate of the welding electrode voltage, and the time change rate of the welding electrode voltage during the nugget growth period are preset. Welding power control means for reducing the welding power by judging that it is a sign of occurrence when the allowable increase rate of the voltage between the welding electrodes is exceeded. The welding power control means immediately stops the supply of the welding power when the rate of change over time of the voltage between the welding electrodes exceeds the allowable increase rate, and determines the supply amount of the welding power thereafter. Reduce over time.
[0014]
  The resistance welding machine control device according to claim 2 is the nugget growth period.Voltage between welding electrodesMonitor the rate of time change ofVoltage between welding electrodesThe time change rate ofAllowable increase rateIf it exceeds, it is judged as a sign of the occurrence of scattering and the welding power is reduced. Therefore, the occurrence of scattering can be prevented in advance.
[0015]
  Control of resistance welding machine according to claim 3MethodIsThe welding current and the voltage between the welding electrodes are detected, the welding power is calculated based on the detected welding current and the voltage between the welding electrodes, the time change rate of the welding power is calculated, and the welding power of the welding power is calculated during the nugget growth period. When the time change rate exceeds a preset allowable increase rate of the welding power, it is judged as a sign of occurrence of scattering and the welding power is reduced. And when the time change rate of the said welding electric power exceeds the said allowable increase rate, while the supply of the said welding electric power is stopped immediately, the supply amount of the said welding electric power after that is reduced over a predetermined period.
[0016]
  Control of resistance welding machine according to claim 3MethodIn the nugget growth periodWelding powerMonitor the rate of time change ofWelding powerThe time change rate ofAllowable increase rateIf it exceeds, it is judged as a sign of the occurrence of scattering and the welding power is reduced. Therefore, the occurrence of scattering can be prevented in advance.
[0017]
  The control method of the resistance welder according to claim 4 is:The voltage between the welding electrodes is detected, the time rate of change of the detected voltage between the welding electrodes is calculated, and the time rate of change of the voltage between the welding electrodes in the nugget growth period is set to the allowable increase rate of the voltage between the welding electrodes. If it exceeds, it is judged as a sign of the occurrence of scattering and the welding power is reduced. When the time change rate of the voltage between the welding electrodes exceeds the allowable increase rate, the supply of the welding power is immediately stopped and the supply amount of the welding power thereafter is reduced over a predetermined period.
[0018]
  The control method of the resistance welder according to claim 4 is the nugget growth period.Welding electrode voltageMonitor the rate of time change ofWelding electrode voltageWhen the rate of change in time exceeds a preset allowable increase rate, it is judged as a sign of occurrence of scattering and the welding power is reduced. Therefore, the occurrence of scattering can be prevented in advance.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
  Embodiments of the present invention will be described below with reference to the accompanying drawings.
[0020]
  FIG. 1 is a block diagram of a resistance welding machine control apparatus according to the present invention. A resistance welding machine control device 1 according to the present invention includes a three-phase AC power source 2, a three-phase full-wave rectification unit 3, an inverter unit 4, a step-down transformer 5, a rectification unit 6, a pair of welding electrodes 7a, 7b, a voltage detector 8, a current detector 9, and a controller 10. The control unit 10 includes a welding power change rate calculation unit 11, a standard range storage unit 12, a welding power control unit 13, and an inverter drive circuit 14. Reference numeral 30 is an object to be welded, and reference numeral 31 is a nugget (dissolving part).
[0021]
  The three-phase full-wave rectification unit 3 generates a DC power source by full-wave rectifying the three-phase AC supplied from the three-phase AC power source 2. The generated DC power is supplied to the inverter unit 4. The inverter unit 4 converts the DC power source into high-frequency AC and drives the primary winding of the step-down transformer 5. The inverter unit 4 includes four power semiconductor switching elements (for example, IGBTs) connected in an H-type bridge. The inverter unit 4 generates high-frequency alternating current by switching each power semiconductor switching element in a predetermined order based on a plurality of drive signals 10 a supplied from the inverter drive circuit 14 in the control unit 10. The welding power control means 13 in the control unit 10 controls the output power of the inverter 4 by changing the duty of the PWM signal 13a supplied to the inverter drive circuit 14, and thereby the step-down transformer 5, the rectification unit 6, the welding power. The welding electric power supplied to the to-be-welded part 30 via 7a, 7b is controlled. A low-frequency high-frequency alternating current is induced in the secondary winding of the step-down transformer 5. This low-frequency high-frequency alternating current is converted into direct current by the rectifier 6. The rectifying unit 6 includes two rectifying diodes 6a and 6b. The pulsating flow generated by the rectifying unit 6 is supplied to the welded part 30 via the welding electrodes 7a and 7b.
[0022]
  The voltage detector 8 detects the voltage between the pair of welding electrodes 7a and 7b, and outputs an electrical signal (voltage detection signal) 8a corresponding to the detected voltage. This voltage detection signal 8 a is supplied to the welding power change rate calculation means 11 in the control unit 10.
[0023]
  The current detection unit 9 detects a welding current and outputs an electrical signal (current detection signal) 9a corresponding to the detected welding current. This current detection signal 9 a is supplied to the welding power change rate calculation means 11 in the control unit 10.
[0024]
  The welding power change rate calculating means 11 calculates the welding power instantaneous value 11a at a preset time interval based on the voltage detection signal 8a and the current detection signal 9a, and also calculates the welding power instantaneous value time change rate 11b. calculate. The calculated instantaneous value 11a of the welding power and the temporal change rate 11b of the instantaneous value of the welding power are supplied to the welding power control means 13.
[0025]
  The standard range storage means 12 stores a standard range of the rate of change in welding power over time during the nugget growth period after the welding power reaches its maximum value. The standard range of the time change rate of the welding power is obtained by setting an upper limit value and a lower limit value every time the nugget growth period elapses.
[0026]
  The welding power control means 13 generates a PWM signal 13a based on the command value and supplies it to the inverter drive circuit 14 to start supplying the welding power, and each PWM modulation period based on the instantaneous value 11a of the welding power. The maximum value of the welding power integral value for each time or the instantaneous value 11a of the welding power for each PWM modulation period is obtained.
[0027]
  The welding power control means 13 monitors the change in the welding power integral value for each PWM modulation period or the maximum value of the instantaneous value 11a of the welding power for each PWM modulation period, and the welding power integral value for each PWM modulation period or Based on the fact that the maximum value of the instantaneous value 11a of the welding power for each PWM modulation period has reached the maximum value (maximum point), the temperature increase period shown in FIG. 2 ends and the decrease period (nugget growth period) starts. Recognize that. The descent period (nugget growth period) is a heating suppression period due to the autonomous action of welding.
[0028]
  When the welding power control means 13 enters the descending period (nugget growth period), the welding power integral value or the maximum value of the welding power instantaneous value 11a in the previous PWM modulation period, and the welding power in the current PWM modulation period. The rate of change from the integrated value or the maximum value of the instantaneous value 11a of the welding power is calculated. Then, the time change rate of the welding power for each PWM modulation period calculated is compared with the standard range, and if the time change rate of the welding power for each PWM modulation period exceeds the upper limit value of the standard range, the PWM signal By reducing the duty of 13a, the welding power is reduced, and when the rate of change in welding power over time for each PWM modulation period exceeds the lower limit of the standard range, the duty of PWM signal 13a is increased. Increase welding power. Thereby, the time change rate of the welding power for each PWM modulation period is controlled to be within a preset standard range.
[0029]
  Further, the welding power control means 13 immediately stops the output of the PWM signal 13a that is currently output when the temporal change rate 11b of the instantaneous value of the welding power exceeds a preset scattering sign detection value. At the same time, the duty of the PWM signal 13a is changed to an extremely small value over a period of several cycles from the next PWM modulation cycle. By detecting the sign of the occurrence of scattering and reducing the power supply, the occurrence of scattering can be prevented in advance.
[0030]
  FIG. 2 is a graph showing a change characteristic of the voltage between electrodes during welding, a change rate of welding power, and a change characteristic of power consumption. In FIG. 2, the period from time 0 to time t0 is a preliminary energization period. In this preliminary energization period, the workpiece is heated, the contact resistance disappears, and the voltage between the electrodes drops. The length of this pre-energization period can be obtained statistically. Time t0 to time tp is a temperature rise period. In this temperature rise period, the workpiece is heated and the temperature rises. The peak time tp can be obtained based on the maximum point of the welding power. From time tp to time te is a descending period. After the peak time tp, the voltage between the electrodes decreases due to the autonomous action of welding. This falling period is a period during which the nugget grows. Time te is the energization end time. After the energization end time te, the energization current is gradually decreased as an end process. The area shown by hatching in FIG. 2B is the standard range of the welding power change rate.
[0031]
  FIG. 3 is an explanatory diagram showing an operation of detecting the sign of occurrence of scattering and reducing welding power. 3A shows a change characteristic of welding power, FIG. 3B shows a welding power change rate (welding power differential value), and FIG. 3C shows a switching pulse (supply power). Scattering is known to occur during the descent period (nugget growth period). As shown in FIG. 3A, welding power increases when scattering occurs. This increase in welding power is detected as a change in the welding power change rate. That is, as shown in FIG. 3 (b), the welding power change rate changes abruptly before the occurrence of scattering. This rapid change in the welding power change rate is taken as a sign of the occurrence of scattering, and the supplied power is suppressed as shown in FIG. Thereby, the occurrence of scattering can be prevented in advance.
[0032]
  FIG. 4 is a welding power waveform diagram showing an example of a power waveform during welding when the supply of welding power is controlled by an AC resistance welding machine. In FIG. 4, the horizontal axis represents time, and the vertical axis represents welding power. Here, an example is shown in which scattering occurs at two points (a) and (b) during the falling period (nugget growth period). 5 and 6 are welding power waveform diagrams in which the time axis of the welding power waveform shown in FIG. 4 is enlarged. 7 and 8 are power waveform diagrams showing power waveforms before and after the occurrence of scattering.
[0033]
  The welding power change rate calculating means 11 shown in FIG. 1 includes a D / A converter for D / A converting the interelectrode voltage 8a, and a D / A converter for D / A converting the welding current 9a. It has. The welding power change rate calculation means 11 samples the inter-electrode voltage 8a and the welding current 9a at the same timing using the two D / A converters in a short period of, for example, 1/100 or more of the PWM modulation period. Thus, obtaining each D / A conversion data is sequentially repeated. Then, the instantaneous value 11a of the welding power is calculated by multiplying the interelectrode voltage and the welding current based on the interelectrode voltage data and the welding current data, and the calculated welding power instantaneous value 11a is used as the welding power control means. 13 are sequentially supplied. The welding power change rate calculation means 11 calculates a change rate between the instantaneous value of the welding power calculated based on the previous sampling and the instantaneous value of the welding power calculated based on the current sampling, and the calculated instantaneous change rate 11b. Are sequentially supplied to the welding power control means 13.
[0034]
  The welding power control means 13 integrates the instantaneous value 11a of the welding power sequentially supplied at a short cycle of, for example, 1/100 or more of the PWM modulation cycle over one PWM modulation cycle, so that each PWM modulation cycle. Find the welding power of
[0035]
  As shown in FIG. 2 (c), the welding power continues to increase during the temperature rise period, and starts the descent period (nugget growth period) from the time when the welding power exceeds the maximum value (maximum value). The welding power control means 13 recognizes that the temperature rise period is based on the fact that the welding power for each PWM modulation period continues to increase. The welding power control means 13 recognizes that the falling period (nugget growth period) has been entered based on the fact that the welding power of the current PWM modulation period is equal to or decreased with respect to the welding power of the previous PWM modulation period.
[0036]
  When the welding power control means 13 recognizes that it has entered the falling period (nugget growth period), each PWM is calculated to calculate the rate of change between the welding power in the previous PWM modulation period and the welding power in the current PWM modulation period. Repeat every modulation period. The welding power control means 13 compares the calculated change rate of the welding power with the change rate set as the standard range. When the calculated welding power change rate exceeds the upper limit of the standard range, the welding power control means 13 reduces the duty of the PWM signal 13a generated in the next PWM modulation period by a predetermined value. To do. Thereby, the welding power of the next PWM modulation period is reduced. When the calculated welding power change rate exceeds the lower limit value of the standard range, the welding power control means 13 increases the duty of the PWM signal 13a generated in the next PWM modulation period by a predetermined value. To do. Thereby, the welding power of the next PWM modulation period is increased.
[0037]
  The welding power control means 13 obtains the maximum value of the instantaneous value of the welding power in each PWM modulation period without obtaining the welding power for each PWM modulation period, and the falling period (nugget growth period) based on the change in the maximum value. ) May be recognized. The welding power control means 13 calculates the change rate of the maximum value of the instantaneous value of the welding power in each PWM modulation period, and controls the welding power by comparing the calculated change rate with the standard range. Also good.
[0038]
  When the welding power control means 13 recognizes that it has entered the falling period (nugget growth period), the change between the instantaneous value of the welding power calculated by the previous sampling and the instantaneous value of the welding power calculated by the current sampling. If the rate (instantaneous change rate) exceeds a preset rate of increase (allowable rate of increase), this is regarded as a sign of the occurrence of scattering and the output of the PWM signal 13a that is currently output is immediately stopped. The welding power control means 13 changes the duty of the PWM signal 13a to an extremely small value over a period of several cycles from the PWM modulation cycle next to the PWM modulation cycle in which the output of the PWM signal 13a is forcibly stopped. The occurrence of scattering is prevented by reducing the power supply over a predetermined period after the sign of occurrence of scattering is detected.
[0039]
  As shown in FIGS. 7 and 8, when scattering occurs, a rapid increase in welding power occurs as an indication. Therefore, by monitoring the rapid increase in welding power, the sign (A) shown in FIG. 7 and the sign (B) shown in FIG. 8 can be detected, and the sign (A), sign (B)By immediately stopping the supply of welding power at the time of detection, it is possible to prevent the occurrence of scattering that occurs approximately 1 to 2 milliseconds after the signs (A) and (B).
[0040]
  FIG. 9 is a flowchart showing the operation of the control device 1 of the resistance welder shown in FIG. In step S1, energization is started in step S2 after the welding conditions are set corresponding to the material, plate thickness, etc. of the workpiece. In step S3, it is determined whether or not the elapsed time t from the start of energization has reached the preliminary energization time (preliminary energization end time) t0.
[0041]
  When the preliminary energization period ends, the temperature rises. In this temperature rise period, the welding power for each PWM modulation period is calculated in step S4, and it is determined whether or not the welding power is increased in step S5. If the welding power is increasing, it is checked in step S6 whether or not the energization end time te has been reached. If the increase in welding power continues even after the energization end time te is reached, it is determined in step S7 that the nugget generation is defective, and in step S8, a display indicating that the energization has stopped and an abnormality has occurred is displayed. Anomaly processing is performed.
[0042]
  When it is detected in step S5 that the temperature increase period has ended, processing in the nugget growth period after step S9 is started. In step S9, it is determined whether or not the instantaneous change rate of the welding power exceeds the allowable increase rate. If the instantaneous change rate of the welding power exceeds the allowable increase rate, a scattering prevention process is performed in step S10. In this scattering prevention processing, the output of the currently output PWM signal 13a is immediately stopped and the duty of the PWM signal 13a is set to a very small value over several cycles from the next PWM modulation cycle. The supply amount of the welding power is greatly reduced over a predetermined time from the time when the instantaneous change rate of exceeds the allowable increase rate. This prevents the occurrence of scattering.
[0043]
  If the instantaneous change rate of the welding power does not exceed the allowable increase rate, the welding power is integrated in step S11. When it is detected in step S12 that one PWM modulation cycle has ended, the rate of change between the welding power in the previous PWM modulation cycle and the welding power in the current PWM modulation cycle exceeds the upper limit of the standard range in step S13. In step S14, it is determined whether the rate of change between the welding power in the previous PWM modulation period and the welding power in the current PWM modulation period exceeds the lower limit of the standard range.
[0044]
  When the rate of change from the welding power exceeds the upper limit value of the standard range, a supply power reduction process is performed in step S15. In this supply power reduction process, the duty of the PWM signal 13a in the next PWM modulation cycle is set to a value smaller than the previous duty by a predetermined amount. As a result, the welding power supplied in the next PWM modulation cycle is reduced.
[0045]
  When the rate of change from the welding power exceeds the lower limit value of the standard range, a supply power increase process is performed in step S16. In this supply power increase process, the duty of the PWM signal 13a in the next PWM modulation period is set to a value larger by a predetermined amount than the previous duty. Thereby, the welding power supplied in the next PWM modulation period is increased.
[0046]
  In step S17, it is checked whether or not the energization end time te has been reached, and the processes in and after step S9 are repeated until the energization end time te is reached. When the energization end time te is reached, a normal end process is performed in which the supply of welding power is stopped while gradually reducing the welding power in step S18, and a series of welding controls are ended.
[0047]
  FIG. 10 is a block diagram of a control device for another resistance welding machine according to the present invention. 10 is different from that shown in FIG. 1 in the configuration of the control unit 60. The control unit 60 shown in FIG. 10 includes welding power integration means 61 that calculates and outputs a welding power integrated value 61a for each PWM modulation period based on the signal 8a related to the interelectrode voltage and the signal 9a related to the welding current. The inter-electrode voltage change that outputs the instantaneous change rate 62a of the inter-electrode voltage by calculating the instantaneous change rate of the inter-electrode voltage in a cycle sufficiently shorter than the PWM modulation cycle of, for example, about 1/100 of the PWM modulation cycle The rate calculation means 62, the welding power control means 63, and the inverter drive circuit 14 are provided.
[0048]
  When the welding power control means 63 recognizes that the nugget growth period has been entered by monitoring the change in the welding power integrated value 61a for each PWM modulation period, the welding power control means 63 monitors the instantaneous change rate 62a of the interelectrode voltage, If the instantaneous voltage change rate 62a exceeds a preset allowable increase rate, the output of the PWM signal 13a is immediately stopped to stop the supply of welding power, and from the next PWM modulation cycle to several cycles. By setting the duty of the PWM signal 13a to a very small value, the welding power supply amount can be greatly increased until a predetermined time elapses after the instantaneous change rate 62a of the interelectrode voltage exceeds the preset allowable increase rate. To reduce.
[0049]
  FIG. 11 is a waveform diagram showing changes in the interelectrode voltage when scattering occurs. As shown in FIG. 11, the inter-electrode voltage increases rapidly just before scattering occurs. The rapid increase in the inter-electrode voltage is regarded as a sign of the occurrence of scattering, and the supply of welding power is immediately stopped when the inter-electrode voltage suddenly increases, thereby preventing the occurrence of scattering.
[0050]
【The invention's effect】
  As described above, the resistance welding machine control device according to claim 1 monitors the time change rate of the welding power during the nugget growth period, and the time change rate of the welding power is preset.Below the allowable increase rateTherefore, the welding power can be reduced before the welding power becomes excessive during the nugget growth period and the scattering occurs, and the occurrence of the scattering can be prevented in advance. Further, it is possible to prevent the welding power from becoming too low during the nugget growth period and reducing the welding quality.
[0051]
  The resistance welding machine control device according to claim 2 is the nugget growth period.Welding electrode voltageMonitor the rate of time change ofWelding electrode voltageThe time change rate ofAcceptableWhen the rate of increase is exceeded, it is determined as a sign of occurrence of scattering and the welding power is reduced, so that occurrence of scattering can be prevented in advance.
[0052]
  Control of resistance welding machine according to claim 3MethodIn the nugget growth periodWelding powerMonitor the rate of time change ofWelding powerThe time change rate ofAllowable increase rateSince the welding power is reduced by determining that it is a sign of the occurrence of scattering when exceeding the value, it is possible to prevent the occurrence of scattering.
[0053]
  The control method of the resistance welder according to claim 4 is the nugget growth period.Welding electrode voltageMonitor the rate of time change ofWelding electrode voltageWhen the rate of change in time exceeds a preset allowable increase rate, it is judged as a sign of the occurrence of scattering and the welding power is reduced, so that the occurrence of scattering can be prevented in advance..
[Brief description of the drawings]
FIG. 1 is a block diagram of a resistance welding machine control apparatus according to the present invention.
FIG. 2 is a graph showing the change characteristics of the voltage between electrodes during welding, the rate of change of welding power, and the change characteristics of power consumption.
FIG. 3 is an explanatory diagram showing an operation of detecting welding power signs by detecting signs of occurrence of scattering.
FIG. 4 is a welding power waveform diagram showing an example of a power waveform at the time of welding when the supply of welding power is controlled by an AC resistance welding machine.
FIG. 5 is a welding power waveform diagram in which the time axis of the welding power waveform shown in FIG. 4 is enlarged.
6 is a welding power waveform diagram in which the time axis of the welding power waveform shown in FIG. 4 is enlarged.
FIG. 7 is a power waveform diagram showing power waveforms before and after the occurrence of scattering.
FIG. 8 is a power waveform diagram showing power waveforms before and after the occurrence of scattering.
FIG. 9 is a flowchart showing the operation of the resistance welding machine control device shown in FIG. 1;
FIG. 10 is a block configuration diagram of another resistance welding machine control device according to the present invention.
FIG. 11 is a waveform diagram showing changes in the interelectrode voltage when scattering occurs.
[Explanation of symbols]
  1,50 resistance welding machine control device
  4 Inverter section
  5 Step-down transformer
  6 Rectifier
  7a, 7b Welding electrode
  8 Voltage detector
  9 Current detector
  10, 60 control unit
  11 Welding power change rate calculation means
  12 Standard range storage means
  13, 63 Welding power control means
  14 Inverter drive circuit
  30 Workpiece
  31 Nugget (dissolving part)
  61 Welding power integration means
  62 Electrode voltage change rate calculation means

Claims (4)

溶接電流を検出する電流検出部と、溶接電極間電圧を検出する電圧検出部と、前記溶接電流と前記溶接電極間電圧とに基づいて溶接電力を算出するとともに溶接電力の時間変化率を算出する溶接電力変化率算出手段と、ナゲット成長期間において前記溶接電力の時間変化率が予め設定した前記溶接電力の許容増加率を越えた場合にそれを散り発生の兆候と判断して溶接電力を減少させる溶接電力制御手段と、を備えた抵抗溶接機の制御装置において、
前記溶接電力制御手段は、前記溶接電力の時間変化率が前記許容増加率を越えた場合に、前記溶接電力の供給を直ちに停止するとともに、その後の前記溶接電力の供給量を所定期間に亘って低減する、ことを特徴とする抵抗溶接機の制御装置。
Based on the current detection unit for detecting the welding current, the voltage detection unit for detecting the voltage between the welding electrodes, the welding current and the voltage between the welding electrodes, and calculating the rate of change over time of the welding power. Welding power change rate calculating means, and when the time change rate of the welding power exceeds a preset allowable increase rate of the welding power during the nugget growth period, it is judged as a sign of occurrence of scattering and the welding power is reduced. A welding power control means , and a resistance welding machine control device comprising:
The welding power control means immediately stops the supply of the welding power when the time change rate of the welding power exceeds the allowable increase rate, and then supplies the welding power supply amount over a predetermined period. A resistance welding machine control device characterized in that it is reduced .
溶接電極間電圧を検出する電圧検出部と、前記溶接電極間電圧の時間変化率を算出する電極間電圧変化率算出手段と、ナゲット成長期間において前記溶接電極間電圧の時間変化率が予め設定した前記溶接電極間電圧の許容増加率を越えた場合にそれを散り発生の兆候と判断して溶接電力を減少させる溶接電力制御手段と、を備えた抵抗溶接機の制御装置において、
前記溶接電力制御手段は、前記溶接電極間電圧の時間変化率が前記許容増加率を越えた場合に、前記溶接電力の供給を直ちに停止するとともに、その後の前記溶接電力の供給量を所定期間に亘って低減する、ことを特徴とする抵抗溶接機の制御装置。
A voltage detector for detecting the voltage between the welding electrodes, an interelectrode voltage change rate calculating means for calculating the time change rate of the welding electrode voltage, and the time change rate of the welding electrode voltage during the nugget growth period are preset. In a control apparatus for a resistance welding machine, comprising a welding power control means for reducing welding power by judging that it is a sign of occurrence of scattering when the allowable increase rate of the voltage between the welding electrodes is exceeded ,
The welding power control means immediately stops the supply of the welding power when the time change rate of the voltage between the welding electrodes exceeds the allowable increase rate, and sets the subsequent supply amount of the welding power to a predetermined period. A resistance welding machine control device, characterized in that it is reduced over time .
溶接電流及び溶接電極間電圧を検出し、検出した前記溶接電流と前記溶接電極間電圧とに基づいて溶接電力を算出するとともに溶接電力の時間変化率を算出し、ナゲット成長期間において前記溶接電力の時間変化率が予め設定した前記溶接電力の許容増加率を越えた場合にそれを散り発生の兆候と判断して溶接電力を減少させる、抵抗溶接機の制御方法において、
前記溶接電力の時間変化率が前記許容増加率を越えた場合に、前記溶接電力の供給を直ちに停止するとともに、その後の前記溶接電力の供給量を所定期間に亘って低減することを特徴とする抵抗溶接機の制御方法。
The welding current and the voltage between the welding electrodes are detected, the welding power is calculated based on the detected welding current and the voltage between the welding electrodes, the time change rate of the welding power is calculated, and the welding power of the welding power is calculated during the nugget growth period. In the control method of a resistance welding machine, when the rate of time change exceeds a preset allowable increase rate of the welding power, it is judged as a sign of occurrence of scattering and the welding power is reduced.
If the time rate of change of the welding power exceeds said allowable rate of increase, as well as immediately stopping the supply of the welding power, reduces over the supply amount of subsequent said weld power to a predetermined period, and characterized in that To control resistance welding machine.
溶接電極間電圧を検出し、検出した前記溶接電極間電圧の時間変化率を算出し、ナゲット成長期間において前記溶接電極間電圧の時間変化率が予め設定した前記溶接電極間電圧の許容増加率を越えた場合にそれを散り発生の兆候と判断して溶接電力を減少させる、抵抗溶接機の制御方法において、
記溶接電極間電圧の時間変化率が前記許容増加率を越えた場合に、前記溶接電力の供給を直ちに停止するとともに、その後の前記溶接電力の供給量を所定期間に亘って低減することを特徴とする抵抗溶接機の制御方法。
The voltage between the welding electrodes is detected, the time rate of change of the detected voltage between the welding electrodes is calculated, and the time rate of change of the voltage between the welding electrodes in the nugget growth period is set to the allowable increase rate of the voltage between the welding electrodes. In the resistance welding machine control method that reduces welding power by judging that it is a sign of the occurrence of scattering when it exceeds,
If the time rate of change of front Symbol welding electrode voltage exceeds the allowable rate of increase, as well as immediately stopping the supply of the welding power, reduces over the supply amount of subsequent said weld power to a predetermined time period, it A control method for a resistance welding machine.
JP26550399A 1999-09-20 1999-09-20 Resistance welding machine control device and resistance welding machine control method Expired - Fee Related JP3767271B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26550399A JP3767271B2 (en) 1999-09-20 1999-09-20 Resistance welding machine control device and resistance welding machine control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26550399A JP3767271B2 (en) 1999-09-20 1999-09-20 Resistance welding machine control device and resistance welding machine control method

Publications (2)

Publication Number Publication Date
JP2001087867A JP2001087867A (en) 2001-04-03
JP3767271B2 true JP3767271B2 (en) 2006-04-19

Family

ID=17418082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26550399A Expired - Fee Related JP3767271B2 (en) 1999-09-20 1999-09-20 Resistance welding machine control device and resistance welding machine control method

Country Status (1)

Country Link
JP (1) JP3767271B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7759596B2 (en) * 2005-11-30 2010-07-20 Ford Motor Company Method for controlling weld energy
JP2010269337A (en) * 2009-05-21 2010-12-02 Daihen Corp Method for discriminating quality of projection welding
JP5052586B2 (en) * 2009-11-18 2012-10-17 株式会社豊田中央研究所 Resistance welding method, resistance welding member, resistance welding machine and control device thereof, resistance welding machine control method and control program thereof, resistance welding evaluation method and evaluation program, and detection method at the start of resistance welding melting
JP5584026B2 (en) * 2010-07-02 2014-09-03 株式会社ダイヘン Resistance welding control method

Also Published As

Publication number Publication date
JP2001087867A (en) 2001-04-03

Similar Documents

Publication Publication Date Title
US6600135B2 (en) Method and apparatus for controlling AC pulse arc welding and welding power source apparatus
US5866866A (en) Inverter seam resistance welding electric power supply apparatus
US6552293B2 (en) Metallic members joining method and reflow soldering method
KR100650610B1 (en) power supply for the resistance welding
US6046424A (en) Resistance welding control apparatus
JPS6317032B2 (en)
US5748462A (en) Apparatus for controlling inverter resistance welding
JP3767271B2 (en) Resistance welding machine control device and resistance welding machine control method
CN114273752B (en) Thermal arc striking control method suitable for inversion manual welding machine and welding machine
JP5709247B2 (en) Resistance welding method and resistance welding apparatus
US20140175065A1 (en) Welding-Current Control Method of the Resistance Welding Machine and Welding-Current Control Device
JP4643113B2 (en) Welding method and power supply device for welding
US5938947A (en) Method of controlling welding current and inverter-controlled DC resistance welding apparatus
KR20110026357A (en) Apparatus and operating method of dc inverter resistance spot welding connected with network for intelligence control and recording medium
US20220055136A1 (en) Arc welding method and arc welding device
JP3259012B2 (en) Inverter type resistance welding control device
US6194681B1 (en) Power supply apparatus for arc-utilizing machine
JP2000288732A (en) Method and device for optimum-controlling arc welding
JP2004314098A (en) Arc welder
JP7534057B2 (en) Method for monitoring the current flow state of a welded portion and control device for a resistance welding machine
JP2002210566A (en) Metal member joining method, and ac waveform inverter type power source device
JPH10128553A (en) Resistance welding equipment
JP2024069804A (en) Weld quality determining method in pulse arc welding
JPH02263579A (en) Inverter type spot welding machine
JP2009269088A (en) Consumable electrode type ac arc welding power unit

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050809

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060123

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees