JP2004314098A - Arc welder - Google Patents

Arc welder Download PDF

Info

Publication number
JP2004314098A
JP2004314098A JP2003108579A JP2003108579A JP2004314098A JP 2004314098 A JP2004314098 A JP 2004314098A JP 2003108579 A JP2003108579 A JP 2003108579A JP 2003108579 A JP2003108579 A JP 2003108579A JP 2004314098 A JP2004314098 A JP 2004314098A
Authority
JP
Japan
Prior art keywords
circuit
arc
welding
voltage
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003108579A
Other languages
Japanese (ja)
Inventor
Yasunori Akiyama
泰範 秋山
Toshimitsu Doi
敏光 土井
Toshiro Uesono
敏郎 上園
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihen Corp
Original Assignee
Daihen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihen Corp filed Critical Daihen Corp
Priority to JP2003108579A priority Critical patent/JP2004314098A/en
Publication of JP2004314098A publication Critical patent/JP2004314098A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Arc Welding Control (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent the application of a high no-load voltage during downtime of work which occurs in coated arc welding (manual welding) with an arc welding machine. <P>SOLUTION: The arc welding machine comprises a welding power source main circuit which converts and supplies the voltage suitable for arc working, an auxiliary power source circuit which supplies the auxiliary voltage lower than the no-load voltage of the welding power source main circuit, a short circuit detection circuit which discriminates the contact of a welding rod with welded objects, an arcing discrimination circuit which discriminates the output current of the welding power source main circuit as arcing when the output current is outputted within the time for monitoring the output current, and a main control circuit which supplies the auxiliary voltage when a manual welding mode is selected, drives the welding power source main circuit and stops driving of the auxiliary power source circuit when a short circuit detection signal is outputted, continues the driving of the welding power source main circuit when an arcing discrimination signal is outputted, stops the driving of the welding power source main circuit and supplies the auxiliary voltage by again driving the auxiliary power source circuit unless the above signal is outputted. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、高低2種類の無負荷電圧を選択的に切換えられるようにしたアーク溶接機に関するものである。
【0002】
【従来の技術】
図6に示す従来技術のアーク溶接機で被覆アーク溶接(手溶接)を行うときは、溶接用変圧器1の2次側巻数の総巻数の両端に第1サイリスタ2と第3サイリスタ4が使用され、総巻数の半分の巻数の第1タップを手溶接用ホルダ8の通電部9に接続しており、CO2アーク溶接を行うときは、N1ターンの巻数のところに接続している第2サイリスタ3と巻始側に接続されている第1サイリスタ2が使用され、巻始からN1ターンの半分の巻数の第3タップにCO2溶接用トーチ10を接続している。
【0003】
つまり、各溶接法によって選択されるサイリスタ3、4によって電流の流れる溶接用変圧器1の2次側巻線の中性点に直接CO2溶接用トーチ10および手溶接用ホルダ8の通電部9を接続しているために、CO2溶接用トーチ10にCO2アーク溶接に適した無負荷電圧の低い特性の出力が、手溶接用ホルダ8の通電部9には手溶接に適した無負荷電圧の高い出力がそれぞれ出力されるものである。(特許文献1参照)
【0004】
【特許文献1】
特開平11−58009号公報
【0005】
【発明が解決しようとする課題】
通常使用するアーク溶接機の被覆アーク溶接(手溶接)では、作業休止時に高い無負荷電圧が印加されてしまう。上記対策としてインバータ回路を用いた溶接電源では作業休止時の無負荷電圧の平均電圧を低く制御し、被覆アーク溶接棒が被溶接物に接触したことを検出し、検出後直ちに無負荷電圧を通常の値に戻して溶接を開始していた。しかし、無負荷電圧の平均電圧を低く制御しても、パルス幅が短く、ピーク電圧の高いパルス波形が印加されてしまう。また、定電圧制御の安定性を維持するために容量の大きいブリーダ抵抗を必要とし、装置の大形化及びコスト増加につながっていた。
【0006】
【課題を解決するための手段】
請求項1の発明は、交流電源を整流して直流電圧に変換し上記変換した直流電圧をアーク加工に適した電圧に変換して被溶接物に供給する溶接電源主回路INVと、被覆アーク溶接棒ESと上記被溶接物WTとの間に上記溶接電源主回路INVの無負荷電圧の値より低い補助電圧を供給する補助電源回路ADと、上記被覆アーク溶接棒ESが上記被溶接物WTに接触して上記補助電圧の値が予め定めた短絡基準値より低くなると接触したと判別して短絡検出信号Sdを出力する短絡検出回路SDと、上記短絡検出信号Sdが出力すると予め定めた値の出力電流監視時間T1を設けると共に上記溶接電源主回路INVの出力電流を監視し上記出力電流監視時間T1内に上記出力電流が出力するとアークが発生したと判別してアーク発生判別信号Edを出力するアーク発生判別回路EDと、被覆アーク溶接モードに選択したとき、上記補助電源回路を駆動して補助電圧を供給し、続いて上記短絡検出回路SDが接触と判別して短絡検出信号Sdを出力すると上記溶接電源主回路INVを駆動すると共に上記補助電源回路ADの駆動を停止し、続いてアーク発生判別回路EDがアーク発生判別信号Edを出力すると上記溶接電源主回路INVの駆動を継続し、上記アーク発生判別信号Edが出力されないと上記溶接電源主回路INVの駆動を停止し、続いて上記補助電源回路ADを再度駆動して上記補助電圧の供給を行うシーケンス制御を行う主制御回路SCとを具備したことを特徴とするアーク溶接機である。
【0007】
【発明の実施の形態】
本発明の実施の形態について、図面を参照して説明する。図1は、本発明のアーク溶接機の電気接続図である。図1において、溶接電源主回路INVは、入力電圧をアーク加工に適した電圧に変換して被覆アーク溶接棒ESに供給する。
【0008】
図4に示す溶接電源主回路INVは、交流電源ACを整流して直流電圧に変換する一次整流回路DR1と、上記直流電圧を平滑する平滑コンデンサC1と、上記平滑された電圧を高周波交流電圧に変換するインバータ回路IVと、上記高周波交流電圧をアーク加工に適した電圧に変換する主変圧器INTと、上記主変圧器INTの出力を直流電圧に変換する二次整流回路DR2と、直流リアクトルLとで形成されている。また、上記溶接電源主回路INVはインバータ方式を使用しているがサイリスタ方式を使用できることはいうまでもない。
【0009】
切換スイッチSWは、接点a、接点bの2接点を備え、溶接法を選択する切換スイッチであり、上記a接点を選択することにより被覆アーク溶接(手溶接)、b接点を選択することによりTIG溶接になる。上記被覆アーク溶接(手溶接)を選択したとき、主制御回路SCは、被覆アーク溶接制御信号Thを出力し、上記被覆アーク溶接制御信号Thに応じて、下記に示す短絡検出回路SD及びアーク発生検出回路TCを動作させると共に出力電流検出信号Idの値に応じて溶接電源主回路INVの出力を制御する。また、切換スイッチSWをb接点に選択してTIG溶接にすると、上記補助電源回路AD、短絡検出回路SD及びアーク発生判別回路TCの動作は停止し、トーチスイッチTSに応じて動作を開始する。
【0010】
出力電流検出回路IDは、出力電流を検出して出力電流検出信号Idを出力し、出力電圧検出回路VDは、出力電圧を検出して出力電圧検出信号Vdを出力する。
【0011】
図2に示す短絡検出回路SDは、短絡基準値設定回路VR、比較回路CP及び第2のアンド回路AND2とで形成され、上記短絡基準値設定回路VRは、予め定めた値の短絡基準値Vrを設定し、上記比較回路CPは、出力電圧検出信号Vdの値と上記短絡基準値Vrとを比較して上記出力電圧検出信号Vdの値が上記短絡基準値Vrより小さいときに短絡と判別して比較信号CpをHighレベルにして出力する。第2のアンド回路AND2は被覆アーク溶接制御信号ThのHighレベルと上記比較信号CpのHighレベルとのアンド論理をとって短絡検出信号SdをHighレベルにして出力する。
【0012】
図2に示すアーク発生判別回路EDは、出力電流基準値設定回路IR、第2の比較回路CP2、遅延回路DL、タイマ回路MM及びアーク発生検出回路TCによって形成され、出力電流基準値設定回路IRは、予め定めた値の出力電流基準値Irを設定し、上記第2の比較回路CP2は、出力電流検出信号Idの値と上記出力電流基準値Irとを比較して上記出力電流検出信号Idの値が上記出力電流基準値Irより大きいときに被覆アーク溶接(手溶接)で出力電流が出力したと判別して出力電流検出信号WcrをHighレベルにして出力する。遅延回路DLは、上記出力電流検出信号Wcrを予め定めた時間遅延して出力電流遅延信号Wlとして出力する。
【0013】
図2に示すタイマ回路(単安定マルチバイブレータ)MMは、短絡検出信号SdがHighレベルになると予め定めた値の出力電流監視時間T1のタイマ信号Mmを出力し、上記アーク遅延信号WlがHighレベルになると初期化されて上記タイマ信号MmをLowレベルにする。アーク発生検出回路TCは、被覆アーク溶接制御信号ThがHighレベルになると動作開始状態になり、上記タイマ信号Mmが入力されるとアーク発生検出信号TcをLowレベルにする。また、上記タイマ信号MmがHighレベルの期間中、上記出力電流検出信号Wcrを逐次監視し、上記出力電流検出信号WcrがHighレベルになるとアーク発生と検出して上記アーク発生検出信号TcのLowレベルを維持する。図1に示す、アンド回路ANDは、被覆アーク溶接制御信号Thとアーク発生検出信号Tcとのアンド論理を取ってアーク発生判別信号EdをLowレベルにする。
【0014】
図3に示す補助電源回路ADは、補助変圧器TI、整流回路DR3、平滑コンデンサC2、スイッチング素子TR1及び電流制限抵抗器Rによって形成され、補助変圧器TIは入力電圧を被覆アーク溶接(手溶接)の適した電圧に変換し、整流回路DR3は上記補助変圧器TIの出力電圧を整流し、平滑コンデンサC2は整流した電圧を平滑する。スイッチング素子TR1はアーク発生判別信号Edに応じて補助電源の補助電圧を出力し、電流制限抵抗器Rは補助電源の出力電流を制限する。また、上記補助電源の補助電圧の値は溶接電源主回路INVの無負荷電圧の値より低くなるように上記補助変圧器TIによって設定されている。
【0015】
図5は、図1に示す本発明のアーク溶接機を被覆アーク溶接モード(手溶接)に選択したときの動作を説明するタイミング図である。図1に示す本発明の動作を図5に示すタイミング図を用いて説明する。図5(A)は、出力電圧検出信号Vdを示し、図5(B)は、被覆アーク溶接制御信号Thを示し、図5(C)は、短絡検出信号Sdを示し、図5(D)は、タイマ信号Mmを示し、図5(E)は、アーク発生検出信号Tcを示し、図5(F)は、アーク発生判別信号Edを示す。図5(G)は、出力電流検出信号Wcrを示し、図5(H)は、出力電流遅延信号Wlを示す。
【0016】
図5(A)に示す時刻t=t1において、被覆アーク溶接棒ESが被溶接物WTに接触して被覆アーク溶接を開始すると、出力電圧検出回路VDは、出力電圧を検出して出力電圧検出信号Vdを出力し、短絡検出回路SDは、上記出力電圧検出信号Vdの値と短絡基準値Vrとを比較して上記出力電圧検出信号Vdの値が上記短絡基準値Vrより小さくなると接触したと判別して、図5(C)に示す短絡検出信号SdをHighレベルにして出力する。
【0017】
時刻t=t1において、短絡検出信号SdがHighレベルになるとタイマ回路MMは、図5(D)に示す出力電流監視時間T1の間、タイマ信号MmをHighレベルにして出力する。アーク発生検出回路TCは、上記タイマ信号MmがHighレベルになるとアーク発生検出信号TcをLowレベルにする。また、アンド回路ANDは上記アーク発生検出信号TcがLowレベルになると出力信号のアーク発生判別信号EdもLowレベルになる。上記アーク発生判別信号EdがLowレベルになると、図3に示す、補助電源回路ADのスイッチング素子TR1が遮断されて補助電圧の供給を停止する。更に、反転回路INによって上記アーク発生判別信号EdがLowレベルからHighレベルになって主制御回路SCに入力する。上記主制御回路SCは、入力信号がHighレベルになると溶接電源主回路INVを駆動する。
【0018】
アーク発生検出回路TCは、図5(D)に示す出力電流監視時間T1の期間中、出力電流検出信号Wcrを逐次監視し、上記出力電流監視時間T1の期間中に上記出力電流検出信号WcrがHighレベルにならないとアークの発生が失敗したと判別し、時刻t=t2でアーク発生検出信号TcをHighレベルする。
【0019】
時刻t=t2において、アンド回路ANDは、被覆アーク溶接制御信号Thとアーク発生検出信号Tcとのアンド論理を取ってアーク発生判別信号EdをHighレベルにする。上記アーク発生判別信号EdがHighレベルになると図3に示すスイッチング素子TR1が導通して補助電源回路ADの補助電圧を再度供給する。更に、反転回路INによって上記アーク発生判別信号Edの反転信号がLowレベルになると主制御回路SCは、溶接電源主回路INVの駆動を停止する。
【0020】
図5(A)に示す時刻t=t3において、再度被覆アーク溶接棒ESが被溶接物WTに接触すると被覆アーク溶接を開始し、出力電圧検出回路VDは、出力電圧を検出して出力電圧検出信号Vdを出力し、短絡検出回路SDは、上記出力電圧検出信号Vdの値と短絡基準値Vrとを比較して上記出力電圧検出信号Vdの値が上記短絡基準値Vrより小さくなると接触と判別して、図5(C)に示す短絡検出信号SdをHighレベルにして出力する。
【0021】
時刻t=t3において、図5(C)に示す短絡検出信号SdがHighレベルになるとタイマ回路MMは、タイマ信号MmをHighレベルにして出力する。アーク発生検出回路TCは、上記タイマ信号MmがHighレベルになるとアーク発生検出信号TcをLowレベルにする。また、アンド回路ANDは上記アーク発生検出信号TcがLowレベルになると出力信号のアーク発生判別信号EdもLowレベルになる。上記アーク発生判別信号EdがLowレベルになると、図3に示す、補助電源回路ADのスイッチング素子TR1が遮断されて補助電圧の供給を停止する。更に、反転回路INによって上記アーク発生判別信号EdがLowレベルからHighレベルになって入力すると主制御回路SCは、溶接電源主回路INVを駆動する。
【0022】
時刻t=t4において、出力電流検出信号Idの値が上記出力電流基準値Irより大きくなると第2の比較回路CP2は、出力電流検出信号WcrをHighレベルにして出力する。アーク発生検出回路TCは、出力電流監視時間T1内に出力電流検出信号WcrがHighレベルになるとアークが発生したと判別してアーク発生検出信号TcのLowレベルを維持する。また、アンド回路ANDによって被覆アーク溶接制御信号Thとアーク発生検出信号Tcとのアンド論理を取ったアーク発生判別信号EdもLowレベルが維持され、更に、反転回路INによって上記アーク発生判別信号Edの反転信号がHighレベルを維持し、主制御回路SCは溶接電源主回路INVの駆動を継続する。
【0023】
時刻t=t5において、遅延回路DLにより出力電流検出信号Wcrが図5(G)に示す予め定めた時間T2遅延した出力電流遅延信号Wlとして出力し、タイマ回路MMは上記出力電流遅延信号WlがHighレベルになった時点でタイマ信号MmをLowレベルにする。
【0024】
時刻t=t6において、出力電流検出信号Idの値が上記出力電流基準値Irより小さくなると第2の比較回路CP2は、出力電流検出信号WcrをLowレベルにして出力する。アーク発生検出回路TCは、出力電流検出信号WcrがLowレベルになるとアークが切れた判別してアーク発生検出信号TcのHighレベルにする。また、アンド回路ANDによって被覆アーク溶接制御信号Thとアーク発生検出信号Tcとのアンド論理を取ったアーク発生判別信号EdはHighレベルとなり、図3に示すスイッチング素子TR1が導通して補助電源回路ADの補助電圧を再度供給する。更に、反転回路INによって上記アーク発生判別信号Edの反転信号がLowレベルになると、主制御回路SCは溶接電源主回路INVの駆動を停止する。
【0025】
【発明の効果】
本発明では、溶接電源の無負荷電圧より低い補助電圧を出力する補助電源回路を設けることにより、被覆アーク溶接(手溶接)での作業休止時に高い無負荷電圧が印加されることがなくなる。また、定電圧制御の安定性を維持するための容量の大きいブリーダ抵抗も必要としなくなり、装置の大形化及びコスト増加を防止できる。
【図面の簡単な説明】
【図1】本発明のアーク溶接機の電気接続図である。
【図2】図1に示す電源制御回路及び短絡検出回路の詳細接続図である。
【図3】図1に示す補助電源回路の詳細接続図である。
【図4】図1に示す溶接電源主回路の詳細接続図である。
【図5】図1に示す本発明のアーク溶接機を被覆アーク溶接出力モード(手溶接)に選択したときの動作を説明するタイミング図である。
【図6】従来技術のアーク溶接機の電気接続図である。
【符号の説明】
AD 補助電源回路
AND アンド回路
AND2 第2のアンド回路
C1 平滑コンデンサ
C2 平滑コンデンサ
CP 比較回路
CP2 第2の比較回路
DL 遅延回路
DR1 一次整流回路
DR2 二次整流回路
DR3 整流回路
ED アーク発生判別回路
ES 被覆アーク溶接棒
HH 手溶接用ホルダ
ID 出力電流検出回路
IN 反転回路
IR 出力電流基準値設定回路
IV インバータ回路
INT 主変圧器
INV 溶接電源主回路
L 直流リアクトル
MM タイマ回路(単安定マルチバイブレータ)
R 電流制限抵抗器
SC 主制御回路
SD 短絡検出回路
SW 切換スイッチ
TC アーク発生検出回路
TI 補助変圧器
TR1 スイッチング素子
TS トーチスイッチ
VR 短絡基準値設定回路
VD 出力電圧検出回路
WT 被溶接物
Ed アーク発生判別信号
Id 出力電流検出信号
Ir 出力電流基準値
Mm タイマ信号(単安定マルチバイブレータ信号)
Sc 主制御信号
Sd 短絡検出信号
Th 被覆アーク溶接制御信号
In 反転信号
Vr 短絡基準値
Ts 起動信号
Vd 出力電圧検出信号
Wcr 出力電流検出信号
Wl 出力電流遅延信号
T1 出力電流監視時間
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an arc welding machine capable of selectively switching between two types of high and low no-load voltages.
[0002]
[Prior art]
When performing covered arc welding (hand welding) with the conventional arc welding machine shown in FIG. 6, the first thyristor 2 and the third thyristor 4 are used at both ends of the total number of turns of the secondary winding of the welding transformer 1. The first tap having half the total number of turns is connected to the current-carrying portion 9 of the manual welding holder 8, and when performing CO2 arc welding, the second thyristor is connected to the number of turns of N1 turns. 3 and a first thyristor 2 connected to the winding start side are used, and the CO2 welding torch 10 is connected to a third tap having half the number of turns of N1 turns from the winding start.
[0003]
That is, the torch 10 for CO2 welding and the current-carrying part 9 of the holder 8 for manual welding are directly connected to the neutral point of the secondary winding of the welding transformer 1 through which current flows by the thyristors 3 and 4 selected by each welding method. Because of the connection, the output of the CO2 welding torch 10 having a low no-load voltage characteristic suitable for CO2 arc welding is output to the energizing portion 9 of the manual welding holder 8 having a high no-load voltage suitable for manual welding. Each output is output. (See Patent Document 1)
[0004]
[Patent Document 1]
JP-A-11-58009
[Problems to be solved by the invention]
In covered arc welding (manual welding) of a commonly used arc welding machine, a high no-load voltage is applied when the work is stopped. As a countermeasure, a welding power supply using an inverter circuit controls the average voltage of no-load voltage during work suspension to a low level, detects that the covered arc welding rod has contacted the workpiece, and immediately reduces the no-load voltage immediately after the detection. And the welding was started. However, even if the average voltage of the no-load voltage is controlled to be low, a pulse waveform having a short pulse width and a high peak voltage is applied. Further, a bleeder resistor having a large capacity is required to maintain the stability of the constant voltage control, which leads to an increase in the size of the device and an increase in cost.
[0006]
[Means for Solving the Problems]
A welding power supply main circuit INV that rectifies an AC power supply and converts it into a DC voltage, converts the converted DC voltage into a voltage suitable for arc machining, and supplies the voltage to the workpiece, An auxiliary power supply circuit AD for supplying an auxiliary voltage lower than the no-load voltage of the welding power supply main circuit INV between the rod ES and the workpiece WT; When the value of the auxiliary voltage is lower than a predetermined short-circuit reference value upon contact, the short-circuit detection circuit SD that outputs the short-circuit detection signal Sd by determining that the contact has occurred, and outputs the short-circuit detection signal Sd with a predetermined value. An output current monitoring time T1 is provided and the output current of the welding power supply main circuit INV is monitored. When the output current is output within the output current monitoring time T1, it is determined that an arc has occurred, and an arc generation determination signal is generated. d, an arc generation discrimination circuit ED that outputs d, and when the covering arc welding mode is selected, the auxiliary power supply circuit is driven to supply an auxiliary voltage. When Sd is output, the welding power supply main circuit INV is driven and the driving of the auxiliary power supply circuit AD is stopped. When the arc generation determination circuit ED outputs the arc generation determination signal Ed, the welding power supply main circuit INV is driven. If the arc generation discrimination signal Ed is not output, the main control for stopping the driving of the welding power supply main circuit INV and subsequently performing the sequence control for driving the auxiliary power supply circuit AD again to supply the auxiliary voltage is performed. An arc welding machine comprising a circuit SC.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of the present invention will be described with reference to the drawings. FIG. 1 is an electrical connection diagram of the arc welding machine of the present invention. In FIG. 1, a welding power source main circuit INV converts an input voltage into a voltage suitable for arc machining and supplies the voltage to a coated arc welding rod ES.
[0008]
The welding power supply main circuit INV shown in FIG. 4 includes a primary rectifier circuit DR1 for rectifying an AC power supply AC and converting it to a DC voltage, a smoothing capacitor C1 for smoothing the DC voltage, and converting the smoothed voltage to a high-frequency AC voltage. An inverter circuit IV for converting, a main transformer INT for converting the high-frequency AC voltage into a voltage suitable for arc machining, a secondary rectifier circuit DR2 for converting an output of the main transformer INT to a DC voltage, and a DC reactor L And formed. Further, although the welding power supply main circuit INV uses the inverter system, it goes without saying that the thyristor system can be used.
[0009]
The changeover switch SW is a changeover switch having two contacts, a contact a and a contact b, for selecting a welding method. TIG is selected by selecting the above-mentioned a-contact, covering arc welding (manual welding), and selecting the b-contact. It becomes welding. When the covering arc welding (manual welding) is selected, the main control circuit SC outputs a covering arc welding control signal Th, and in accordance with the covering arc welding control signal Th, a short-circuit detection circuit SD and an arc generation shown below. The detection circuit TC is operated and the output of the welding power supply main circuit INV is controlled according to the value of the output current detection signal Id. When the changeover switch SW is selected as the b-contact and TIG welding is performed, the operations of the auxiliary power supply circuit AD, the short-circuit detection circuit SD, and the arc occurrence determination circuit TC are stopped, and the operations are started according to the torch switch TS.
[0010]
The output current detection circuit ID detects an output current and outputs an output current detection signal Id, and the output voltage detection circuit VD detects an output voltage and outputs an output voltage detection signal Vd.
[0011]
The short-circuit detection circuit SD shown in FIG. 2 includes a short-circuit reference value setting circuit VR, a comparison circuit CP, and a second AND circuit AND2. The short-circuit reference value setting circuit VR has a predetermined short-circuit reference value Vr. The comparison circuit CP compares the value of the output voltage detection signal Vd with the short circuit reference value Vr, and determines that a short circuit occurs when the value of the output voltage detection signal Vd is smaller than the short circuit reference value Vr. Then, the comparison signal Cp is set to High level and output. The second AND circuit AND2 performs an AND logic operation between the High level of the covered arc welding control signal Th and the High level of the comparison signal Cp to output the short-circuit detection signal Sd at the High level.
[0012]
The arc occurrence determination circuit ED shown in FIG. 2 is formed by an output current reference value setting circuit IR, a second comparison circuit CP2, a delay circuit DL, a timer circuit MM, and an arc occurrence detection circuit TC. Sets an output current reference value Ir of a predetermined value, and the second comparison circuit CP2 compares the value of the output current detection signal Id with the output current reference value Ir to calculate the output current detection signal Id. Is larger than the output current reference value Ir, it is determined that the output current has been output by the covered arc welding (manual welding), and the output current detection signal Wcr is set to High level and output. The delay circuit DL delays the output current detection signal Wcr by a predetermined time and outputs the output current detection signal Wcr as an output current delay signal Wl.
[0013]
The timer circuit (monostable multivibrator) MM shown in FIG. 2 outputs the timer signal Mm of the output current monitoring time T1 having a predetermined value when the short-circuit detection signal Sd becomes High level, and the arc delay signal W1 becomes High level. , The timer signal Mm is set to the low level. The arc generation detection circuit TC enters an operation start state when the covering arc welding control signal Th becomes High level, and changes the arc generation detection signal Tc to Low level when the timer signal Mm is input. During the period when the timer signal Mm is at the high level, the output current detection signal Wcr is sequentially monitored. When the output current detection signal Wcr is at the high level, it is detected that an arc has occurred, and the low level of the arc occurrence detection signal Tc is detected. To maintain. The AND circuit AND shown in FIG. 1 takes the AND logic of the coating arc welding control signal Th and the arc occurrence detection signal Tc to set the arc occurrence determination signal Ed to a low level.
[0014]
The auxiliary power supply circuit AD shown in FIG. 3 is formed by an auxiliary transformer TI, a rectifier circuit DR3, a smoothing capacitor C2, a switching element TR1, and a current limiting resistor R. The auxiliary transformer TI covers the input voltage by arc welding (hand welding). ), The rectifier circuit DR3 rectifies the output voltage of the auxiliary transformer TI, and the smoothing capacitor C2 smoothes the rectified voltage. The switching element TR1 outputs an auxiliary voltage of the auxiliary power supply according to the arc occurrence determination signal Ed, and the current limiting resistor R limits the output current of the auxiliary power supply. Further, the value of the auxiliary voltage of the auxiliary power supply is set by the auxiliary transformer TI so as to be lower than the value of the no-load voltage of the welding power supply main circuit INV.
[0015]
FIG. 5 is a timing chart for explaining the operation when the arc welding machine of the present invention shown in FIG. 1 is selected in the covering arc welding mode (manual welding). The operation of the present invention shown in FIG. 1 will be described with reference to the timing chart shown in FIG. 5A shows the output voltage detection signal Vd, FIG. 5B shows the covering arc welding control signal Th, FIG. 5C shows the short-circuit detection signal Sd, and FIG. Shows a timer signal Mm, FIG. 5E shows an arc occurrence detection signal Tc, and FIG. 5F shows an arc occurrence determination signal Ed. FIG. 5G shows the output current detection signal Wcr, and FIG. 5H shows the output current delay signal Wl.
[0016]
At time t = t1 shown in FIG. 5A, when the covered arc welding rod ES comes into contact with the workpiece WT and starts covered arc welding, the output voltage detection circuit VD detects the output voltage and detects the output voltage. A signal Vd is output, and the short-circuit detection circuit SD compares the value of the output voltage detection signal Vd with the short-circuit reference value Vr and determines that contact has been made when the value of the output voltage detection signal Vd is smaller than the short-circuit reference value Vr. Then, the short-circuit detection signal Sd shown in FIG.
[0017]
At time t = t1, when the short-circuit detection signal Sd becomes High level, the timer circuit MM changes the timer signal Mm to High level during the output current monitoring time T1 shown in FIG. When the timer signal Mm becomes High level, the arc occurrence detection circuit TC makes the arc occurrence detection signal Tc Low level. Further, when the arc occurrence detection signal Tc goes low, the AND circuit AND also outputs an arc occurrence determination signal Ed of the output signal low. When the arc occurrence determination signal Ed goes to a low level, the switching element TR1 of the auxiliary power supply circuit AD shown in FIG. 3 is cut off to stop supplying the auxiliary voltage. Further, the arc generation discrimination signal Ed changes from a low level to a high level by the inverting circuit IN and is input to the main control circuit SC. The main control circuit SC drives the welding power supply main circuit INV when the input signal becomes High level.
[0018]
The arc occurrence detection circuit TC sequentially monitors the output current detection signal Wcr during the output current monitoring time T1 shown in FIG. 5D, and outputs the output current detection signal Wcr during the output current monitoring time T1. If the level does not reach High level, it is determined that the arc generation has failed, and at time t = t2, the arc generation detection signal Tc is set to High level.
[0019]
At time t = t2, the AND circuit AND takes the AND logic of the covered arc welding control signal Th and the arc occurrence detection signal Tc to set the arc occurrence determination signal Ed to a high level. When the arc occurrence determination signal Ed becomes High level, the switching element TR1 shown in FIG. 3 is turned on to supply the auxiliary voltage of the auxiliary power supply circuit AD again. Further, when the inversion signal of the arc generation determination signal Ed becomes Low level by the inversion circuit IN, the main control circuit SC stops driving the welding power supply main circuit INV.
[0020]
At time t = t3 shown in FIG. 5 (A), when the covered arc welding rod ES again comes into contact with the workpiece WT, the covered arc welding starts, and the output voltage detection circuit VD detects the output voltage and detects the output voltage. A signal Vd is output, and the short-circuit detection circuit SD compares the value of the output voltage detection signal Vd with the short-circuit reference value Vr, and determines that a contact has occurred when the value of the output voltage detection signal Vd becomes smaller than the short-circuit reference value Vr. Then, the short-circuit detection signal Sd shown in FIG.
[0021]
At time t = t3, when the short-circuit detection signal Sd shown in FIG. 5C goes high, the timer circuit MM changes the timer signal Mm to high level and outputs it. When the timer signal Mm becomes High level, the arc occurrence detection circuit TC makes the arc occurrence detection signal Tc Low level. Further, when the arc occurrence detection signal Tc goes low, the AND circuit AND also outputs an arc occurrence determination signal Ed of the output signal low. When the arc occurrence determination signal Ed goes to a low level, the switching element TR1 of the auxiliary power supply circuit AD shown in FIG. 3 is cut off to stop supplying the auxiliary voltage. Further, when the arc occurrence determination signal Ed changes from the low level to the high level and is input by the inversion circuit IN, the main control circuit SC drives the welding power supply main circuit INV.
[0022]
At time t = t4, when the value of the output current detection signal Id becomes larger than the output current reference value Ir, the second comparison circuit CP2 changes the output current detection signal Wcr to a high level and outputs it. When the output current detection signal Wcr goes high within the output current monitoring time T1, the arc occurrence detection circuit TC determines that an arc has occurred, and maintains the low level of the arc occurrence detection signal Tc. Further, an arc generation discrimination signal Ed obtained by taking an AND logic of the covered arc welding control signal Th and the arc generation detection signal Tc by the AND circuit AND is also maintained at a low level. The inversion signal maintains the High level, and the main control circuit SC continues to drive the welding power supply main circuit INV.
[0023]
At time t = t5, the output current detection signal Wcr is output by the delay circuit DL as an output current delay signal Wl delayed by a predetermined time T2 shown in FIG. 5G, and the timer circuit MM outputs the output current delay signal Wl. The timer signal Mm is set to the Low level when the signal becomes the High level.
[0024]
At time t = t6, when the value of the output current detection signal Id becomes smaller than the output current reference value Ir, the second comparison circuit CP2 changes the output current detection signal Wcr to a low level and outputs it. When the output current detection signal Wcr goes to a low level, the arc occurrence detection circuit TC determines that the arc has been cut and sets the arc occurrence detection signal Tc to a high level. Further, the arc generation determination signal Ed obtained by taking the AND logic of the covered arc welding control signal Th and the arc generation detection signal Tc by the AND circuit AND becomes High level, the switching element TR1 shown in FIG. Is supplied again. Further, when the inverted signal of the arc occurrence determination signal Ed becomes low level by the inverting circuit IN, the main control circuit SC stops driving the welding power supply main circuit INV.
[0025]
【The invention's effect】
In the present invention, by providing the auxiliary power supply circuit that outputs an auxiliary voltage lower than the no-load voltage of the welding power supply, a high no-load voltage is prevented from being applied when the work in the covered arc welding (manual welding) is stopped. Further, a bleeder resistor having a large capacity for maintaining the stability of the constant voltage control is not required, so that the device can be prevented from being increased in size and cost.
[Brief description of the drawings]
FIG. 1 is an electrical connection diagram of the arc welding machine of the present invention.
FIG. 2 is a detailed connection diagram of a power supply control circuit and a short-circuit detection circuit shown in FIG.
FIG. 3 is a detailed connection diagram of the auxiliary power supply circuit shown in FIG. 1;
FIG. 4 is a detailed connection diagram of the welding power source main circuit shown in FIG.
FIG. 5 is a timing chart for explaining an operation when the arc welding machine of the present invention shown in FIG. 1 is selected in a covered arc welding output mode (manual welding).
FIG. 6 is an electrical connection diagram of a conventional arc welding machine.
[Explanation of symbols]
AD auxiliary power supply circuit AND AND circuit AND2 Second AND circuit C1 Smoothing capacitor C2 Smoothing capacitor CP Comparison circuit CP2 Second comparison circuit DL Delay circuit DR1 Primary rectifier circuit DR2 Secondary rectifier circuit DR3 Rectifier circuit ED Arc occurrence determination circuit ES Arc welding rod HH Hand welding holder ID Output current detection circuit IN Inversion circuit IR Output current reference value setting circuit IV Inverter circuit INT Main transformer INV Welding power supply main circuit L DC reactor MM Timer circuit (monostable multivibrator)
R Current limiting resistor SC Main control circuit SD Short circuit detection circuit SW Changeover switch TC Arc generation detection circuit TI Auxiliary transformer TR1 Switching element TS Torch switch VR Short circuit reference value setting circuit VD Output voltage detection circuit WT Workpiece Ed Ed Arc discrimination Signal Id Output current detection signal Ir Output current reference value Mm Timer signal (monostable multivibrator signal)
Sc Main control signal Sd Short circuit detection signal Th Covered arc welding control signal In Inversion signal Vr Short circuit reference value Ts Start signal Vd Output voltage detection signal Wcr Output current detection signal Wl Output current delay signal T1 Output current monitoring time

Claims (1)

交流電源を整流して直流電圧に変換し前記変換した直流電圧をアーク加工に適した電圧に変換して被溶接物に供給する溶接電源主回路と、被覆アーク溶接棒と前記被溶接物との間に前記溶接電源主回路の無負荷電圧の値より低い補助電圧を供給する補助電源回路と、前記被覆アーク溶接棒が前記被溶接物に接触して前記補助電圧の値が予め定めた短絡基準値より低くなると接触したと判別して短絡検出信号を出力する短絡検出回路と、前記短絡検出信号が出力すると予め定めた値の出力電流監視時間を設けると共に前記溶接電源主回路の出力電流を監視し前記出力電流監視時間内に前記出力電流が出力するとアークが発生したと判別してアーク発生判別信号を出力するアーク発生判別回路と、被覆アーク溶接モードに選択したとき、前記補助電源回路を駆動して補助電圧を供給し、続いて前記短絡検出回路が接触と判別して短絡検出信号を出力すると前記溶接電源主回路を駆動すると共に前記補助電源回路の駆動を停止し、続いてアーク発生判別回路がアーク発生判別信号を出力すると前記溶接電源主回路の駆動を継続し、前記アーク発生判別信号が出力されないと前記溶接電源主回路の駆動を停止し、続いて前記補助電源回路を再度駆動して前記補助電圧の供給を行うシーケンス制御を行う主制御回路とを具備したことを特徴とするアーク溶接機。A welding power supply main circuit that rectifies an AC power supply, converts the converted DC voltage into a DC voltage, converts the converted DC voltage into a voltage suitable for arc machining, and supplies the voltage to the workpiece, and a coated arc welding rod and the workpiece. An auxiliary power supply circuit for supplying an auxiliary voltage lower than the no-load voltage value of the welding power supply main circuit between the welding power source and the covered arc welding rod in contact with the workpiece; If the value is lower than the value, a short-circuit detection circuit that determines that contact has occurred and outputs a short-circuit detection signal, and provides an output current monitoring time of a predetermined value when the short-circuit detection signal is output and monitors the output current of the welding power supply main circuit. When the output current is output within the output current monitoring time, an arc occurrence determination circuit that determines that an arc has occurred and outputs an arc occurrence determination signal; When the auxiliary circuit is supplied by driving the power supply circuit, and then the short-circuit detection circuit determines that there is a contact and outputs a short-circuit detection signal, the welding power supply main circuit is driven and the driving of the auxiliary power supply circuit is stopped. When the arc occurrence determination circuit outputs an arc occurrence determination signal, the driving of the welding power supply main circuit is continued.When the arc generation determination signal is not output, the driving of the welding power supply main circuit is stopped. And a main control circuit for performing a sequence control for supplying the auxiliary voltage by driving the arc welding machine again.
JP2003108579A 2003-04-14 2003-04-14 Arc welder Pending JP2004314098A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003108579A JP2004314098A (en) 2003-04-14 2003-04-14 Arc welder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003108579A JP2004314098A (en) 2003-04-14 2003-04-14 Arc welder

Publications (1)

Publication Number Publication Date
JP2004314098A true JP2004314098A (en) 2004-11-11

Family

ID=33469996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003108579A Pending JP2004314098A (en) 2003-04-14 2003-04-14 Arc welder

Country Status (1)

Country Link
JP (1) JP2004314098A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102248255A (en) * 2011-06-15 2011-11-23 太原市星云焊接设备有限公司 Fully-digital multifunctional no-spatter inverse welding machine
CN102294532A (en) * 2011-06-14 2011-12-28 北京宏孚瑞达科技有限公司 Voltage reducing electric-shock protection device of arc welding power source and arc welding power supply device
CN103084709A (en) * 2012-12-21 2013-05-08 南通富力机电设备有限责任公司 Inverted multifunctional welding and cutting machine output circuit
CN107635712A (en) * 2015-03-03 2018-01-26 伊利诺斯工具制品有限公司 Method and apparatus for providing welding and auxiliary power
JP2019104040A (en) * 2017-12-14 2019-06-27 株式会社ダイヘン Coated electrode welding system and welding power supply device for coated electrode welding
CN112296483A (en) * 2019-07-26 2021-02-02 株式会社达谊恒 Coating arc welding control method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01299768A (en) * 1988-05-24 1989-12-04 Nippon Steel Corp Consumable electrode type rectangular wave ac arc welding method
JPH0475780A (en) * 1990-07-13 1992-03-10 Toppan Printing Co Ltd Arc welding machine
JPH1158009A (en) * 1997-08-07 1999-03-02 Matsushita Electric Ind Co Ltd Arc welding equipment
JP2002103038A (en) * 2000-09-29 2002-04-09 Osaka Denki Co Ltd Arc welding machine provided with electric shock reducing function

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01299768A (en) * 1988-05-24 1989-12-04 Nippon Steel Corp Consumable electrode type rectangular wave ac arc welding method
JPH0475780A (en) * 1990-07-13 1992-03-10 Toppan Printing Co Ltd Arc welding machine
JPH1158009A (en) * 1997-08-07 1999-03-02 Matsushita Electric Ind Co Ltd Arc welding equipment
JP2002103038A (en) * 2000-09-29 2002-04-09 Osaka Denki Co Ltd Arc welding machine provided with electric shock reducing function

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102294532A (en) * 2011-06-14 2011-12-28 北京宏孚瑞达科技有限公司 Voltage reducing electric-shock protection device of arc welding power source and arc welding power supply device
CN102248255A (en) * 2011-06-15 2011-11-23 太原市星云焊接设备有限公司 Fully-digital multifunctional no-spatter inverse welding machine
CN103084709A (en) * 2012-12-21 2013-05-08 南通富力机电设备有限责任公司 Inverted multifunctional welding and cutting machine output circuit
CN107635712A (en) * 2015-03-03 2018-01-26 伊利诺斯工具制品有限公司 Method and apparatus for providing welding and auxiliary power
JP2019104040A (en) * 2017-12-14 2019-06-27 株式会社ダイヘン Coated electrode welding system and welding power supply device for coated electrode welding
CN112296483A (en) * 2019-07-26 2021-02-02 株式会社达谊恒 Coating arc welding control method

Similar Documents

Publication Publication Date Title
JP4739641B2 (en) Power supply device for short-circuit arc welding and robot welding device
EP1847348B1 (en) Polarity switching method in consumable electrode AC pulse arc welding
JP2001150138A (en) Method for controlling ac pulse arc welding and welding power source device
JP2004314098A (en) Arc welder
JP2010075944A (en) Ac arc welding machine
WO2014135964A2 (en) Arc welding with synchronized high frequency assist arc initiation
JP4233690B2 (en) AC arc welding power supply control method and power supply apparatus
JP4643113B2 (en) Welding method and power supply device for welding
JP3369345B2 (en) Stud welding machine
JP5758115B2 (en) Arc welding machine
GB2320627A (en) Arc welder or cutter with DC arc-initiation assisting circuit
US6194681B1 (en) Power supply apparatus for arc-utilizing machine
JP2022185997A (en) Pulse arc welding power source
WO2005099952A1 (en) Arc start control method
WO2010023709A1 (en) Welding machine power supply apparatus and welding machine
JP2686183B2 (en) AC TIG welding machine
JP5429362B2 (en) AC TIG welding method
JP5888943B2 (en) End control method of pulse arc welding
JPH0796367A (en) Arc welding machine
JP4576904B2 (en) Arc welding equipment
KR0124956Y1 (en) Power supply for plasma arc
JP3701704B2 (en) AC / DC dual-purpose arc machining system
JP2022182226A (en) Arc start control method
JP2005144453A (en) Arc welding machine
JPH11170047A (en) Arc power source device

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20060324

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090908

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091008

A131 Notification of reasons for refusal

Effective date: 20100511

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110524