JP2011104458A - Method of preparing catalyst for synthesis of methanol and method of producing methanol - Google Patents

Method of preparing catalyst for synthesis of methanol and method of producing methanol Download PDF

Info

Publication number
JP2011104458A
JP2011104458A JP2009259232A JP2009259232A JP2011104458A JP 2011104458 A JP2011104458 A JP 2011104458A JP 2009259232 A JP2009259232 A JP 2009259232A JP 2009259232 A JP2009259232 A JP 2009259232A JP 2011104458 A JP2011104458 A JP 2011104458A
Authority
JP
Japan
Prior art keywords
catalyst
methanol
producing
methanol synthesis
precipitate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009259232A
Other languages
Japanese (ja)
Other versions
JP5464339B2 (en
Inventor
Noritatsu Tsubaki
範立 椿
Kenichiro Fujimoto
健一郎 藤本
Noriyuki Yamane
典之 山根
Koichiro Goto
耕一郎 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Toyama University
Nippon Steel Engineering Co Ltd
Original Assignee
Nippon Steel Corp
Toyama University
Nippon Steel Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Toyama University, Nippon Steel Engineering Co Ltd filed Critical Nippon Steel Corp
Priority to JP2009259232A priority Critical patent/JP5464339B2/en
Publication of JP2011104458A publication Critical patent/JP2011104458A/en
Application granted granted Critical
Publication of JP5464339B2 publication Critical patent/JP5464339B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of preparing a catalyst for synthesis of methanol which catalyst shows a reduced tendency of lowering of the activity, compared with conventional catalysts for low-temperature liquid-phase synthesis of methanol, even when the raw material gas for synthesis of methanol involves carbon dioxide, water, etc. and exerts a higher catalytic activity and a method of synthesizing methanol in a liquid phase by using the catalyst prepared by the method. <P>SOLUTION: The method of preparing the catalyst for synthesis of methanol is used in a liquid-phase methanol synthetic reaction in which methanol is synthesized from a raw material gas containing carbon monoxide and hydrogen in the presence of an alcohol solvent. In drying a precipitation obtained from an aqueous solution of a copper (Cu) type catalyst ingredient and a precursor substance of the second catalyst ingredient by coprecipitation, the precipitation is brought in contact with a supercritical fluid. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、アルコール溶媒の存在下に一酸化炭素と水素を含む原料ガスからメタノールを合成する液相メタノール合成反応で用いられるメタノール合成用触媒の製造方法、及びメタノールの製造方法に関する。さらに詳しくは、原料ガスからメタノールを製造する際に、たとえ原料ガス中に触媒活性低下の原因となる二酸化炭素、水等が存在しても、高い触媒活性を維持することができるメタノール合成用触媒の製造方法、及び、この製造方法で製造されたメタノール合成用触媒を用いて高効率でメタノールを製造することができるメタノールの製造方法に関する。   The present invention relates to a method for producing a methanol synthesis catalyst used in a liquid phase methanol synthesis reaction for synthesizing methanol from a raw material gas containing carbon monoxide and hydrogen in the presence of an alcohol solvent, and a method for producing methanol. More specifically, when producing methanol from a raw material gas, a catalyst for methanol synthesis that can maintain high catalytic activity even if carbon dioxide, water, etc. that cause a decrease in catalytic activity are present in the raw material gas. And a method for producing methanol capable of producing methanol with high efficiency using the catalyst for methanol synthesis produced by the production method.

一般的に、工業的なメタノールの合成は、メタンを主成分とする天然ガスを水蒸気改質して得られる合成ガス(一酸化炭素と水素が主成分)を原料とし、銅・亜鉛系などの触媒を用いた固定床気相法により、200〜300℃、5〜25MPaという厳しい条件下で行われている(例えば、非特許文献1参照)。本反応は発熱反応であるが、気相法では熱伝導が悪いために効率的な抜熱が困難であることから、反応器通過時の転化率を低く抑えて、未反応の高圧原料ガスをリサイクルするというプロセスが採用されている。このメタノールの合成方法には、製造効率において難点はあるが、合成ガス中に含まれる少量の二酸化炭素や水による反応阻害は受け難いという長所があり、様々なプラントが稼働中である。   In general, industrial synthesis of methanol uses as raw material a synthesis gas (mainly composed of carbon monoxide and hydrogen) obtained by steam reforming natural gas mainly composed of methane. It is carried out under severe conditions of 200 to 300 ° C. and 5 to 25 MPa by a fixed bed gas phase method using a catalyst (for example, see Non-Patent Document 1). Although this reaction is an exothermic reaction, efficient removal of heat is difficult due to poor heat conduction in the gas phase method, so the conversion rate when passing through the reactor is kept low, and unreacted high-pressure source gas is removed. The process of recycling is adopted. This method for synthesizing methanol has a drawback in production efficiency, but has an advantage that it is difficult to inhibit reaction by a small amount of carbon dioxide or water contained in the synthesis gas, and various plants are in operation.

一方、液相でメタノールを合成して抜熱速度を向上させる幾つかの方法が検討されている。中でも、低温(100〜180℃程度)で遷移金属カルボニル錯体とアルコキサイドからなる活性の高い触媒を用いる方法は、熱力学的にも生成系に有利であることから、注目を集めている(例えば、特許文献1、非特許文献2参照)。しかしながら、これらの方法では、合成ガス中に二酸化炭素、水等の触媒活性低下の原因物質が少量でも存在すると触媒の活性が低下し、何れも実用には至っていない(例えば、非特許文献3参照)。   On the other hand, several methods for synthesizing methanol in the liquid phase and improving the heat removal rate have been studied. Among them, a method using a highly active catalyst comprising a transition metal carbonyl complex and an alkoxide at a low temperature (about 100 to 180 ° C.) is attracting attention because it is thermodynamically advantageous for the production system (for example, (See Patent Document 1 and Non-Patent Document 2). However, in these methods, if a causative substance such as carbon dioxide and water is present even in a small amount in the synthesis gas, the activity of the catalyst is lowered, and none of them has been put into practical use (for example, see Non-Patent Document 3). ).

そこで、本発明者らは、先に、合成ガス中に二酸化炭素、水等の触媒活性低下の原因物質が少量存在しても活性低下が少なく、低温液相メタノール合成反応に適した触媒として、Cu/Mg系(Cu/MgO系)のメタノール合成用触媒を開発し、所定の成果を収めて提案した(例えば、特許文献2参照)。   Therefore, the present inventors, as a catalyst suitable for low-temperature liquid-phase methanol synthesis reaction, first, even in the presence of a small amount of the causative agent of catalytic activity reduction such as carbon dioxide, water, etc. in the synthesis gas. A Cu / Mg-based (Cu / MgO-based) methanol synthesis catalyst was developed and proposed with predetermined results (see, for example, Patent Document 2).

また、本発明者らは、先に開発し提案した低温液相メタノール合成反応用のCu/Mg系(Cu/MgO系)触媒よりも更にその触媒活性が高く、しかも、原料ガス中に二酸化炭素、水等の触媒活性低下の原因物質が存在しても触媒活性の低下を抑制できる新たなメタノール合成用触媒の製造方法として、共沈法によるCu/Zn系触媒の調製の際にポリエチレングリコールを添加する方法を開発し、所定の成果を収めて提案している(特許文献3参照)。   In addition, the present inventors have higher catalytic activity than the previously developed and proposed Cu / Mg (Cu / MgO) catalyst for low-temperature liquid phase methanol synthesis reaction, and carbon dioxide is contained in the raw material gas. Polyethylene glycol is used in the preparation of Cu / Zn catalysts by coprecipitation as a new method for producing a catalyst for methanol synthesis that can suppress the decrease in catalyst activity even in the presence of causative substances such as water. A method of addition has been developed and proposed with a predetermined result (see Patent Document 3).

米国特許弟4,992,480号明細書US Patent Brother 4,992,480 Specification 特開2005-095872号公報JP 2005-095872 A 特開2009-214077号公報JP 2009-214077

J. C. J. Bart et al., Catal. Today, 2, 1 (1987)J. C. J. Bart et al., Catal. Today, 2, 1 (1987) 大山聖一, PETROTECH, 18(1), 27 (1995)Seiichi Oyama, PETROTECH, 18 (1), 27 (1995) S. Ohyama, Applied Catalysis A: General, 180, 217 (1999)S. Ohyama, Applied Catalysis A: General, 180, 217 (1999)

本発明者らは、上述したような低温液相メタノール合成反応に適したメタノール合成用触媒の開発を更に進める中で、原料ガス及び/又はアルコール溶媒中に二酸化炭素、水等の触媒活性低下の原因物質が少量存在していても優れた耐性を有する特許文献2、3記載で記載されている触媒よりも、更に高い活性を有する触媒を製造できることを見出した。すなわち、原料ガス中及び/又はアルコール溶媒中の二酸化炭素や水等に対する耐性(活性低下の抑制)に優れたCu/Mg系触媒やCu/Zn系触媒等のCu系触媒を共沈法で製造するに当たって、共沈操作で生成した沈殿物を、超臨界流体と接触させることにより乾燥して製造されたメタノール合成用触媒は、原料ガス及び/又はアルコール溶媒中に少量存在する二酸化炭素、水等の触媒活性低下の原因物質に対して優れた耐性を維持しながら、より高活性化することを知見して、本発明を為すに至った。   In the course of further developing a methanol synthesis catalyst suitable for the low-temperature liquid phase methanol synthesis reaction as described above, the catalyst activity of carbon dioxide, water, etc. is reduced in the raw material gas and / or alcohol solvent. It has been found that even if a causative substance is present in a small amount, it is possible to produce a catalyst having higher activity than the catalysts described in Patent Documents 2 and 3 having excellent resistance. In other words, Cu-based catalysts such as Cu / Mg-based catalysts and Cu / Zn-based catalysts with excellent resistance to carbon dioxide and water in raw material gases and / or alcohol solvents (suppression of decrease in activity) are produced by the coprecipitation method. In this case, the catalyst for methanol synthesis produced by bringing the precipitate produced by the coprecipitation operation into contact with the supercritical fluid is produced in a small amount in the raw material gas and / or alcohol solvent, such as carbon dioxide, water, etc. As a result, the inventors have found that the catalyst can be more highly activated while maintaining excellent resistance to the causative substance of the decrease in catalyst activity.

従って、本発明の目的は、液相メタノール合成反応に用いる従来のメタノール合成用触媒と比較して、特に、原料ガス及び/又はアルコール溶媒に由来する反応系内の二酸化炭素、水等の触媒活性低下の原因物質に対して優れた耐性を有する(二酸化炭素や水に対する失活が少ない)Cu系触媒と比較して、より活性の高い触媒を製造することができるメタノール合成用触媒の製造方法を提供することにある。   Accordingly, the object of the present invention is to compare the catalytic activity of carbon dioxide, water, etc. in the reaction system derived from the raw material gas and / or alcohol solvent, in particular, compared with the conventional methanol synthesis catalyst used in the liquid phase methanol synthesis reaction. A method for producing a catalyst for methanol synthesis that can produce a catalyst with higher activity compared to a Cu-based catalyst that has excellent resistance to a causative agent of reduction (less deactivation with respect to carbon dioxide and water) It is to provide.

また、本発明の他の目的は、上記の製造方法で製造されたメタノール合成用触媒を用いて液相メタノール合成反応を行うことにより、原料ガス及び/又はアルコール溶媒に由来する二酸化炭素、水等の触媒活性低下の原因物質による失活が少ないCu系触媒において、メタノールをより効率良く製造することができるメタノールの製造方法を提供することにある。   Another object of the present invention is to carry out a liquid phase methanol synthesis reaction using the catalyst for methanol synthesis produced by the above production method, so that carbon dioxide derived from the raw material gas and / or alcohol solvent, water, etc. An object of the present invention is to provide a method for producing methanol that can produce methanol more efficiently in a Cu-based catalyst that is less deactivated by a causative substance that lowers the catalytic activity of the catalyst.

すなわち、本発明の特徴とするところは、以下に記す通りである。
(1) アルコール溶媒の存在下に一酸化炭素と水素を含む原料ガスからギ酸エステルを経由してメタノールを合成する液相メタノール合成反応に用いられるメタノール合成用触媒の製造方法において、銅(Cu)系触媒成分及び第二触媒成分の前駆体物質の水溶液から共沈法で得られた沈殿物を乾燥する際に、当該沈殿物を超臨界流体と接触させることを特徴とするメタノール合成用触媒の製造方法。
That is, the features of the present invention are as described below.
(1) In a method for producing a catalyst for methanol synthesis used in a liquid phase methanol synthesis reaction in which methanol is synthesized from a source gas containing carbon monoxide and hydrogen in the presence of an alcohol solvent via a formate, copper (Cu) A catalyst for methanol synthesis, characterized in that, when a precipitate obtained by coprecipitation from an aqueous solution of a precursor material of a system catalyst component and a second catalyst component is dried, the precipitate is brought into contact with a supercritical fluid. Production method.

(2) 第二触媒成分が、亜鉛(Zn)系、マグネシウム(Mg)系の少なくともいずれかの触媒成分であることを特徴とする上記(1)に記載のメタノール合成用触媒の製造方法。   (2) The method for producing a catalyst for methanol synthesis as described in (1) above, wherein the second catalyst component is at least one of zinc (Zn) -based and magnesium (Mg) -based catalyst components.

(3) 第二触媒成分が亜鉛(Zn)系触媒成分であることを特徴とする上記(2)に記載のメタノール合成用触媒の製造方法。   (3) The method for producing a catalyst for methanol synthesis as described in (2) above, wherein the second catalyst component is a zinc (Zn) -based catalyst component.

(4) 超臨界流体が超臨界二酸化炭素であることを特徴とする上記(1)〜(3)のいずれかに記載のメタノール合成用触媒の製造方法。   (4) The method for producing a catalyst for methanol synthesis according to any one of (1) to (3) above, wherein the supercritical fluid is supercritical carbon dioxide.

(5) 銅系触媒成分及び第二触媒成分の前駆体物質の水溶液から共沈法により沈殿物を共沈させる際に、沈殿物生成場となる溶液のpH値を7.5〜10.5の範囲内で一定の値に維持することを特徴とする上記(1)〜(4)のいずれかに記載のメタノール合成用触媒の製造方法。   (5) When the precipitate is coprecipitated from the aqueous solution of the copper-based catalyst component and the precursor material of the second catalyst component by the coprecipitation method, the pH value of the solution that becomes the precipitate generation site is adjusted to 7.5 to 10.5. The method for producing a catalyst for methanol synthesis according to any one of the above (1) to (4), wherein the catalyst is maintained at a constant value within the range.

(6) アルコール溶媒の存在下に一酸化炭素と水素を含む原料ガスからメタノールを合成する液相メタノール合成反応によりメタノールを製造するに際し、触媒として上記(1)〜(5)のいずれかに記載の方法で製造されたメタノール合成用触媒を用いることを特徴とするメタノールの製造方法。   (6) When producing methanol by a liquid phase methanol synthesis reaction in which methanol is synthesized from a raw material gas containing carbon monoxide and hydrogen in the presence of an alcohol solvent, the catalyst as described in any one of (1) to (5) above A method for producing methanol, comprising using the catalyst for methanol synthesis produced by the method of 1.

(7) 原料ガス中に二酸化炭素、及び/又は水蒸気の少なくともいずれかが含まれていることを特徴とする上記(6)に記載のメタノールの製造方法。   (7) The method for producing methanol as described in (6) above, wherein the raw material gas contains at least one of carbon dioxide and / or water vapor.

(8) アルコール溶媒が、第1級アルコール又は第2級アルコールであると共に、1価アルコールであることを特徴とする上記(6)又は(7)に記載のメタノールの製造方法。   (8) The method for producing methanol as described in (6) or (7) above, wherein the alcohol solvent is a primary alcohol or a secondary alcohol and is a monohydric alcohol.

本発明で製造したメタノール合成用触媒は、原料ガス及び/又はアルコール溶媒中に二酸化炭素、水等の触媒活性低下の原因物質が混在しても、触媒活性の低下の度合いが低いCu系触媒において、更に高い触媒活性を有することができるものである。   The catalyst for methanol synthesis produced in the present invention is a Cu-based catalyst that has a low degree of decrease in catalytic activity even when a causative substance such as carbon dioxide and water is mixed in the raw material gas and / or alcohol solvent. Further, it can have higher catalytic activity.

また、本発明のメタノールの製造方法によれば、液相でCu系触媒を使用したメタノール合成反応において、上記のメタノール合成用触媒を用いることにより、効率良くメタノールを製造することができる。   Moreover, according to the methanol production method of the present invention, methanol can be efficiently produced by using the above methanol synthesis catalyst in a methanol synthesis reaction using a Cu-based catalyst in a liquid phase.

本発明において、メタノール合成用触媒は、アルコール溶媒の存在下に一酸化炭素(又は、一酸化炭素及び二酸化炭素)と水素とを含む原料ガスから、ギ酸エステルを経由してメタノールを合成する際に用いられる銅(Cu)系触媒成分と第二触媒成分とを含む触媒であり、その製造方法は、基本的には、上記銅系触媒成分及び第二触媒成分の前駆体物質の水溶液から共沈法により沈殿させて得られた沈殿物を乾燥し、焼成し、更に必要に応じて、整粒後に還元等の活性化処理を施す方法において、共沈操作で得られた水分を含む沈殿物を超臨界流体と接触させるものである。ここで、共沈法で製造する触媒とは沈殿物の焼成後のものであって、活性化処理前のものを言い、また、水分を含む沈殿物は超臨界流体と接触することにより実質的に乾燥処理される。   In the present invention, the methanol synthesis catalyst is used for synthesizing methanol from a source gas containing carbon monoxide (or carbon monoxide and carbon dioxide) and hydrogen in the presence of an alcohol solvent via a formate ester. A catalyst containing a copper (Cu) -based catalyst component and a second catalyst component to be used, and its production method basically comprises coprecipitation from an aqueous solution of the above-mentioned copper-based catalyst component and the precursor material of the second catalyst component. In a method in which the precipitate obtained by precipitation by the method is dried, calcined, and further subjected to an activation treatment such as reduction after sizing, if necessary, the precipitate containing water obtained by the coprecipitation operation It is in contact with a supercritical fluid. Here, the catalyst produced by the coprecipitation method is the one after the calcination of the precipitate and before the activation treatment, and the precipitate containing moisture is substantially brought into contact with the supercritical fluid. To be dried.

本発明においては、例えば、具体的には以下の手順で触媒の製造を行う。   In the present invention, for example, the catalyst is specifically produced by the following procedure.

先ず、反応に活性を示す銅系触媒成分の前駆体物質(プレカーサー)と、触媒の担体となり得る第二触媒成分の前駆体物質(プレカーサー)とを溶解した前駆体物質水溶液と、沈殿剤を溶解した沈殿剤水溶液と、これらの水溶液を滴下し沈殿が形成される場(沈殿物生成場)となるイオン交換水等の液体からなる3種の溶液及び液体を用意し、次に、沈殿物生成場となる溶液中に前駆体物質水溶液と沈殿剤水溶液とをそれぞれ滴下して沈殿物を生成させ、生成した沈殿物を熟成させた後に濾過して沈殿物を回収し、得られた沈殿物を必要に応じてイオン交換水等で洗浄し、次いで超臨界流体と接触させて乾燥させ、その後に焼成することにより、触媒を製造する。   First, a precursor material aqueous solution in which a precursor material (precursor) of a copper-based catalyst component that is active in the reaction and a precursor material (precursor) of a second catalyst component that can serve as a catalyst carrier are dissolved, and a precipitant is dissolved Prepare three kinds of solutions and liquids, such as ion-exchanged water, which will be the place where precipitates are formed by dropping these aqueous solutions (precipitate generation field), and then precipitate formation A precursor substance aqueous solution and a precipitating agent aqueous solution are respectively dropped into the solution that becomes the place to produce a precipitate, and after aging the produced precipitate, filtration is performed to collect the precipitate. If necessary, the catalyst is produced by washing with ion-exchanged water or the like, then contacting with a supercritical fluid and drying, followed by calcination.

ここで、銅系触媒成分及び第二触媒成分の前駆体物質水溶液を調製するための前駆体物質としては、銅(Cu)や第二触媒成分となる金属元素(例えば、Zn、Mg、Ce、Mn、Re等)の硝酸塩、酢酸塩、硫酸塩、塩化物等を使用することができ、水に溶解すればよく、特に限定されることは無いが、溶解度の高い硝酸塩を使用するのが一般的である。   Here, as a precursor material for preparing the precursor material aqueous solution of the copper-based catalyst component and the second catalyst component, copper (Cu) or a metal element (for example, Zn, Mg, Ce, or the like) that becomes the second catalyst component Mn, Re, etc.) nitrates, acetates, sulfates, chlorides, etc. can be used, as long as they are soluble in water and are not particularly limited, but it is common to use highly soluble nitrates Is.

また、沈殿剤水溶液を調製するための沈殿剤としては、水に溶解して塩基性を示せばよく、アルカリ炭酸塩、アンモニア水等が使用でき、特に限定されないが、炭酸ナトリウムを使用すると好結果が得られ易い。   Moreover, as a precipitant for preparing the precipitant aqueous solution, it is sufficient to dissolve in water to show basicity, and alkali carbonate, aqueous ammonia, etc. can be used, and it is not particularly limited. Is easy to obtain.

更に、沈殿物生成場となるイオン交換水等の液体としては、特に限定されることはなく、任意の水を使用することができるが、調製した触媒の反応活性の観点からは純度の高い水ほど好ましい。不純物を含有して純度が低い水を使用すると、触媒中に当該不純物が残留して反応活性に悪影響を及ぼすことが考えられるためである。触媒を大量に製造する際には、沈殿物生成場となる溶液の使用量が多くなるため、触媒の反応活性に加えて、コストの観点からも、上水、工業用水等を使用することが望ましい。   Furthermore, the liquid such as ion-exchanged water used as a precipitate generation site is not particularly limited, and any water can be used. However, from the viewpoint of the reaction activity of the prepared catalyst, high purity water is used. The more preferable. This is because if water containing impurities and having low purity is used, the impurities may remain in the catalyst and adversely affect the reaction activity. When a large amount of catalyst is produced, the amount of the solution used as a precipitate generation field is increased, so that in addition to the reaction activity of the catalyst, from the viewpoint of cost, it is possible to use clean water, industrial water, etc. desirable.

共沈法で沈殿物を生成させる際の温度条件は、特に限定されることはないが、通常40℃以上80℃以下、好ましくは60℃以上70℃以下であるのがよく、このような温度で一定に保つと好結果が得られ易い。   The temperature conditions for producing the precipitate by the coprecipitation method are not particularly limited, but are usually 40 ° C. or higher and 80 ° C. or lower, preferably 60 ° C. or higher and 70 ° C. or lower. If it is kept constant, it is easy to obtain good results.

また、共沈法で沈殿物を生成させる際のpHは、特に限定されることはないが、7.5以上10.5以下の範囲内においてある値で一定に保つと活性の高い触媒が得られ易く、pH計を設置し、この範囲において、pHを一定に保つことが好ましい。一定に保つpHは、より好ましくは8以上10以下であり、更に好ましくは8以上9以下である。しかし、高いpHに保持するためには炭酸ナトリウム等の沈殿剤が大量に必要となるため、経済性の観点より通常は7.5〜10.5の範囲であるpHの値を設定して製造される。pHを一定に保持するためには、沈殿が形成される溶液のpHを設置したpH計で測定し、酸性を示す前駆体物質(プレカーサー)を溶解した前駆体物質水溶液と、アルカリ性を示す沈殿剤を溶解した沈殿剤水溶液の滴下速度を調節することが必要である。   Further, the pH at which the precipitate is generated by the coprecipitation method is not particularly limited, but a highly active catalyst can be obtained by keeping it constant at a certain value within the range of 7.5 to 10.5. It is preferable to install a pH meter and keep the pH constant within this range. The pH kept constant is more preferably 8 or more and 10 or less, and further preferably 8 or more and 9 or less. However, in order to maintain a high pH, a large amount of a precipitating agent such as sodium carbonate is required. Therefore, it is usually produced by setting a pH value in the range of 7.5 to 10.5 from the viewpoint of economy. Is done. In order to keep the pH constant, the pH of the solution in which the precipitate is formed is measured with a pH meter, and the precursor material aqueous solution in which the precursor material showing acidity (precursor) is dissolved, and the precipitating agent showing alkalinity It is necessary to adjust the dropping rate of the aqueous precipitant solution in which is dissolved.

上述の方法で調製された沈殿物は、熟成のため一定時間放置される。熟成時間は特に限定されることはないが、通常は5〜500時間程度である。熟成後は沈殿物をろ過し、炭酸ナトリウム等の沈殿剤成分を除去するため、イオン交換水等で洗浄する。洗浄条件は特に限定されることはないが、通常は常温〜80℃の温度で実施される。洗浄後は沈殿物を乾燥、焼成(例えば、空気中350℃-1h)し、必要に応じて整粒後、還元(例えば、水素気流中200℃-10h)等の活性化処理を施して反応に供される。空気中で触媒をハンドリングする必要がある場合には、表面不動態化処理を施すことが可能である。これらの工程の条件も特に限定されることはなく、通常実施される範囲であればよい。   The precipitate prepared by the above method is left for a certain time for aging. The aging time is not particularly limited, but is usually about 5 to 500 hours. After aging, the precipitate is filtered and washed with ion-exchanged water or the like to remove a precipitant component such as sodium carbonate. The washing conditions are not particularly limited, but are usually carried out at a temperature from room temperature to 80 ° C. After washing, the precipitate is dried and calcined (for example, 350 ° C-1h in air). After sizing as necessary, it is subjected to an activation treatment such as reduction (for example, 200 ° C-10h in a hydrogen stream) for reaction. To be served. If it is necessary to handle the catalyst in air, a surface passivation treatment can be applied. The conditions for these steps are not particularly limited as long as they are in a range that is usually performed.

Cu系触媒成分の前駆体物質と第二触媒成分の前駆体物質とから、共沈法で製造した触媒が、原料ガス及び/又はアルコール溶媒に由来する反応系内の二酸化炭素、水等の触媒活性低下の原因物質に対して、優れた耐性を有する理由は、従来の低温液相法で使用されていたアルカリ金属アルコキサイド(均一系触媒)を使用しないためである。アルカリ金属アルコキサイドは二酸化炭素、水等により反応中に不活性成分に変化していたが、本発明の固体触媒は二酸化炭素、水等により劇的に触媒性状が変化することが無いと考えられる。従来のCu系触媒では、低温液相法の反応条件では活性が極めて低かったために使用することはできなかったが、本発明のCu系触媒では、第二触媒成分が主触媒となるCuの微細化と高分散を促進し、Cuの表面積を増大させているため、低温液相法の反応条件においても一定の活性を発現するものと推定される。   The catalyst produced by the coprecipitation method from the precursor material of the Cu-based catalyst component and the precursor material of the second catalyst component is a catalyst such as carbon dioxide and water in the reaction system derived from the source gas and / or alcohol solvent. The reason why it has excellent resistance to the causative substance of the decrease in activity is that the alkali metal alkoxide (homogeneous catalyst) used in the conventional low-temperature liquid phase method is not used. Alkali metal alkoxide was changed to an inactive component during the reaction by carbon dioxide, water and the like, but it is considered that the catalytic properties of the solid catalyst of the present invention are not dramatically changed by carbon dioxide, water and the like. Conventional Cu-based catalysts could not be used because the activity was very low under the reaction conditions of the low-temperature liquid phase method. However, in the Cu-based catalysts of the present invention, the second catalyst component is a fine catalyst of Cu as the main catalyst. It is presumed that a certain activity is expressed even under the reaction conditions of the low temperature liquid phase method because the surface area of Cu is increased by promoting the formation and high dispersion.

本発明においては、沈殿物の乾燥工程でこの沈殿物を超臨界流体と接触させ、この超臨界流体との接触により沈殿物を実質的に超臨界乾燥させる。ここで、超臨界乾燥とは、沈殿物を超臨界流体と接触させることによって、沈殿物中の水分を除去するものである。超臨界流体は表面張力が小さいため、沈殿物の微少な細孔内にも拡散し、水分を溶解して細孔内から除去することができると考えられる。通常の乾燥工程(例えば、120℃-10h)や、通常の乾燥工程の後の焼成工程では、水分が細孔内に存在した状態で熱が加えられるため、細孔内に存在する水分の膨張によって微細細孔構造の破壊が生じることが考えられる。一方、超臨界乾燥処理を採用した場合には、水分の除去は超臨界流体の臨界点程度の温度領域にて行われるため、臨界温度の低い超臨界流体を用いることにより、微細細孔構造破壊が起こり難くなり、製造される触媒の表面積が相対的に大きくなるものと考えられる。   In the present invention, the precipitate is brought into contact with the supercritical fluid in the step of drying the precipitate, and the precipitate is substantially supercritically dried by contact with the supercritical fluid. Here, the supercritical drying is to remove moisture in the precipitate by bringing the precipitate into contact with a supercritical fluid. Since the supercritical fluid has a small surface tension, it is considered that the supercritical fluid can also diffuse into the fine pores of the precipitate, dissolve the water, and be removed from the pores. In the normal drying process (for example, 120 ° C-10h) and the baking process after the normal drying process, heat is applied while moisture is present in the pores, so the expansion of moisture present in the pores It is conceivable that the fine pore structure is destroyed by the above. On the other hand, when the supercritical drying process is adopted, the removal of moisture is performed in the temperature range around the critical point of the supercritical fluid. It is considered that the surface area of the produced catalyst becomes relatively large.

超臨界乾燥処理において超臨界流体を沈殿物と接触させる方法や条件については、特に限定されることはないが、室温〜100℃の低温条件において超臨界状態を取る超臨界流体を用い、この超臨界流体の流れの中に沈殿物を置いて沈殿物に超臨界流体を流通させることが好ましい。これは上述のように沈殿物から水分を除去する乾燥工程において、加える熱が低温であることによって好結果が得られるとの考えに基づくものであり、超臨界状態を取り得る温度条件が100℃を超える超臨界流体を使用した場合には、空気中で長時間実施する通常の乾燥(例えば、120℃-10h)と同様の熱が加えられることになるためである。低温条件において超臨界状態を取る超臨界流体としては、例えば二酸化炭素(臨界点:31℃、7.38MPa)が挙げられ、この超臨界二酸化炭素を用いることにより好結果を得ることができる。圧力は流体が超臨界状態を取る条件であればよく、特に限定されることはない。また、超臨界流体の性質として、水を溶解可能なものが好ましい。   The method and conditions for bringing the supercritical fluid into contact with the precipitate in the supercritical drying process are not particularly limited, but a supercritical fluid that takes a supercritical state under a low temperature condition of room temperature to 100 ° C. is used. It is preferable to place a precipitate in the flow of the critical fluid and to circulate the supercritical fluid through the precipitate. This is based on the idea that a good result can be obtained when the applied heat is low in the drying step of removing moisture from the precipitate as described above, and the temperature condition capable of taking a supercritical state is 100 ° C. This is because, when a supercritical fluid exceeding 1 is used, heat similar to that of normal drying (for example, 120 ° C.-10 h) performed in air for a long time is applied. Examples of the supercritical fluid that takes a supercritical state under low temperature conditions include carbon dioxide (critical point: 31 ° C., 7.38 MPa), and good results can be obtained by using this supercritical carbon dioxide. The pressure is not particularly limited as long as the fluid is in a supercritical state. Further, as a property of the supercritical fluid, those capable of dissolving water are preferable.

上述の共沈法で製造するメタノール合成用触媒は、銅(Cu)系触媒成分を有する触媒において好適な結果が得られ、特に第二触媒成分が亜鉛(Zn)系触媒成分であるCu/ZnO触媒が好ましい。Cu/ZnO触媒を調製する際には、共沈法で用いる前駆体物質水溶液として、銅系触媒成分の前駆体物質と亜鉛系触媒成分の前駆体物質とを溶解した水溶液を用いればよい。その他、第二触媒成分を構成する金属元素としては例えば、Zn、Mg、Ce、Mn、Re等を例示することができ、前駆体物質水溶液として、銅系触媒成分の前駆体物質とこれら金属元素を有する第二触媒成分の前駆体物質とを溶解した水溶液を用いることにより、Cu/MgO、Cu/CeO、Cu/MnO、Cu/ReO等の触媒も調製することが可能である。   The catalyst for methanol synthesis produced by the above-described coprecipitation method is suitable for a catalyst having a copper (Cu) -based catalyst component, and is particularly Cu / ZnO in which the second catalyst component is a zinc (Zn) -based catalyst component. A catalyst is preferred. When preparing a Cu / ZnO catalyst, an aqueous solution in which a precursor material of a copper-based catalyst component and a precursor material of a zinc-based catalyst component are dissolved may be used as the precursor material aqueous solution used in the coprecipitation method. In addition, examples of the metal element that constitutes the second catalyst component include Zn, Mg, Ce, Mn, Re, etc. As precursor material aqueous solution, the precursor material of the copper-based catalyst component and these metal elements Catalysts such as Cu / MgO, Cu / CeO, Cu / MnO, and Cu / ReO can also be prepared by using an aqueous solution in which the precursor material of the second catalyst component having s is dissolved.

なお、上記組成以外の触媒も上述の方法で調製することが可能であり、また、銅系触媒成分と第二触媒成分とのモル比は特に限定されることはないが、1:1程度で好適な結果を得ることができる。また、共沈法において銅系触媒成分及び第二触媒成分の前駆体物質を溶解した水溶液に、更に第三触媒成分の前駆体物質を添加して触媒を調製することも可能であり、その他、共沈法で調製した後に、含浸法等の通常の触媒調製法で第三触媒成分を添加することも可能である。   A catalyst other than the above composition can also be prepared by the above-described method, and the molar ratio of the copper-based catalyst component and the second catalyst component is not particularly limited, but is about 1: 1. Suitable results can be obtained. Further, it is also possible to prepare a catalyst by adding a precursor material of a third catalyst component to an aqueous solution in which a precursor material of a copper catalyst component and a second catalyst component is dissolved in a coprecipitation method, After the preparation by the coprecipitation method, it is also possible to add the third catalyst component by an ordinary catalyst preparation method such as an impregnation method.

上述の共沈法で調製した触媒を用いることにより、低温液相メタノール合成反応において一酸化炭素及び水素を含む原料ガスから高効率でメタノールを製造することができる。   By using the catalyst prepared by the coprecipitation method, methanol can be produced with high efficiency from a raw material gas containing carbon monoxide and hydrogen in a low-temperature liquid phase methanol synthesis reaction.

本発明の液相メタノール合成反応においては、アルコール溶媒が例えば鎖状又は脂環式の炭化水素類に水酸基が付いたものである場合を例にとって示すと、以下に示す反応式のいずれかに基づいて、先ずギ酸エステルが生成し、次いでメタノールが生成するものと考えられる。   In the liquid phase methanol synthesis reaction of the present invention, for example, when the alcohol solvent is a chain or alicyclic hydrocarbon having a hydroxyl group attached thereto, it is based on one of the following reaction formulas. Thus, it is considered that formate is first produced and then methanol is produced.

R-OH+CO → HCOOR (1)
HCOOR+2H2 → CH3OH+R-OH (2)
(ここで、Rはアルキル基を示す。)
R-OH + CO → HCOOR (1)
HCOOR + 2H 2 → CH 3 OH + R-OH (2)
(Here, R represents an alkyl group.)

ただし、反応系に水が存在する場合は次に示す反応式に基づくと考えられ、前記反応式と並行してギ酸エステル又はメタノールが生成するものと考えられる。
CO+H2O → CO2+H2 (3)
CO2+H2+R-OH → HCOOR+H2O (4)
HCOOR+2H2 → CH3OH+R-OH (5)
However, when water is present in the reaction system, it is considered to be based on the following reaction formula, and formate ester or methanol is considered to be generated in parallel with the above reaction formula.
CO + H 2 O → CO 2 + H 2 (3)
CO 2 + H 2 + R-OH → HCOOR + H 2 O (4)
HCOOR + 2H 2 → CH 3 OH + R-OH (5)

また、本発明の触媒は銅(Cu)系触媒であるため、上記の反応式と並行して、以下の反応式によってもギ酸エステル又はメタノールが生成するものと考えられる。
CO+H2O → CO2+H2 (6)
CO2+1/2H2+Cu → HCOOCu (7)
HCOOCu+ROH → HCOOR+CuOH (8)
HCOOR+2H2 → CH3OH+ROH (9)
CuOH+1/2 H2 → H2O+Cu (10)
In addition, since the catalyst of the present invention is a copper (Cu) -based catalyst, it is considered that formate or methanol is generated by the following reaction formula in parallel with the above reaction formula.
CO + H 2 O → CO 2 + H 2 (6)
CO 2 + 1 / 2H 2 + Cu → HCOOCu (7)
HCOOCu + ROH → HCOOR + CuOH (8)
HCOOR + 2H 2 → CH 3 OH + ROH (9)
CuOH + 1/2 H 2 → H 2 O + Cu (10)

従って、本発明において、メタノールの製造原料としては、一酸化炭素及び水素を含む原料ガス、又は、二酸化炭素及び水素を含む原料ガスのいずれかが考えられるが、製造原料が二酸化炭素及び水素を含む原料ガスの場合は、主として一酸化炭素及び水素を含む原料ガスの場合と比較して反応速度が遅いため、一酸化炭素を主に含む原料ガスの方が好ましい。また、本発明方法によれば、炭素源として一酸化炭素を主成分とする原料ガス中に二酸化炭素、水等の触媒活性低下の原因物質が存在していても、これら二酸化炭素、水等に起因する触媒活性低下の程度が小さい。   Therefore, in the present invention, as a raw material for producing methanol, either a raw material gas containing carbon monoxide and hydrogen or a raw material gas containing carbon dioxide and hydrogen can be considered, but the raw material for production contains carbon dioxide and hydrogen. In the case of a raw material gas, the reaction rate is slower than in the case of a raw material gas mainly containing carbon monoxide and hydrogen. Therefore, a raw material gas mainly containing carbon monoxide is preferred. Further, according to the method of the present invention, even if a causative substance such as carbon dioxide and water is present in the raw material gas mainly composed of carbon monoxide as a carbon source, the carbon dioxide, water, etc. The degree of catalyst activity reduction due to this is small.

また、本発明において、液相メタノール合成反応に用いるアルコール溶媒としては、鎖状又は脂環式の炭化水素類に水酸基が付いたものが挙げられるほか、フェノール及びその置換体、更には、チオール及びその置換体等も使用することができる。これらのアルコール溶媒については、第1級、第2級及び第3級のいずれでもよいが、反応効率等の点からは第1級アルコール、又は第2級アルコールが好ましく、メタノール、エタノール、プロパノール等の低級アルコールが最も一般的である。また、反応効率等の点から1価アルコールが好ましいが、2価、3価アルコール等の多価アルコールも使用することができる。また、従来の方法では溶媒のアルコール溶媒に水が含まれていると、原料ガス中に水が存在する場合と同様に、触媒活性低下が生じるが、本発明の方法では触媒活性低下の程度が小さい。   In the present invention, examples of the alcohol solvent used in the liquid phase methanol synthesis reaction include those in which a chain or alicyclic hydrocarbon is attached with a hydroxyl group, phenol and its substitute, and further, thiol and Substitutes thereof can also be used. These alcohol solvents may be any of primary, secondary, and tertiary, but primary alcohols or secondary alcohols are preferred from the viewpoint of reaction efficiency, etc., such as methanol, ethanol, propanol, etc. The lower alcohols are the most common. Moreover, although monohydric alcohol is preferable from points, such as reaction efficiency, polyhydric alcohols, such as a bivalent and a trihydric alcohol, can also be used. Further, in the conventional method, when water is contained in the alcohol solvent of the solvent, the catalytic activity is reduced as in the case where water is present in the raw material gas. However, in the method of the present invention, the degree of the catalytic activity is reduced. small.

次に、図1に、本発明に係る製造方法で製造された触媒を用いて、メタノールを製造する際のプロセスフローの1例を示す。
半回分式の反応器2に、本発明方法で製造されたメタノール合成用触媒をアルコール溶媒と共に仕込み、この反応器2に合成ガス1を供給する。反応器2の出口から排出される反応混合物3〔生成物(ギ酸エステル、メタノール)と未反応ガス〕を冷却器4に導入して冷却し、未反応ガス5とギ酸エステル及びアルコールの液体混合物6とに分離する。後者の液体混合物6は次段に設置された蒸留塔7においてギ酸エステル8とメタノール9とに分離される。ここで、ギ酸エステル及びメタノールへ転化する原料ガスの転化率が低い場合には、前者の未反応ガス5を再度半回分式の反応器2に供給することも可能であるが、高い転化率で得られる場合には未反応ガス5を合成ガス(原料ガス)製造用の熱源(燃料)として利用することもできる。
Next, FIG. 1 shows an example of a process flow for producing methanol using the catalyst produced by the production method according to the present invention.
A semi-batch type reactor 2 is charged with the methanol synthesis catalyst produced by the method of the present invention together with an alcohol solvent, and the synthesis gas 1 is supplied to the reactor 2. The reaction mixture 3 [product (formic ester, methanol) and unreacted gas] discharged from the outlet of the reactor 2 is introduced into the cooler 4 and cooled, and the liquid mixture 6 of unreacted gas 5 and formate ester and alcohol 6 is cooled. And to separate. The latter liquid mixture 6 is separated into formate ester 8 and methanol 9 in a distillation column 7 installed in the next stage. Here, when the conversion rate of the raw material gas to be converted into formate ester and methanol is low, the former unreacted gas 5 can be supplied again to the semi-batch reactor 2, but the conversion rate is high. When obtained, the unreacted gas 5 can also be used as a heat source (fuel) for producing synthesis gas (raw material gas).

本発明におけるメタノール合成反応は液相反応であり、温和な反応条件を採用することができる(一般的に、低温液相メタノール合成反応と呼ばれる条件を採用できる。)。具体的には、温度70℃以上250℃以下、圧力3気圧以上100気圧以下、好ましくは温度120℃以上200℃以下、圧力15気圧以上80気圧以下の条件であるが、これらに限定されない。アルコール溶媒は、反応が進行する程度の量があればよいが、それ以上の量を溶媒として用いることもできる。また、上記反応に際してアルコール溶媒の他に、有機溶媒を併せて用いることができる。また、生成したメタノールは、アルコール溶媒から蒸留によって分離することが可能である。   The methanol synthesis reaction in the present invention is a liquid phase reaction, and mild reaction conditions can be adopted (generally, conditions called a low temperature liquid phase methanol synthesis reaction can be adopted). Specifically, the temperature is 70 ° C. or more and 250 ° C. or less, the pressure is 3 atmospheres or more and 100 atmospheres or less, preferably the temperature is 120 ° C. or more and 200 ° C. or less, and the pressure is 15 atmospheres or more and 80 atmospheres or less, but is not limited thereto. The alcohol solvent only needs to have an amount sufficient for the reaction to proceed, but an amount larger than that can also be used as the solvent. In the above reaction, an organic solvent can be used in addition to the alcohol solvent. Further, the produced methanol can be separated from the alcohol solvent by distillation.

反応器の後段で回収される液体混合物のギ酸エステルとメタノールは、蒸留によりギ酸エステルとメタノールとに分離することができ、ギ酸エステルはそのままメタノールの製造に供することもできる。すなわち、液体混合物中から分離された後のギ酸エステルを水素化分解してメタノールを製造することができる。この水素化分解には水素化分解触媒が用いられ、例えばCu系、Pt系、Ni系、Co系、Ru系、Pd系等の一般的な水素化分解触媒が用いられる。また、反応器の後段で回収したギ酸エステルとメタノールの液体混合物を分離することなく、水素化分解触媒及び水素を共存させて、液体混合物中のギ酸エステルを水素化分解してメタノールとすることもできる。更に、本発明においては、原料ガスとアルコール溶媒からギ酸エステルとメタノールを生成させる前記反応系にこれらの水素化分解触媒を共存させておくことにより、メタノールの選択率を増加させ、これによって効率良くメタノールを製造することもできる。なお、上記のギ酸エステルの水素化分解反応によって、メタノール、残存ギ酸エステル、アルコール溶媒〔(2)式のR-OH〕からなる混合物が得られるが、これらは蒸留によって分離することができ、メタノールを精製することができる。   The formic acid ester and methanol in the liquid mixture recovered in the latter stage of the reactor can be separated into formic acid ester and methanol by distillation, and the formic acid ester can be used for the production of methanol as it is. That is, methanol can be produced by hydrocracking the formate after separation from the liquid mixture. For this hydrocracking, a hydrocracking catalyst is used. For example, a general hydrocracking catalyst such as a Cu-based, Pt-based, Ni-based, Co-based, Ru-based, or Pd-based catalyst is used. In addition, without separating the liquid mixture of formate ester and methanol recovered in the subsequent stage of the reactor, the hydrocracking catalyst and hydrogen can coexist to hydrocrack the formate ester in the liquid mixture into methanol. it can. Furthermore, in the present invention, by allowing these hydrocracking catalysts to coexist in the reaction system for producing formate ester and methanol from the raw material gas and the alcohol solvent, the selectivity of methanol is increased, thereby efficiently. Methanol can also be produced. In addition, by the hydrogenolysis reaction of the formate ester described above, a mixture comprising methanol, residual formate ester and alcohol solvent [R-OH of the formula (2)] is obtained, but these can be separated by distillation. Can be purified.

以下、実施例及び比較例に基づいて、本発明のメタノー合成用触媒の製造方法及び得られた触媒を用いたメタノールの製造方法を説明する。
なお、以下の実施例1〜14及び比較例1〜4において、CO転化率、CO2転化率、C転化率、ギ酸エステル選択率、メタノール選択率、及びメタノール収率は、それぞれ以下に示す計算式により算出した。
Hereinafter, based on an Example and a comparative example, the manufacturing method of the catalyst for methanol synthesis of this invention and the manufacturing method of methanol using the obtained catalyst are demonstrated.
In Examples 1 to 14 and Comparative Examples 1 to 4 below, the CO conversion rate, the CO 2 conversion rate, the C conversion rate, the formate ester selectivity, the methanol selectivity, and the methanol yield are calculated as follows. Calculated by the formula.

CO転化率(%)=[1-(反応後回収COモル数)/(仕込みCOモル数)]×100
CO2転化率(%)=[1-(反応後回収CO2モル数)/(仕込みCO2モル数)]×100
CO conversion rate (%) = [1- (number of moles of CO recovered after reaction) / (number of moles of charged CO)] × 100
CO 2 conversion rate (%) = [1- (number of moles of recovered CO 2 after reaction) / (number of moles of charged CO 2 )] × 100

C転化率(%)=CO転化率(%)×[(仕込みCOモル数)/(仕込みCO+CO2モル数)]+CO2転化率(%)×[(仕込みCO2モル数)/(仕込みCO+CO2モル数)] C conversion rate (%) = CO conversion rate (%) × [(number of moles of charged CO) / (number of charged CO + CO 2 moles)] + CO 2 conversion rate (%) × [(number of moles of charged CO 2 ) / ( Preparation CO + CO 2 moles)]

ギ酸エステル選択率(%)=[(反応後回収ギ酸エステルモル数)/[(C転化率(%))×(仕込みCO+CO2モル数)]]×100 Formate ester selectivity (%) = [(mol formate ester recovered after reaction) / [(C conversion rate (%)) × (charged CO + CO 2 moles)]] × 100

メタノール選択率(%)=[(反応後に回収されたメタノールモル数)/[(C転化率(%))×(仕込んだCO+CO2モル数)]]×100 Methanol selectivity (%) = [(number of moles of methanol recovered after reaction) / [(C conversion ratio (%)) × (number of charged CO + CO 2 moles)]] × 100

[実施例1]
Cuの硝酸塩とZnの硝酸塩とをこれらCuとZnとがモル比としてCu:Zn=1:1となるように溶解した前駆体物質水溶液と、炭酸ナトリウムを溶解した沈殿剤水溶液と、これらの水溶液が滴下されて沈殿物生成場となるイオン交換水とを用意した。
[Example 1]
Precursor aqueous solution in which Cu nitrate and Zn nitrate are dissolved so that Cu: Zn has a molar ratio of Cu: Zn = 1: 1, precipitant aqueous solution in which sodium carbonate is dissolved, and these aqueous solutions Was added dropwise and ion-exchanged water to be a precipitate generation field.

沈殿物生成場となるイオン交換水の温度を65℃に保持しながら、上記の前駆体物質水溶液と沈殿剤水溶液とを、その滴下速度を制御して、沈殿物生成場(反応系)のpH値を8.5に保持しながらCu/Znの沈殿物を生成させた。その後24時間熟成させた後、イオン交換水で沈殿物を洗浄し、温調付きデシケーターにて35℃、3時間の条件で減圧乾燥(35℃-3h)させた。   While maintaining the temperature of the ion-exchanged water used as the precipitate generation field at 65 ° C., the pH of the precipitate generation field (reaction system) is controlled by controlling the dropping rate of the precursor substance aqueous solution and the precipitant aqueous solution. A Cu / Zn precipitate was produced while maintaining the value at 8.5. After aging for 24 hours, the precipitate was washed with ion-exchanged water, and dried under reduced pressure (35 ° C.-3 h) at 35 ° C. for 3 hours in a temperature-controlled desiccator.

次に、このようにして得られたCu/Zn沈殿物を内容積150mlのオートクレーブに仕込み、超臨界二酸化炭素(CO2)送液ポンプ(日本分光製、SCF-Get型インテリジェント超臨界CO2送液ポンプ)を用い、8.0MPa、5cc/minの条件で超臨界CO2を送液し、この超臨界CO2の流れの中で35℃、3時間の条件でCu/Zn沈殿物を超臨界CO2と接触させ、Cu/Zn沈殿物を超臨界乾燥(35℃-3h)させた。 Next, the thus obtained Cu / Zn precipitate was charged into an autoclave having an internal volume of 150 ml, and a supercritical carbon dioxide (CO 2 ) liquid feed pump (manufactured by JASCO, SCF-Get type intelligent supercritical CO 2 feed). Supercritical CO 2 is fed at 8.0 MPa and 5 cc / min using a liquid pump, and the Cu / Zn precipitate is superfluous at 35 ° C. for 3 hours in this supercritical CO 2 flow. The Cu / Zn precipitate was supercritically dried (35 ° C.-3 h) by contacting with critical CO 2 .

この超臨界乾燥の後、350℃、1時間の条件で焼成(350℃-1h)し、次いで5%H2流通下に220℃、10時間の条件で還元(220℃-10h)して活性化処理を行い、更に表面不動態処理を行い、実施例1に係るメタノール合成用触媒のCu/ZnO触媒を得た。 After this supercritical drying, it is fired under conditions of 350 ° C. for 1 hour (350 ° C.-1 h), and then reduced (220 ° C.-10 h) under conditions of 220 ° C. and 10 hours under 5% H 2 flow. Then, a surface passivation treatment was performed to obtain a Cu / ZnO catalyst for methanol synthesis according to Example 1.

このようにして調製された実施例1のCu/ZnO触媒をメタノール合成用触媒として用い、以下のメタノール合成反応を実施した。
すなわち、内容積85mlのオートクレーブにアルコール溶媒として水1質量%を含む2-ブタノール40mlと上記実施例1のCu/ZnO触媒1gとを仕込み、更に原料ガスとして合成ガス(CO:33.00vol%、CO2:5.27vol%、Ar:3.09vol%、H2:バランス)を5MPaとなるように充填し、170℃、20時間の条件で連続反応を行い、反応生成物をガスクロマトグラフで分析した。結果は、CO転化率51.9%、CO2転化率12.4%、TotalC転化率46.4%、ギ酸メチル選択率1.6%、ギ酸ブチル選択率1.8%、及びメタノール選択率96.6%であった。
The following methanol synthesis reaction was carried out using the Cu / ZnO catalyst of Example 1 thus prepared as a catalyst for methanol synthesis.
That is, an autoclave having an internal volume of 85 ml was charged with 40 ml of 2-butanol containing 1% by mass of water as an alcohol solvent and 1 g of the Cu / ZnO catalyst of Example 1 above, and further a synthesis gas (CO: 33.00 vol%, CO2) as a raw material gas. 2 : 5.27 vol%, Ar: 3.09 vol%, H 2 : balance) was filled to 5 MPa, and a continuous reaction was performed at 170 ° C. for 20 hours, and the reaction products were analyzed by gas chromatography. The results are as follows: CO conversion 51.9%, CO 2 conversion 12.4%, Total C conversion 46.4%, methyl formate selectivity 1.6%, butyl formate selectivity 1.8%, and methanol selectivity It was 96.6%.

[実施例2]
実施例1に記載の触媒の製造方法において、超臨界CO2送液ポンプの圧力を7.5MPaに設定した以外は、実施例1と同様にして、実施例2のCu/ZnO触媒を調製した。また、この実施例2のCu/ZnO触媒をメタノール合成用触媒として使用した以外は、実施例1に記載と同様の方法でメタノール合成反応を行った。結果は、CO転化率48.2%、CO2転化率8.2%、TotalC転化率42.7%、ギ酸メチル選択率0.2%、ギ酸ブチル選択率1.2%、及びメタノール選択率98.6%であった。
[Example 2]
In the catalyst production method described in Example 1, the Cu / ZnO catalyst of Example 2 was prepared in the same manner as in Example 1 except that the pressure of the supercritical CO 2 liquid feed pump was set to 7.5 MPa. . Further, a methanol synthesis reaction was performed in the same manner as described in Example 1 except that the Cu / ZnO catalyst of Example 2 was used as a catalyst for methanol synthesis. The results are as follows: CO conversion 48.2%, CO 2 conversion 8.2%, Total C conversion 42.7%, methyl formate selectivity 0.2%, butyl formate selectivity 1.2%, and methanol selectivity It was 98.6%.

[実施例3]
実施例1に記載の触媒の製造方法において、減圧乾燥を実施することなく、35℃、1時間の条件でCu/Zn沈殿物を超臨界CO2と接触させ、超臨界乾燥(35℃-1h)を実施して実施例3のCu/ZnO触媒を調製した。また、この実施例3のCu/ZnO触媒をメタノール合成用触媒として使用した以外は、実施例1に記載と同様の方法でメタノール合成反応を行った。結果は、CO転化率42.8%、CO2転化率2.5%、TotalC転化率37.1%、ギ酸メチル選択率1.2%、ギ酸ブチル選択率2.8%、及びメタノール選択率96.0%であった。
[Example 3]
In the method for producing the catalyst described in Example 1, the Cu / Zn precipitate was brought into contact with supercritical CO 2 under the conditions of 35 ° C. and 1 hour without carrying out vacuum drying, and supercritical drying (35 ° C.-1 h ) To prepare the Cu / ZnO catalyst of Example 3. In addition, a methanol synthesis reaction was performed in the same manner as described in Example 1 except that the Cu / ZnO catalyst of Example 3 was used as a catalyst for methanol synthesis. The results are as follows: CO conversion 42.8%, CO 2 conversion 2.5%, Total C conversion 37.1%, methyl formate selectivity 1.2%, butyl formate selectivity 2.8%, and methanol selectivity It was 96.0%.

[実施例4]
実施例1に記載の触媒の製造方法において、減圧乾燥を実施することなく、35℃、3時間の条件でCu/Zn沈殿物を超臨界CO2と接触させ、超臨界乾燥(35℃-3h)を実施して実施例4のCu/ZnO触媒を調製した。また、この実施例4のCu/ZnO触媒をメタノール合成用触媒として使用した以外は、実施例1に記載と同様の方法でメタノール合成反応を行った。結果は、CO転化率47.3%、CO2転化率−4.7%、TotalC転化率40.2%、ギ酸メチル選択率0.5%、ギ酸ブチル選択率3.0%、及びメタノール選択率96.6%であった。
[Example 4]
In the method for producing the catalyst described in Example 1, the Cu / Zn precipitate was brought into contact with supercritical CO 2 under the conditions of 35 ° C. for 3 hours without performing vacuum drying, and supercritical drying (35 ° C.−3 h ) To prepare the Cu / ZnO catalyst of Example 4. Further, a methanol synthesis reaction was carried out in the same manner as described in Example 1, except that the Cu / ZnO catalyst of Example 4 was used as a catalyst for methanol synthesis. Results, CO conversion was 47.3% CO 2 conversion was -4.7% TotalC conversion 40.2%, methyl formate selectivity of 0.5%, butyl formate selectivity of 3.0%, and methanol selectivity The rate was 96.6%.

[実施例5]
実施例1に記載の触媒の製造方法において、減圧乾燥を実施することなく、35℃、5時間の条件でCu/Zn沈殿物を超臨界CO2と接触させ、超臨界乾燥(35℃-5h)を実施して実施例5のCu/ZnO触媒を調製した。また、この実施例5のCu/ZnO触媒をメタノール合成用触媒として使用した以外は、実施例1に記載と同様の方法でメタノール合成反応を行った。結果は、CO転化率45.9%、CO2転化率−3.6%、TotalC転化率39.2%、ギ酸メチル選択率1.7%、ギ酸ブチル選択率2.7%、及びメタノール選択率95.6%であった。
[Example 5]
In the method for producing the catalyst described in Example 1, the Cu / Zn precipitate was brought into contact with supercritical CO 2 under the conditions of 35 ° C. and 5 hours without carrying out vacuum drying, and supercritical drying (35 ° C.-5 h ) To prepare the Cu / ZnO catalyst of Example 5. Further, a methanol synthesis reaction was performed in the same manner as described in Example 1 except that the Cu / ZnO catalyst of Example 5 was used as a catalyst for methanol synthesis. The results are as follows: CO conversion 45.9%, CO 2 conversion -3.6%, Total C conversion 39.2%, methyl formate selectivity 1.7%, butyl formate selectivity 2.7%, and methanol selection The rate was 95.6%.

[実施例6]
実施例1に記載の触媒の製造方法において、減圧乾燥を実施することなく、50℃、3時間の条件でCu/Zn沈殿物を超臨界CO2と接触させ、超臨界乾燥(50℃-3h)を実施して実施例6のCu/ZnO触媒を調製した。また、この実施例6のCu/ZnO触媒をメタノール合成用触媒として使用した以外は、実施例1に記載と同様の方法でメタノール合成反応を行った。結果は、CO転化率43.3%、CO2転化率1.4%、TotalC転化率37.4%、ギ酸メチル選択率2.2%、ギ酸ブチル選択率3.0%、及びメタノール選択率94.9%であった。
[Example 6]
In the method for producing the catalyst described in Example 1, the Cu / Zn precipitate was brought into contact with supercritical CO 2 under the conditions of 50 ° C. and 3 hours without carrying out vacuum drying, and supercritical drying (50 ° C.−3 h ) To prepare the Cu / ZnO catalyst of Example 6. Further, a methanol synthesis reaction was performed in the same manner as described in Example 1 except that the Cu / ZnO catalyst of Example 6 was used as a catalyst for methanol synthesis. The results are as follows: CO conversion 43.3%, CO 2 conversion 1.4%, Total C conversion 37.4%, methyl formate selectivity 2.2%, butyl formate selectivity 3.0%, and methanol selectivity It was 94.9%.

[実施例7]
実施例1に記載の触媒の製造方法において、減圧乾燥を実施することなく、70℃、3時間の条件でCu/Zn沈殿物を超臨界CO2と接触させ、超臨界乾燥(70℃-3h)を実施して実施例7のCu/ZnO触媒を調製した。また、この実施例7のCu/ZnO触媒をメタノール合成用触媒として使用した以外は、実施例1に記載と同様の方法でメタノール合成反応を行った。結果は、CO転化率42.9%、CO2転化率0.2%、TotalC転化率36.9%、ギ酸メチル選択率2.0%、ギ酸ブチル選択率2.7%、及びメタノール選択率95.3%であった。
[Example 7]
In the method for producing the catalyst described in Example 1, the Cu / Zn precipitate was brought into contact with supercritical CO 2 under conditions of 70 ° C. for 3 hours without carrying out vacuum drying, and supercritical drying (70 ° C.−3 h ) To prepare a Cu / ZnO catalyst of Example 7. In addition, a methanol synthesis reaction was performed in the same manner as described in Example 1 except that the Cu / ZnO catalyst of Example 7 was used as a catalyst for methanol synthesis. The results are as follows: CO conversion 42.9%, CO 2 conversion 0.2%, TotalC conversion 36.9%, methyl formate selectivity 2.0%, butyl formate selectivity 2.7%, and methanol selectivity It was 95.3%.

[実施例8]
実施例1に記載の触媒の製造方法において、減圧乾燥を実施することなく、90℃、3時間の条件でCu/Zn沈殿物を超臨界CO2と接触させ、超臨界乾燥(90℃-3h)を実施して実施例8のCu/ZnO触媒を調製した。また、この実施例8のCu/ZnO触媒をメタノール合成用触媒として使用した以外は、実施例1に記載と同様の方法でメタノール合成反応を行った。結果は、CO転化率43.1%、CO2転化率−4.3%、TotalC転化率36.4%、ギ酸メチル選択率3.5%、ギ酸ブチル選択率1.8%、及びメタノール選択率94.7%であった。
[Example 8]
In the method for producing the catalyst described in Example 1, the Cu / Zn precipitate was brought into contact with supercritical CO 2 at 90 ° C. for 3 hours without performing vacuum drying, and supercritical drying (90 ° C.−3 h ) To prepare the Cu / ZnO catalyst of Example 8. In addition, a methanol synthesis reaction was performed in the same manner as described in Example 1 except that the Cu / ZnO catalyst of Example 8 was used as a catalyst for methanol synthesis. The results are as follows: CO conversion 43.1%, CO 2 conversion -4.3%, Total C conversion 36.4%, methyl formate selectivity 3.5%, butyl formate selectivity 1.8%, and methanol selection The rate was 94.7%.

[実施例9]
アルコール溶媒としてエタノールを用いた以外は、実施例1のメタノール合成用触媒を用い、実施例1に記載と同様の方法でメタノール合成反応を行った。結果は、CO転化率49.5%、CO2転化率11.4%、TotalC転化率44.3%、ギ酸メチル選択率4.5%、ギ酸エチル選択率1.5%、及びメタノール選択率94.0%であった。
[Example 9]
A methanol synthesis reaction was carried out in the same manner as described in Example 1 using the methanol synthesis catalyst of Example 1 except that ethanol was used as the alcohol solvent. The results are: CO conversion 49.5%, CO 2 conversion 11.4%, Total C conversion 44.3%, methyl formate selectivity 4.5%, ethyl formate selectivity 1.5%, and methanol selectivity It was 94.0%.

[実施例10]
実施例1に記載の触媒の製造方法において、Znの硝酸塩に代えてMgの硝酸塩を用いた以外は、実施例1と同様にして実施例10のメタノール合成用触媒としてCu/MgO触媒を調製した。
[Example 10]
A Cu / MgO catalyst was prepared as a methanol synthesis catalyst of Example 10 in the same manner as in Example 1 except that Mg nitrate was used instead of Zn nitrate in the method for producing the catalyst described in Example 1. .

このようにして調製した実施例10のCu/MgO触媒をメタノール合成用触媒として使用し、アルコール溶媒としてエタノール40mlを使用した以外は、実施例1に記載と同様の方法でメタノール合成反応を行った。結果は、CO転化率33.7%、CO2転化率19.8%、TotalC転化率31.8%、ギ酸メチル選択率1.5%、ギ酸エチル選択率47.8%、及びメタノール選択率50.7%であった。 The methanol synthesis reaction was carried out in the same manner as described in Example 1 except that the Cu / MgO catalyst of Example 10 prepared in this way was used as a catalyst for methanol synthesis and 40 ml of ethanol was used as the alcohol solvent. . The results are as follows: CO conversion 33.7%, CO 2 conversion 19.8%, Total C conversion 31.8%, methyl formate selectivity 1.5%, ethyl formate selectivity 47.8%, and methanol selectivity It was 50.7%.

[実施例11]
実施例1に記載の触媒の製造方法において、沈殿物生成場(反応系)のpH値を7.0に保持してCu/Znの沈殿物を調製した以外は、実施例1と同様にしてCu/ZnO触媒を調製し、また、実施例1と同様にしてメタノール合成反応を行った。結果は、CO転化率34.8%、CO2転化率7.6%、TotalC転化率31.1%、ギ酸メチル選択率2.5%、ギ酸ブチル選択率3.1%、及びメタノール選択率94.4%であった。
[Example 11]
In the method for producing the catalyst described in Example 1, the same procedure as in Example 1 was conducted, except that a precipitate of Cu / Zn was prepared by maintaining the pH value of the precipitate generation field (reaction system) at 7.0. A Cu / ZnO catalyst was prepared, and methanol synthesis reaction was performed in the same manner as in Example 1. The results are as follows: CO conversion 34.8%, CO 2 conversion 7.6%, Total C conversion 31.1%, methyl formate selectivity 2.5%, butyl formate selectivity 3.1%, and methanol selectivity It was 94.4%.

[実施例12]
実施例1に記載の触媒の製造方法において、沈殿物生成場(反応系)のpH値を7.8に保持してCu/Znの沈殿物を調製した以外は、実施例1と同様にしてCu/ZnO触媒を調製し、また、実施例1と同様にしてメタノール合成反応を行った。結果は、CO転化率48.7%、CO2転化率10.6%、TotalC転化率43.5%、ギ酸メチル選択率1.5%、ギ酸ブチル選択率2.1%、及びメタノール選択率96.4%であった。
[Example 12]
In the method for producing the catalyst described in Example 1, the same procedure as in Example 1 was conducted, except that a precipitate of Cu / Zn was prepared by maintaining the pH value of the precipitate generation field (reaction system) at 7.8. A Cu / ZnO catalyst was prepared, and methanol synthesis reaction was performed in the same manner as in Example 1. The results are as follows: CO conversion 48.7%, CO 2 conversion 10.6%, Total C conversion 43.5%, methyl formate selectivity 1.5%, butyl formate selectivity 2.1%, and methanol selectivity It was 96.4%.

[実施例13]
実施例1に記載の触媒の製造方法において、沈殿物生成場(反応系)のpH値を9.5に保持してCu/Znの沈殿物を調製した以外は、実施例1と同様にしてCu/ZnO触媒を調製し、また、実施例1と同様にしてメタノール合成反応を行った。結果は、CO転化率47.1%、CO2転化率11.2%、TotalC転化率42.2%、ギ酸メチル選択率2.1%、ギ酸ブチル選択率2.5%、及びメタノール選択率95.4%であった。
[Example 13]
In the method for producing the catalyst described in Example 1, the same procedure as in Example 1 was conducted, except that a precipitate of Cu / Zn was prepared by maintaining the pH value of the precipitate generation field (reaction system) at 9.5. A Cu / ZnO catalyst was prepared, and methanol synthesis reaction was performed in the same manner as in Example 1. The results are: CO conversion 47.1%, CO 2 conversion 11.2%, Total C conversion 42.2%, methyl formate selectivity 2.1%, butyl formate selectivity 2.5%, and methanol selectivity It was 95.4%.

[実施例14]
実施例1に記載の触媒の製造方法において、沈殿物生成場(反応系)のpH値を10.7に保持してCu/Znの沈殿物を調製した以外は、実施例1と同様にしてCu/ZnO触媒を調製し、また、実施例1と同様にしてメタノール合成反応を行った。結果は、CO転化率41.5%、CO2転化率10.2%、TotalC転化率37.2%、ギ酸メチル選択率1.9%、ギ酸ブチル選択率2.3%、及びメタノール選択率95.8%であった。
[Example 14]
In the method for producing a catalyst described in Example 1, the same procedure as in Example 1 was conducted, except that a precipitate of Cu / Zn was prepared while maintaining the pH value of the precipitate generation field (reaction system) at 10.7. A Cu / ZnO catalyst was prepared, and methanol synthesis reaction was performed in the same manner as in Example 1. The results are: CO conversion 41.5%, CO 2 conversion 10.2%, Total C conversion 37.2%, methyl formate selectivity 1.9%, butyl formate selectivity 2.3%, and methanol selectivity It was 95.8%.

[比較例1]
実施例1に記載の触媒の製造方法において、減圧乾燥(35℃-3h)を実施した後、超臨界乾燥(35℃-3h)を行うことなく、更に120℃、10時間の条件で乾燥(120℃-10h)を実施した以外は、実施例1と同様にして比較例1のCu/ZnO触媒を調製し、また、実施例1に記載と同様の方法でメタノール合成反応を行った。結果は、CO転化率41.4%、CO2転化率−0.5%、TotalC転化率36.1%、ギ酸メチル選択率1.5%、ギ酸ブチル選択率1.8%、及びメタノール選択率96.7%であった。
[Comparative Example 1]
In the method for producing the catalyst described in Example 1, after drying under reduced pressure (35 ° C.-3 h), drying was further performed at 120 ° C. for 10 hours without performing supercritical drying (35 ° C.-3 h) ( A Cu / ZnO catalyst of Comparative Example 1 was prepared in the same manner as in Example 1 except that 120 ° C.-10 h) was carried out, and a methanol synthesis reaction was performed in the same manner as described in Example 1. The results were as follows: CO conversion 41.4%, CO 2 conversion -0.5%, Total C conversion 36.1%, methyl formate selectivity 1.5%, butyl formate selectivity 1.8%, and methanol selection The rate was 96.7%.

[比較例2]
実施例1に記載の触媒の製造方法において、減圧乾燥(35℃-3h)と超臨界乾燥(35℃-3h)を実施することなく、120℃、10時間の条件で乾燥(120℃-10h)を実施した以外は、実施例1と同様にして比較例2のCu/ZnO触媒を調製し、また、実施例1に記載と同様の方法でメタノール合成反応を行った。結果は、CO転化率40.8%、CO2転化率−1.2%、TotalC転化率35.1%、ギ酸メチル選択率1.8%、ギ酸ブチル選択率1.9%、及びメタノール選択率96.3%であった。
[Comparative Example 2]
In the method for producing the catalyst described in Example 1, the drying (120 ° C.-10 h) was performed at 120 ° C. for 10 hours without performing reduced pressure drying (35 ° C.-3 h) and supercritical drying (35 ° C.-3 h). The Cu / ZnO catalyst of Comparative Example 2 was prepared in the same manner as in Example 1, except that the methanol synthesis reaction was performed in the same manner as described in Example 1. The results are as follows: CO conversion 40.8%, CO 2 conversion -1.2%, Total C conversion 35.1%, methyl formate selectivity 1.8%, butyl formate selectivity 1.9%, and methanol selection The rate was 96.3%.

[比較例3]
Cuの硝酸塩〔Cu(NO3)2・3H2O〕とMgの硝酸塩〔Mg(NO3)2・6H2O〕とをこれらCuとMgとがモル比としてCu:Zn=1:1となるように溶解した前駆体物質水溶液と、Na2CO3を溶解した沈殿剤水溶液と、これらの水溶液が滴下されて沈殿物生成場となるイオン交換水とを用意し、沈殿を得た後に、乾燥、焼成、還元して比較例3に係るメタノール合成用触媒のCu/MgO触媒(特許文献2に記載の触媒に相当)を得た。
[Comparative Example 3]
Cu nitrate [Cu (NO 3 ) 2 · 3H 2 O] and Mg nitrate [Mg (NO 3 ) 2 · 6H 2 O] are converted to Cu: Zn = 1: 1 as the molar ratio of Cu and Mg. Prepared precursor aqueous solution, Na 2 CO 3 dissolved precipitant aqueous solution, and ion-exchanged water in which these aqueous solutions are dropped to form a precipitate generation site, and after obtaining the precipitate, The Cu / MgO catalyst (corresponding to the catalyst described in Patent Document 2), which is a catalyst for methanol synthesis according to Comparative Example 3, was obtained by drying, calcination and reduction.

このようにして調製された比較例3のCu/MgOx触媒をメタノール合成用触媒として用い、以下のメタノール合成反応を実施した。
すなわち、内容積100mlの半回分式の反応器(オートクレーブ)にアルコール溶媒として水1質量%を含むエタノール20mlと上記比較例3のCu/MgOx触媒[(特許文献2記載の触媒に相当)]1gとを仕込み、更に原料ガスとして合成ガス(CO:32.6vol%、CO2:5.2vol%、H2:59.2vol%、Ar:3.0vol%)を供給し、170℃、3MPaの条件で連続反応(170℃-3MPa)を行った。20時間が経過したところで転化率は安定し、結果は、CO転化率25.5%、CO2転化率16.9%、TotalC転化率24.3%、ギ酸エチル選択率53.4%、メタノール選択率46.6%、及びメタノール収率11.3%であった。
Using the thus prepared Cu / MgOx catalyst of Comparative Example 3 as a catalyst for methanol synthesis, the following methanol synthesis reaction was carried out.
That is, in a semi-batch reactor (autoclave) having an internal volume of 100 ml, 20 ml of ethanol containing 1% by mass of water as an alcohol solvent and the Cu / MgOx catalyst of Comparative Example 3 above (corresponding to the catalyst described in Patent Document 2) 1 g DOO charged, further raw material gas as synthesis gas (CO: 32.6vol%, CO 2 : 5.2vol%, H 2: 59.2vol%, Ar: 3.0vol%) supplies, 170 ° C., a continuous reaction under the conditions of 3MPa (170 ° C.-3 MPa). After 20 hours, the conversion rate was stable. The results were as follows: CO conversion rate 25.5%, CO 2 conversion rate 16.9%, Total C conversion rate 24.3%, ethyl formate selectivity 53.4%, methanol The selectivity was 46.6% and the methanol yield was 11.3%.

[比較例4]
Cuの硝酸塩とZnの硝酸塩とをこれらCuとZnとがモル比としてCu:Zn=1:1となるように溶解した前駆体物質水溶液と、炭酸ナトリウムを溶解した沈殿剤水溶液と、これらの水溶液が滴下されて沈殿物生成場となるイオン交換水とを用意した。
[Comparative Example 4]
Precursor aqueous solution in which Cu nitrate and Zn nitrate are dissolved so that Cu: Zn has a molar ratio of Cu: Zn = 1: 1, precipitant aqueous solution in which sodium carbonate is dissolved, and these aqueous solutions Was added dropwise and ion-exchanged water to be a precipitate generation field.

沈殿物生成場となるイオン交換水に対して10wt%の濃度となるようにポリエチレングリコール(モル数でCuの5.8倍)を添加し、攪拌下に上記前駆体物質水溶液と沈殿剤水溶液とをその滴下速度を制御しながら、pH=8.5に保持してCu/Znの沈殿物を生成させ、24時間熟成した後にろ過し、得られた沈殿物をイオン交換水で洗浄し、次いで乾燥(空気中120℃-10h)し、焼成(空気中450℃-2h)し、水素還元(水素気流中200℃-2h)し、表面不動態化処理を行って、比較例4のCu/ZnO触媒(特許文献3記載の触媒に相当)を調製した。   Polyethylene glycol (mole number 5.8 times that of Cu) is added to the ion-exchanged water that forms the precipitate generation field, and the above precursor material aqueous solution and precipitant aqueous solution are added under stirring. While controlling the dropping rate, the pH was maintained at 8.5 to form a Cu / Zn precipitate, and after aging for 24 hours, filtration was performed. The obtained precipitate was washed with ion-exchanged water, and then dried ( Cu / ZnO catalyst of Comparative Example 4 after baking in air (450 ° C-2h in air), hydrogen reduction (200 ° C-2h in hydrogen stream), surface passivation treatment (Corresponding to the catalyst described in Patent Document 3) was prepared.

このようにして調製された比較例4のCu/ZnO触媒をメタノール合成用触媒として用い、以下のメタノール合成反応を実施した。
すなわち、内容積85mlのオートクレーブにアルコール溶媒として2-ブタノール40mlと上記比較例4のCu/ZnO触媒1gとを仕込み、更に原料ガスとして合成ガス(CO:34.90vol%、二酸化炭素:5.20vol%、Ar:3.09vol%、水素:バランス)を5MPaとなるように充填し、170℃、20時間の条件で連続反応を行い、反応生成物をガスクロマトグラフで分析した。結果は、CO転化率40.1%、CO2転化率−2.4%、TotalC転化率34.6%、ギ酸メチル選択率0.3%、ギ酸ブチル選択率0.2%、及びメタノール選択率99.5%であった。
Using the Cu / ZnO catalyst of Comparative Example 4 thus prepared as a catalyst for methanol synthesis, the following methanol synthesis reaction was carried out.
That is, an autoclave having an internal volume of 85 ml was charged with 40 ml of 2-butanol as an alcohol solvent and 1 g of the Cu / ZnO catalyst of Comparative Example 4 above, and further, synthesis gas (CO: 34.90 vol%, carbon dioxide: 5.20 vol%, (Ar: 3.09 vol%, hydrogen: balance) was charged to 5 MPa, a continuous reaction was performed at 170 ° C. for 20 hours, and the reaction product was analyzed by gas chromatography. The results are as follows: CO conversion 40.1%, CO 2 conversion -2.4%, Total C conversion 34.6%, methyl formate selectivity 0.3%, butyl formate selectivity 0.2%, and methanol selection The rate was 99.5%.

以上の実施例1〜14及び比較例1〜4における操作の特徴とCO転化率、CO2転化率、及びTotalC転化率の結果を、それぞれ表1(実施例1〜14)及び表2(比較例1〜4)に示す。 Table 1 (Examples 1 to 14) and Table 2 (Comparison) show the characteristics of the operations and the results of the CO conversion, CO 2 conversion, and Total C conversion in Examples 1 to 14 and Comparative Examples 1 to 4, respectively. Examples 1-4).

Figure 2011104458
Figure 2011104458

Figure 2011104458
Figure 2011104458

上記の表1及び表2に示す実施例1〜14及び比較例1〜4の結果から明らかなように、Cu/ZnO触媒の製造において超臨界乾燥を実施することでメタノール製造効率が増加することが明らかとなった。すなわち、二酸化炭素や水による失活を抑制可能なCu系触媒において、同じ触媒成分であれば、本発明の超臨界乾燥を行うことにより、転化率を向上できる活性の高い触媒を製造することが可能となることが明らかとなった。   As is clear from the results of Examples 1 to 14 and Comparative Examples 1 to 4 shown in Tables 1 and 2 above, methanol production efficiency is increased by performing supercritical drying in the production of Cu / ZnO catalysts. Became clear. That is, in a Cu-based catalyst capable of suppressing deactivation due to carbon dioxide or water, if the catalyst component is the same, a highly active catalyst capable of improving the conversion can be produced by performing the supercritical drying of the present invention. It became clear that it was possible.

図1は、本発明の液相メタノール合成反応を実施する反応装置の一例を説明するためのフローチャートである。FIG. 1 is a flowchart for explaining an example of a reaction apparatus for carrying out the liquid phase methanol synthesis reaction of the present invention.

1…合成ガス、2…半回分式の反応器、3…反応混合物〔生成物(ギ酸エステル、メタノール)と未反応ガス〕、4…冷却器、5…未反応ガス、6…液体混合物(ギ酸エステル及びアルコール)、7…蒸留塔、8…ギ酸エステル、9…メタノール。   DESCRIPTION OF SYMBOLS 1 ... Syngas, 2 ... Semi-batch type reactor, 3 ... Reaction mixture [Product (formic ester, methanol) and unreacted gas), 4 ... Cooler, 5 ... Unreacted gas, 6 ... Liquid mixture (Formic acid Esters and alcohols), 7 ... distillation tower, 8 ... formic acid ester, 9 ... methanol.

Claims (8)

アルコール溶媒の存在下に一酸化炭素と水素を含む原料ガスからギ酸エステルを経由してメタノールを合成する液相メタノール合成反応に用いられるメタノール合成用触媒の製造方法において、銅(Cu)系触媒成分及び第二触媒成分の前駆体物質の水溶液から共沈法で得られた沈殿物を乾燥する際に、当該沈殿物を超臨界流体と接触させることを特徴とするメタノール合成用触媒の製造方法。   In a method for producing a catalyst for methanol synthesis used in a liquid phase methanol synthesis reaction in which methanol is synthesized from a source gas containing carbon monoxide and hydrogen in the presence of an alcohol solvent via a formate, a copper (Cu) catalyst component And a method for producing a catalyst for methanol synthesis, comprising drying a precipitate obtained by coprecipitation from an aqueous solution of a precursor material of the second catalyst component, and bringing the precipitate into contact with a supercritical fluid. 第二触媒成分が、亜鉛(Zn)系、マグネシウム(Mg)系の少なくともいずれかの触媒成分であることを特徴とする請求項1に記載のメタノール合成用触媒の製造方法。   The method for producing a catalyst for methanol synthesis according to claim 1, wherein the second catalyst component is at least one of zinc (Zn) -based and magnesium (Mg) -based catalyst components. 第二触媒成分が亜鉛(Zn)系触媒成分であることを特徴とする請求項2に記載のメタノール合成用触媒の製造方法。   The method for producing a catalyst for methanol synthesis according to claim 2, wherein the second catalyst component is a zinc (Zn) -based catalyst component. 超臨界流体が超臨界二酸化炭素であることを特徴とする請求項1〜3のいずれかに記載のメタノール合成用触媒の製造方法。   The method for producing a catalyst for methanol synthesis according to any one of claims 1 to 3, wherein the supercritical fluid is supercritical carbon dioxide. 銅系触媒成分及び第二触媒成分の前駆体物質の水溶液から共沈法により沈殿物を共沈させる際に、沈殿物生成場となる溶液のpH値を7.5〜10.5の範囲内で一定の値に維持することを特徴とする請求項1〜4のいずれかに記載のメタノール合成用触媒の製造方法。   When the precipitate is co-precipitated from the aqueous solution of the precursor material of the copper-based catalyst component and the second catalyst component by the co-precipitation method, the pH value of the solution serving as the precipitate generation field is within the range of 7.5 to 10.5. The method for producing a catalyst for methanol synthesis according to any one of claims 1 to 4, wherein the catalyst is maintained at a constant value. アルコール溶媒の存在下に一酸化炭素と水素を含む原料ガスからメタノールを合成する液相メタノール合成反応によりメタノールを製造するに際し、触媒として請求項1〜5のいずれかに記載の方法で製造されたメタノール合成用触媒を用いることを特徴とするメタノールの製造方法。   When methanol is produced by a liquid phase methanol synthesis reaction in which methanol is synthesized from a raw material gas containing carbon monoxide and hydrogen in the presence of an alcohol solvent, the catalyst is produced by the method according to any one of claims 1 to 5. A method for producing methanol, comprising using a catalyst for methanol synthesis. 原料ガス中に二酸化炭素、及び/又は水蒸気の少なくともいずれかが含まれていることを特徴とする請求項6に記載のメタノールの製造方法。   The method for producing methanol according to claim 6, wherein the raw material gas contains at least one of carbon dioxide and / or water vapor. アルコール溶媒が、第1級アルコール又は第2級アルコールであると共に、1価アルコールであることを特徴とする請求項6又は7に記載のメタノールの製造方法。   The method for producing methanol according to claim 6 or 7, wherein the alcohol solvent is a primary alcohol or a secondary alcohol and is a monohydric alcohol.
JP2009259232A 2009-11-12 2009-11-12 Methanol synthesis catalyst production method and methanol production method Expired - Fee Related JP5464339B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009259232A JP5464339B2 (en) 2009-11-12 2009-11-12 Methanol synthesis catalyst production method and methanol production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009259232A JP5464339B2 (en) 2009-11-12 2009-11-12 Methanol synthesis catalyst production method and methanol production method

Publications (2)

Publication Number Publication Date
JP2011104458A true JP2011104458A (en) 2011-06-02
JP5464339B2 JP5464339B2 (en) 2014-04-09

Family

ID=44228592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009259232A Expired - Fee Related JP5464339B2 (en) 2009-11-12 2009-11-12 Methanol synthesis catalyst production method and methanol production method

Country Status (1)

Country Link
JP (1) JP5464339B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114160209A (en) * 2021-12-16 2022-03-11 中国船舶重工集团公司第七一九研究所 For CO2Preparation method of Cu-Zn/MOF catalyst for catalytic hydrogenation
CN114192149A (en) * 2021-12-29 2022-03-18 上海方民科技有限公司 Catalyst for preparing methanol by carbon dioxide hydrogenation and preparation method thereof
CN114192149B (en) * 2021-12-29 2024-05-10 上海方民科技有限公司 Catalyst for preparing methanol by carbon dioxide hydrogenation and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0523595A (en) * 1991-07-23 1993-02-02 Colloid Res:Kk Nitrogen oxide decomposing catalyst and prodction thereof
JP2005126427A (en) * 2003-09-30 2005-05-19 Nippon Steel Corp Method for producing formic acid ester and methanol
JP2007245139A (en) * 2006-02-17 2007-09-27 Nippon Steel Corp Methanol synthesis catalyst, method for producing such catalyst and method for producing methanol
JP2009214077A (en) * 2008-03-12 2009-09-24 Nippon Steel Corp Manufacturing method of catalyst for methanol synthesis and manufacturing method of methanol

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0523595A (en) * 1991-07-23 1993-02-02 Colloid Res:Kk Nitrogen oxide decomposing catalyst and prodction thereof
JP2005126427A (en) * 2003-09-30 2005-05-19 Nippon Steel Corp Method for producing formic acid ester and methanol
JP2007245139A (en) * 2006-02-17 2007-09-27 Nippon Steel Corp Methanol synthesis catalyst, method for producing such catalyst and method for producing methanol
JP2009214077A (en) * 2008-03-12 2009-09-24 Nippon Steel Corp Manufacturing method of catalyst for methanol synthesis and manufacturing method of methanol

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JPN6013046374; R. A. KOPPEL et al.: 'Copper- and Silver-Zirconia Aerogels: Preparation, Structural Properties and Catalytic Behavior in M' Journal of Catalysis , Vol. 179, Pages 515-527 (1998) *
JPN6013046375; 'Surface active structure of ultra-fine Cu/ZrO2 catalysts used for the CO2 + H2 to methanol reaction' Applied Catalysis A: General , Vol. 218, Pages 113-119 (2001) *
JPN6013046376; 石坂生歩ら: '超臨界相炭酸ガスを用いた固体触媒の調製' 日本エネルギー学会大会講演要旨集 , 20080804, Vol. 17, Pages 60-61 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114160209A (en) * 2021-12-16 2022-03-11 中国船舶重工集团公司第七一九研究所 For CO2Preparation method of Cu-Zn/MOF catalyst for catalytic hydrogenation
CN114192149A (en) * 2021-12-29 2022-03-18 上海方民科技有限公司 Catalyst for preparing methanol by carbon dioxide hydrogenation and preparation method thereof
CN114192149B (en) * 2021-12-29 2024-05-10 上海方民科技有限公司 Catalyst for preparing methanol by carbon dioxide hydrogenation and preparation method thereof

Also Published As

Publication number Publication date
JP5464339B2 (en) 2014-04-09

Similar Documents

Publication Publication Date Title
JP5067996B2 (en) Methanol production method and synthesis catalyst thereof
JP4963112B2 (en) Methanol synthesis catalyst production method and methanol production method
JP2002226414A (en) Method for producing 1,3-alkanediol from 3-hydroxy ester compound
JP5861024B2 (en) Method for producing glycol from polyhydric alcohol
JP5127145B2 (en) Methanol synthesis catalyst, method for producing the catalyst, and method for producing methanol
JP5264084B2 (en) Methanol synthesis catalyst, method for producing the catalyst, and method for producing methanol
JP5464339B2 (en) Methanol synthesis catalyst production method and methanol production method
US8158834B2 (en) Method for producing hydrogenolysis product of polyhydric alcohol
JP5626077B2 (en) Methanol production method and methanol production catalyst
JP5264083B2 (en) Methanol synthesis catalyst, method for producing the catalyst, and method for producing methanol
JP4845530B2 (en) Methanol synthesis catalyst, method for producing the catalyst, and method for producing methanol
JP2005126427A (en) Method for producing formic acid ester and methanol
JP5777043B2 (en) Method for producing methanol
JP2005095872A (en) Catalyst for synthesizing formate and ethanol, and method for producing formate and ethanol
JP5843250B2 (en) Method for producing methanol
KR101823623B1 (en) Catalyst for synthesis of methanol from syngas and preparation method thereof
JP2005246261A (en) Catalyst for synthesizing formate and methanol and method for producing formate and methanol
JP4990125B2 (en) Method for producing formate and methanol, catalyst for producing methanol, and method for producing the catalyst
JP7332871B2 (en) Methanol production method and methanol production catalyst
WO2016091695A1 (en) Process for producing a reductively activated fischer-tropsch synthesis catalyst, and process for producing hydrocarbons using the same
JP2011083724A (en) Catalyst for methanol production and methanol production method
JP2010215543A (en) Method for producing methanol
WO2005030686A1 (en) Method for producing organic compound

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130917

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140107

R150 Certificate of patent or registration of utility model

Ref document number: 5464339

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees