JP2001087867A - Control system and control method for resistance welding machine - Google Patents

Control system and control method for resistance welding machine

Info

Publication number
JP2001087867A
JP2001087867A JP26550399A JP26550399A JP2001087867A JP 2001087867 A JP2001087867 A JP 2001087867A JP 26550399 A JP26550399 A JP 26550399A JP 26550399 A JP26550399 A JP 26550399A JP 2001087867 A JP2001087867 A JP 2001087867A
Authority
JP
Japan
Prior art keywords
welding
welding power
voltage
power
rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26550399A
Other languages
Japanese (ja)
Other versions
JP3767271B2 (en
Inventor
Akira Ichikawa
晃 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzuki Motor Corp
Original Assignee
Suzuki Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzuki Motor Corp filed Critical Suzuki Motor Corp
Priority to JP26550399A priority Critical patent/JP3767271B2/en
Publication of JP2001087867A publication Critical patent/JP2001087867A/en
Application granted granted Critical
Publication of JP3767271B2 publication Critical patent/JP3767271B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To prevent the development of the expulsion and surface flash by detecting indication of the development of the expulsion and surface flash based on time-varying rate of welding power and reducing the welding power before developing the expulsion and surface flash. SOLUTION: Voltage between electrodes is detected at a voltage detecting part 8 and the welding current is detected at a current detecting part 9. The instantaneous value of the welding power is calculated at each time interval sufficiently shorter than a PWM modulation period and also, the changing rate of the welding power is calculated, with a welding power changing rate calculating means 11. When the changing rate of the welding power exceeds the preset permissible increasing rate in a nugget growing period, this phenomenon is caught as the indication of the development of expulsion and surface flash, the supply of the welding power is immediatey stopped and also, the supplied power is reduced by reducing the duty of a PWM signal over few periods from the next PWM modulation period to prevent the development of expulsion and surface flash, with a welding power control means 13. When the changing rate of the voltage between the electrodes exceeds the permissible increasing rate, by monitoring the change of the voltage between the electrodes, the phenomenon is caught as the indication of the development of expulsion and surface flash, and the supplied power may be reduced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、抵抗溶接機の制
御装置および制御方法に係り、詳しくは、溶接電力の時
間変化率に基づいて散り発生の兆候を検出し、散りが発
生する前に溶接電力を減少させることで、散りの発生を
抑制するようにした抵抗溶接機の制御装置および制御方
法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a control apparatus and a control method for a resistance welding machine, and more particularly, to detecting a sign of occurrence of spatter based on a rate of change of welding power with time and performing welding before spatter occurs. TECHNICAL FIELD The present invention relates to a control device and a control method for a resistance welding machine that reduce generation of dispersion by reducing electric power.

【0002】[0002]

【従来の技術】抵抗溶接では、散りの発生が品質および
安全面で問題になっていた。このため、散りの発生を抑
制し溶接品質の向上を図るための技術が以下に示すよう
に種々提案されている。
2. Description of the Related Art In resistance welding, the occurrence of scattering has been a problem in terms of quality and safety. For this reason, various techniques for suppressing the occurrence of scattering and improving welding quality have been proposed as described below.

【0003】特開昭54−58655号公報(特公昭5
7−37430号公報)には、通電時間中の溶接打点に
おける部材の肉厚変化を検出し、その変化量が基準値以
上になったことにより散り発生を検出するものとし、散
り発生したときには溶接電流を所定量減少させ、散り発
生しないときは溶接電流を所定量増加させることで、溶
接電流を散り発生限界電流値に沿って制御するようにし
た抵抗点溶接制御方法が記載されている。
[0003] Japanese Patent Application Laid-Open No. 54-58655 (JP-B-5-58655)
Japanese Patent Application Laid-Open No. 7-37430) discloses a method in which a change in the thickness of a member at a welding point during an energizing time is detected, and the occurrence of spatter is detected when the change amount exceeds a reference value. A resistance point welding control method is described in which the current is decreased by a predetermined amount, and when no scattering occurs, the welding current is increased by a predetermined amount to control the welding current in accordance with the limit current value at which scattering occurs.

【0004】特開平6−344155号公報には、電極
間電圧と基準値とを比較して散りの発生を予測し、その
予測結果にしたがって対策を講ずることにより、散り発
生の抑制および溶接ナゲット径の均一な溶接を行なえる
ようにしたスポット溶接機用制御装置が記載されてい
る。溶接通電中の所定の期間のみ電流量を低減すること
で散りの発生を抑制できる。この所定の期間で散りが発
生しやすいことが実験的に確認されている。この所定の
期間は被溶接材間の電流路の面積が急に拡大しようとし
ている期間である。この期間の溶接電流を低減すること
で、溶接電流路の面積が穏やかに拡大されることにより
散り発生が抑制される。電極間電圧が基準値を越えてい
るか否かで散り発生の有無を予測するようにしたため、
散り発生を効果的に抑制できる。
Japanese Unexamined Patent Publication No. Hei 6-344155 discloses that the occurrence of dispersion is predicted by comparing the voltage between electrodes with a reference value, and countermeasures are taken in accordance with the result of the prediction to suppress the occurrence of dispersion and to reduce the welding nugget diameter. A control device for a spot welder capable of performing uniform welding of the same is described. By reducing the amount of current only during a predetermined period during welding power supply, generation of scattering can be suppressed. It has been experimentally confirmed that scattering is likely to occur during this predetermined period. This predetermined period is a period in which the area of the current path between the workpieces is about to suddenly increase. By reducing the welding current during this period, the area of the welding current path is gently enlarged, thereby suppressing the occurrence of scattering. Because the presence or absence of scattering is predicted based on whether the voltage between the electrodes exceeds the reference value,
Scattering can be effectively suppressed.

【0005】特開平9−216070号公報には、溶接
電流と電極間電圧を用いて推算したエネルギー分布か
ら、散り発生危険率と散り発生予測時間を推算し、散り
発生予測時間が設定した溶接時間経過の直後になるよう
に溶接電流を変更制御することで、散りを発生させるこ
となく入熱を高めて、最大の強度を持つナゲットを得る
ようにした抵抗溶接機の制御装置が記載されている。
Japanese Unexamined Patent Publication No. Hei 9-216070 discloses a method of estimating a risk of occurrence of scatter and an estimated time of occurrence of scatter from an energy distribution estimated using a welding current and a voltage between electrodes. A control device for a resistance welding machine is described in which the welding current is changed and controlled so as to be immediately after the passage, so that heat input is increased without generating dispersion and a nugget having the maximum strength is obtained. .

【0006】特開平10−94883号公報には、溶接
電流とチップ間電圧を検出し、熱伝導計算により溶接部
のシミュレーシヨンを行ない、ナゲットの生成状態を推
定することにより、良好な溶接を行なうようにした抵抗
溶接機の溶接条件制御方法が記載されている。
[0006] Japanese Patent Application Laid-Open No. Hei 10-94883 discloses that a welding is performed well by detecting a welding current and a voltage between chips, simulating a welded portion by heat conduction calculation, and estimating a nugget generation state. A method for controlling the welding conditions of the resistance welding machine is described.

【0007】[0007]

【発明が解決しようとする課題】特開昭54−5865
5号公報に記載されたものは、散りの発生を検出した際
に溶接電流を制御するものである。このため、散りが発
生した際に溶接電流を低減させたり溶接電流の供給を停
止させることはできるが、散りの発生を未然に防止する
ことはできない。
Problems to be Solved by the Invention Japanese Patent Application Laid-Open No. 54-5865
Japanese Patent Application Laid-Open No. 5 (1999) -1995 controls the welding current when the occurrence of scattering is detected. For this reason, when the scattering occurs, the welding current can be reduced or the supply of the welding current can be stopped, but the occurrence of the scattering cannot be prevented beforehand.

【0008】特開平6−344155号公報に記載され
たスポット溶接機用制御装置は、散り発生限界電流より
やや小さい電流で溶接した時に生じた電極間電圧を予め
実験により求めた得た基準電極間電圧と実際に検出され
た電極間電圧とを比較し、実際に検出された電極間電圧
が基準電極間電圧を越えたか否かで散り発生の有無を予
測するものである。基準電極間電圧は散り発生限界電流
よりやや小さい電流で溶接した時に生じた電極間電圧を
予め実験により求めた得たものであるため、実際に検出
された電極間電圧が基準電極間電圧を極わずかに越えて
いるだけで散り発生には至らないような場合でも散り発
生有りと予測されることがある。
A control apparatus for a spot welding machine described in Japanese Patent Application Laid-Open No. Hei 6-344155 discloses a control method for a reference electrode which is obtained by conducting an experiment in advance to determine a voltage between electrodes which is generated when welding is performed with a current slightly smaller than a limit current for occurrence of scattering. The voltage is compared with the actually detected inter-electrode voltage, and the occurrence of dispersion is predicted based on whether the actually detected inter-electrode voltage exceeds the reference inter-electrode voltage. Since the reference electrode voltage is obtained by conducting an experiment beforehand on the electrode voltage generated when welding was performed with a current slightly smaller than the splattering limit current, the actually detected electrode voltage is the same as the reference electrode voltage. Even in the case where the occurrence of scattering does not lead to the occurrence of slight deviation, the occurrence of scattering may be predicted.

【0009】特開平9−216070号公報に記載され
た抵抗溶接機の制御装置は、エネルギー分布を推算する
ために多数の演算処理が必要である。このため、制御装
置の構成が複雑となる。特開平10−94883号公報
に記載された抵抗溶接機の溶接条件制御方法は、熱伝導
シミュレータを用いる構成であるため、制御装置等の構
成が複雑となる。
The control device for a resistance welding machine described in Japanese Patent Application Laid-Open No. 9-216070 requires a large number of arithmetic processes to estimate an energy distribution. For this reason, the configuration of the control device becomes complicated. The method of controlling welding conditions of a resistance welding machine described in Japanese Patent Application Laid-Open No. H10-94883 uses a heat conduction simulator, so that the configuration of a control device and the like is complicated.

【0010】[0010]

【発明の目的】この発明はこのような課題を解決するた
めなされたもので、比較的簡易な構成で散りの発生を精
度良く予測し、この予測結果に基づいて溶接部の発熱量
を制御することで良好な溶接を行なえるようにした抵抗
溶接機の制御装置および制御方法を提供することを目的
とする。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-described problem, and accurately predicts the occurrence of scattering with a relatively simple configuration, and controls the amount of heat generated at a weld based on the prediction result. It is therefore an object of the present invention to provide a control device and a control method for a resistance welding machine, which can perform good welding.

【0011】[0011]

【課題を解決するための手段】前記課題を解決するため
請求項1に係る抵抗溶接機の制御装置は、溶接電流を検
出する電流検出部と、溶接電極間電圧を検出する電圧検
出部と、溶接電流と溶接電極間電圧とに基づいて溶接電
力を算出するとともに溶接電力の時間変化率を算出する
溶接電力変化率算出手段と、溶接電力が最大値となった
以降のナゲット成長期間における溶接電力の時間変化率
の標準範囲を記憶する標準範囲記憶手段と、溶接電力変
化率算出手段で算出した時間変化率が標準範囲記憶手段
に記憶された溶接電力の時間変化率の標準範囲内になる
よう溶接電力を制御する溶接電力制御手段とを備えてな
る。
According to a first aspect of the present invention, there is provided a control device for a resistance welding machine, comprising: a current detector for detecting a welding current; a voltage detector for detecting a voltage between welding electrodes; Welding power change rate calculating means for calculating welding power based on the welding current and the voltage between welding electrodes and calculating a time rate of change of welding power, and welding power during a nugget growth period after the welding power reaches a maximum value. A standard range storage means for storing the standard range of the time change rate, and the time change rate calculated by the welding power change rate calculation means is within the standard range of the time change rate of the welding power stored in the standard range storage means. Welding power control means for controlling the welding power.

【0012】請求項1に係る抵抗溶接機の制御装置は、
ナゲット成長期間における溶接電力の時間変化率を監視
し、溶接電力の時間変化率が予め設定した標準範囲内に
なるよう溶接電力を制御する。溶接電力の時間変化率を
監視することで、溶接電力の変化の兆候を速やかに検出
することができる。これにより、ナゲット成長期間にお
ける溶接電力が過大になって散りが発生する前に溶接電
力を低減させることができ、散りの発生を未然に防止で
きる。また、ナゲット成長期間における溶接電力が過小
になって溶接品質が低下するのを未然に防止できる。
According to a first aspect of the present invention, there is provided a control device for a resistance welding machine.
The temporal change rate of the welding power during the nugget growth period is monitored, and the welding power is controlled so that the temporal change rate of the welding power is within a preset standard range. By monitoring the time rate of change of the welding power, a sign of a change in the welding power can be quickly detected. This makes it possible to reduce the welding power before the welding power becomes too large during the nugget growth period to cause the dispersion, thereby preventing the occurrence of the dispersion. In addition, it is possible to prevent the welding power during the nugget growth period from becoming too small and the welding quality from being lowered.

【0013】請求項2に係る抵抗溶接機の制御装置は、
溶接電流を検出する電流検出部と、溶接電極間電圧を検
出する電圧検出部と、溶接電流と溶接電極間電圧とに基
づいて溶接電力を算出するとともに溶接電力の時間変化
率を算出する溶接電力変化率算出手段と、溶接電力が最
大値となった以降のナゲット成長期間において溶接電力
の時間変化率が予め設定した増加率を越えた場合にそれ
を散り発生の兆候と判断して溶接電力を減少させる溶接
電力制御手段とを備えてなる。
According to a second aspect of the present invention, there is provided a control device for a resistance welding machine.
A current detector for detecting a welding current, a voltage detector for detecting a voltage between welding electrodes, and welding power for calculating welding power based on the welding current and the voltage between welding electrodes and calculating a time rate of change of welding power. Rate-of-change calculation means, and when the time rate of change of the welding power exceeds a preset rate of increase during the nugget growth period after the welding power reaches the maximum value, the welding power is judged as a sign of occurrence and the welding power is determined. And welding power control means for reducing the welding power.

【0014】請求項2に係る抵抗溶接機の制御装置は、
ナゲット成長期間における溶接電力の時間変化率を監視
し、溶接電力の時間変化率が予め設定した増加率を越え
た場合にそれを散り発生の兆候と判断して溶接電力を減
少させる。よって、散りの発生を未然に防止できる。
According to a second aspect of the present invention, there is provided a control device for a resistance welding machine.
The rate of change of the welding power over time during the nugget growth period is monitored, and when the rate of change of the welding power over time exceeds a preset rate of increase, it is judged as a sign of occurrence and the welding power is reduced. Therefore, occurrence of scattering can be prevented beforehand.

【0015】請求項3に係る抵抗溶接機の制御装置は、
溶接電極間電圧を検出する電圧検出部と、溶接電極間電
圧の時間変化率を算出する電極間電圧変化率算出手段
と、ナゲット成長期間において溶接電極間電圧の時間変
化率が予め設定した増加率を越えた場合にそれを散り発
生の兆候と判断して溶接電力を減少させる溶接電力制御
手段とを備えてなる。
According to a third aspect of the present invention, there is provided a control device for a resistance welding machine.
A voltage detecting unit for detecting a voltage between welding electrodes, an inter-electrode voltage change rate calculating means for calculating a time change rate of the voltage between welding electrodes, and a time-dependent change rate of the voltage between welding electrodes during a nugget growth period, which is set in advance. And welding power control means for reducing the welding power by judging the occurrence as a sign of occurrence when exceeding.

【0016】請求項3に係る抵抗溶接機の制御装置は、
ナゲット成長期間における溶接電極間電圧の時間変化率
を監視し、溶接電極間電圧の時間変化率が予め設定した
増加率を越えた場合にそれを散り発生の兆候と判断して
溶接電力を減少させる。よって、散りの発生を未然に防
止できる。
A control device for a resistance welding machine according to claim 3 is
The time change rate of the voltage between the welding electrodes during the nugget growth period is monitored, and when the time change rate of the voltage between the welding electrodes exceeds a predetermined rate of increase, it is judged as a sign of occurrence and the welding power is reduced. . Therefore, occurrence of scattering can be prevented beforehand.

【0017】請求項4に係る抵抗溶接機の制御方法は、
ナゲット成長期間において溶接電力の時間変化率を監視
し、溶接電力の時間変化率が予め設定した許容増加率を
越えた場合には、溶接電力の供給を直ちに停止するとと
もに、その後の溶接電力の供給量を所定期間に亘って低
減することを特徴とする。
According to a fourth aspect of the present invention, there is provided a method for controlling a resistance welding machine.
During the nugget growth period, the time rate of change of the welding power is monitored, and if the time rate of change of the welding power exceeds a preset allowable increase rate, the supply of welding power is immediately stopped, and the subsequent supply of welding power is performed. The amount is reduced over a predetermined period.

【0018】請求項4に係る抵抗溶接機の制御方法は、
ナゲット成長期間における溶接電力の時間変化率を監視
し、溶接電力の時間変化率が予め設定した許容増加率を
越えた場合にそれを散り発生の兆候と判断して溶接電力
を減少させる。よって、散りの発生を未然に防止でき
る。
According to a fourth aspect of the present invention, there is provided a method for controlling a resistance welding machine.
The temporal rate of change of the welding power during the nugget growth period is monitored, and when the temporal rate of change of the welding power exceeds a predetermined allowable increase rate, it is determined as a sign of occurrence of scattering and the welding power is reduced. Therefore, occurrence of scattering can be prevented beforehand.

【0019】請求項5に係る抵抗溶接機の制御方法は、
ナゲット成長期間において溶接電極間電圧の時間変化率
を監視し、溶接電極間電圧の時間変化率が予め設定した
許容増加率を越えた場合には、溶接電力の供給を直ちに
停止するとともに、その後の溶接電力の供給量を所定期
間に亘って低減することを特徴とする。
According to a fifth aspect of the present invention, there is provided a method for controlling a resistance welding machine.
During the nugget growth period, the time rate of change of the voltage between the welding electrodes is monitored, and when the time rate of change of the voltage between the welding electrodes exceeds a preset allowable increase rate, the supply of welding power is immediately stopped, and thereafter, It is characterized in that the supply amount of welding power is reduced over a predetermined period.

【0020】請求項5に係る抵抗溶接機の制御方法は、
ナゲット成長期間における溶接電極間電圧の時間変化率
を監視し、溶接電極間電圧の時間変化率が予め設定した
許容増加率を越えた場合にそれを散り発生の兆候と判断
して溶接電力を減少させる。よって、散りの発生を未然
に防止できる。
According to a fifth aspect of the present invention, there is provided a method for controlling a resistance welding machine.
Monitors the rate of change of welding electrode voltage over time during the nugget growth period.If the rate of change of welding electrode voltage over time exceeds a preset allowable increase rate, it is judged as a sign of occurrence and the welding power is reduced. Let it. Therefore, occurrence of scattering can be prevented beforehand.

【0021】[0021]

【発明の実施の形態】以下、この発明の実施の形態を添
付図面に基づいて説明する。
Embodiments of the present invention will be described below with reference to the accompanying drawings.

【0022】図1はこの発明に係る抵抗溶接機の制御装
置のブロック構成図である。この発明に係る抵抗溶接機
の制御装置1は、3相交流電源2と、3相全波整流部3
と、インバータ部4と、降圧トランス5と、整流部6
と、一対の溶接電極7a,7bと、電圧検出部8と、電
流検出部9と、制御部10とからなる。制御部10は、
溶接電力変化率算出手段11と、標準範囲記憶手段12
と、溶接電力制御手段13と、インバータ駆動回路14
とを備える。符号30は被溶接物、符号31はナゲット
(溶解部)である。
FIG. 1 is a block diagram of a control device for a resistance welding machine according to the present invention. The control device 1 for a resistance welding machine according to the present invention includes a three-phase AC power source 2 and a three-phase full-wave rectifier 3.
, An inverter unit 4, a step-down transformer 5, and a rectifying unit 6
, A pair of welding electrodes 7 a and 7 b, a voltage detector 8, a current detector 9, and a controller 10. The control unit 10
Welding power change rate calculating means 11 and standard range storing means 12
Welding power control means 13 and inverter drive circuit 14
And Reference numeral 30 denotes a workpiece, and reference numeral 31 denotes a nugget (melting portion).

【0023】3相全波整流部3は、3相交流電源2から
供給される3相交流を全波整流して直流電源を生成す
る。生成された直流電源はインバータ部4へ供給され
る。インバータ部4は、直流電源を高周波交流へ変換し
て降圧トランス5の一次巻線を駆動する。このインバー
タ部4は、H型ブリッジ接続された4個の電力用半導体
スイッチング素子(例えばIGBT等)を備える。イン
バータ部4は、制御部10内のインバータ駆動回路14
から供給される複数の駆動信号10aに基づいて各電力
用半導体スイッチング素子が所定の順序でスイッチング
されることで、高周波交流を発生する。制御部10内の
溶接電力制御手段13は、インバータ駆動回路14へ供
給するPWM信号13aのデューティを可変することで
インバータ4の出力電力を制御し、これによって降圧ト
ランス5,整流部6,溶接電力7a,7bを介して被溶
接部30に供給する溶接電力を制御する。降圧トランス
5の2次巻線には、低電圧化された高周波交流が誘起さ
れる。この低電圧化された高周波交流は整流部6で直流
に変換される。整流部6は、2個の整流用ダイオード6
a,6bを備える。整流部6で生成された脈流は、各溶
接電極7a,7bを介して被溶接部30に供給される。
The three-phase full-wave rectifier 3 performs full-wave rectification on the three-phase AC supplied from the three-phase AC power supply 2 to generate a DC power supply. The generated DC power is supplied to the inverter unit 4. The inverter unit 4 converts a DC power supply into a high-frequency AC and drives a primary winding of the step-down transformer 5. The inverter unit 4 includes four H-bridge connected power semiconductor switching elements (for example, IGBTs and the like). The inverter unit 4 includes an inverter driving circuit 14 in the control unit 10.
The power semiconductor switching elements are switched in a predetermined order on the basis of a plurality of drive signals 10a supplied from the power supply, thereby generating a high-frequency AC. The welding power control means 13 in the control unit 10 controls the output power of the inverter 4 by changing the duty of the PWM signal 13a supplied to the inverter driving circuit 14, thereby controlling the step-down transformer 5, the rectifying unit 6, the welding power The welding power to be supplied to the welded portion 30 via 7a and 7b is controlled. A low-frequency high-frequency alternating current is induced in the secondary winding of the step-down transformer 5. The low-frequency high-frequency alternating current is converted to direct current by the rectifier 6. The rectifying unit 6 includes two rectifying diodes 6
a, 6b. The pulsating flow generated by the rectification unit 6 is supplied to the welded part 30 via the welding electrodes 7a and 7b.

【0024】電圧検出部8は、一対の溶接電極7a,7
b間の電圧を検出し、検出した電圧に対応した電気信号
(電圧検出信号)8aを出力する。この電圧検出信号8
aは制御部10内の溶接電力変化率算出手段11へ供給
される。
The voltage detector 8 includes a pair of welding electrodes 7a, 7
It detects the voltage between b and outputs an electric signal (voltage detection signal) 8a corresponding to the detected voltage. This voltage detection signal 8
a is supplied to the welding power change rate calculating means 11 in the control unit 10.

【0025】電流検出部9は、溶接電流を検出し、検出
した溶接電流に対応した電気信号(電流検出信号)9a
を出力する。この電流検出信号9aは制御部10内の溶
接電力変化率算出手段11へ供給される。
The current detector 9 detects a welding current, and an electric signal (current detection signal) 9a corresponding to the detected welding current.
Is output. The current detection signal 9a is supplied to the welding power change rate calculating means 11 in the control unit 10.

【0026】溶接電力変化率算出手段11は、電圧検出
信号8aと電流検出信号9aとに基づいて溶接電力の瞬
時値11aを予め設定した時間間隔で算出するととも
に、溶接電力の瞬時値の時間変化率11bを算出する。
算出された溶接電力の瞬時値11aならびに溶接電力の
瞬時値の時間変化率11bは、溶接電力制御手段13へ
供給される。
The welding power change rate calculating means 11 calculates the welding power instantaneous value 11a at preset time intervals based on the voltage detection signal 8a and the current detection signal 9a, and calculates the welding power instantaneous value over time. The rate 11b is calculated.
The calculated instantaneous value 11a of the welding power and the time rate of change 11b of the instantaneous value of the welding power are supplied to the welding power control means 13.

【0027】標準範囲記憶手段12には、溶接電力が最
大値となった以降のナゲット成長期間における溶接電力
の時間変化率の標準範囲が格納されている。この溶接電
力の時間変化率の標準範囲は、ナゲット成長期間の時間
経過毎に上限値と下限値とを予め設定したものである。
The standard range storage means 12 stores a standard range of the time rate of change of the welding power during the nugget growth period after the welding power reaches the maximum value. The standard range of the time rate of change of the welding power is obtained by presetting an upper limit and a lower limit every time the nugget growth period elapses.

【0028】溶接電力制御手段13は、指令値に基づい
てPWM信号13aを生成してインバータ駆動回路14
へ供給することで溶接電力の供給を開始させるととも
に、溶接電力の瞬時値11aに基づいて各PWM変調周
期毎の溶接電力積分値または各PWM変調周期毎の溶接
電力の瞬時値11aの最大値を求める。
The welding power control means 13 generates a PWM signal 13a based on the command value and generates a PWM signal 13a.
Supply of welding power is started by supplying the welding power integrated value for each PWM modulation cycle or the maximum value of the welding power instantaneous value 11a for each PWM modulation cycle based on the welding power instantaneous value 11a. Ask.

【0029】溶接電力制御手段13は、各PWM変調周
期毎の溶接電力積分値または各PWM変調周期毎の溶接
電力の瞬時値11aの最大値の変化を監視し、各PWM
変調周期毎の溶接電力積分値または各PWM変調周期毎
の溶接電力の瞬時値11aの最大値が最大値(極大点)
に達したことに基づいて図2に示す温度上昇期間が終了
して下降期間(ナゲット成長期間)に入ったことを認識
する。下降期間(ナゲット成長期間)とは、溶接の自律
作用による加熱抑制期間のことである。
The welding power control means 13 monitors a change in the integrated value of the welding power for each PWM modulation cycle or the maximum value of the instantaneous value 11a of the welding power for each PWM modulation cycle.
The maximum value of the welding power integral value for each modulation cycle or the instantaneous value 11a of the welding power for each PWM modulation cycle is the maximum value (maximum point)
, It is recognized that the temperature rising period shown in FIG. 2 has ended and a falling period (nugget growth period) has entered. The falling period (nugget growth period) is a heating suppression period due to the autonomous action of welding.

【0030】溶接電力制御手段13は、下降期間(ナゲ
ット成長期間)に入ると、先のPWM変調周期での溶接
電力積分値または溶接電力の瞬時値11aの最大値と、
今回のPWM変調周期での溶接電力積分値または溶接電
力の瞬時値11aの最大値との変化率を算出する。そし
て、算出した各PWM変調周期毎の溶接電力の時間変化
率と標準範囲とを比較し、PWM変調周期毎の溶接電力
の時間変化率が標準範囲の上限値を越えている場合には
PWM信号13aのデューティを小さくすることで溶接
電力を減少させ、また、PWM変調周期毎の溶接電力の
時間変化率が標準範囲の下限値を越えている場合にはP
WM信号13aのデューティを大きくすることで溶接電
力を増加させる。これにより、各PWM変調周期毎の溶
接電力の時間変化率が予め設定した標準範囲になるよう
制御される。
When the descent period (nugget growth period) starts, the welding power control means 13 sets the welding power integrated value in the previous PWM modulation cycle or the maximum value of the welding power instantaneous value 11a,
A change rate of the welding power integrated value or the maximum value of the welding power instantaneous value 11a in the current PWM modulation cycle is calculated. Then, the calculated time change rate of the welding power for each PWM modulation cycle is compared with the standard range. If the time change rate of the welding power for each PWM modulation cycle exceeds the upper limit of the standard range, the PWM signal is output. The welding power is reduced by reducing the duty of the welding power 13a, and when the time rate of change of the welding power for each PWM modulation cycle exceeds the lower limit of the standard range, the welding power is reduced.
The welding power is increased by increasing the duty of the WM signal 13a. Thereby, the control is performed such that the time rate of change of the welding power for each PWM modulation cycle is within a preset standard range.

【0031】さらに、溶接電力制御手段13は、溶接電
力の瞬時値の時間変化率11bが予め設定した散り発生
兆候検出値を越えている場合には、現在出力しているP
WM信号13aの出力を直ちに停止するとともに、次の
PWM変調周期から数周期の期間に亘ってPWM信号1
3aのデューティを極めて小さな値に変更する。散り発
生の兆候を検出して供給電力を低減させることで、散り
の発生を未然に防止することができる。
Further, when the time change rate 11b of the instantaneous value of the welding power exceeds the preset detection value of the occurrence sign of the scattering, the welding power control means 13 outputs the current P value.
The output of the WM signal 13a is immediately stopped, and the PWM signal 1a is output for several periods from the next PWM modulation period.
The duty of 3a is changed to an extremely small value. By detecting the sign of the occurrence of the scattering and reducing the supply power, the occurrence of the scattering can be prevented beforehand.

【0032】図2は溶接時の電極間電圧の変化特性、溶
接電力変化率、消費電力の変化特性を示すグラフであ
る。図2において、時刻0〜時刻t0までは予備通電期
間である。この予備通電期間では、被溶接物が加熱さ
れ、接触抵抗が消滅して電極間電圧が降下する。この予
備通電期間の長さは統計的に求めることができる。時刻
t0〜時刻tpは温度上昇期間である。この温度上昇期
間では、被溶接物が加熱され温度が上昇する。溶接電力
の極大点に基づいてピーク時刻tpを求めることができ
る。時刻tp〜時刻teは下降期間である。ピーク時刻
tp以降、溶接の自律作用によって電極間電圧が下降す
る。この下降期間は、ナゲットの成長する期間である。
時刻teは通電終了時刻である。この通電終了時刻te
以降は終了処理として通電電流を漸次減少させる。図2
(b)においてハッチングで示した領域が、溶接電力変
化率の標準範囲である。
FIG. 2 is a graph showing the change characteristics of the voltage between electrodes, the change rate of welding power, and the change characteristics of power consumption during welding. In FIG. 2, a time from time 0 to time t0 is a preliminary energization period. In the pre-energization period, the workpiece is heated, the contact resistance disappears, and the voltage between the electrodes drops. The length of the pre-energization period can be statistically obtained. Time t0 to time tp is a temperature rise period. During this temperature rise period, the workpiece is heated and the temperature rises. The peak time tp can be obtained based on the maximum point of the welding power. The period from time tp to time te is a falling period. After the peak time tp, the voltage between the electrodes decreases due to the autonomous action of welding. This falling period is a period during which the nugget grows.
Time te is an energization end time. This energization end time te
Thereafter, as a termination process, the energizing current is gradually reduced. FIG.
The area indicated by hatching in (b) is the standard range of the welding power change rate.

【0033】図3は散り発生の兆候を検出して溶接電力
を低減する動作を示す説明図である。図3(a)は溶接
電力の変化特性、図3(b)は溶接電力変化率(溶接電
力微分値)を、図3(c)はスイッチングパルス(供給
電力)を示している。散りは下降期間(ナゲット成長期
間)において発生することが知られている。図3(a)
に示すように、散り発生時には溶接電力が増大する。こ
の溶接電力の増大は溶接電力変化率の変化として検出さ
れる。すなわち、図3(b)に示すように、散り発生に
至る前段階で溶接電力変化率が急激に変化する。この溶
接電力変化率の急激な変化を散り発生の兆候としてとら
え、図3(c)に示すように供給電力を抑制する。これ
により、散りの発生を未然に防止することができる。
FIG. 3 is an explanatory diagram showing an operation of detecting a sign of occurrence of scattering to reduce welding power. 3A shows a change characteristic of the welding power, FIG. 3B shows a welding power change rate (welding power differential value), and FIG. 3C shows a switching pulse (supply power). Scattering is known to occur during the falling period (nugget growth period). FIG. 3 (a)
As shown in (1), the welding power increases at the time of occurrence of scattering. This increase in welding power is detected as a change in the welding power change rate. That is, as shown in FIG. 3 (b), the welding power change rate changes abruptly before the occurrence of scattering. This rapid change in the welding power change rate is regarded as a sign of occurrence of scattering, and the supplied power is suppressed as shown in FIG. Thereby, the occurrence of scattering can be prevented beforehand.

【0034】図4は交流式抵抗溶接機で溶接電力の供給
を制御した際の溶接時の電力波形の一例を示す溶接電力
波形図である。図4において、横軸は時間を、縦軸は溶
接電力を示している。ここでは、下降期間(ナゲット成
長期間)中の2箇所の点(a),(b)で散りが発生し
た例を示している。図5および図6は図4に示した溶接
電力波形の時間軸を拡大した溶接電力波形図である。図
7および図8は散り発生時点の前後の電力波形を示す電
力波形図である。
FIG. 4 is a welding power waveform diagram showing an example of a power waveform at the time of welding when the supply of welding power is controlled by an AC resistance welding machine. In FIG. 4, the horizontal axis represents time, and the vertical axis represents welding power. Here, an example is shown in which scattering occurs at two points (a) and (b) during the falling period (nugget growth period). 5 and 6 are welding power waveform diagrams in which the time axis of the welding power waveform shown in FIG. 4 is enlarged. 7 and 8 are power waveform diagrams showing power waveforms before and after the occurrence of scattering.

【0035】図1に示した溶接電力変化率算出手段11
は、電極間電圧8aをD/A変換するためのD/A変換
器と、溶接電流9aをD/A変換するためのD/A変換
器とを備えている。溶接電力変化率算出手段11は、P
WM変調周期の例えば1/100以上の短い周期で、上
記2つのD/A変換器を用いて電極間電圧8aと溶接電
流9aとを同一のタイミングでサンプリングして、それ
ぞれのD/A変換データを得ることを順次繰り返す。そ
して、電極間電圧データと溶接電流データとに基づいて
電極間電圧と溶接電流とを乗算することで溶接電力の瞬
時値11aを算出して、算出した溶接電力の瞬時値11
aを溶接電力制御手段13へ順次供給する。溶接電力変
化率算出手段11は、先のサンプリングに基づいて算出
した溶接電力の瞬時値と今回のサンプリングに基づいて
算出した溶接電力の瞬時値との変化率を算出し、算出し
た瞬時変化率11bを溶接電力制御手段13へ順次供給
する。
The welding power change rate calculating means 11 shown in FIG.
Has a D / A converter for D / A conversion of the inter-electrode voltage 8a, and a D / A converter for D / A conversion of the welding current 9a. The welding power change rate calculating means 11 calculates P
The inter-electrode voltage 8a and the welding current 9a are sampled at the same timing using the above two D / A converters in a short cycle of, for example, 1/100 or more of the WM modulation cycle, and the respective D / A conversion data Is sequentially repeated. Then, the instantaneous value 11a of the welding power is calculated by multiplying the inter-electrode voltage and the welding current based on the inter-electrode voltage data and the welding current data.
a is sequentially supplied to the welding power control means 13. The welding power change rate calculating means 11 calculates the change rate between the instantaneous value of the welding power calculated based on the previous sampling and the instantaneous value of the welding power calculated based on the current sampling, and calculates the calculated instantaneous change rate 11b. Are sequentially supplied to the welding power control means 13.

【0036】溶接電力制御手段13は、PWM変調周期
の例えば1/100以上の短い周期で順次供給される溶
接電力の瞬時値11aをPWM変調周期の1周期に亘っ
て積算することで、各PWM変調周期毎の溶接電力を求
める。
The welding power control means 13 integrates the instantaneous values 11a of the welding power sequentially supplied in a short cycle of, for example, 1/100 or more of the PWM modulation cycle over one PWM modulation cycle, thereby obtaining each PWM. The welding power for each modulation cycle is determined.

【0037】図2(c)に示したように、温度上昇期間
においては溶接電力は増加を続け、溶接電力が最大値
(極大値)を越えた時点から下降期間(ナゲット成長期
間)となる。溶接電力制御手段13は、各PWM変調周
期毎の溶接電力が増加を続けていることに基づいて温度
上昇期間にあることを認識する。溶接電力制御手段13
は、先のPWM変調周期の溶接電力に対して今回のPW
M変調周期の溶接電力が等しいか減少したことに基づい
て下降期間(ナゲット成長期間)に入ったことを認識す
る。
As shown in FIG. 2C, during the temperature rise period, the welding power continues to increase, and from the time when the welding power exceeds the maximum value (maximum value), the falling period (nugget growth period) starts. The welding power control means 13 recognizes that it is in the temperature rise period based on the fact that the welding power for each PWM modulation cycle continues to increase. Welding power control means 13
Is the current PW with respect to the welding power of the previous PWM modulation cycle.
It is recognized that the falling period (nugget growth period) has entered based on the fact that the welding power in the M modulation cycle is equal or decreased.

【0038】溶接電力制御手段13は、下降期間(ナゲ
ット成長期間)に入ったことを認識すると、先のPWM
変調周期の溶接電力と今回のPWM変調周期の溶接電力
との変化率を算出することを各PWM変調周期毎に繰り
返す。溶接電力制御手段13は、算出した溶接電力の変
化率と標準範囲として設定された変化率とを比較する。
溶接電力制御手段13は、算出した溶接電力の変化率が
標準範囲の上限値を越えている場合には、次のPWM変
調周期において生成するPWM信号13aのデューティ
を予め設定した所定値分だけ低減する。これにより、次
のPWM変調周期の溶接電力が低減される。溶接電力制
御手段13は、算出した溶接電力の変化率が標準範囲の
下限値を越えている場合には、次のPWM変調周期にお
いて生成するPWM信号13aのデューティを予め設定
した所定値分だけ大きくする。これにより、次のPWM
変調周期の溶接電力が増加される。
When the welding power control means 13 recognizes that the descent period (nugget growth period) has entered, the previous PWM control
The calculation of the rate of change between the welding power in the modulation cycle and the welding power in the current PWM modulation cycle is repeated for each PWM modulation cycle. The welding power control means 13 compares the calculated change rate of the welding power with the change rate set as a standard range.
If the calculated change rate of the welding power exceeds the upper limit of the standard range, the welding power control means 13 reduces the duty of the PWM signal 13a generated in the next PWM modulation cycle by a predetermined value. I do. Thereby, the welding power in the next PWM modulation cycle is reduced. If the calculated change rate of the welding power exceeds the lower limit of the standard range, the welding power control means 13 increases the duty of the PWM signal 13a generated in the next PWM modulation cycle by a predetermined value. I do. As a result, the next PWM
The modulation period welding power is increased.

【0039】溶接電力制御手段13は、各PWM変調周
期毎の溶接電力を求めずに、各PWM変調周期における
溶接電力の瞬時値の最大値を求め、その最大値の変化に
基づいて下降期間(ナゲット成長期間)に入ったことを
認識するようにしてもよい。溶接電力制御手段13は、
各PWM変調周期における溶接電力の瞬時値の最大値の
変化率を算出し、算出した変化率を標準範囲とを比較す
ることで、溶接電力の制御を行なうようにしてもよい。
The welding power control means 13 calculates the maximum value of the instantaneous value of the welding power in each PWM modulation cycle without obtaining the welding power for each PWM modulation cycle, and based on the change in the maximum value, the falling period ( (Nugget growth period) may be recognized. The welding power control means 13 includes:
The welding power may be controlled by calculating the change rate of the maximum value of the instantaneous value of the welding power in each PWM modulation cycle, and comparing the calculated change rate with a standard range.

【0040】溶接電力制御手段13は、下降期間(ナゲ
ット成長期間)に入ったことを認識すると、先のサンプ
リングによって算出された溶接電力の瞬時値と今回のサ
ンプリングによって算出された溶接電力の瞬時値との変
化率(瞬時変化率)が、予め設定した増加率(許容増加
率)を越えている場合には、それを散り発生の兆候とし
てとらえ、現在出力しているPWM信号13aの出力を
直ちに停止させる。溶接電力制御手段13は、PWM信
号13aの出力を強制停止させたPWM変調周期の次の
PWM変調周期から数周期の期間に亘ってPWM信号1
3aのデューティを極めて小さな値に変更する。散り発
生の兆候を検出した以降の所定期間に亘って供給電力を
低減させることで、散りの発生を防止する。
When recognizing that the descent period (nugget growth period) has entered, the welding power control means 13 recognizes the instantaneous value of the welding power calculated by the previous sampling and the instantaneous value of the welding power calculated by the current sampling. If the rate of change (instantaneous rate of change) exceeds a preset rate of increase (permissible rate of increase), it is regarded as a sign of occurrence of scattering and the output of the PWM signal 13a that is currently output is immediately output. Stop. The welding power control means 13 outputs the PWM signal 1 over a period of several cycles from the PWM modulation cycle following the PWM modulation cycle in which the output of the PWM signal 13a is forcibly stopped.
The duty of 3a is changed to an extremely small value. By reducing the supplied power over a predetermined period after the detection of the sign of the occurrence of the scattering, the occurrence of the scattering is prevented.

【0041】図7および図8に示すように、散りが発生
する際には、その兆候として溶接電力の急激な増加が発
生する。したがって、溶接電力の急激な増加を監視する
ことで、図7に示す兆候(A)や図8に示す兆候(B)
を検出することができ、兆候(A),兆候(B)を検出
を検出した時点で溶接電力の供給を直ちに停止すること
で、兆候(A),兆候(B)の約1〜2ミリ秒後に生ず
る散りの発生を未然に防止することができる。
As shown in FIGS. 7 and 8, when the scatter occurs, a sharp increase in the welding power occurs as a sign of the scatter. Therefore, by monitoring the rapid increase in welding power, the sign (A) shown in FIG. 7 and the sign (B) shown in FIG.
The welding power supply is immediately stopped when the signs (A) and (B) are detected, so that the sign (A) and the signs (B) can be detected for about 1 to 2 milliseconds. It is possible to prevent the occurrence of scattering that occurs later.

【0042】図9は図1に示した抵抗溶接機の制御装置
1の動作を示すフローチャートである。ステップS1
で、被溶接物の材質,板厚等に対応して溶接条件の設定
がなされた後に、ステップS2で通電が開始される。ス
テップS3では、通電開始時点からの経過時間tが予備
通電時間(予備通電終了時刻)t0に達した否かの判断
がされる。
FIG. 9 is a flowchart showing the operation of the control device 1 of the resistance welding machine shown in FIG. Step S1
After the welding conditions are set in accordance with the material, plate thickness, etc. of the workpiece, energization is started in step S2. In step S3, it is determined whether or not the elapsed time t from the start of energization has reached the preliminary energization time (preliminary energization end time) t0.

【0043】予備通電期間が終了すると温度上昇期間と
なる。この温度上昇期間では、ステップS4で各PWM
変調周期毎の溶接電力が演算され、ステップS5で溶接
電力が増加しているか否かが判断される。溶接電力が増
加している場合はステップS6で通電終了時刻teに達
したか否かのチェックがなされる。通電終了時刻teに
達しても溶接電力の増加が継続している場合には、ステ
ップS7でナゲット生成不良と判断され、ステップS8
で通電の停止ならびに異状が発生している旨を表示する
等の異状処理がなされる。
When the pre-energization period ends, the temperature rise period starts. During this temperature rise period, in step S4, each PWM
The welding power for each modulation cycle is calculated, and it is determined in step S5 whether the welding power has increased. If the welding power is increasing, it is checked in step S6 whether or not the power supply end time te has been reached. If the welding power continues to increase even after the power supply end time te has been reached, it is determined in step S7 that the nugget generation is defective, and step S8 is performed.
, And abnormal processing such as displaying that an abnormality has occurred is performed.

【0044】ステップS5で温度上昇期間が終了したこ
とが検出されると、ステップS9以降のナゲット成長期
間における処理が開始される。ステップS9では溶接電
力の瞬時変化率が許容増加率を越えているか否かの判断
がなされる。溶接電力の瞬時変化率が許容増加率を越え
ている場合は、ステップS10で散り発生防止処理がな
される。この散り発生防止処理では、現在出力している
PWM信号13aの出力を直ちに停止するとともに、次
のPWM変調周期から数周期に亘ってPWM信号13a
のデューティを極めて小さな値とすることで、溶接電力
の瞬時変化率が許容増加率を越えた時点から所定の時間
に亘って溶接電力の供給量を大幅に低減させる。これに
よって、散りの発生を未然に防止する。
When it is detected in step S5 that the temperature rise period has ended, the processing in the nugget growth period after step S9 is started. In step S9, it is determined whether or not the instantaneous change rate of the welding power exceeds the allowable increase rate. If the instantaneous change rate of the welding power exceeds the allowable increase rate, a scattering prevention process is performed in step S10. In this scattering prevention processing, the output of the currently output PWM signal 13a is immediately stopped, and the PWM signal 13a is output for several cycles from the next PWM modulation cycle.
By setting the duty of the welding power to an extremely small value, the supply amount of the welding power is significantly reduced over a predetermined time from the time when the instantaneous change rate of the welding power exceeds the allowable increase rate. This prevents the occurrence of scattering.

【0045】溶接電力の瞬時変化率が許容増加率を越え
ていない場合は、ステップS11で溶接電力の積算を行
なう。そして、ステップS12でPWM変調の1周期が
終了したことを検出すると、ステップS13で先のPW
M変調周期における溶接電力と今回のPWM変調周期に
おける溶接電力との変化率が標準範囲の上限値を越えて
いるか否かが判断され、ステップS14で先のPWM変
調周期における溶接電力と今回のPWM変調周期におけ
る溶接電力との変化率が標準範囲の下限値を越えている
か否かが判断される。
If the instantaneous change rate of the welding power does not exceed the allowable increase rate, the welding power is integrated in step S11. Then, when it is detected in step S12 that one cycle of the PWM modulation is completed, in step S13, the previous PWM
It is determined whether the rate of change between the welding power in the M modulation cycle and the welding power in the current PWM modulation cycle exceeds the upper limit of the standard range, and in step S14, the welding power in the previous PWM modulation cycle and the current PWM are determined. It is determined whether or not the rate of change from the welding power in the modulation cycle exceeds the lower limit of the standard range.

【0046】溶接電力との変化率が標準範囲の上限値を
越えている場合は、ステップS15で供給電力減少処理
がなされる。この供給電力減少処理では、次のPWM変
調周期におけるPWM信号13aのデューティを前回の
デューティよりも予め設定した所定量だけ小さな値に設
定する。これにより、次のPWM変調周期で供給される
溶接電力が低減される。
If the rate of change from the welding power exceeds the upper limit of the standard range, the supply power is reduced in step S15. In this supply power reduction processing, the duty of the PWM signal 13a in the next PWM modulation cycle is set to a value smaller than the previous duty by a predetermined amount. Thereby, the welding power supplied in the next PWM modulation cycle is reduced.

【0047】溶接電力との変化率が標準範囲の下限値を
越えている場合は、ステップS16で供給電力増加処理
がなされる。この供給電力増加処理では、次のPWM変
調周期におけるPWM信号13aのデューティを前回の
デューティよりも予め設定した所定量だけ大きな値に設
定する。これにより、次のPWM変調周期で供給される
溶接電力が増加される。
If the rate of change from the welding power exceeds the lower limit of the standard range, the supply power is increased in step S16. In the supply power increasing process, the duty of the PWM signal 13a in the next PWM modulation cycle is set to a value larger than the previous duty by a predetermined amount. Thus, the welding power supplied in the next PWM modulation cycle is increased.

【0048】ステップS17で通電終了時刻teに達し
たか否かのチェックがなされ、通電終了時刻teに達す
るまでステップS9以降の処理を繰り返す。通電終了時
刻teに達すると、ステップS18で溶接電力を漸次減
少させながら溶接電力の供給を停止させる正常終了処理
がなされ、一連の溶接制御が終了される。
At step S17, it is checked whether or not the power supply end time te has been reached, and the processing from step S9 is repeated until the power supply end time te is reached. When the power supply end time te is reached, a normal end process of stopping the supply of the welding power while gradually reducing the welding power is performed in step S18, and a series of welding controls is ended.

【0049】図10はこの発明に係る他の抵抗溶接機の
制御装置のブロック構成図である。図10に示す抵抗溶
接機の制御装置50は、制御部60の構成が図1に示し
たものと異なる。図10に示す制御部60は、電極間電
圧に係る信号8aと溶接電流に係る信号9aとに基づい
て各PWM変調周期毎の溶接電力積算値61aを算出し
て出力する溶接電力積算手段61と、PWM変調周期の
例えば1/100程度のPWM変調周期よりも充分に短
い周期で電極間電圧の瞬時変化率を算出して、算出した
電極間電圧の瞬時変化率62aを出力する電極間電圧変
化率算出手段62と、溶接電力制御手段63と、インバ
ータ駆動回路14とを備える。
FIG. 10 is a block diagram of a control device of another resistance welding machine according to the present invention. The control device 50 of the resistance welding machine shown in FIG. 10 differs from that shown in FIG. The control unit 60 shown in FIG. 10 includes a welding power integrating unit 61 that calculates and outputs a welding power integrated value 61a for each PWM modulation cycle based on the signal 8a related to the inter-electrode voltage and the signal 9a related to the welding current. , The instantaneous change rate of the inter-electrode voltage is calculated in a cycle sufficiently shorter than the PWM modulation cycle, for example, about 1/100 of the PWM modulation cycle, and the calculated inter-electrode voltage change rate 62a is output. It includes a rate calculating means 62, a welding power control means 63, and the inverter drive circuit 14.

【0050】溶接電力制御手段63は、各PWM変調周
期毎の溶接電力積算値61aの変化を監視することでナ
ゲット成長期間に入ったことを認識すると、電極間電圧
の瞬時変化率62aを監視し、電極間電圧の瞬時変化率
62aが予め設定した許容増加率を越えている場合に
は、PWM信号13aの出力を直ちに停止して溶接電力
の供給を停止させるとともに、次のPWM変調周期から
数周期に亘ってPWM信号13aのデューティを極めて
小さな値に設定することで、電極間電圧の瞬時変化率6
2aが予め設定した許容増加率を越えた時点から所定の
時間が経過するまで溶接電力の供給量を大幅に低減させ
る。
When the welding power control means 63 recognizes that the nugget growth period has started by monitoring the change of the welding power integrated value 61a for each PWM modulation cycle, it monitors the instantaneous change rate 62a of the voltage between the electrodes. If the instantaneous change rate 62a of the inter-electrode voltage exceeds the preset allowable increase rate, the output of the PWM signal 13a is immediately stopped to stop the supply of the welding power, and the number of pulses from the next PWM modulation cycle is reduced. By setting the duty of the PWM signal 13a to an extremely small value over the period, the instantaneous change rate
The supply amount of welding power is greatly reduced until a predetermined time elapses from the time when 2a exceeds a preset allowable increase rate.

【0051】図11は散り発生時の電極間電圧の変化を
示す波形図である。図11に示すように、散りが発生す
る直前に電極間電圧が急激に増加する。この電極間電圧
の急増を散り発生の兆候としてとらえ、電極間電圧が急
増した時点で溶接電力の供給を直ちに停止することで、
散りの発生を未然に防止することができる。
FIG. 11 is a waveform diagram showing a change in inter-electrode voltage when scattering occurs. As shown in FIG. 11, the voltage between the electrodes rapidly increases immediately before the occurrence of the scattering. By catching the sudden increase in the inter-electrode voltage as a sign of occurrence, the supply of welding power is immediately stopped when the inter-electrode voltage suddenly increases.
Scattering can be prevented from occurring.

【0052】[0052]

【発明の効果】以上説明したように請求項1に係る抵抗
溶接機の制御装置は、ナゲット成長期間における溶接電
力の時間変化率を監視し、溶接電力の時間変化率が予め
設定した標準範囲内になるよう溶接電力を制御する構成
としたので、ナゲット成長期間における溶接電力が過大
になって散りが発生する前に溶接電力を低減させること
ができ、散りの発生を未然に防止できる。また、ナゲッ
ト成長期間における溶接電力が過小になって溶接品質が
低下するのを未然に防止できる。
As described above, the control device of the resistance welding machine according to the first aspect monitors the time change rate of the welding power during the nugget growth period, and the time change rate of the welding power falls within a predetermined standard range. Therefore, the welding power can be reduced before the welding power becomes excessive during the nugget growth period and the scattering occurs, and the occurrence of the scattering can be prevented beforehand. In addition, it is possible to prevent the welding power during the nugget growth period from becoming too small and the welding quality from being lowered.

【0053】請求項2に係る抵抗溶接機の制御装置は、
ナゲット成長期間における溶接電力の時間変化率を監視
し、溶接電力の時間変化率が予め設定した増加率を越え
た場合にそれを散り発生の兆候と判断して溶接電力を減
少させる構成としたので、散りの発生を未然に防止でき
る。
A control device for a resistance welding machine according to claim 2 is
Since the time rate of change of the welding power during the nugget growth period is monitored, and when the time rate of change of the welding power exceeds a preset rate of increase, it is determined to be a sign of occurrence and the welding power is reduced. The occurrence of scattering can be prevented beforehand.

【0054】請求項3に係る抵抗溶接機の制御装置は、
ナゲット成長期間における溶接電極間電圧の時間変化率
を監視し、溶接電極間電圧の時間変化率が予め設定した
増加率を越えた場合にそれを散り発生の兆候と判断して
溶接電力を減少させる構成としたので、散りの発生を未
然に防止できる。
A control device for a resistance welding machine according to claim 3 is
The time change rate of the voltage between the welding electrodes during the nugget growth period is monitored, and when the time change rate of the voltage between the welding electrodes exceeds a predetermined rate of increase, it is judged as a sign of occurrence and the welding power is reduced. With the configuration, it is possible to prevent the occurrence of scattering.

【0055】請求項4に係る抵抗溶接機の制御方法は、
ナゲット成長期間における溶接電力の時間変化率を監視
し、溶接電力の時間変化率が予め設定した許容増加率を
越えた場合にそれを散り発生の兆候と判断して溶接電力
を減少させるので、散りの発生を未然に防止できる。
According to a fourth aspect of the present invention, there is provided a method for controlling a resistance welding machine.
The time rate of change of the welding power during the nugget growth period is monitored, and when the time rate of change of the welding power exceeds a preset allowable increase rate, it is judged as a sign of occurrence of spatter and the welding power is reduced. Can be prevented from occurring.

【0056】請求項5に係る抵抗溶接機の制御方法は、
ナゲット成長期間における溶接電極間電圧の時間変化率
を監視し、溶接電極間電圧の時間変化率が予め設定した
許容増加率を越えた場合にそれを散り発生の兆候と判断
して溶接電力を減少させるので、散りの発生を未然に防
止できる。
According to a fifth aspect of the present invention, there is provided a method for controlling a resistance welding machine.
Monitors the rate of change of welding electrode voltage over time during the nugget growth period.If the rate of change of welding electrode voltage over time exceeds a preset allowable increase rate, it is judged as a sign of occurrence and the welding power is reduced. Therefore, occurrence of scattering can be prevented beforehand.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明に係る抵抗溶接機の制御装置のブロッ
ク構成図である。
FIG. 1 is a block diagram of a control device for a resistance welding machine according to the present invention.

【図2】溶接時の電極間電圧の変化特性、溶接電力変化
率、消費電力の変化特性を示すグラフである。
FIG. 2 is a graph showing a change characteristic of a voltage between electrodes during welding, a change rate of welding power, and a change characteristic of power consumption.

【図3】散り発生の兆候を検出して溶接電力を低減する
動作を示す説明図である。
FIG. 3 is an explanatory diagram showing an operation of detecting a sign of occurrence of scattering to reduce welding power.

【図4】交流式抵抗溶接機で溶接電力の供給を制御した
際の溶接時の電力波形の一例を示す溶接電力波形図であ
る。
FIG. 4 is a welding power waveform diagram showing an example of a power waveform at the time of welding when the supply of welding power is controlled by an AC resistance welding machine.

【図5】図4に示した溶接電力波形の時間軸を拡大した
溶接電力波形図である。
5 is a welding power waveform diagram in which the time axis of the welding power waveform shown in FIG. 4 is enlarged.

【図6】図4に示した溶接電力波形の時間軸を拡大した
溶接電力波形図である。
6 is a welding power waveform diagram in which the time axis of the welding power waveform shown in FIG. 4 is enlarged.

【図7】散り発生時点の前後の電力波形を示す電力波形
図である。
FIG. 7 is a power waveform diagram showing power waveforms before and after the occurrence of scattering.

【図8】散り発生時点の前後の電力波形を示す電力波形
図である。
FIG. 8 is a power waveform diagram showing power waveforms before and after the occurrence of scattering.

【図9】図1に示した抵抗溶接機の制御装置の動作を示
すフローチャートである。
FIG. 9 is a flowchart showing an operation of the control device of the resistance welding machine shown in FIG. 1;

【図10】この発明に係る他の抵抗溶接機の制御装置の
ブロック構成図である。
FIG. 10 is a block diagram of a control device of another resistance welding machine according to the present invention.

【図11】散り発生時の電極間電圧の変化を示す波形図
である。
FIG. 11 is a waveform diagram showing a change in inter-electrode voltage when scattering occurs.

【符号の説明】[Explanation of symbols]

1,50 抵抗溶接機の制御装置 4 インバータ部 5 降圧トランス 6 整流部 7a,7b 溶接電極 8 電圧検出部 9 電流検出部 10,60 制御部 11 溶接電力変化率算出手段 12 標準範囲記憶手段 13,63 溶接電力制御手段 14 インバータ駆動回路 30 被溶接物 31 ナゲット(溶解部) 61 溶接電力積算手段 62 電極間電圧変化率算出手段 Reference Signs List 1,50 Resistance welding machine control device 4 Inverter unit 5 Step-down transformer 6 Rectifying unit 7a, 7b Welding electrode 8 Voltage detection unit 9 Current detection unit 10, 60 Control unit 11 Welding power change rate calculation unit 12 Standard range storage unit 13, 63 Welding power control means 14 Inverter drive circuit 30 Workpiece 31 Nugget (melting part) 61 Welding power integrating means 62 Electrode voltage change rate calculating means

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 溶接電流を検出する電流検出部と、 溶接電極間電圧を検出する電圧検出部と、 前記溶接電流と前記溶接電極間電圧とに基づいて溶接電
力を算出するとともに溶接電力の時間変化率を算出する
溶接電力変化率算出手段と、 ナゲット成長期間における溶接電力の時間変化率の標準
範囲を記憶する標準範囲記憶手段と、 前記溶接電力変化率算出手段で算出した時間変化率が前
記標準範囲記憶手段に記憶された溶接電力の時間変化率
の標準範囲内になるよう溶接電力を制御する溶接電力制
御手段とを備えたことを特徴とする抵抗溶接機の制御装
置。
1. A current detector for detecting a welding current, a voltage detector for detecting a voltage between welding electrodes, a welding power is calculated based on the welding current and the voltage between the welding electrodes, and a time of the welding power is calculated. Welding power change rate calculating means for calculating the change rate; standard range storage means for storing a standard range of the time change rate of welding power during the nugget growth period; and the time change rate calculated by the welding power change rate calculating means is A control device for a resistance welding machine, comprising: welding power control means for controlling welding power so as to fall within a standard range of a time rate of change of welding power stored in a standard range storage means.
【請求項2】 溶接電流を検出する電流検出部と、 溶接電極間電圧を検出する電圧検出部と、 前記溶接電流と前記溶接電極間電圧とに基づいて溶接電
力を算出するとともに溶接電力の時間変化率を算出する
溶接電力変化率算出手段と、 ナゲット成長期間において前記溶接電力の時間変化率が
予め設定した増加率を越えた場合にそれを散り発生の兆
候と判断して溶接電力を減少させる溶接電力制御手段と
を備えたことを特徴とする抵抗溶接機の制御装置。
2. A current detector for detecting a welding current, a voltage detector for detecting a voltage between welding electrodes, a welding power is calculated based on the welding current and the voltage between welding electrodes, and a time of the welding power is calculated. A welding power change rate calculating means for calculating a change rate, and when the time change rate of the welding power exceeds a preset increase rate during the nugget growth period, the welding power is reduced as a sign of occurrence and the welding power is reduced. A control device for a resistance welding machine, comprising: welding power control means.
【請求項3】 溶接電極間電圧を検出する電圧検出部
と、 前記溶接電極間電圧の時間変化率を算出する電極間電圧
変化率算出手段と、 ナゲット成長期間において前記溶接電極間電圧の時間変
化率が予め設定した増加率を越えた場合にそれを散り発
生の兆候と判断して溶接電力を減少させる溶接電力制御
手段とを備えたことを特徴とする抵抗溶接機の制御装
置。
A voltage detecting unit for detecting a voltage between the welding electrodes; a voltage change rate calculating means for calculating a time change rate of the voltage between the welding electrodes; a time change of the voltage between the welding electrodes during a nugget growth period. A control device for a resistance welding machine, comprising: welding power control means for reducing the welding power by judging the occurrence as a sign of occurrence when the rate exceeds a preset increase rate.
【請求項4】 ナゲット成長期間において溶接電力の時
間変化率を監視し、前記溶接電力の時間変化率が予め設
定した許容増加率を越えた場合には、溶接電力の供給を
直ちに停止するとともに、その後の溶接電力の供給量を
所定期間に亘って低減することを特徴とする抵抗溶接機
の制御方法。
4. A time change rate of the welding power during the nugget growth period is monitored, and when the time change rate of the welding power exceeds a preset allowable increase rate, the supply of the welding power is immediately stopped, A method for controlling a resistance welding machine, characterized in that a supply amount of a subsequent welding power is reduced over a predetermined period.
【請求項5】 ナゲット成長期間において溶接電極間電
圧の時間変化率を監視し、前記溶接電極間電圧の時間変
化率が予め設定した許容増加率を越えた場合には、溶接
電力の供給を直ちに停止するとともに、その後の溶接電
力の供給量を所定期間に亘って低減することを特徴とす
る抵抗溶接機の制御方法。
5. A method for monitoring a time change rate of a voltage between welding electrodes during a nugget growth period, and when the time change rate of a voltage between welding electrodes exceeds a predetermined allowable increase rate, immediately supplies welding power. A method for controlling a resistance welding machine, comprising: stopping and reducing a supply amount of welding power thereafter over a predetermined period.
JP26550399A 1999-09-20 1999-09-20 Resistance welding machine control device and resistance welding machine control method Expired - Fee Related JP3767271B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26550399A JP3767271B2 (en) 1999-09-20 1999-09-20 Resistance welding machine control device and resistance welding machine control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26550399A JP3767271B2 (en) 1999-09-20 1999-09-20 Resistance welding machine control device and resistance welding machine control method

Publications (2)

Publication Number Publication Date
JP2001087867A true JP2001087867A (en) 2001-04-03
JP3767271B2 JP3767271B2 (en) 2006-04-19

Family

ID=17418082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26550399A Expired - Fee Related JP3767271B2 (en) 1999-09-20 1999-09-20 Resistance welding machine control device and resistance welding machine control method

Country Status (1)

Country Link
JP (1) JP3767271B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7759596B2 (en) * 2005-11-30 2010-07-20 Ford Motor Company Method for controlling weld energy
JP2010269337A (en) * 2009-05-21 2010-12-02 Daihen Corp Method for discriminating quality of projection welding
WO2011061623A2 (en) 2009-11-18 2011-05-26 Toyota Jidosha Kabushiki Kaisha Resistance welding method, resistance-welded member, resistance welder, control apparatus for resistance welder, control method and control program for resistance welder, resistance welding evaluation method, and resistance welding evaluation program
JP2012011434A (en) * 2010-07-02 2012-01-19 Daihen Corp Resistance welding control method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7759596B2 (en) * 2005-11-30 2010-07-20 Ford Motor Company Method for controlling weld energy
JP2010269337A (en) * 2009-05-21 2010-12-02 Daihen Corp Method for discriminating quality of projection welding
WO2011061623A2 (en) 2009-11-18 2011-05-26 Toyota Jidosha Kabushiki Kaisha Resistance welding method, resistance-welded member, resistance welder, control apparatus for resistance welder, control method and control program for resistance welder, resistance welding evaluation method, and resistance welding evaluation program
WO2011061623A3 (en) * 2009-11-18 2011-11-03 Toyota Jidosha Kabushiki Kaisha Resistance welding method, resistance -welded member and control apparatus for resistance welder; resistance welding evaluation method, and resistance welding evaluation program
CN102665995A (en) * 2009-11-18 2012-09-12 丰田自动车株式会社 Resistance welding method, resistance-welded member, resistance welder, control apparatus for resistance welder, control method and control program for resistance welder, resistance welding evaluation method, and resistance welding evaluation program
JP2012011434A (en) * 2010-07-02 2012-01-19 Daihen Corp Resistance welding control method

Also Published As

Publication number Publication date
JP3767271B2 (en) 2006-04-19

Similar Documents

Publication Publication Date Title
US6600135B2 (en) Method and apparatus for controlling AC pulse arc welding and welding power source apparatus
US7705269B2 (en) Method and apparatus for advance warning and controlled shutdown in an arc processing system
JP3206714B2 (en) Pulse arc welding method and apparatus
US6833529B2 (en) Power supply for short-circuiting arc welding, and automatic welding machine utilizing the same
JP3200614U (en) Method and system for controlling heat input in welding operations
US8933370B2 (en) Arc welding control method and arc welding control system
JPH11267835A (en) Welding device and method
US6552293B2 (en) Metallic members joining method and reflow soldering method
US6037554A (en) Consumable electrode type pulsed arc welder and controlling method for the same
JP2000301352A (en) Resistance welding electric source apparatus
US6046424A (en) Resistance welding control apparatus
US20100065533A1 (en) Adaptive Resistance Weld Control
JP3767271B2 (en) Resistance welding machine control device and resistance welding machine control method
EP3815827A2 (en) Systems and methods to provide welding-type arc starting and stabilization with reduced open circuit voltage
EP3215296B1 (en) Welding type power supply for tig starts
KR101106952B1 (en) Apparatus and operating method of dc inverter resistance spot welding connected with network for intelligence control and recording medium
EP1193019A2 (en) Method and apparatus for controlling AC pulse ARC welding and welding power source apparatus
JP4643113B2 (en) Welding method and power supply device for welding
JP3259012B2 (en) Inverter type resistance welding control device
JP3669559B2 (en) Resistance welding machine
US6194681B1 (en) Power supply apparatus for arc-utilizing machine
JP6982744B2 (en) Control method of arc processing power supply and arc processing power supply
JP2734092B2 (en) Welding current control device for spot welding equipment
US20220055136A1 (en) Arc welding method and arc welding device
JP7258445B2 (en) CONTROL DEVICE FOR RESISTANCE WELDING MACHINE, METHOD FOR MONITORING ELECTRICAL CONDITION OF WELDED PORTION, AND METHOD FOR JUDGING GOOD OR FAILURE

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050809

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060123

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees