JP2011102709A - 放射電力測定装置、放射電力測定方法 - Google Patents

放射電力測定装置、放射電力測定方法 Download PDF

Info

Publication number
JP2011102709A
JP2011102709A JP2009256788A JP2009256788A JP2011102709A JP 2011102709 A JP2011102709 A JP 2011102709A JP 2009256788 A JP2009256788 A JP 2009256788A JP 2009256788 A JP2009256788 A JP 2009256788A JP 2011102709 A JP2011102709 A JP 2011102709A
Authority
JP
Japan
Prior art keywords
antenna
radio wave
radiation source
distance
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009256788A
Other languages
English (en)
Other versions
JP5644997B2 (ja
Inventor
Yukio Yamanaka
幸雄 山中
Susumu Sugiura
行 杉浦
Hiroji Saito
博治 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Information and Communications Technology
Original Assignee
National Institute of Information and Communications Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Information and Communications Technology filed Critical National Institute of Information and Communications Technology
Priority to JP2009256788A priority Critical patent/JP5644997B2/ja
Publication of JP2011102709A publication Critical patent/JP2011102709A/ja
Application granted granted Critical
Publication of JP5644997B2 publication Critical patent/JP5644997B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

【課題】無線設備の放射電力を高い確度で測定することのできる放射電力測定装置、放射電力測定方法を提供すること。
【解決手段】この放射電力測定装置は、電波を放射する電波放射源の放射電力を測定する放射電力測定装置であって、前記電波放射源の電波の振幅および位相を取得する振幅位相取得部と、前記電波放射源が放射する電波を受信する受信アンテナと、前記電波放射源および前記受信アンテナの少なくとも一方を移動させて前記電波放射源および前記受信アンテナ間の距離を変化させる駆動部と、前記電波放射源および前記受信アンテナの少なくとも一方が所定距離移動する毎に、その距離における前記受信アンテナが受信した前記電波放射源からの電波の受信電圧を測定する測定部と、前記電波放射源の位置における前記電波の振幅および位相と前記測定された受信電圧の積算値に基づいて、前記放射電力値を生成する演算部と、を具備する。
【選択図】図1

Description

本発明は、たとえば携帯電話などの無線設備の放射電力を測定する放射電力測定装置、放射電力測定方法に関する。
一般に、携帯電話などの無線設備の動作試験や検定試験、検査のため、当該無線設備の放射電力を測定することが行われている。従来、放射電力の測定は、6面電波暗室を用意し、当該電波暗室内に測定対象の無線設備と受信アンテナとを所定の距離に離間して配置して、実際に無線設備の放射する電波を当該受信アンテナで受信することで行われる。
しかし、係る無線設備の動作試験や検定試験、検査の度に電波暗室を用意するのは費用がかさむ原因となり、物理的に電波暗室を用意できない環境も多い。そのため、測定コストの低減や測定環境の自由度の観点から、周囲反射波の影響が無視できない比較的狭い空間(20m程度)においても、電波暗室での測定と同等な確度で放射電力を測定可能にする測定装置・測定方法が求められている。
特開2008−064704公報
Yamanaka, A. Sugiura, "Measurement of Effective Radiated Power by Means of In-Phase Synthetic Method," Transactions of the IEICE, Vol. E73, No. 10, pp. 1738-1745, 1990.
このように、従来の放射電力測定装置、放射電力測定方法では、6面電波暗室を必要とするため、費用がかさみ測定の自由度が少ないという問題がある。本発明は係る問題を解決するためになされたもので、電波暗室を用意しなくても無線設備の放射電力を高い確度で測定することのできる放射電力測定装置、放射電力測定方法を提供することを目的としている。
上記目的を達成するため、本発明の一つの態様に係る放射電力測定装置は、電波を放射する電波放射源の放射電力を測定する放射電力測定装置であって、前記電波放射源の電波の振幅および位相を取得する振幅位相取得部と、前記電波放射源が放射する電波を受信する受信アンテナと、前記電波放射源および前記受信アンテナの少なくとも一方を移動させて前記電波放射源および前記受信アンテナ間の距離を変化させる駆動部と、前記電波放射源および前記受信アンテナの少なくとも一方が所定距離移動する毎に、その距離における前記受信アンテナが受信した前記電波放射源からの電波の受信電圧を測定する測定部と、前記電波放射源の位置における前記電波の振幅および位相と前記測定された受信電圧の積算値に基づいて、前記放射電力値を生成する演算部と、を具備している。
本発明によれば、無線設備の放射電力を高い確度で測定することのできる放射電力測定装置、放射電力測定方法を提供することができる。
実施形態に係る放射電力測定装置の構成図である。 送受信アンテナ間の距離と受信電圧の関係を示す図である。 計算機シミュレーションに用いた測定系の様子を示す図である。 送信アンテナを微小ダイポールアンテナとした場合のシミュレーション結果を示す図である。 送信アンテナをダイポール・アレイアンテナとした場合のシミュレーション結果を示す図である。 送信アンテナをダブル・リッジド・ガイド・ホーンアンテナとした場合のシミュレーション結果を示す図である。 他の実施形態に係る放射電力測定装置の構成図である 6面電波暗室内での位相合成特性の測定結果を示す図である。 5面EMC用暗室での位相合成特性の測定結果を示す図である。 一般の会議室内における位相合成特性を測定結果を示す図である。
本発明は、無線設備の放射する電波を所定の距離に離間させた受信アンテナで受信し、当該無線設備の放射電力を、当該無線設備および受信アンテナ間の距離に応じた係数を用いて補償することにより、床や壁などで反射した反射波の影響を低減するものである。以下、図面を参照して本発明の実施形態に係る放射電力測定装置および放射電力測定方法について詳細に説明する。
(実施の形態)図1は、実施形態に係る放射電力測定装置の原理的構成を示す図、図2は、無線設備と受信アンテナの間の距離と受信アンテナにおける受信電圧の関係を示す図である。図1に示すように、この実施形態の放射電力測定装置1は、ベクトル・ネットワーク・アナライザ(VNA)10、位相基準アンテナ20、位相基準アンテナ20および測定対象たる無線装置40が載置されるスタンド21、受信アンテナ30、受信アンテナ30を固定するスタンド31を備えている。
VNA10は、二つの入力を有し該入力に与えられる二つの信号の振幅差および位相差を測定する測定器である。VNA10の二つの入力には、位相基準アンテナ20および受信アンテナ30が、ケーブル11および12を介して接続されている。VNA10は、メモリなどの記憶部とCPUなどの演算部を備えており、複数の測定結果を記憶し所定の演算を行うことができる。
位相基準アンテナ20は、検査対象たる無線装置40が放射する電波を受信し、受信した信号を基準信号としてVNA10に与える。位相基準アンテナ20は、利得や指向性などの特性があらかじめ既知の標準アンテナなどを用いる。また、位相基準アンテナ20は、無線装置40のアンテナ41と平面方向に重なる位置に配置することが好ましい。無線装置40のアンテナ41から受信アンテナ30への水平距離と、位相基準アンテナ20から受信アンテナ30への水平距離とをできるだけ等しくするためである。
受信アンテナ30は、位相基準アンテナ20と同様、利得や指向性などの特性があらかじめ既知のアンテナである。受信アンテナ30は、たとえば、ダブル・リッジド・ガイド・アンテナ(DRGA)のように、所定の方向に鋭い指向性を持つアンテナが望ましい。受信アンテナ30は、スタンド31に固定され、無線装置40のアンテナ41と同一の高さに保持される。
スタンド21は、水平方向の移動を可能にする車輪22、および、当該車輪22を駆動する駆動装置23を備えている。駆動装置23は、図示しない信号線などにより遠隔から制御可能に構成される。すなわち、スタンド21は、遠隔からの制御により水平方向に移動可能に構成されている。尚、スタンド21および31は、グラウンド35上に配置される。
続いて、実施形態に係る放射電力測定装置を用いた測定手順を詳細に説明する。
まず、無線装置40のアンテナ41と受信アンテナ30の受信指向性とが同軸的に一致するように、アンテナ41と受信アンテナ30の距離Rを所定の距離Rに離間させて両者を配置する。このとき、位相基準アンテナ20は、無線装置40のアンテナ41と同様に、受信アンテナ30までの距離がRとなるようにしておく。
次に、距離Rの状態で無線装置40を送信状態にする。アンテナ41から放射された電波は、位相基準アンテナ20および受信アンテナ30により受信され、各アンテナで受信された信号は、ケーブル11および12を介してVNA10に送られる。
VNA10は、位相基準アンテナ20から送られた受信電圧および受信アンテナ30から送られた受信電圧それぞれを、複素電圧値として距離Rと対応付けて記憶し、両受信電圧の振幅および位相を比較する。VNA10は、当該比較結果も併せて距離Rと対応付けて記憶する。
次いで、無線装置40の送信を停止させてから駆動装置23を制御してスタンド21を移動させ、無線装置40のアンテナ41と受信アンテナ30の距離をRとする。距離Rは、距離Rよりも長い方が好ましい。
再び、距離Rの状態で無線装置40を送信状態にする。アンテナ41から放射された電波は、位相基準アンテナ20および受信アンテナ30により受信され、各アンテナで受信された信号は、ケーブル11および12を介してVNA10に送られる。
VNA10は、位相基準アンテナ20から送られた受信電圧および受信アンテナ30から送られた受信電圧それぞれを、複素電圧値として距離Rと対応付けて記憶し、両受信電圧の振幅および位相を比較する。VNA10は、当該比較結果も併せて距離Rと対応付けて記憶する。
以上、無線装置40の送信、VNA10による受信電圧の測定、無線装置40の送信停止と距離の変更、を所定回数繰り返す。最終的に、VNA10は、記憶したデータに基づき、反射波成分を相殺した受信電力を演算して放射電力値を生成する。
なお、この例では、距離Rを変更する度に無線装置40の送信を止めて計測を行っているが、これには限定されない。無線装置40を送信させたまま距離Rを変更し、所定のタイミング(または所定の距離間隔)で測定を行ってもよい。
続いて、VNA10による放射電力値の演算について詳細に説明する。
(位相合成法による反射波相殺の原理と放射電力値の演算)周囲反射波が無視できない一般の環境で、図1のように被試験機器(EUT: Equipment Under Test)である無線装置40の電波を受信アンテナ30で受信すると、受信される電波(Received Waves)は、直接波と多数の周囲反射波の合成となるため、図2の実線aに示すように、受信電圧は、アンテナ41から受信アンテナ30までの距離が長くなるにつれて、不規則に変動しながら減衰していく。もし、測定場の床面や、周囲の壁面等から到来する周囲反射波が存在しなければ、EUTから到来する電波は直接波(Direct Wave)のみとなるので、受信電圧は、図2の実線bに示すように距離に反比例して単調に減衰していくことになる。
EUTから距離Rに離間して配置した受信アンテナ30の複素数表示の受信電圧V(i)は、数式(1)に示すように、直接波によって発生する電圧V(i)と多数の周囲反射波の到来によって発生する電圧V(i)の複素数の和として表すことができる。
Figure 2011102709
数式(1)において、電圧測定器の入力インピーダンスを50Ω、EUTの放射電力をP、直接波に関するEUTおよび受信アンテナ30の利得をそれぞれGおよびGとし、n番目の周囲反射波の伝搬路長をL、この周囲反射波に関するEUTのアンテナ41および受信アンテナ30の利得をそれぞれGtnおよびGrnとすると、
Figure 2011102709
Figure 2011102709
となる。
ここで、EUTの載せたスタンド21を移動して、受信アンテナ30とEUTのアンテナ41の間の距離をRからR+ΔRに増大すると、受信電圧の直接波成分V(i)の振幅は、距離に反比例して減衰し、同じく位相は、距離の増分△Rに対応して位相△θ(=k△R)だけ遅れる。すなわち、受信電圧は、距離の増加に対応した変化をしていく。これに対して、複数の周囲反射波の合成電圧V(i)の振幅と位相は、伝搬経路が直接波と異なるので、距離が△R移動するごとに不規則に変化し、距離の増加に対応した変化をしない。
そこで、受信電圧V(i)の位相を、測定距離Rに対応する位相遅延分kRだけ進めれば、
Figure 2011102709
となる。上記のように、距離が△R変化する毎に受信電圧V(i)を測定し、この電圧にexp(jkR)を乗じて位相補償を施して、それらを加算(合成)すれば、位相合成によって得られる電圧は次式で表される。以下、この位相補償を「位相合成」、当該位相補償の方法を位相合成法と呼ぶ。
Figure 2011102709
この位相合成によって得られる電圧の右辺第1項は、測定点の増加と共に単調に増加する。これに対して第2項は、測定距離に対する周囲反射波の位相変化が不規則で一定でなく、位相補償を行ってもランダムに分布する位相が残ることから、その総和は第1項ほどには増加しない。したがって、測定点の増加と共に、上式の第1項に比べて、第2項の周囲反射波の影響は相対的に低減される。したがって、EUT放射波の測定によって得られる位相合成電圧Vは近似的に次式で表すことができる。ここで、EUTの等価等方輻射電力PeirpはPである。
Figure 2011102709
上式より、受信アンテナ30の利得Gが予め正確に分かっていれば、EUTの等価等方輻射電力を次式で推定することができる。ここで、VはEUTに関する位相合成電圧の実測値である。
Figure 2011102709
なお、受信アンテナの利得Gが予め正確にわかっていない場合や、周囲反射波の影響をできるだけ低減したい場合は、EUTの代わりに、利得が正確にわかっている基準アンテナを送信アンテナとして用い、これに対して位相合成電圧の測定を行い、その結果とEUTの結果を比較して、EUTの等価等方輻射電力を推定することができる。すなわち、利得Gt0の基準アンテナに電力Pt0を給電して、EUTの場合と全く同じ手順で位相合成電圧V0Sを測定すれば、この電圧は近似的に次式で表される。
Figure 2011102709
従って、数式(6)及び数式(8)を比較すれば、求めるべきEUTの等価等方輻射電力は次式から推定できる。
Figure 2011102709
すなわち、右辺のPt0、Gt0、Vs、V0Sは、全て実測可能な値となる。
したがって、図1に示すVNA10は、測定した距離Rにおける受信電圧V(i)を積算してVを算出し、得られたVを数式(7)に適用して演算すると、放射電力値(等価等方輻射電力)を生成することができる。
位相合成法の誤差については、位相合成後に得られる電圧を正確に表せば数式(5)であるため、この式と位相合成法の近似式(6)との相違が、位相合成法によって得られる等価等方輻射電力の誤差の原因となる。すなわち、数式(7)を用いて等価等方輻射電力を推定する場合、分子に含まれるVは次式で与えられるから、
Figure 2011102709
周囲反射波の影響による放射電力の測定誤差は近似的に次式で表される。
Figure 2011102709
但し、実際の測定において、上式の誤差を計算することは不可能であるから、実際には、利得Gが既知のアンテナに電力Pを加えて、これをEUTとして位相合成法によって等価等方輻射電力Peirpを求め、真値Pと比較することによって誤差を推定する。
(位相合成法の計算機シミュレーションと誤差の推定)位相合成法の有効性を確かめるために、計算機によって数値シミュレーションを行った。作成したプログラムは、大別して、受信電仕計算プログラムと位相合成計算プログラムがある。
(1)受信電圧計算プログラム
図3に示すように、直方体の部屋にEUT(アンテナ41を持つ無線装置40)と受信アンテナ30を配置し、受信アンテナ30の位置を固定したままで、EUTを一定距離間隔で移動させ、その各位置において、受信アンテナに到来する直接波および周囲反射波によって誘起するアンテナ出力電圧(複素電圧)を計算する。
EUTおよび受信アンテナの指向性、部屋の大きさ、EUTと受信アンテナの位置などは任意である。天井・床・4壁面の建築材の電気的定数についても任意で、それぞれ異なっていても良いが、各平面で一様であると仮定する。また、受信アンテナの向きは、EUTの初期位置方向とする。
計算機シミュレーションはレイトレース法を用い、周囲反射波の伝搬路はアンテナの鏡像を利用して決定した。なお、以下の計算例では部屋の、寸法を3m(W)×3m(D)×2.5m(H)とした。この場合、壁面位置における2Hzの1st.Fresnel zoneの半径は約50cmになるので、部屋の寸法と比較して無視できない大きさであるが、プログラムでは、各壁面の周縁の電流等の影響は無視し、鏡面反射のみを考慮した。
反射によって生じる反射波の進行方向、振幅、位相、および偏波面の変化は、反射毎に逐次計算した。具体的には、以下のような手順で計算した。
(a)EUT初期位置から受信アンテナの向き(固定)を決定。また、一定間隔で移動するEUT移動方向を決定。
(b)受信アンテナに到達する多数の反射波のうち1波について、EUTからの電波の射出方向、伝搬路長および反射回数を、受信アンテナの鏡像位置から計算。
(c)EUTの放射特性と射出方向から、放射波の振幅および偏波を計算。
(d)放射波の伝搬方向から、放射波が衝突する壁面を探査し、反射点の位置、反射波の複素振幅・偏波、伝搬方向を計算。なお、反射波の振幅・偏波の計算では、Fresnel反射係数を使用。
(e)反射回数だけ、上記(d)の計算を逐次繰り返す。
(f)受信アンテナの出力端子に誘起する複素電圧を、受信アンテナの特性及び到来波の複素振幅、偏波、到来方向から計算。
(g)さらに、他の反射波についても、(b)〜(f)の計算を繰り返し実施する。但し、計算は反射回数の少ない反射波から行い、その変化が許容範囲に収まるまで、反射波を増加する。
(h)EUTの位置を移動して、計算(b)〜(g)の計算を実施。
(2)位相合成プログラム
位相合成の計算手順を以下に示す。
(A)受信(測定用)アンテナのi番目の位置(EUTからの距離R)において得られる複素受信電圧(測定電圧)V(R)に、式(4)に従ってexp(jkR)を乗じて位相補償電圧を計算する。
(B)次に、数式(5)に従って全ての測定点の位相補償電圧を加算して位相合成電圧Vを求める。
(C)一方、利得Gt0の基準アンテナに電力Pt0を給電した仮想的なEUTアンテナについて、受信アンテナのi番目の位置において得られる複素受信電圧V(R)を理論計算する。
(D)この受信電圧V(R)に対して、上記の(A)および(B)の計算を行って位相補償電圧V0Sを計算する。
(E)得られたV、V0S、Gt0、Pt0を数式(9)に代入して、EUTの実効放射電力Peirpの推定値を求める。
(3)EUT放射パターンの影響
異なる放射パターンのアンテナを模擬EUTとみなして、位相合成法による放射電力推定値の誤差がどのように変化するかを、計算機シミュレーションによって検討した。
対象とする模擬EUTアンテナは、微小ダイポールアンテナ(G=1.76dBi)、ダイポール・アレイアンテナ(G=6.35dBi)、ダブル・リッジド・ガイド・ホーンアンテナ(DRGH:G=7.64dBi)とした。計算に用いるEUTは、周波数2GHz、空中線電力1Wとした。
図3は、このシミュレーションで用いた測定系および周囲の条件を示している。測定用の受信アンテナは、DRGHとし、座標位置(2m、1.7m、1.5m)に固定した。受信アンテナの偏波は垂直偏波とした。EUTのアンテナ41は、壁面に対して斜めに移動させ、高さは1.5m、垂直偏波とした。測定空間の大きさは、幅3m、奥行き3m、高さ2.5mの部屋と仮定し、天井・床・壁面の建築材料が繊維強化セメントであるものとした。
図4は、EUTのアンテナ41を微小ダイポールアンテナとした場合のシミュレーション結果、図5は、同じくアンテナ41をダイポール・アレイアンテナとした場合のシミュレーション結果、図6は、同じくアンテナ41をDRGHアンテナとした場合のシミュレーション結果を示している。図4ないし図6において、実線c・f・iは、反射波を含む受信電圧、実線d・g・jは、位相補償により推定される直接波による受信電圧、実線e・h・kは、位相合成結果の放射電力推定値の誤差である。図4ないし図6に示すように、位相合成法により反射波成分が相殺され、放射電力推定値の誤差が極めて小さくなっていることが分かる。また、図4ないし図6に対応して、距離Rを1m〜1.5mの間について、周囲の反射波による受信電圧の変動幅と、位相合成結果の放射電力推定値の誤差を下表に示す。
Figure 2011102709
これらの結果から、放射パターンが広いほど、周囲反射波による受信電圧の場所による変動幅が大きくなること、および、位相合成法の結果である放射電力推定値の誤差は、EUTの放射パターンに余り影響されず、0.1dB程度で得られることが分かる。
また、EUTの放射パターンは無指向に近いと思われるが、例えば微小ダイポールアンテナの場合、受信電圧に含まれる直接波の成分と周囲反射波の成分の比率は、受信電圧の変動幅から求めると、おおよそ1:0.33程度である。−方、位相合成後の放射電力推定値の誤差から、推定値に含まれる直接波成分と周囲反射波成分を電圧比で表すと、おおよそl:0.01である。すなわち、大きさ3m×3m×2.5m程度の狭い測定空間でも、位相合成法を適用することによって、理論上は、周囲反射波の影響を1/33(=−30dB)に低減できることが分かる。
さらに、位相合成波の放射電力の推定値は、直接波のみによって得られる真の放射電力に比べて0.1dB程度の差違しかないから、数式(7)や数式(9)を用いてEUTの放射電力を推定することができることが分かる。
(4)測定用受信アンテナの指向性の影響
図3に示す測定系において、測定用受信アンテナとして、微小ダイポールアンテナとダブルリッジドガイド・ホーンアンテナを用いた場合、位相合成法による放射電力推定値の誤差にどのように影響するかを検討した。なお、模擬EUTは微小ダイポールアンテナとした。計算機シミュレーションの結果を表2に示す。
Figure 2011102709
この結果から、測定用受信アンテナの放射パターンが広いほど、周囲反射波の影響による受信電圧の場所による変動幅が大きいこと、また、位相合成法の結果である放射電力推定値の誤差は、受信アンテナの放射パターンに著しく影響されることが分かる。この結果は、位相合成法の原理からも妥当な結果である。すなわち、本位相合成法では、EUTの位置を移動することによって、測定用受信アンテナの前方から到来する周囲反射波のベクトル和は相対的に0に近づくが、後方からの到来波に対しては効果が無いためである。従って、測定用受信アンテナとして、出来るだけ指向性の鋭いアンテナを用いる方がよいことになる。
(5)その他の計算機シミュレーション結果
上記のほか、EUT移動軸を「どの側壁面とも不平行」になるように選定することがよい結果を生むと考えられる。周囲反射波の位相のずれを散らして反射波成分を相殺しやすくするためである。同様に、EUTや測定用受信アンテナが最も近接する壁面や、反射の強い壁面に垂直な偏波を選ぶこと、測定空間が同一材料で囲われる場合、反射係数の小さい建築材料で囲われた測定空間を利用すること、什器等により、1壁面が金属で覆われる場合、その金属反射面からEUT及び測定用受信アンテナをできるだけ遠ざけることが望ましい。特に、測定用受信アンテナの後方に金属反射面が存在しないことが好適である。さらに、窓などによって、測定空間の1壁面が開放の場合、F/B比20dB程度の測定用受信アンテナであれば、測定用受信アンテナの後方が開放されることが望ましい。
(他の実施形態)位相合成法の有効性を確認するため、ネットワークアナライザ等を使用して基礎的な測定を行った。図7は、実験に用いた他の実施形態に係る放射電力測定装置を示す図である。図7に示す放射電力測定装置2は、EUTたる無線装置40および位相基準アンテナ20に代えてアンテナ141を配置し、VNAにより透過係数S21を測定するように構成したものである。そこで、図1に示す構成と共通する構成については共通の符号を付して示し、重複する説明を省略する。
図7に示すように、この実施形態の放射電力測定装置2は、ベクトル・ネットワーク・アナライザ(VNA)110、送信アンテナ141、送信アンテナ141が載置されるスタンド21、受信アンテナ30、受信アンテナ30を固定するスタンド31、メモリ等の記憶部を備えデータ処理の演算を実行する演算部112、および駆動部114を備えている。
VNA110は、回路網の特性を測定するための高周波信号を生成して当該回路網に与えるとともに当該回路網の出力信号を受け取り、当該特性を測定する測定器である。この実施形態のVNA110の二つの入力には、送信アンテナ141および受信アンテナ30が、ケーブル11および12を介して接続されている。すなわち、VNA110は、ケーブル11を介してアンテナ141に高周波信号を供給するとともに、ケーブル12を介して受信アンテナ30が受信した信号を受け取る。VNA110は、演算部112と接続され、データの授受を行うことができる。
送信アンテナ141は、利得や指向性などの特性が既知のアンテナである。
演算部112は、例えばPCなどのコンピュータであり、データを記憶するメモリやHDDを備えている。演算部112は、VNA110が測定したデータをVNA110から取り込んで自ら記憶する。また、演算部112は、自ら記憶したデータに基づき所定の演算を実行する。併せて、演算部112は、スタンド21の移動指示信号を生成して駆動部114に送る機能をも有している。
駆動部114は、演算部112からの移動指示信号を受けて、駆動装置23を制御する機能を有する。すなわち、駆動部114は、スタンド21に配設されたアンテナ141の移動を制御する。
続いて、この実施形態に係る放射電力測定装置を用いた測定手順を詳細に説明する。
まず、アンテナ141と受信アンテナ30の受信指向性とが同軸的に一致するように、所定の距離Rに離間させて両者を配置する。
次に、演算部112は、VNA110に高周波信号の生成と透過係数S21の測定を指示する。VNA110は、高周波信号を生成してケーブル11を介してアンテナ141に供給する。アンテナ141から放射された電波は、受信アンテナ30により受信され、ケーブル12を介してVNA110に送られる。
VNA110は、自ら生成しアンテナ141に供給した高周波信号および受信アンテナ30から送られた受信電圧に基づき、距離Rにおけるアンテナ141から受信アンテナ30への透過係数S21を測定する。測定したデータは演算部112に送られる。
演算部112は、VNA110から受け取った透過係数S21を距離Rと対応付けて自己の記憶領域に記憶する。
次いで、演算部112は、駆動部114にアンテナ141の移動を指示し、駆動部114は、所定の速度でアンテナ141および受信アンテナ30の距離が大きくなる方向にスタンド21を移動させる。
演算部112は、所定のタイミングでVNA110に透過係数S21の測定指示を出し、VNA110は、測定指示に基づいてその時点の透過係数S21を測定して結果を演算部112に返す。すなわち、VNA110は、所定の距離間隔で透過係数S21を測定することになる。演算部112は、受け取った透過係数S21を対応するアンテナ141および受信アンテナ30の距離Rと対応付けて自己の記憶領域に記憶する。
以上、VNA110による透過係数S21の測定、アンテナ141と受信アンテナ30の距離の変更、をアンテナ141が所定距離に達するまで繰り返す。最終的に、VNA110は、記憶したデータに基づき、反射波成分を相殺した受信電力を演算して放射電力値を生成する。
(実施例)ここで、アンテナ141は、ダイポールアンテナ(G=2.6dBi)を用い、測定用の受信アンテナ30は、ダブル・リッジド・ガイド・ホーンアンテナ(DRGH、G=9.9dBi)とした。駆動部114(EUTポジショナ)によりアンテナ141を10mm/sで連続的に送受信アンテナ間距離を0.5mから1.5mまで移動させながら、5mm間隔(測定ステップ)ごとに、ネットワークアナライザでS21を測定することにより受信波の振幅と位相を求め、位相合成を行った。なお、送信周波数は2.45GHz、送受信アンテナ高さは1mとし、DRGHの放射中心は開口面より80mm内側にあるものと仮定した。
図8は、6面電波暗室内での位相合成特性(受信特性と放射電力推定値の誤差)の測定結果であり、実線lは受信波の受信電圧、実線mは直接波の受信電圧推定値、実線nは放射電力推定値の誤差を示している。これより、受信波の変動は小さく、直接波の推定値によく一致し、放射電力推定値の誤差は0.1dB以内に収束していることがわかる。
図9は、5面EMC用暗室での位相合成特性の測定結果であり、実線oは受信波の受信電圧、実線pは直接波の受信電圧推定値、実線qは放射電力推定値の誤差を示している。直接波の推定値は受信波の平均値とよく一致し、放射電力推定値の誤差は0.1dB以内に収束した。
同様に、図10は、一般の会議室内において位相合成特性を測定した結果であり、実線rは受信波、実線sは直接波の推定値、実線tは放射電力推定値の誤差を示している。これについても放射電力推定値の誤差は0.1dB以内に収束した。なお、ここでは示していないが、偏波面や測定ステップを変更して測定した場合でも、いずれも±0.3dB程度の範囲内で収束することが確認できた。
なお、本発明は上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。
本発明は、電子機器製造業、特に通信機器製造業において利用することができる。
1…放射電力測定装置、10…ベクトル・ネットワーク・アナライザ、20…位相基準アンテナ、30…受信アンテナ30、40…無線装置。

Claims (4)

  1. 電波を放射する電波放射源の放射電力を測定する放射電力測定装置であって、
    前記電波放射源の電波の振幅および位相を取得する振幅位相取得部と、
    前記電波放射源が放射する電波を受信する受信アンテナと、
    前記電波放射源および前記受信アンテナの少なくとも一方を移動させて前記電波放射源および前記受信アンテナ間の距離を変化させる駆動部と、
    前記電波放射源および前記受信アンテナの少なくとも一方が所定距離移動する毎に、その距離における前記受信アンテナが受信した前記電波放射源からの電波の受信電圧を測定する測定部と、
    前記電波放射源の位置における前記電波の振幅および位相と前記測定された受信電圧の積算値に基づいて、前記放射電力値を生成する演算部と、
    を具備したことを特徴とする放射電力測定装置。
  2. 前記振幅位相取得部は、前記電波放射源近傍に配設されたアンテナからなることを特徴とする請求項1記載の放射電力測定装置。
  3. 前記測定部は、距離Rにおける受信電圧V(R)(ただしiは自然数)を測定し、
    前記演算部は、前記測定部が測定した距離Rにおける前記受信電圧に基づき、
    Figure 2011102709
    にて求められる積算値Vを算出するとともに、
    Figure 2011102709
    にて求められる放射電力Peirpを算出することを特徴とする請求項1または2に記載の放射電力測定装置。
  4. 電波を放射する電波放射源の放射電力を測定する放射電力測定方法であって、
    前記電波放射源の電波の振幅および位相を取得するステップと、
    前記電波放射源が放射する電波を受信アンテナにより受信するステップと、
    前記電波放射源および前記受信アンテナの少なくとも一方を移動させて前記電波放射源および前記受信アンテナ間の距離を変化させるステップと、
    前記電波放射源および前記受信アンテナの少なくとも一方が所定距離移動する毎に、その距離における前記受信アンテナが受信した前記電波放射源からの電波の受信電圧を測定するステップと、
    前記電波放射源の位置における前記電波の振幅および位相と前記測定された受信電圧の積算値に基づいて前記放射電力値を生成するステップと、
    を具備したことを特徴とする放射電力測定方法。
JP2009256788A 2009-11-10 2009-11-10 放射電力測定装置、放射電力測定方法 Expired - Fee Related JP5644997B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009256788A JP5644997B2 (ja) 2009-11-10 2009-11-10 放射電力測定装置、放射電力測定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009256788A JP5644997B2 (ja) 2009-11-10 2009-11-10 放射電力測定装置、放射電力測定方法

Publications (2)

Publication Number Publication Date
JP2011102709A true JP2011102709A (ja) 2011-05-26
JP5644997B2 JP5644997B2 (ja) 2014-12-24

Family

ID=44193099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009256788A Expired - Fee Related JP5644997B2 (ja) 2009-11-10 2009-11-10 放射電力測定装置、放射電力測定方法

Country Status (1)

Country Link
JP (1) JP5644997B2 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102967772A (zh) * 2012-11-09 2013-03-13 清华大学 一种二维全自动电磁场分布测试系统
CN109324234A (zh) * 2018-11-16 2019-02-12 华勤通讯技术有限公司 一种检测装置、系统及方法
JP2020511675A (ja) * 2017-03-16 2020-04-16 エムヴィージー インダストリーズMvg Industries 複数の放射素子を含むアンテナの検査方法、および複数の放射素子を含むアンテナの検査システム
KR102186306B1 (ko) * 2019-10-25 2020-12-03 세종대학교산학협력단 안테나의 방사 패턴 분석 장치 및 방법
CN113534077A (zh) * 2021-07-16 2021-10-22 北京华力创通科技股份有限公司 一种雷达辐射源威力反演方法、装置及电子设备
CN115085825A (zh) * 2022-06-09 2022-09-20 北京无线电计量测试研究所 一种等效全向辐射功率测量装置及测量方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006275967A (ja) * 2005-03-30 2006-10-12 Kyocera Corp アンテナ特性評価方法及び測定装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006275967A (ja) * 2005-03-30 2006-10-12 Kyocera Corp アンテナ特性評価方法及び測定装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6013061157; 山中幸雄, 杉浦行: '位相合成法を用いたV/UHFアンテナの実効放射電力測定法(II)' テレビジョン学会技術報告 Vol. 9, No. 29, 1985, PP. 19-24, 一般社団法人映像情報メディア学会 *
JPN6013061158; Yukio YAMANAKA, Akira SUGIURA: 'Measurements of Effective Radiated Power by means of In-Phase Synthetic Method' IEICE TRANSACTIONS Vol. E73, No. 10, 1990, PP. 1738-1745 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102967772A (zh) * 2012-11-09 2013-03-13 清华大学 一种二维全自动电磁场分布测试系统
JP2020511675A (ja) * 2017-03-16 2020-04-16 エムヴィージー インダストリーズMvg Industries 複数の放射素子を含むアンテナの検査方法、および複数の放射素子を含むアンテナの検査システム
CN109324234A (zh) * 2018-11-16 2019-02-12 华勤通讯技术有限公司 一种检测装置、系统及方法
CN109324234B (zh) * 2018-11-16 2024-02-13 华勤技术股份有限公司 一种检测装置、系统及方法
KR102186306B1 (ko) * 2019-10-25 2020-12-03 세종대학교산학협력단 안테나의 방사 패턴 분석 장치 및 방법
CN113534077A (zh) * 2021-07-16 2021-10-22 北京华力创通科技股份有限公司 一种雷达辐射源威力反演方法、装置及电子设备
CN113534077B (zh) * 2021-07-16 2024-03-12 北京华力创通科技股份有限公司 一种雷达辐射源威力反演方法、装置及电子设备
CN115085825A (zh) * 2022-06-09 2022-09-20 北京无线电计量测试研究所 一种等效全向辐射功率测量装置及测量方法

Also Published As

Publication number Publication date
JP5644997B2 (ja) 2014-12-24

Similar Documents

Publication Publication Date Title
JP7250838B2 (ja) フェーズドアンテナアレイを試験する方法とシステム
JP5644997B2 (ja) 放射電力測定装置、放射電力測定方法
US7928906B2 (en) Antenna measurement systems
EP3864430B1 (en) Radome measuring system and method
US8330661B2 (en) System and method for measuring antenna radiation pattern in Fresnel region based on phi-variation method
Henault et al. A methodology for mutual coupling estimation and compensation in antennas
US20160043778A1 (en) Method and System for Characterizing an Array Antenna Using Near-Field Measurements
JP5825995B2 (ja) レーダ断面積計測装置
Geise et al. A crane-based portable antenna measurement system—system description and validation
JP6678554B2 (ja) アンテナ測定装置
Leatherwood et al. Plane wave, pattern subtraction, range compensation
Expósito et al. Uncertainty assessment of a small rectangular anechoic chamber: From design to operation
CN113253000A (zh) 一种天线现场校准系统和方法
Miacci et al. Basics on radar cross section reduction measurements of simple and complex targets using microwave absorbers
Du et al. Antenna pattern retrieval from reflection coefficient measurements with reflective loads
Gemmer et al. Generalized test-zone field compensation
Lu et al. An innovative virtual chamber measurement method based on spatial domain cancellation technique for radiation emission in situ test
JP2003315440A (ja) コンパクトレンジのフィールド測定方法及びその装置
Nsengiyumva et al. New $ W $-band scattering measurement system: Proof of concept and results for 2-D objects
Fedorov et al. Comparison of the Measurement Accuracy of Material Sample Specular Reflection Coefficient for Two Types of Measuring Facilities
Harima et al. Determination of gain for pyramidal-horn antenna on basis of phase center location
Snastin et al. Investigation of Stray Reflections in an Anechoic Chamber with Imaging Technique
Breinbjerg High-accuracy spherical near-field measurements for satellite antenna testing
Parveg et al. Calibration procedure for 2-D MIMO over-the-air multi-probe test system
Loredo et al. Reconstruction of antenna radiation patterns from phaseless measurements in nonanechoic chambers

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121010

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140930

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141021

R150 Certificate of patent or registration of utility model

Ref document number: 5644997

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees